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ABSTRACT

In modern engineering there is an urgent need for a deeper
understanding of the nature of surface texture and its influence
upon the functioning of the element of which it forms a part.
0f particular importance, in this connection, is the behaviour of
surfaces in stationary and sliding contact. Investigations of
the contact of surfaces, on the one hand, and the evolution of
methods of surface specification and characterisation, on the
other, have developed more or less independently. This thesis

attempts to bridge the gap between these two areas of study.

The main emphasis of the work has been upon random surfaces
which are produced by a significant proportion of modern
manufacturing methods. The theories used have been drawn from
those employed in the study of other types of random processes.
Both these theories, and the experimental evidence used to support
them have been usually presented in digitel form; therefore cscme
emphasis has been placed upon tﬁe problems involved in the analysis

of data presented in this form.

The theoretical analysis is concerned with the representation
of a surface profile as a random signal and the significance of this
for the properties of surfaces of significance in their contact.
This then allows the development of a theory of the movement of a
second body over such a random profile. The friction and wear of
random surfaces is tackled through thé analysis of results obtained
from well instrumented experiments; this suggests that a stochastic

approach to the tribology of random surfaces is well justified.



Finally an attempt has been made to provide a broad fundamental
analysis of the generation of such surfaces. In this way it is
hoped that the work provides a basis for the classification or the
typology of surfaces in terms both of their functional behaviour

and of the relationship of this to the details of their generation.
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1. INTRODUCTION

For many years surface finish has been reéognised as an
important part of manufacturing technology. The recognition of this
importance has resulted in more complex methods of its measurement.
Stylus tracer instruments have played a major role in this
development. In very recent times an additional advantage of
these instruments has been that the output, being in an electrical
form, can easily be transformed .into digital form for
subsequent analysis. In this way, analysis of surface topography
has reached a new level of sophistication requiring considerable
skill in digital as well as .analogue techniques. At the same time
there has been only limited development of ideas about the way in
which surface topography influences the functional behaviour of
surfaces in engineering practice. A major role of surfaces of
functional significance is their behaviour in situations involving
contact and rubbing. Moreover, with only one or two exceptions,
models used in the analysis of the contact and rubbing of
surfaces have been very theoretical and have not been directly
related to the knowledge provided by stylus instruments and the
detailed analysis of their outputs which is now possible. This
thesis tries to tackle this central question by relating
characteristics of surfaces known to be of significance in their
contact to digital analysis of the output of stylus instruments.
Because the field is so large attention has been limited to
properties related to surface contact and only surfaces having
random characteristics have been considered. This means that
surfaces prepared by mechanical methods involving the random

contact of cutting elements (grinding, grit blasting, etc.) are



the type of surfaces to which this work will apply.

Chapter 2 reviews, briefly, the background and literature of
this chosen field of study and a more detailed published review by
the author is provided in Appendix 1. Chapter 3 describes the
techniques used in the later work; in particular, it outlines the
methods used to analyse surface profiles (or other waveforms) when

presented in digital form.

A major part of this thesis is concerned with a model in which
a surface profile is presented as a random signal with a Gaussian
Adistribution'of heights and an exponential autocorrelation function.
Chapter 4 provides an analysis of this model and its significance
for surface contact. This theory is then compared with the results
of a similar analysis of the profiles of a ground surface and the
consequences of this comparison for the development of methods of

characterising surfaces are discussed.

Chapter 5 provides a theoretical analysis of the movement of
a second body over the surface of a body having a random profile,
without any deformation of either. The more complex question of
the conseéuences of rubbing surfaces under load has been studied
experimentally and the results of this work are reported in
Chapter 6; the extent to which these observations can be treated
by the same form of analysis is discussed. In Chapter 7 the
generation of random surfaces by mechanical methods is considered;
the major object is to explore (in an elementary, but fundamental

manner) the extent to which the observed characteristics of



profiles of random surfaces might be expected on theoretical
grounds. Finally Chapter 8 draws some broad conclusions from the
work described in the thesis and outlines the directions in which

the subject may develop.



2, SURFACE TOPOGRAPHY AND SURFACE CONTACT

2.1 Introduction

Surfaces are becoming more and more important. The
requirements of modern technology are placing an ever—incfeasing
burden upon the surface and the surface\layers of components. This
calls for a greater understanding of the nature of surfaces, of
their measurement and classification, of their features and of their
control in manufacture. In order to bé able to decide on these
properties, both physical and topographic, which.are most likely to
be of use in controlling manufacture and predicting functional
behaviour it is necessary to examine in detail some of the

various functions to which surfaces are required to perform.

A comprehensive review of the subject covering the most
important aspects of this problem from function through to
geometrical classification is given in Appendix'l. This chapter
will select, for brief discussion, those aspects of particular

significance for the work described in this thesis.

2.2 Surface contact

In order to be able to understand the behaviour of surfaces
in friction and wear a consideration of the mechanism of solid
contact is essential. The nature of the contact either dry or
through lubricant films, together with the physical properties of
the materials, will determine, to a large extent, the performance
of the surface; for example its suceptibility to damage in sliding

contact or its ability to run-in.



Theories of surface contact are derived mainly from the
equations for a single contact region usually represented by the
contact between a smooth sphere and a flat surface. At light
loads there is elastic deformation of the two bodies. If the
radius of the sphere is R, the load W, El’ E2 and Vis Vo are the

values of Young's modulus and Poisson's ratio for the two materials

respectively then using the Hertz equations the radius a, of the

area of contact is given by

3 12 1.2 ]2
e = |7 ®bg ) (2-1)
1 2
which reduces to
WRy1/3
a, = L.11 (F) - (2-2)

when E1 = E2 and vl = vz = 0.3

At very heavy loads the size of the contact region is
dominated by the plastic behaviour of the material and for

circular contact area the radius of the contact area is given by

a_ ; vwhere
P .

mTalH=W
p
1/2
= (X -
or a = ("H) (2-3)

where H is the flow pressure or hardness of the softer of the two

materials.



The load at which plastic flow first occurs can be derived
using the equations for an elastic contact. At this load the
‘maximum shear stress just reaches a value of Ya/2 where Ya is the

yield stress in uni-axial mode. Then using the relation
H=2.7Y (2-4)

the load at which the onset of plastic flow occurs can be

calculated.

A measure of the load at which the transition from elastic to
plastic deformation coccurs .is that value such that ap =a,.

Equating these from equations (2-2) and (2-3) gives

R2H3
E2

W (2-5)
Then, to a reasonable approximation, the following conditions apply.
Fully elastic conditions occur at loads < Wc/15 and the first
plastic flow occurs at this load. Fully plastic conditions occur

W

at loads > 40 753 In between there is a transition region between

the onset of plastic flow and complete plastic flow.

Theories of surface contact are concerned with the behaviour
of individual contacts and with the subdivision of the total real
area of contact into multiple contacts which occurs when rough
surfaces are used. Much of the earlier work on surface contact
Holm (1958), Bowden and Tabor (1954) and Merchant (1940) was aimed
at producing a rational explanation of Amontons' Laws of Friction

(Amontons 1699) which are that the frictional force is



(a) proportional to the load, and (b) independent of the area of
‘contact. The first important point realised was that the real area
of contact is mucﬁ smaller than the apparent area calculated from
the dimensions of the parts. Tﬁis together with the formulation of
the adhesion theory of friction enabled the laws to be explained.
The important assumption was made that the real area of contact
arose from plastic deformation of asperities under the load W.
The>area of contact A would then be equal to g where H is the
hardness of the softer material. The adhesion theory of friction
also assumes that the frictional force arises from the force
required to shear the junctions at this real area of contact.

Hence the frictional force is proportional to real area of contact,
which in turn is proportional to the load. This theory did not
attach much importance to the surface finish because it plays

no part in determining the severity 6f the contact conditions,

but Archard (1957) pointed out that although plastic flow could be
expected to occur on the first few passes of two contacting parts
in relative motion it would not continue indefinitely, some
equilibrium state would occur when the asperities could support

the load elastically. He tﬁen went on to show that Amontons'

Laws could be explained using elastic deformation theory

providing the average contact size remaind constant with load.

This was a direct result of having an increase in the number of

contacts with load, a point which required more than one scale of

size of asperity on the surface.



In order to decide which of these two deformation modes,
elastic or plastic, occurs in practice, it is necessary to

consider the nature of the surface geometry.

2,3 Surface topography and its measurement

In this section we will be concerned only with the geometrical
properties of the surface - some other properties which are

significant in the functional behaviour are discussed in Appendix 1.

The physical size of the marks left on the part by the
manufacturing process is very small. Four orders of magnitude in
the size of the roughness values exist, ranging from 0.1 um for
polishing, to almost 1 mm for shaping; a typical size would be
about 5 um for turning. In the horizontal spacings the range is
about three orders of magnitude from a few millimetres down to
a micrometre or thereabouts; as above, a typical value is about
20 um for a turned surface. These small sizes and wide range of
values make assessment of the surface geometry difficult by eye
or thumbnail consequently a wide variety of instrumental methods
have been devised to more accurately assess the surface geometry.
These range from optical, pneumatic and capacitative techniques,

for example, to the commonly used stylus tracer instruments,

The optical methods usually used are either based on a
microscope (Martin 1967) or an interferometer (Tolansky 1970) or
both. Normal viewing under a microscope gives information over

an area; the only information in the vertical plane is obtained



by use of the focusing mechanism or by the use of oblique lighting
which causes shadows'on tﬁe surface from which estimates of height

can. be made.

Vertical information of high accuracy can be obtained at the
expense of some loss of area information by the use of interferometry;
this usually in#olves the positioning of a reference plate on top
of the surface either parallel to, or at an angle to, the general
direction of the surface. Contoﬁr lines of the surface are
produced by this means. Another technique due to Linnik enables a
'greater numerical aperture of the fringe viewing optics and hence
better resolution to be obtained by positioning the reference flat
in a remote place away from the sﬁrface. (Reason 1969). Better
results can also be obtained by use of multiple beam interference
(Tolansky 1970) in which both the surface and masfer plate are
coated. Other techniques such as Nomarski interference contrast
and phase contrast can be used to advantage on smooth surfaces.

In recent times the assessment of the surface geometry using
goniophotometric techniques has been gaining popularity. (See
Bennett and Porteus 1961, Davies 1954 and Reneau and Collinson

1965) .

However, although these latter methods can be made to give
satisfacfory results for some surfaces they have, as yet, been
impossible to make universally useful for the assessment of the
surface texture, The other more conventional optical techniques,

although useful, have not found extensive use in workshops because



10

of the difficulty in getting, cheaply, a number as the output

which relates directly to the surface finish.

Pneumatic and capacitative techniques have been used over
a number of years but they have found little general use. In
pneumatics, for instance, the sensitivity is inadequate for many
‘uses whereas in capacitative techniques, where the capacitance
between a reference plate and the surface is measured in order to
assess the surface roughness, one of the difficulties is found in
measuring any surface other than those having a flat shape; a
different shaped reference capacitor plate being required for each

shape of surface.

It is, however, stylus instruments which have become the most
widely used for‘the assessment of surface texture. This is because
of their ease of use, and convenient and unambiguous 6utput.

(See Reascn et al 1944 and Reason 1956)). In fact, in recent years,
the use of the stylus instrument .as a research as well as an
inspection tool has been increasing mainly because of the advent

of digital techniques (Reason 1964(a). Consequently this thesis will
be concerned only with the results obtained from stylus instruments

and in particular those results obtained using digital techniques.

One of the features that has emerged in the investigation of
surface geometry using stylus instruments and digital methods has
been tﬁe importance of analysing good quality data in the computer.
Before any useful comparison of results can take place the quality

of the data used must be assured. The author has been very aware
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of éhis point and has taken steps to ensure the quality of the

input data to tﬁe computer. Tﬁis ﬁas taken two forms. First, a
method has been deviséd in wﬁich the shape of the stylus itself

can be accurately assessed (Jungles and Whitehouse 1970). Second,

is the processing of the digital data prior to analysis in the
computer. In particular, a digital filter has been devised which

has optimum attenuation and phase characteristics and which allows
the removal,lfrom the digital data, of the extraneous long wavelength‘
components often met with in surface profiles (Whitehouse 1968).

These techniques are dealt with in Chapter 3.

One of the main iﬁterests in surface finish research at the
present time is that of trying to develop a typology of the surface
geometry so that a completely adequate classification of the surface
can be made without resorting to the existing technique of
specifying the R.a value together with a statement of the
‘manufacturing process. This existing technique, although very
useful, is becoming increasingly unsatisfactory in some respects
because (a) it cannot adeduately predict the behaviour of the surface
in some of the more stringent modern engineering functions, and
(b) it can prove restricting to the production engineer who wants
complete freedom in the choice of manufacturing process. Before
discussing some of the work that has been done on topographic
typology it is proposed first to consider some of the fundamentals
which must be involved; because any discussion of typology
naturally leads to statistics we will examine initially some of the

statistical considerations.
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Surfaces can be random or deterministic or, more usually,
a mixture of both. For a complete specification of a general
random process, high order joint probability density functions are
needed (Bendat 1958). However, in practice a second order joint
pfobability density function will suffice. From this both the
ordinate height distribution and the autocorrelation function,
and hence the power spectrum, can be found. Because the second
order probability density function is, in general, not known, the
autocorrelation function and fhe ordinate height distribution can be
conveniently used to define the statistics of the profile. In the many
practical instances whére the statistics of the process is Gaussian,
or thereabouts, then the normalised autocorrelation function and
the RMS (or average value Ra) completely define the profile. One
of the main reasons why these are a good basis for consideralions
of typology is that the autacorrelation function has the useful
‘property of being able to separate the random from the periodic
components of a waveform. Such has been the usefulness of these
statistical parameters that they have been used in many different

fields.

One practical point about any typology is that the parameters
used should, from an instrumental point of view, be kept simple and
cheap. Furthermore for a parameter to be useful in typology it
must be at one and the same time both discriminatory to distinguish
between one surface and another wﬁile being reliable enough not to
produce wildly varying values over the same surface. Another point

which tends to be neglected is that a typology should be capable of
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taking into account not only the overall statistics of the surface
but also statistically unpredictable freak events. This is one
region where correlation techniques are of little use. Such behaviour

is difficult to predict even using statistics (Gumbel 1959).

Turning back to the statistical aspects most of the present-
day parameters of surface geometry are basically estimates either
of the height distribution or of the autocorrelation or mixtures of
the two. The importance of the ordinate height probability density
function in surface metrology was first realised by Abbott and
Firestone (1933) who proposed the use of a curve showing how the
ratio of metal to air changed with the height of a hypothetical
flat plate lapping away the surface from the highest peak to the
lowest valley. This curve is generally referred to as the bearing
area (or ratio) curve; it is in fact one minus the ordinate height
'distribution function. Pesante (1963) proposed a classification
according to the shape of the ordinate height density function.

He found it more useful than the bearing area curve because it was
more‘discriminating. Reason (1964(b)) proposed the use of the
consolidated bearing area curve together with the high spot count
to classify the surface, and Ehrenreich (1959) suggested that

measurement of the slopeof the bearing area curve could be useful,

The Ra and RMS values are essentially estimates of the scale
of size of the ordinate height distribution - as indeed, also, are
any peak height measure such as the maximum peak-to-valley height.
Some attempt, however, usually has to be made in peak height measures

to preclude freak events. To this end the Swedish Standard



considers the difference in height between thé 5% and 907 bearing
area percentages and the Britisﬁ Standard considers the difference
in height between the five higﬁest peaks and five lowest valleys.
Other featufes of the density function can also be considered to

be useful, especially in demonstrating wear, for instance, the skew.
Al-Salihi (1967) in fact proposes that in addition to the RMS value
the third, fourth and higher central moments should be considered.

Unfortunately these are difficult to measure reliably.

The fundamental reason why the height distribution itself is
of limited vglue is that it contains no information about the
bandwidth of the profile waveform. Before considering methods
that have been evolved in answering this problem directly we will
first consider those methods of classification which involve the
derivatives of the surface profile. Myers (1962) recommended the
use of the RMS values not just of the profile itself, but the RMS
values of the profile slope and second derivative, together with a
directional parameter. Other investigators have proposed the use of
either one or more of the derivative parameters. Peklenik (1963)
considered the value of the standard deviation of the slope as a
convenient estimate of the autocorrelation function. The use of
the distribution of the slope has been reported by others
including Kubo (1965), Nara (1962). Nara suggested that the Ra
value and the mean slope value could be used for specifying a
surface on a two-dimensional graph. He maintained that by -doing
this he could estimate both the drop—off of the autocorrelation

function and the high spot density.

14



One of the important practical points coﬁcerning the use of
these Higﬁly discriminating parameters like slope or curvature
measurement.is that they tend, by their very nature, to reduce
the effective signal to noise ratio, i.e. extraneous short
wavelength noise tends to getvamplified. One way out of this
problem is to introduce a short wévelength filter. This will be
meﬁtioned later on concerning the work of Spragg and Whitehouse

(1971).

Many people have pointed out that there is a functional need
‘for a spacing type of parameter, for instance in the sheet steel
industry (Butler and Pope 1968). Some examples of parameters that

have been used are the number of crossings at a given height
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(Reason, 1964(b), Pesante 1963, Peklenik 1963). The number of peaks

in a given length has also been used. Sometimes, for example, in
lthe American sheet steel industry, the definition of a peak is
different from the normal one; they insist on the valley following
the peak being more than a fixed distance below. A more recent
measure is the average wavelength introduced by Spragg and
Whitehouse (1971) which takes into account the size of all the

harmonics as well as the dominant spacing.

Any classification must be a condensation of information.
Of all the thousands of bits of information contained in a typical
waveform only a few are going to be needed for any given function.
(Ultimately we require one piece of information - the answer to
the question "Will it perform satisfactorily?'". but this begs

the question of where this information is to be found). This is
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where the autocorrelation function is useful because it represents

a useful condensation of the information in the waveform.

Wormersley and Hopkins (1945) were tﬁe first to put forward
effectively the autocorrelation function (in a time series form)
as a useful measure of surface texture followed by Linnik (1954) and
Nakamura (1960). ﬁowever, it was Peklenik (1967) who proposed the
- further condensation of the autocorrelation into groups suitable
for use as a classification system. He proposed classifying the
~autocorrelation function to decide into which group it best
.fitted. The surface was then typified by the number of the group.
Thus he was able to present sﬁrfaces made by different processes

on a typographic scale which comprises:

Group 1 - Cosine or steady valued.

Group 2 - Exponential decay plus cosine.

Group 3 - Exponential decay modulating a cosine.
Group 4 - Complex combination of groups 2 and 3.
Group 5 - Exponential decay.

In this classificgtion, Group 5, for instance, (first order
random surface ) 1is typical of grinding honing etc., whereas
Group 3 (second order random surface) together with Group 2 are
more typical of single-point cutting processes like shaping,
turning etc. Group 1 is purely deterministic and does not occur

on practical surfaces.

As a further subdivision of each group, Peklenik (1967)

introduces the correlation length and the correlation period; the
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formeé measuring the rate of decay of the autocorrelation function
and the latter measuring the spacing of the dominant periodicity.
Although this classification system is a major step forward in

the specification of surface texture it has certain difficulties in
its application. Tﬁese, and some proposed amendments to include

the classification of the ordinate height distribution are discussed
in Appendix 1 (Whitehouse 1970). The extension of surface assessment
to three dimensions by Peklenik and Kubo (1968), McAdams et al

(1968), and others is also discussed in Appendix 1.

2.4 Surface topography and surface contact

From wha£ has been said in Sections 2.2 and 2.3.it is clear
that a great deal of time and effort by researchers has been put
into the fields of surface contact and surface topography. In the
field of surface topography, progress has been particularly rapid
over the past few years. However, these two fields have developed
practically in isolation. The result is fhat many questions are
still left unsolved; in particular the influence of surface finish
upon beﬁaviour involving contact, such as wear and friction, still
remains largely unknown. An important example is in determining
tﬁe mode of the deformation that occurs under different conditions
when two bodies are contacted. It used to be thought (Bowden and
Tabor 1954) that the asperities were always plastically deformea
upon compression. More recentl& it has been recognised that
surface contact must often involve an appreciable proportion of

asperity contacts under which the deformation is partially or
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completely elastic (Archard 1957);. consequently, the surface
finish must play a large part in determining the proportion of
elastic and plastic deformation. The great need at present,
therefore, is tﬁe bringing togetﬁer of the theories of contact with

the characteristics of surfaces as determined by surface metrology.

One of the few, and perhaps most successful, attempts to bring
tﬁese disciplines together has been by Greenwood and Williamson
(1966). They assume that the surface is made up of a Gaussian
distribution of asperities of standard deviation o* and that upon
contact, say with a flat plate, only the upper tips of the
asperities actually make contact. They assume that gll asperities
have a radius of curvature R at the tip. They assessed the proba-
bility of plastic deformation of the asperities using this model.
In fact there is always a finite chance 9f plastic flow using
A this model; however, one important conclusion that Greenwood and
Williamson came to is that the probability of plastic flow depended
‘very little on the actual load but is critically dependent upon a

plasticity index Y given by

¢,="§}{_’ (%)1/2 (2-6)

where E” is the composite Young's Modulus and H is the hardness.
Unfortunately although this equation represents a considerable
advance, their theory has its limitations. They do not take account
of the existence upon surfaces of superposed asperities of

differing scales of size. Also the plasticigy index assumes that

the deformation of each of the asperities is independent, consequently



the plasticity index has significance only if it is applied to

the main long wavelength structure of the surface. Also the theory
does not take account of the distribution of peak curvatures always
found on surfaces. One final important point is that their theory

only relates contact phenomena to peak characteristics and not the

characteristics of the profile waveform used in practice to assess

the surface texture. The need, therefore, is for further steps to

complete the bridging of the gap between contact theory and modern

methods of measuring and classifying surface texture.
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3. TECHNIQUES

3.1 Introduction

A large part of this thesis is concerned with information
derived from Talysurf profilometer instruments presented in digital
form. The significance of this technique in the development of
the subject has been already discu&sed in Chapter 2 and
Appendix 1. Broadly speaking its advantages lie in the range of
processing operations which become available when data are
available in digital form; these oberations are possible because
of the availability of fast digital computers. For these same
reasons similar techniques have been used in the present work for
the analysis of experimental data presented in Chapter 6. The
-experimental data include values of the frictional force and the
displacement of one body when it moves over another (which we
shall describe as the "ride'"), as well as the surface profiles of
the rubbing bodies. These measurements, and the details of the
apparatus used, will be described at the appropriate point in
Chapter 6. However, at this stage it is relevant to explain that,
for obvious reasons of convenience,‘these measurements have been
made using a Talysurf stylus and its associated circuits as a
displacement transducer. In this way the whole range of
experimental data presented in this thesis (and not merely the
surface profiles) has been presented in the same digital form

for subsequent analysis.

To allow the description of the later work to proceed without
interruption, this chapter contains a description of the techniques

used to transform the instrument output into digital form suitable



Figure 3-1. Talysurf Pick-up showing
Datum Attachment.
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" for use with the computer. The computer techniques used in the
analysis of this data are then discussed. Because of the number
of different programs used in this work this discussion of
computer analysis has been, necessarily, confined to the broad
principles involved. However, as an example, one program has

been selected for more detailed explanation. Most of these
techniques of analysis are also applicable to the results obtained
in Chapter 7; here surface profiles, in digital form, are
obtained from simulation of the mechanism of generation instead of

from the output of the Talysurf instrument.

To set'this work in its proper context, this chapter opens
with a brief discussion of the Talysurf instrument and its
successor the Talystep; which has the potential for development
as a high resolution profilometer. The question of instrument
resolution has played an important role in the work described in
Chapter 4 in which divergence between the thecoretical model and
the experimental measurements may be in part attributable to
stylus resolution. Tﬁe stylus shape plays an important role in
instrument resolution. For this reason, the author has been
involved in some detailed examination of the shape of styli used
in profilometry and their method of manufacture. A brief account

of this work is included in this chapter.

3.2 Stylus Instruments

The basic instrument used in this work has been the

Talysurf 4 which is a stylus tracer instrument used extensively
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‘in industry for the measurément of surface texﬁure. In the
operation of this instrument a sharp stylus is tracked slowly
across the machined surface. The up and down movements of the
stylus are amplified and registered on a meter and a recorder.

The stylus is usually a diamond pyramid typically of tip dimension
- 2.5 ym in the direction of traverse. The pick-up element upon
which the tip is fixed is constrained to have only one degree of
freedom and as a result of this the up and down movements which
are communicated to it by the stylué represent an accurate
geometrical representation of the surface itself in the one track
over which the stylus is passing. (Detailed descriptions of the
electronics are contained in the handbook). It must suffice here
to say that the instrument transducer is of the inductive type. In
this an armature which is éonnected to the pick-up element moves
within a coil according to the movement of the sgylus. The coil
itself is part of a bridge circuit being fed from a 10 kHz carrier
signal. The changes in the position of the armature cause
different inductance in the two halves of the coil which has the
effect of converting the stylus, and hence armature movement, into
an amplitude modulated voltage which can then be processed by
filters and other appropriate circuits. An essential feature of
the mechanical principle is that the surface roughness is measured
relative to a straight smooth optical flat which is supported
above the stylus, figure 3-1. It is the movement of the stylus
relative to this optical flat which constitutes the measured
surface roughness. For convenience a crude datum called a skid, or

alternatively a shoe, can sometimes be used. These take the form
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of a blunt foot wﬁich rests on the surface and to which the body of
the pick-up is attacﬁed. The mechanical reference relative to which
the stylus movement is measured is then taken as the difference
between the skid vertical position and the stylus. Upon being
moved, because tﬁe stylus is so very much sharper than the skid,

an approximate profile waveform is generated. This technique was

not used during these experiments.

The Talystep, figure 3-2, is another type of stylus tracer
instrument. It works on a principle which is basically the same
as that of the Talysurf. However, there are important differences,
mainly mechanical. First and foremost is that the stylus load,
insteéd of being 100 mg as in Talysurf, can be varied and reduced
down to loadings as low as 0.5 mg — a feature which makes possible
the use of very sharp styli. Also the maximum magnifications
obtainable are different from that of a Talysurf. Instead of a
103 top vertical magnificatrion, for the Talystep it is 10°;
horizontally it is 2000 instead of 500. The Talystep, however, has

a much shorter traverse length,

The two greatest advantages of these tracer instruments are
(a) that the output is in the form of an electrical signal which
can easily be processed, and (b) that they are very convenient and

easy to use.



3.3 Measurement of stylus shape

3.3.1 The significance of stylus shape

For most practical applications of tracer type instruments
the fact that the finite size of the tip of the stylus must filter
out some of the short wavelengths on the surface is not important.
Neither is it important that the minute structure and shape of the
tip itself are not precisely known. However, in some cases where
ultra-fine surface finish is being measured or detailed
investigation‘of the fine structure on surfaces is being carried
out then it becomes not only essential to use a much sharper stylus,
it also becomes very important that the geometry of the tip is

known. To use a very sharp tip of the order of 0.1 ym dimension
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is not practical for two reasons. First, the loading of the stylus

taken with the smaller tip would take the pressures at.the tip well
behind the yieid point of most metals. Second, the relatively
coarse movement of the Talysurf would not be conducive to the
maintenance of the fragile tip. However, use of the Talystep, is
practical and, for the pﬁrpose of the investigation described in
Chapter 4, is an admirably suitable instrument. Use of such small
styli not only gives instrumental problems it also highlights the
problem of the measurement of the tip geometry. Obviously the

first technique that comes to mind is that using optics.

3.3.2 Optical Microscopy

For many years the nominal tip dimension used in conventional

stylus tracer instruments have been of the order of 2.5 um for
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Figure 3-3. Optical methods of stylus measurement.

(a)
(b)
(c)
(d)

2.5 ym stylus using normal bright field.
Stylus as in (a) but using phase contrast.
Stylus as in (a) but using Nomarski Interference.

Sharp chiselstylus using normal bright field.



.normal surface profilometry applications. Dimensions of this size
can, to some extent, be examined optically. For instance in
figure 3-3 a diamond tip having the dimension of about 2.5 Hm
square is shown as viewed with the different optical techniques of
(a) normal bright field, (b) phase contrast, and (c) Nomarski
interference. It will be seen that it is difficult to determine
the real dimension of the tip itself let alone any fine structure

that may be present at the tip.

For the work described in Chapter 4 it therefore becomes
necessary to devise a method of measuring the microgeometry of the
stylus tip. Another problem emerged as a result of this exercise
in Chapter 4; this was the manufacture of diamond styli of
extremely small dimension, sufficient for the requirements of the
investigation. In the solution of both of these problems the
author gratefully acknowledges the significant contribution of

Mr. John Jungles of Rank Precision Industries Ltd., Metrology

Research Laboratory. These details are covered in Sections 3.3.3 to

3.3.5. A published paper on these techniques is included in

Appendix 3 (Jungles and Whitehouse 1970).

3.3.3 Scanning Electron Microscopy

From what has been said concerning the various optical
techniques and judging from the pictures shown in figure 3-3, it
would seem natural to apply the scanning electron microscope
technique to the measurement of the stylus tips. This is because
of its obvious advantages over light microscopy. These advantages

are (a) the depth of focus is increased because of the long focus
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Figure 3-4. Scanning electron micrographs of styli.
(a) Sharp chisel stylus.
(b) Stylus as (a) but aluminium deposit.
(c) Gramophone stylus.

(d) Stylus as in (c) but at a higher magnification
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magnetic lens which keeps the beam divergence small, and (b) the
increase in the useful magnification which is made possible by the

very small equivalent wavelength of the electron beam.

Unfortunately it was found that the measurement of diamond
tips by secondary emission techniques was not completely
satisfactory. An éxample‘is shown in figure 3-4(a) which is a
scanning electron micrograph of tﬁe chisel shaped stylus shown in
figure 3-5(b). It can be seen that although there is a considerable
improvement it still leaves a lot to be desired. This is due to
two things, the first being tﬁat the diamond is an insulator and
the second is the extreme nature of the geometrical shape of the
tip. Secondary emission from an insulator such as diamond can be
a complex pﬁenomenon because of the absence of free electrons. An
insulator will not lose energy as in a metal by interaction with
free electrons in tﬁe conduction band. Primary electrons will only
lose energy by interaction with the valence electrons and, unless
the insulating object is a thin film on an electrically conducting
base, a space charge forms in the material. It is possible for an
insulator to emit more electrons than were introduced giving
rise to a net change in charge which causes charge to migrate

towards peaks or other sharp boundaries.

Attempts to reduce this effect by deposition of a thin
deposit of conductive materials like aluminium, gold or carbon

have not much effect as seen in figure 3-4 (b).

Consequently it became clear that although scanning electron



techniques are suitable - even for diamonds having little extreme
geometrical shape, as in the gramophone styli, figure 3- 4 (c)
and (d) it is not really satisfactory for the diamond tips in

question.

3.3.4 Transmission electron microscopy

In this technique the electron beam is passed directly through
a replica of the object to be measured. In the case of diamond
tips this in itself presents problems because any replica must not
only show the details of the tip clearly but must show enough of
the overali geometry of the stylus to enable it to be found when
in the microscope. Usually all sorts of various shapes and
markings litter the view. Some sort of positive identification is
essential. For this reason the natural single-stage replication
materials like gelatine, collodion and formvar and some two-stage
techniques which utilise wax, gelatine, acetates and metals as

the first stage failed.

Glass as a first stage replica material was tried. Glasses
differ in properties from the organic polymers which are usually
used for replicas in electron microscopy. Whereas the polymers are
partly crystalline and only to some degree amorphous, glass is
completely amorphous which means that any replica of the tip is
likely to be faithful - at least for a limited time. One other
advantage of glass is the ease with which a second replica of
carbon can be released from the glass. By these techniques

the required results were achieved.

27
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WO-5Mnri
Figure 3-5. Transmission electron micrographs of styli
(a) Stylus shown in Fig. 3-3(a).
o) Stylus shown in Fig. 3-3(d).
(©) Ultra-sharp stylus.
(d) Stylusas in (c) at a higher

magnification.
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No damage to the tip could be expected thfough indenting the
glass because the relative hardness of diamond and glass is about
the same as for tungsten carbide and zinc, so the tip is most
unlikely to be damaged. One result which supports this statement
is that no changes were observed in a succession of replicas taken

from the same tip.
Practically the procedure was as follows:

A small rig was constructed for use on a standard instrument

| (Talystep) which enabled a known load to be applied while the
diamond was resting on the glass. A given small force of about

1 grm was then applied smoothly for about a second. This process
was repeated many times within a small region. Having such control

enables many such indentations to be applied in the same way.

Carbon was then deposited onto the indentation from one or two
directions at right angles up to a thickness of about 0.03 um to
give rigidity. This was subsequently shadowed with gold or
platinum to a depth of about 5 nm. The replica was then floated
from the glass by immersion in water. The carbon replica had then
to be removed and placed on a standard electron microscope grid.
The depth of carbon used was necessary to give rigidity. Rigidity
of the replica was sometimes difficult to maintain as is shown in

figure 3-5(b) which shows a typical replica fracture.

Typical results are shown in figure 3-5. Picture (a) is
that of the tip shown in figure 3-3, (a), (b) and (c) showing the

clear detail. Picture (b) is that of the stylus shown in
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figure 3-3(d), and finally figure 3-5 (c) and (d) are
micrographs of an ultra sharp stylus.

3.3.5 Manufacture of a stylus for ultra
high resolution .

A previously mentioned a sharp stylus was required for
testing the limits of the.theory in Chapter 4. The stylus that
was made is shown in figure 3-5(¢) and (d). It Qas made by lightly
loading an ordinary stylus against a slowly rotating cast iron
disc charged with one micron diamond paste. Arrangements were made
so that the diamond could be turned accurately through 90°
periodically. This method differs from the conventional techniques
in that it uses much smaller loads and much slower speeds.

Although this results in long periods of polishing, of the order
qf days, the final result justified the delay. Using this
technique it was 2lso possible to make styli of sharper angle than
the conﬁentional 90° pyramid but the combination of sharp tip and

acute angle make it mechanically fragile to use.

3.4 Digital techniques

3.4.1 Analogue/digital conversion

In addition to tﬁe basic analogue instrument, the Talysurf
or Talystep, a data logging system has been used (figure 3-6).
This comprises a Solartron A/D converter and serialiser which
intercept the Talysurf or Talystep signal immediately after the

recorder amplifier., The digital signal is then fed to either a



Data Dynamics 110, S—channél paper tape punch, or alternatively
to a Facit 8-channel paper tape punch. Both of these systems are
capable of about twenty digital measurements per second. In what
follows the digital value‘of a sample of the height of the
waveform will be referred to as a profile ordinate or simply an
ordinate. Each ordinate consists of three decimal digits
together with a fixed character symbolising the end of the

ordinate (or word).

The Talysurf signal was arranged so that the total width of
the recorder paper corresponded to 999 units on the paper tape;
zero being on one edge of the recorder paper rather than in the

centre. This saves a polarity character.

Every ordinate was represented, therefore, by a number
between O and 999 which saved the use of a character for a decimal
point. This meant tﬁat each measurement of the waveform had a
resolution of 10 bits; the relative accuracy of successive
ordinates was therefore 10 binary bits. (This does not mean that
the waveform itself was accurate to this value - a figure of about

2% would be realistic.

Digital techniques were preferred over analogue because they
are (a) intrinsically more accurate, (b) more versatile,
(c) better for storage and display, and (d) quicker and cheaper in

the long run. These will be explained briefly:
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(a) It is difficult to get analogue instruments
tﬁat operate on the Talysurf electrical waveform
to better than one percent, as just stated
10 bit accuracy is easily possible digitally.
Other points on this topic will be referred to

later.

(b) By merely writing a program any parameter of the
waveform can be measured. This is usually not
too difficult. It is usually much more difficult

to do the same things by analogue techniques.

(c) The form in which the data is obtained in the
digital technique makes it more suitable for
storage and retrieval tﬁan the usual analogue
techniques. In the system developed here the
paper tape output was transcribed onto magnetic
tape. Thus a library of data tapes was built
up which could be called up and operated on very

quickly.

(d) The ease with which programs can be changed

saves time and hence money in the long run.

Obviously the digital techniques employed could not enable
real-time evaluation of parameters to be made. However, the data
could be collected at the time of the experiment so this was not

much of a restriction.
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The use of digital techniques also has the advantage that
programs and data can be exchanged between workers more efficiently
than is the case with analogue information and instruments. In the
long run this should result in better correlation between all work
in the field. However, as the work in Chapter 4 will show, even
digital techniques can be difficult to handle and understand.

The problems in digital analysis can be summarised as follows:
(2) Acquisition and quality of data.
(b) Pre-processing of data.
(¢) Evaluation of parameters.

It is one of the objects of this thesis to obtain suitable

- methods for dealing with the digital data resulting from the
measurement of surface topography in the most efficient way. Some
of these points will emerge in the individual chapters. In the
remainiﬁg part of this chapter emphasis will be given to the methods_
that have been adopted to process the data correctly. Also some
essential detail of the programs that have been written for the
various chapters will be given although fuller details including

block diagrams and instructions will be left to Appendix 2.

3.4.2 Acquisition and quality of data

The acquisition of the data has been briefly dealt with in
Section 3.4.1 where it was explained that punched paper tape was
taken from the data logger with each ordinate being in the form

of three decimal digits followed by an end of word character.
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There is no value in trying to get resolution of each measurement
greater than 10 bits because of the inherent noise level of the
signal; this is due not necessarily to instrument noise, but to
environmental mechanical or electrical noise. Where possible noise
has been reduced by appropriate techniques such as supporting the
Talysurf on a mechanical shock absorbing table. Unfortunately the
use of the Datum Attachment on the Talysurf, figure 3-1, although
removing possible errors due to the skid, makes the instrument
more sensitive to extraneous mechanical vibration because of the
increased mechanical loép between the pick-up datum and the
workpiece. It is therefore necessary to use some care when

employing the Datum Attachment.

The errors due to the 1imited resolution (i.e. 10 bits in this
-case) is called quantisation error (Watts 1961). It is not
important from the point of view of the measurement of averaging
type parameters like RMS or R,, but it can be of importance when
effects due to sampling and the definition of parameters are taken
into account. This will be briefly explained later. For an
RMS evaluation, for example, using Shepards correction if q is
the resolution limit then the error in RMS is q Y12 which is

negligible in the 10 bit case.

In all this work equi-spaced samples have been taken for ease
of instrumentation but this is not necessarily the best for any
application, (Linden 1959). Second order sampling which uses
overlapping trains of equi-spaced samples can be used in band-pass

signals with a large reduction in the amount of data over first



order sampling (equi-spaced data).

However, even the use of equi-spaced data has its problems
as will be readily seen in Chapter 4 where it is shown that the
values of many measured parameters depends crucially on the

sampling interval.

3.4.3 Pre-processing of data: principles

This is one of the most important of.the techniques that have
been developed here to meet the need for getting useful information
out 6f surface data. Basically the problem is as follows: The
profile graph emerging from any stylus trace instfument can have
two sets of extraneous information contained within it, the one
usually long wavelength, and the other short wavelength. Both
‘of these can be troublesome and can give rise to incorrect results.
The long wavelength errors affect the average type of measurement
such as éutocorrelation, R, etc., whereas the shorter wavelength
errors affect the discriminating parameters such as the derivatives
or curvatures on the surface. It must be conceded that both of
these types of parameters are of fundamental importance in surface
topography and are of particular importance in relation to the work

in this thesis.

The nature of the long wavelength extraneous component is
usually two-fold; one instrumental and the other natural. The
long wavelength error introduced instrumentally is caused because

of the imperfect levelling of the specimen relative to the
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mechanical datum of the instrument. This has the effect of
producing a ramp-like profile signal on the Talysurf chart. Other
effects are the general curvature or shape of the surface being
measured or even the presence of waviness which is due to imperfect
machining of the surface. Similar effects can occur in the digital
record of the displacemeﬁt of one body as it slides over another

(the ride) because of errors in the friction apparatus.

The short wavelength (or sometimes better expressed as high
frequency) extraneous components are usually due to electrical
noise like the mains or vibration due to motors, gearboxes and

general impulses in the vicinity of the instrument.

In both of these cases, both high and low frequency, some
form of filtering technique must be adopted and, in general, the
filtering is best done digitally because the characteristics and

accuracy can be closely controlled.

Many forms of filtering are possible including the fitting
of a least squares line or polynomial through the profile. The
former removes the errors due to instrument but not other errors.
Least squares polynomials like Legendre polynomials can be used,
or even Chebychev polynomials which, although not least square,
do find the minimum divergence between the profile and the
polynomial. Tﬁe disadvantages of all these is that some knowledge
of the polynomial degree of the error must be known otherwise
distortion can sometimes result. The best method is to use a
true digital filter which does not require a knowledge of the

profile. These will be explained in the next subsection.
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A special filter has been devised to be used specifically in
work on surface topography which can provide a high degree of
accuracy and realism (Whitehouse 1967). This differs from the
standard 2-CR filter digital technique derived earlier (Whitehouse

and Reason 1965).

3.4.4 Pre-processing of data: Digital filtering

In general if Yy is the Nth ordinate of the profile and the
ordinate spacing is uniform, then if the mean line found by the low
pass filter is MN for the Nth value then, in general, (Haykin and

Carnegie 1970)

N N _
My = D ooy L BMy (3-1)
i=0 i=1
In other words the Nth output from the filter in digital form
can be expressed in terms of all other preceding inputs and

outputs.
If all the Bi's are zero then

N
L LT | (3-2)

i=0
where a, are weighting factors found from the impulse response of

the desired filter.

Where Bi are not zero then the filter is called recursive or
closed loop. For example, a single-stage digital filter could be

made by the expression

36
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My oy b B (3-3

where the choice of o and B determine the position of the low cut

break point and the gain of the transmission characteristics.

Because the choice of the Bi's are critical due to the closed

loop nature of the digital filter the form of equation (3-2) was used.

Consider the standard instrumental method for removing the
extraneous long wavelength components. This consists of two CR
filters in cascade. The impulse response h(t) is given by

h(t) = 6 - (2 - t/RC) exp (-t/RC) . 1/RC (3-4)

where 6 is the unit impulse and RC is the time constant which can
be written in terms of a high and low pass component h(t) and
h(t) thus

h(t) = & - h(t) (3-5)

The true output from the filter g(t) is given by

, t :
g(t) = f h(t-1) y(1) dr
—t t
= f §(t~1) y(t) dt - J h(t-1) y(1) dt (3-6)

= y(t) - m(t) where y(t) is the original profile and

m(t) is the mean line at t. (3-7)
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Equation 3-7 can be rewritten non-dimensionally in terms of o

the ratio of distance to the cut-off. Thus

g(e) = y() -m(a) (3-8)

here (3-4) becomes h (a) = §° - Aexp (-Aa).(2-Aa)

A = A/vaC where A is the cut-off, upis the tracking
. . (3-9)
speed of the pick-up, a = x/o where x is the distance

along the profile.

Although the standard wavefilter has been useful in practice
it has certain disadvantages when dealing with research problems

on surface topography because of the following:

(a) The characteristic is such that the mean line

is not smooth for high frequency profiles.

(b) The mean line is not flat up to the cut—off

of the filter.

(c) There can be phase distortion of the filtered
signal in some cases where the signal is near

to the filter cut-off.

Because of these disadvantages and because of the research work
required in this thesis and elsewhere a new filter was devised,

it is called the phase-corrected filter. Figure 3-7 shows a
comparison of the amplitude chara;teristic of the standard filter
and the phase-corrected filter. A published paper on this work is

given in Appendix 3 (Whitehouse 1968).
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Tﬁis pﬁase-éorrected'filter'is developed in thelfollowing
way: No phase distortion of tﬁe filtered output implies that all
components of the input waveform, that have not been completely
rejected, are not shifted relative to eacﬁ otﬁer in their passage
‘through the filter. Strictly they should not be shifted in time

at all. However, this is impossible, because if
H(w) = R@w) + jX(w) (3-10)

is the frequency characteristic of a filter, the phase angle ¢ is

given by
| -1
$ = tan = X(w)/R(w) (3-11)
From which for ¢ to be zero X(w) = O i.e. H(w) is real.

H(w) can only be real if the impulse response is an even
function, that is it extends equally on both sides of the time
origin into both the future and the past which is impossible.
However by shifting the axis of symmetry of the impulse response
from the time origin to.t = to this introduces only a delay into

the filter (which is equivalent to a linear phase term) and shifts

all the components relative to each other by an equal amount,

thus removing phase distortions. There are problems involved in
having to shift the time origin a sufficient amount but these are

explained elsewhere (Whitehouse 1968).

Under these conditions and taking the improved characteristics

into account then equation (3-5) now becomes -
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h(t)

8 (t-ty) - h ([t-t D) (3-12)
and

t .
g(t) = y(t—to) - ] _l'l(t"'to-'l‘) y(t) dt : (3-13)
o

and the normalised impulse response of the desired characteristic,

1 . Sinm(1+B) (o~a)Sinm(1-B) (a-a)
72 (1-B) (a-0)?

(3-14)

h(a) = 8(a-0) -

where B is the ratio of wavelengths having unit to zero transmission
and is equal to 1/3 in the chosen case. a 1is the normalised

version of to.

Equation 3-13 which incorporates équation 3-14 is easy to
evaluate and operate in the computer. The values of di
corresponding to the digital values of the low pass component of
equation (3-14) are tabulated in the computer. Some examples
showing how effective the new type of filter is are shown in

figure 3-8.

Use of such a filter ensures that what may conveniently be
called a realistic profile waveform will result (Whitehouse 1968).
It must be emphasised that the real advantage of a digital
filter over that of a polynomial fit under such circumstances is

the predictability of its behaviour on any profile.
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All practical waveforms measured throughout any of the
experiments described in this work are first pre—processed by the
digital filtering method described. All parameters to be measured

are subsequently derived from the filtered output.

Short wavelengtﬁ filtering can be used to remove noise by
exactly the same metﬁod except that the component involving the
impulse function is now no longer required. This means that the
output is low-pass. Obviouély, because short wavelengths are
being removed the extent of the weighting function of the filter
is very much shorter than that used to establish a mean line for.
the removal of long wavelengtﬁ errors, The only occasion for the
use of the higﬁ frequency filter in this work was in the analysis

of friction waveforms.

3.5 Digital analysis

3.5.1 ‘General principles

As in analogue techniques there is a considerable skill in
digital analysis. Unfortunately many engineers skilled in analogue
techniques do not realise that it is not obvious to go from one
to the other. The measurement of derivatives is just one example.
Most investigators of surface topography have used three-point
analysis for the majority of the definitions of peaks and
derivatives etc., as will be made clear in Chapter 4. However,
there are better, although more laborious, ways of doing the job.

For instance, there are techniques of numerical differentiation,
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integration, interpolation and extrapolation, all of which should
be used if high accuracy 1is required; However, it must be admitted
that these metﬁods are not always necessary. For instance, in the
evaluation of tﬁe mean line from tﬁe standard 2 CR filter the
convolution integral is evaluated by using tﬁe trapezoidal rule.
But it is not necessary to work out a mean line point for every
profile point; one in every few profile points can be evaluated
and a linear or parabolic interpolation made between the points.
This saves computing time. In Wﬁat follows it will be pointed out

occasionally where numerical techniques are needed.

One fundamental point is that the numerical analysis formula
to be used, the sampling rate, and tﬁe quantisation interval, are
all intimately tied togetﬁer in questions of accuracy. For example,
in the three point definition for a peak (namely that the central
ordinate should be ﬁighest), if the sampling rate is high compared
to the bandwidth of the signal, and if the quantisation interval
is large compared to the amplitude of the signal then not many peaks
will be counted. But using another more comprehensive definition
of a peak might increase the count. This could also be achieved

in other ways, for instance by reducing the quantisation interval.

3.5.2 Evaluation of parameters

In the course of the following work a large number of
parameters have had to be measured. For these a number of programs
have been written. The following is a list of the parameters that

have been necessary to evaluate:



(1) Autocorrelation functions and power spectra.

(2) Statistical distributions of various parameters
including ordinate heigﬁts; peaks, valleys,
curvatures of botﬁ for different heights, slopes
and second derivatives, botﬁ filtered and
unfiltered. These distributions are computed
togetﬁer with the necessary moments and extremes of

the distributions,

Additional programs have been written to measure particular

points, e.g.

(a) The evaluation of the envelope of a circular
body having one degree of freedom moving across

the profile waveform.

(b) The generation of random profiles according

to various statistics.

Other programs distinct from these have had to be written to
either verify or work out numerically some of the theorefical
formulae. These include the evaluation of envelope behaviour,
the distributions of peaks and valley curvatures and height

distributions etc. These will be outlined in Appendix 2.

In all the programs involving measurements on data acquired
during experiments such as those obtained from Talysurf profiles

of surfaces or from friction and experiments are initially

43
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transcribed from paper tape onto magnetic tape. They then become
part of a library of data tapes, each track or profile being
classified by a number and a magnetic tépe name. Preceding

each set of data on tﬁe magnetic tape is an indentifier containing
information on magnifications, manufacturing process, data etc.
When using this data in any of tﬁe programs the identifier is

automatically printed at the top of the line printer page.

The advantage of transcription onto magnetic tape (or disc)
is that the program can be written more efficiently, repeated

scanning of the data being possible.

All programs are written in I.C.L. version of Fortran IV.

3.5.3 ‘Autocorrelation and power spectra

The formula used for the evaluation of the autocorrelation is

given by C(é) wﬁere
CB) = yx®y(x+p) (3-15)

or for a practical record
L-8

C(g) = i%é- I y(x) . y(x+g)dx (3~16)
0
where L is the length of the record and y is the profile of zero mean
value. In the program, equation (3-16) is divided by the variance to
give the normalised autocorrelation. In equation (3-15) which is obtained
from a single profile record the ergodic principle is assumed (Lee 1960)

that is, the time (or space) average as given in the equatiom is
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equivalent to the ensemble average.

If T is the spacing, M is the lag number and N is the Number

of ordinates in the record, then equation (3-15) becomes in the

normalised and digital form.

. N L
CMI) = — )} yWlD . yETMr) /<) y(ED? (3-17)
M e Nia

The structure function S (B) is given by

(y(x)-y (x+8)) 2 (3-18)

which is often more reliable for large values of 8 because it
effectively removes some elements of drift in the mean value. In
the program S(B) is evaluated at the same time as the autocorrelation

function.
Notice that S(8) = 2(C(0)-C(8)) (3-19)

indicating that there is no difference in the information if the

data are strictly stationary.

The power spectrum, or more correctly the power spectral

density, is given by (see for example Bendat and Piersol 1966).

oo

P(f) = 2 J C(B) W(B) Cos2nfp dB (3-20)
6]
where W(g) is a lag window used for reducing the presence of
misleading information introduced into the power spectrum because

of the abrupt truncation of the autocorrelation function at the
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maximum allowable value of B (Bmax) deemed suitable for

reliability. 1In practice Bmax is usually about 107 of L.
W(g) = 0.5+ 0.5Cos(mB/8__ ) (3-21)

The form of W(B) here used is due to Hanning (Blackman and
Tukey 1958). Tﬁere are more direct ways of getting the power
spectrum tﬁan via the autocorrelation function i.e. direct from
the signal itself, but it was considered best to proceed in the
way indicated because of the additional need for the auto-

correlation function itself.

3.5.4 Other parameters

Derivatives, curvatures etc. In the investigation into the
three-point analysis technique discussed in Chapter 4 the definition.
of a first derivative was taken digitally to be

Vi1 Y

Yo = Tw o (3-22)

where T is the ordinate spacing. A more accurate formula would

use more than the three ordinates; for example

. - _ _ _
Yo T ®or [Yg 9y, +45y,=-45y_1+9y_, y_3] (3-23)

In cases other than testing three-point analysis work this is

preferred. Similarly for the second differential instead of
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v§~ = (3-23)

T2

it, more accurately, should be (HMSO 1956)

A, 1 - _ _ _
Yo 7 Teor? (2y4-27y,+270y,~490y +270y_;-27y_,*2y_,) (3-24)

In working curvatures out use is made of the formula

y’/
1 0 _
L. (3-25)

(1+(y5) 2 °/2

which reduces in the region of peaks and valleys where the interest

usually lies to
R Yo

-

because in these regions yé nv 0 for a peak yé is negative and for

a valley it is positive,

Once the distributions of these parameters have been found
it is a simple matter to work out the basic moments of them.
This is the same procedure for any distribution. For example if the

probability density of the profile height is f(y).

o

The mean value §' is J yf(y)dy (3-26)

-0

(=]

The average J l(y';)lf(y) dy (3-27)

=00

©o

The variance is 'f (y-y)2.£(y) dy (3-28)

-—00



= (y)2 = 02 (the RMS value squared)

The skew is given by

(=]

L f (y-7)3 £(y) dy (3-29)
03 .

-—00

and the kurtosis or excess by

(e
1 _y
— (y-y)* f(y) dy - 3 (3-30)
ot
Other moments could be measured but in practice these are
unreliable because any extreme freak peak ordinate can dominate the

results.

Other parameters based on derivatives can be measured, one of

these is the total length of curve.
This is given by
X

2
Total length = 1 J V1+(y2)?2 dx (3-31)
x2--x1 0

X

This works out as the running secant of the surface. Hence

RMS secant = Y1+ mean square slope (3-32)

One more very important parameter that is measured is the
average wavelength parameter which was initially proposed by

Mr. R. C. Spragg. This has been defined via the mean square

angular frequency w?,

48



&

(3-33)

]

N2 | (N2 (3-34)

The average wavelength is defined from equation (3-34) by

inversion to give

y
A = o2m., S (3-35)
Y RMS
which is a general expression for either a random or periodic
waveform. See Spragg and Whitehouse (1971) for a discussion of

this parameter.

In the.program both average and RMS values are worked out.
The bearing ratio, which is defined from the amplitude density
function, is also worked out. It is in effect simply unity minus
the amplitude distribution function i.e.

[ee]

BR(y)) = J £(y) dy (3-36)
oy

and has been used extensively in surface typology.

3.5.5 Locus of movement of one cylinder
on_another in the crossed cylinders-machine

Essentially this involves the working out of the path that a
smooth upper cylinder would take in running over a rough lower

cylinder.
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Basically in 2D tﬁe metﬁod consists of plotting the path of
a circle of known radius acroés the péaks of the profile. It is
essentially a mecﬁanical filtefing device. The computer technique,
as in conventional method of digital filtering, is straightforward
but tedious: First tﬁe ciréle radius R has to be modified into
an ellipse to take account of tﬁe magnification differences between
ﬁorizontal Vh and vertical magnifications Vv of the data:

Ve X .o

i.e. vy = RVV 1-"1- (Ev—)z ) (3",37)
h

Let the values of y for equal increments of x. be Cy ++eCqreeCp

where o is the point on the circle corresponding here to

X = 0.

To find the position of the point of contact of the envelope

at any point on the profile, say a,, the ellipse ordinates are

k

positioned such that ¢

is lined up coincident with a The two

0 k*
series of ordinates are then added up. If the maximum sum is at a
position corresponding to ag where s is the number of ordinates
spacings measured from the position k then the height of the
envelope at position k is as-(co—cs) and the difference between the’
envelope and a, is simply as—(cO—cl)—ak. This operation is
repeated for each profile ordinate in turn along the available

length. The Rp value is then
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k=N=-(L+1)
Rp = m E=L ((as—ak)-(co—cs)) (3_38)

where s takes a different value for each k.

Obviously the length of computation here depends mainly on
the time for finding the position of contact at each position of
the circle relative to the profile and this in turn depends on

" the extent of the ellipse.

Choosing the extent of the ellipse for each radius and
magnification ratio is a matter of compromise. Some limit has to
be imposed even if only for reducing computing time. A normal
criterion is to limit the vertical depth of the arc to a given
fraction of the chart. For instance on a Talysurf this might be
257Z. Even under this restriction the extent of the scan
required can be large, for example if the crdinate cspacing is
2.5 ﬁm and the radius is 50 mm then the extent of the envelope can
be over 1,300 ordinate positions if the magnification is low,

say 500X,

This procedure can be extended to take into account arough
upper cylinder, in which casecy... qe...Cy are not simply ellipse
ordinates they are magnified ordinates taken from a cross-
section of the upper cylinder. Strictly this cross-section would,
have to be continually changed but for most cases it is not

necessary.



3.6 Some details of a program

To bring together some of the topics discussed in sections
3.4 and 3.5 it will perhaps be constructive to examine a typical
program, Here no attempt will be made to list the full program,
but some details and a flow diagram,are given in Appendix 2 where
some details of other programs that have been written will be

given.

The program here selected is called PROF., It works out many
parameters associated with surface texture (or friction or ride).
Since being originally written by tﬁe author it has had some small
changes made to it at various times, particularly in the format
arrangements by my colleagues Mesérs. A. Bykat, G. Burger and
D. Kinsey,. Tﬁe technical content of this program and the digital
techniques presented are, however, virtually unchanged from the

original version.

The program can be split up into input routines, reference

lines and parameters and this sub-division will be followed below.

3.6.1 Input routine

The data emerging from the data logger consists of words of
three decimal digits followed by an end of work character. 1In
the course of the work two différent data logging systems were
used, one of five channel and the other of eight channel; therefore

the actual width of the paper tape used could correspond ta
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either of these situations and the format of the character

information depended on the data logger used.

For speed of computation the paper tape information was
transcribed onto compﬁter magnetic tape by means of an editing
routine called RSFE wﬁich, as tﬁe initials imply, is a surface
finish editor. This puts the paper tape information onto magnetic

tape in the following form:
(a) An identifier comprising of up to 80 characters.
(b) The data in blocks of one thousand ordinates.

(c) A number giving the total number of ordinates on

the tape.

Another advantage of transcription apart from that of being
able to rescan the data ordinates is that in this editing routine
checks on the data can be made. This saves time and money when the

main large program is read in.

The editing routine also enables some degree of organisation
of the surface profiles on magnetic tape. After transcription,
during which time the ordinates were automatically listed on the
line printer, a condensed list of the total number of profiles
on the magnetic tape is printed together with their identifiers
and number of ordinates. No other details of the editor will be

given here.

To call data from the magnetic tape two subroutines



SEEKSURFACE and READSURFACE are used (both FORTRAN and PLAN
versions are availaﬁle); SEEKSURFACE uses as arguments the number
of the surface profile on tﬁe magnetic tape and the name of the
magnetic tape. It positions tﬁe magnetic tape at the beginning of
the required surface and inputs into tﬁe.allocated store locations
both the profile‘identifier and the number of ordinates in the

profile.

READSURFACE reads in the data from tﬁe profile in blocks of
1000 putting tﬁem into prescribed locations in the store. It
makes available the number of actual ordinates that have been read-
in, the last block for instance will rarely contain the full 1000
ordinates. As an example of How tﬁis works the statement CALL
READSURFACE (NN, Y(4001)) puts 1000 ordinates in the Y array
starting at 4001 and it puts the number of ordinates with value

other than zero that have been read in the block into NN.

Having tﬁe number of profile ordinates available on the
magnetic tape enables a prescribed length of surface profile to be
read in. Tﬁis is useful when checking Ra or peak values which
have been taken using an analogue surface measuring instrument
because in the Talysurf, for instance, the meter assessment does
not simply start at the beginning of the trace, it depends on the
meter cut-off. Thus for the 0.25 mm cut-off, it is closer to
the end of the traverse than it is for the 2.5 mm cut-off. Knowing
the number of ordinates before the start of the run also ensures
that no time is wasted. In the program the number of ordinates

that can be skipped over at the start is called IGNORE.
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Otﬁer'useful features of the input routiné are that the
control variables are coded;_enabling tﬁem‘to be put in any
order. Also tﬁe control data for up to ten profiles can be read-
in in one go. This does not mean tﬁat ten profiles have to be
wotked on every time. Simply putting TRAV (the assesment length)

equal to zero indicates that the end of the batch has been reached.

Other points in this programme are as follows: (a) The
input control Variables are examined in a subroutine CHECKS. If
an error is detected or a questionable control value the program
either adjusts it to a value Wﬁicﬁ is reasonable or it flags an
error on the line printer. (b) For tﬁe purposes of display the
routine for plotting results on the line printer automatically

scales the values to take best advantage of the width of the paper.

Anotﬁer useful feature of tﬁe programme is in the final
output. This is aklisting of the major parameters that have been
obtained from all the surfaces tﬁat ﬁave been run in the batch.
This listing covers usually all the details of the distributions
etc. However, it has not been possible to include in the listing
any information abouf the autocorrelation function because it is

usually so complicated as to need visual assessment.

3.6.2 Processing

Turning to the process of digital filtering the program
allows quite a variation in the method of operation. Either the

phase-corrected or the standard 2 CR filter can be used or
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neither. One of the first steps in the program is to set the
weighting function into store. For the phase-corrected filter

this is done in the following way using ICL FORTRAN IV.
Where
AA(500) is the array used in this instance to store the function

B is the drop off rate required

L is the number of weigﬁting factors (assumed odd)
SUM is tﬁe store used for a normalising factér

C is tﬁe number of weigﬁting factors per cut-off
PI = 3;14159

K is tﬁe,ratio of ordinates to weighting factors.

The program reads:

5008 AA(250) 14B - the value of tﬁe central weighting factor

SUM = 14B

DO 5009 I =1, “/2

ALPI = (I+B) *PI *I/C
ALP?2 = (1-B) *PI *I/C
AA(250+I) =

SIN (ALP 1)* SIN (ALP2) / ((ALP 2%**2) / (1-B))
Using the formula described in Section 3.4.4

AA(250-1I) = AA(250+I) : The weighting function is
symmetrical so only half needs
to be calculated.

5009 SUM = 2 * AA(250+I) + SUM : The weighting function
FACTOR = SUM /C normalising factor

DO 5010 I'= 250 - L/2, 250 + L/2
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The area in the weighting function
is normalised.

5010 AA(I) = AA(TI)/FACTOR

J = K*(L-1) +1 This works out the number of profile
ordinates covered by the weighting

function.

.o

ITRAK = ITRAV - J+1 : This gives the number of ordinates
in the assessment.
After putting the weighting function into store the actual
convolution operation to get tﬁe mean line has to be carried out.
This convolution operation is particularly simple when carried out
in the computer but it can be time consuming. The following is an

example of how it is done:

DO 5011 KI = 1, ITRAK

StM = 0.0

D0 5012 I =0, L-1

SUM = SUM + AA (250 - L/2 +I) * Y (I*K + KI)
5012 CONTINUE

Y(KI) = Y(L * K/2 + KI) - SUM/C

Here the mean 1ine_point at Y(L * K/2 + KI) is contained in SUM.
This is taken from the profile value which is Y(L * K/2 + KI) which

is then shifted to position KI in the Y array for clarity later on.

In this particular program a mean line point is worked out
for every available point but in some of the other programs this is
not necessarily done; linear interpolation is used to estimate the
mean line between computed mean line points. In all the programs
referred to in Appendix 2 one of the special features has been the
options built in to allow many of the features to be utilised or not

as required.



Anotﬁer, perﬁaps, more important feature in these programs
has been the continual use of tﬁe line printer for a simple
pictorial display of evaluated results. The line printer is far
better than a grapﬁ plotter for simple display purposes, because of
its much greater speed. The autﬁor believes firmly in the
importance of a visual display in addition to numerical information
for most computer'applications; to give impact. All the programs
described make great use of this feature especially in the

presentation of distributions, mean lines, spectra etc.

An example of how this plot routine works will be given in

the following section;

3.6.3 Evaluation of parameters

As a simple example of how the parameters are evaluated and
displaved consider the section of the program relating to the

distribution of the filtered slope.

The value of the input variable JOHN determines whether
or not to apply any high cut filtering. If this is required it is
carried out in exactly the same way as for the low cut filtering
described in the previous séction, except that now the desired
profile IS the mean line that has resulted from the convolution
operation. It will then be stored in the Y array. The differential

is then given in the following routine:
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If v(M) is the magnification vertically
PS(M) is the profile.ordinate spacing.
AB(I) 1is the array in which the distribution of slope
values is stored
Then D1 = 1.0 /30000.0 / V(M) /PS(M)
SLOMAX = -10000.0 ; These set artificially high and
SLOMIN = 10000.0 ) low limits for the slope.
ITRAK = ITRAK~6
DO 1801 IAT = 1, ITRAK, 1.
Y(IAT) = (Y(IAT+6)— 9*Y(IAT+5) + 45%Y(IAT+4) -45*%Y(IAT+2)
+9% Y(IAT+1) -Y(IAT))
At this stage only differences
are used they are scaled later on.
SLOMAX = AMAXTI (SLOMAX, Y(IAT)) ) These routines determine
the highest and lowest
SLOMIN = AMINI (SLOMIN, Y(IAT)) ) slopes. ‘
1801 CONTINUE
DELTA 2 = (SLOMAX - SLOMIN) /41 : This determines the
slope distribution
interval,
DO 1802 IAS = 1, 41
AB (IAS) = 0.0r : This clears the array.
1802 CONTINUE
DO 1803 TIAS = 1, ITRAK, 1
KAT = N INT(Y (IAS) /DELTA 2) + 21 : Determines location
adds to the count
1803 CONTINUE

The next step calculates the moment of the distribution.
SUM 1 = 0.0

StM 2 = 0.0
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SUM 3 = 0.0
SUM 4 = 0.0
SUM 5 = 0.0

DO 1804 IAS = 1, 41.

1804 SUM 1 = SUM 1 + AB(IAS) * (FLOAT (IAS) - 0.5)

]

SUM 1 = SUM.1 /ITRAK : Works out mean value

DO 1805 IAS = 1, 41

SUM 2 = SUM 2 + ABS (FLOAT (IAS) - 0.5 - SUM 1) * AB(IAS)
SUM 3 = SUM 3 + (FLOAT (IAS) - 0.5 - SUM 1) *#%2*AB(IAS)
'SUM 4 = SUM 4 + (FLOAT (IAS) - 0.5 - SUM 1) *#*3%AB(IAS)
SUM 5 = SUM 5 + (FLOAT (IAS) - 0.5 - SUM 1) #*%4*AB(IAS)

1805 CONTINUE

It is, of course, possible to work out the moments from the
slope values direct but this, altﬁough more accurate, takes more
time. Tﬁe moments are subsequently converted to average, RMS,
skew and excess values. Also the ordinate differences in y(IAS) are
changed to real parameters like slope in degrees etc. When the
results are ready a routine called PLOT is used which enables the
line printer to be used as a simple plotter. First the maximum
frequency in the distribution is found; This is called PLAX.
Also part of the array AB is used to store the character information
required for the routine. The locations 42 to 46 are used.
VARY 2 is the value of tﬁe slope, VARY 1 is the tangent and IKIP
is the character number representing tﬁe frequency at slope value

VARY 2. Thus
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CALL PLOT (64,40,40,AB(42)) : Clears the array AB from
42 onwards.

CALL PLOT (26,IKIP,40,AB(42)) : Puts an asterisk in the
location in the AB array
corresponding to the value
IKIP,

WRITE (2,1809) VARY 2, VARY 1, (AB(L), L = 42,46)
1809 FORMAT (1X, F10.4, 2X, F10.4, 6X, 5A8)

This routine puts the slope value, tangent, and an asterisk
IKIP locations along the line printer width starting from the end

of the field of VARY 1,

Obviously to cover all cases of the evaluation of parameters
covered in the entirety of the programs would require a great
deal of space. These selected examples are meant simply to give an

idea of the methods adopted.
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4. THE RANDOM SIGNAL MODEL OF A SURFACE PROFILE AND ITS
ANALYSIS IN RELATION TO SURFACE CONTACT

4,1 Introduction

It is clear from the review of Chapter 2 and Appendix 1 that
surface finish is most important in the functional behaviour of
surfaces used in common engineering practice; a particular area
where surface finish is highly significant involves those
applications concerned with surface contact. In the past the
methods used in the specification of the geometric features of
surfaces have been inadequate. Tﬁey have been expressed only in
terms of the height of thé profile and have not taken into account
the spacing of the asperities or the differing scales of size
present in the surface structure (see, for example, figure 4.1).
At the same time those concerned with theories of surface contact
have used theoretical models in which the surface is represented
as an assembly of asperities. To a large extent the form of these
nodels has been based upon theoretical convenience rather than an
examination of the structure of surfaces met in practice. To a
limited extent the divergence between theoretical models and the
analysis of surfaces has been removed by the work éf Greenwood
and Williamson (1966) who used digital analysis of surface profiles
as the basis for their asperity model., Nevertheless the over-
riding need, at the present time, is for an analysis of the
problems involved in the function of surface contact based upon
knowledge of the topography of surfaces used in engineering

practice.

The work of Greenwood and Williamson although representing

a major advance is still far from a complete or accurate
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representation of ranéom surfaces such as those analysed in their
work. In this chapter we shall take as our starting point a
description of the profile as a random signal; it will then be
shown how it is possible, taking due account of the digital
techniques usually employed, to deduce theoretically those

properties of the profile relevant in surface contact.

4.2 The model
4.2.1 General

To regard the.profile of a surface obtained from a stylus
tracer instrument as a random signal is, in a great many instances,
not an unreasonable one. The chart recording obtained from say a
ground or shot blast surface could equally well have been obtained
from an instrument which measures wind gusts or many other widely
differing physical quantities, for instance, in cceanography
(Longuet-Higgins 1957), seismology (Liu 1968) and medicine
(Krendel 1959). That this random waveform description of a
manufactured surface is not illusory can be demonstrated from the
autocorrelation function and height distributions of many such
surfaces. In order to understand better how the random waveforms
concept can be applied to problems in surface topography it is
necessary to examine some of the statistical ﬁroperties of random

waveforms.

Any random waveform can be represented in more and more detail
by consideration of higher orders of joint probability function,

(Bendat 1958). If values taken from this process are
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Yo Yz, ¥4 at x5 X, and Xg then f(yl, Yo Y35 Xys Xy x3) more

completely defines the process than does f(yl, Y3 %5 x2). For

most random signals, however, the second order joint probability

density function adequately defines the statistics of the process (Lee 1960)

For stationary processes f(yl, Yo X5 XZ) can be written

1

f(yl, o3 g) where g is simply the distance x, -x If it is

1 72
understood in what follows that the Yy value is taken at a distance
of g from Yy then for convenience the joint probability dehsity

can be written f(yl, y2).

The ordinate height probability density function f(yl) and the
autocorrelation function C(B) can both be obtained from the second
order function f(yl, y2) because f(yl) is given by

flyp) = J £(y,5 v, dy, (4-1)
i.e. f(yl) is a marginal distribution function of f(yl,yz),also
the autocorrelation function C(B) can be obtained because as an

ensemble average C(B) is given as a joint moment by

© o©

-—00 00

In the case of Gaussian or near Gaussian processes the
second and higher order joint probability density functions are

completely determined by the standard deviation of f(y) and the



autocorrelation function. In what follows we will always take the

normalised form of the autocorrelation function unless stated.

Consider the joint probability density function of random
variables Yis Yo «veeey taken from a Gaussian random process.
Assume that they have zero mean and unit variance then use can be

made of the multi-normal distribution well known in statistics

(Cramer 1946). This is given in terms of Yys Yperee Yy 38 follows:

N
.y 1 3 JZ=1 15747 (43
Yis Yoeeeey ) = exp 2 -
1 2 N ‘(Zﬂ)N/ZIMIl/z 2|M|

where IM] is the determinant of M; M is given by the square matrix

dij being the second moment of the variables yiyj and Mij is the

cofactor of d.. in M.
1]

Take for example, the joint probability density of two

ordinates Y1 and Yo from a Gaussian waveform with a correlation of

P fhen

%
M..y.y.
j=1 137177

———— exp L, (4-4)
2mv1-p2 2(1-p2)
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1 1 - )
= ———=exp |[——— M, y_{™M Y_.¥ M, .Y_.V M, y5) | (4-5)
21/1-p2 2(1-p2) 117-1""127-1%0""21Y =170 2270

from which

(y_,=py )2
f(y_l,yo) --L exp ('YS/Z) . -:::gt:::: exp | - —-t 0 (4-6)
V2r V21 (1-p2) 2(1-p2)

which can be written

£(yy> v_1) = flyy) . £ly_;/v) (4-7)
where

2
£(y,) = 1 exp (-y5/2)
V21

and

f(y_l/yo) the conditional joint probability density

function* of Y1 given first Yo is

(y_,=py.)?
1 -1 "%
f(y_./yy) = ——=—== exp | ~ ———— 4-8
1707 ar(1-02) 2(1-p2) -8

which is a Gaussian distribution of mean value PYq and

variance (1-p2).

*As an example of the relevance of these concepts to the subject
of this thesis, in figure 4-10 the conditional probability
density function obtained from the digital analysis of a
practical surface can be seen.
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—

Similarly for three ordinates having correlations of Py

between adjacent ordinates and Py between the extreme ordinates:

£(y_15YsY41) = £0g) - Ely_/yg) « £y, 1/y4y_;) (4-9)

where

£(y,) = -;é; exp (~2/2)

2T
(v_,=p, 702 1
f(y_l/yo) = —:::gE:::: exp |- -1 ro
: V2m(1-p2) 2(1-p%)
and - (4-10)
(1_0%)1/2

£(y,,/Y,5Y_4)
et /21(1-p,) (1+p,~202)

(¥, (=03 =y 40 (1=p,)-y_; (p3-p,))?

2(1-o§)(1—pz)(1+02—2p§)

exp

The last term represents the probability density that ¥, occurs

given that Yo and y_; have occurred.

From this it is seen that the second and all higher density
functions can be specified completely in terms of the normalised
autocorrelation function and the value of the variance of the signal

(or more conveniently the RMS value).

Therefore it is proposed in this thesis that a completely
adequate way of representing a ¥andom type signal such as is often
met with in surface finish waveforms is to classify the surface
in terms of its ordinate height distribution and normalised auto-

correlation function.
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In particular, in this investigation it will be assumed that
such a representation of the random surface is often best achieved by
considering a Gaussian height distribution and an exponential
autocorrelation. It will suffice here to say that the model can be

justified in a number of ways.

First, and foremost, the author has found that a great number
of manufactured surfaces have a height distribution and autocorrelation
function which fit, or are a close approximation to, this model.
Second, this model has been used in the past for various other
problems, for instance in the scattering of electromagnetic waves
from surfaces. Third, use of this model simplifies the mathematics
sufficiently to allow some equations to be evaluated and hence
conclusions to be drawn from them. Finally, further justification
for such a model will be given in Chapter 7 with practical and

theoretical examples.

Using a Gaussian height distribution and an exponential
autocorrelation function means that specification of the model of
the random waveform reduces to the use of two numbers only, the
standard deviation of the distribution and the exponent of the

normalised autocorrelation function.

The system of co-ordinates is shown in figure 4.2, the mean
line through the profile will bg taken as y = 0. 1In practice
the signal will have zero mean because of the low-cut filter,
mentioned in Chapter 3, which does not substantially affect the

autocorrelation function. The probability of finding an ordinate
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at a height between h and h+8h is f(h)dh which for a Gaussian
height distribution is

L exp (-1y?)an (4-11)
5w

Here the heights have been expressed in a normalised form
y = h/o where o is the RMS of the surface or the square root of the

origin of the autocorrelation function when not normalised
2

The autocorrelation function normalised relative to o

is given by

| , L2 |
c¢(B) = fim i J y(x) . y(x+B) dx (4-12)
Le ‘L2

and is assumed to be exponential i.e.
= exp (-B/B¥) (4-13)
where B® will be called the correlaiion distanceX.

As the spacing Dbetween points on the profile is increased
their heights become statistically less dependent on each other
and B* is a scaling factor indicating the rate at which this

dependence (expressed by C(B)) declines towards zero.

For an exponential autocorrelation function the power spectrum

* We use the term 'correlation distance' to mark a distinction
between ourselves and Peklenik (1967-8) who uses the term
'correlation length' for 2.3B*. The only reason for this distinction
is that it is usual to specify a first order system in terms of
the cut-off.
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Figure 4-4. Micrograph of typical ground surface
Aachen 64-13. (Magnification 1000X) .
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is represented by white noise limited only in the upper

frequencies by a cut-off of 6db per octave (figure 4-3); this

has the physical meaﬁing that the main components of the profile
lie within a band covering the lower frequencies (longer
wavelengths). Shorter wavelengths do exist whose magnitudes
decline in a way such that their amplitude is proportional to the
wavelength. Figure 4-4 is a micrograph of a typical random surface
which shows that these shorter wavelength components do, indeed,

~ exist upon such surfaces.

4,2.2 Representation as a Markov process

Another important feature of the use of this particular model
(and, in particular, the exponential correlation function) is that
the surface can now be represented as a first-order Markov sequence;

a point considered in more detail in the next chapter.

Putting p% = into equation (4-10), because of the property

Py

of exponentials, yields

1 2 1
£(y | s¥0sY,4) = —exp (-y./2) ———
—1°707 41 Vo O ar(1-02)
_ 2 - 2
oo | - (y_1 pyo) 1 oxp | - (Y1 pyo)
2(1-p2) V21(1-p2) 2(1-p2)

(4-14)



or
(y,=py_)?2
. 1 exp -(2/2) . b e | -0 L 1
Y2m V21 (1-p2) 2(1-p2) V21 (1-p2)
(y,.-py,)2
exp - i i A (4-15)
2(1-p2)
= fG_p - £ /y_ - £y /yy) | (4-16)

Equation 4.16 shows how the Markov sequence emerges. Firstly one
ordinate has a value, the second ordinate is conditional on this,
and in turn the third ordinate can be considered as being

conditional on the second only, and so on.

In the discussion above the profile has been considered as
a continuous signal. In the digital presentation of a profile
having an exponential autocorrelation function the data becomes
a Markov chain and the conditional probability densities become
transition probabilities. Thus for a series of ordinates

Y1 Yg» Y4po-+---Ve are concerned typically, with the probability

of the transition from state i(y.) to state j( ); this transition
Yo 3Gy, :

probability Pij is an element in the stochastic matrix I

(Papoulis 1966).

P11 P12 A

: (4-17)

90 0 000

seec e .tc..a.ooc'ooPNN

If the quantisation interval is &y then the transitional
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probability for the transition from one element of the sequence
(having a value between a and (a + 8y)) to the subsequent value

(having a value between b and (b + 8y)) is given by

1 RY;
P b L exp | - (bpa)® 8y (4-18)
a V2m(1-p2) 2(1-p2)

In practice, this approach in discrete rather than continuous terms,
can be justified,to some extent, because of the finite quantisation
~inevitably involved in the statement of ordinate heights in digital
analysis. In fact the loss of information involved in current
practice is quite small. For example, it has been shown (Widrow 1956)
that the loss of information in a signal is quite small even when a
coarse quantisation interval is used and this is the basis of the

quantisation correlator (Watts 1961).

In general, the Markov property is such that

£(Y, 179 oo yy) = E0r, )0 £Qry/y, ) eenn By fy ) (4-19)

or equally with the sequence reversed; the individual elements

here are as in equation (4-8).

For the very important case where the members of the sequence,
i.e. the ordinates of the waveform, are taken far enough apart
to be considered to be independent of each other then equation

(4-19) reduces to

f(y+1y2...‘.yn) = f(y) . f(yz).....f(yn) (4-20)

the number of individual members of the sequence corresponding to
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the number of degrees of freedom in the waveform, i.e. for a
surface having a sharp cut spectrum at B cycles per unit length
in the waveform then in a length L of chart the number of degrees

of freedom would be L/2B.

The distance corresponding to independence needs some
explénation. This does not necessarily mean the same as zero
correlation; two points may have zero correlation and yet be
related, as for instance two values of a sine wavé separated by
m/2. However, for the case where the amplitude distribution is
Gaussian then zero correlation does mean independence. Thus, in
those cases where the waveform has an autocorrelation function that
crosses the zero line (for instance, if the waveform has a spectrum
with a short wavelength cut) then the position of zero correlation
is unambfguous. However, for cases where the autocorrelation function
decays monotonically to zero, for instance the exponential or .
Gaussian autocorrela&ion functions, the definition of zero
correlation, and consequently of independence, becomes somewhat
arbitrary; in this situation one requires a definition of
correlation acceptably small such that ordinates having this
correlation can be considered as independent. In what follows
we shall assume that when the autocorrelation function is
exponential and when the correlation has declined to a value of
about 0.1 the events can be regarded as independent; this

assumption will be discussed and justified later.

The particular value of correlation chosen is not very

s . . . -1
critical, i.e. the distance corresponding to a value of e or



0.5 in addition to 0.1 have been taken by others (Beckmann and

Spizzichino 1963, Peklenik and Kubo 1968).

4.3 Digital Analysis

4.3.1 Introduction; three-point analysis

One of the features of the approach outlined above is that the
surface is now represented in a form very convenient for the
~investigation of the results that emerge from the presentation
of the outputs from stylus tracer instruments in digital form.

The way that this digital information is usually used in
investigation of surface waveforms for tribological purposes is by
means of three-point analysis. The most widely quoted examples

of three-point analysis have used a single sampling interval and
this inevitably causes a loss of information compared with that
contained in the original waveform. Thus close sampling collects
a maximum of information about the profile but the three-point
analysis of this data restricts the information to structure on the
surface of this same small scale of size. Only by means of more
sophisticated techniques such as digital filtgring can the total
information in the sample be utilised. An alternative is to use
differing selections of the same information, by rejecting some
data, but still to use three-point e.g. to present information
from three-point analysis for a wide range of sampling intervals.
However, this can cause problems of rigour. When using the longer
sampling intervals one is presenting information about the longer

wavelength structure of the waveform obtained by drawing a smooth
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Figure 4-5. Model used in deducing distribution of peaks.

(a) Sampling interval, I = 2.36%; correlation, p = 0.10;
(b) sampling interval, I = 0.166%; correlation, p = 0.86
event 1, y_* event 2, event 3, y**
-CL
/)=0.10r*
___________ A
—L
1
1

4)=0.851



curve through widely separated points, Therefore any results

derived below should bear these reservations in mind.

In the terms of the Markov sequences discussed above this
represents investigating the behaviour of three-element Markov
sequences. In what follows the derivation of forﬁulae for
parameters of fundamental importance in tribology will be

considered.

4.3.2 The peak distribution

Consider a sequence of three consecutive ordinates of the
profile (figure 4-5(a)). 1In this diagram and in the discussion

which follows the average behaviour of three such consecutive

events is considered.

The necessary restrictions on these three events in order to

define a peak are as follows:
(a) The central event lies between y and y + 8y.
(b) Event 2 has a value of less than vy.
(c) Event 3 also has a value of less than y.

We may note that in what follows the valleys can be treated in a
similar way. Thus the probability that the central ordinate

represents a peak between y and'(y + 8y) is the multiplication of
the probabilities, P, P, and P_ where the P's refer to the shaded

172 3

areas of the height distribution.
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Obviously in some situations a peak may require four or even
more ordinates adequately to define it but for most purposes
these three ordinates will suffice. Also, the assumption is here
that the peak defined by these three ordinates has its apex at

event 2, The implication of this is discussed in section 4.3.6.

In terms of the joint probability density function
f(y~1,yo,y+1) the condition for a peak as defined above becomes

y y+#y y
"Prob [y_1<y,y<yo<y+dy,y+l<y] = £(y_1sYgsY,)V_19y,dy

_fo y -—00
(4-21)

which can be written

vty y y ]
y -—C0 —00
(4-22)
and using the Mean Value Theorem
y y

Which is the general equation for a peak as defined by three-

point analysis.

For an exponential correlation function equation (4-23)

reduces to

y y
£(y) I £(y_;/v) dy_ J £(y,,/y) dy ; dy (4-24)

00 -—C0
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Hence the probability density*that an ordinate is a peak at height

y is given by

y y
f% (y,p) = £(y) J £(y_y/y) dy_, f £(y,1/¥) dy,, (4-25)

-0 —00

Inserting (4-8) into this yields

£* (y,p) =2 (-y2/2) L fy
V2n 2m(1-p2) 7
(y_y-py )2 y (y,,7P¥ )2
exp | - — dy_1 J exp | - —————— dy+1
2(1-p2) ! 2(1-p2)
(4-26)
Thus
2
1 /1- 2
fx (y,p) = 1+ erf (¥/V2 /=2 exp (-y</2)
4/2';1_’ . l+p
=L g2 (g /e -y2/2
e 32 (y 1+p) exp (-y°/2)

(4-27)

When the ordinates are spaced so far apart that they can be

regarded as independent of each other equation (4-27) reduces to

2

. [} + erf (y/VE)J exp (-y2/2)

W2

£* (y):

02(y) exp (y2/2)
(4-28)

9| -
=

* Strictly in what follows the expressions are only densities when
multiplied by a constant factor to make the integral unity.
However, this is taken into account when moments are taken.

'
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It should be noted that this equation is not dependent upon the

assumption of an exponential correlation function.

The general expression for a peak using three-point analysis

\

for an arbitrary correlation function is obtained by putting

equations (4-10) into (4-22) and using the identity

X | N2 -
J ex-P —— -Q:_ﬂ_ll__ dt = ._;- ]_ + erf Lx_m_)
ov2m 2 0/2_
—c0 ’ 20 X
thus
5 y
exp (-y*/2) 1

f*x (Yap p,) =
172 Y27 Vz'n(]_—plz) —-

- 2 - - 2_
(y;=0,) 1 y(1=p +p,p,)=y_; (P %=p,)
exp|- —————| x 3 1 + erf dy_1
2(1-p,?) 2(1-p,) (14p,=20,%)

(1-p1%)

(4-29)

Figure 4-5(a) shows the three-point model for an exponential
correlation function for spacings which are large and consequently
the ordinates are independent; figure 4-5(b) shows the

corresponding situation when the events are closer and must influence
each other. Figure 4-6 shows plots of the derived forms of the peak
height distribution for a high and low value of correlation p; the
height distribution of the ordinates is also shown for comparison.
The trends with varying values of p will be observed. As p-0

(large sampling interval) the shape of the peak height distribution

becomes slightly skewed, its mean value approaches 0.85 and its
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standard deviation approaches a value of 0.7. Thus, when using
larger sampling intervals the main, longer wavelength structure

of the profile is revealed (neglecting here the problem of
aliasing) and the peaks tend to be above the centre line.

As p»>1 the shape of the peak height distribution and its mean value
and standard deviation, approaches those of the height distribution
of the ordinates. Thus, when using short sampling intervals one

is concerned with the shorter wavelength structure of the profile,

The mean value of the peak height density curve y* (p) is
found by taking the first moment of f* (y,p) in the normalised
version of equation (4-27). Thus

ol —y2
J___P______ex(y/Z) %.[1+erf(y/f—;/ ]

N 1+p
*(p) = — (4-30)

r_e_lvsp_('_}’_l_z_ Z [1+erf (y//_;/ )] dy

which gives

112)1/2

v (o) = o5y (4-31)

where N is the ratio of the number of peaks to ordinates and is
given by

N = %-tan-1 V(3-p)/(1+p) (4-32)

Similarly the variance (0)2 of the peak heights is the second

central moment. Thus



r exp (=y2/2) OO e (g7 /L2 )] ay

2 V2w
[%*(o)l = — 5
J gxp L) fo2 (y7/2) % [1 + erf (y//—‘/ ] dy

Y2 l+p
(4-33)
Lol /3e o 1 o 1+p viep 2
[0*(0)]2 I S e Tl B
1 anl /300 o1/
- tan T+p l+p
(4~34)
oK) = J1e—e) V1+o 7(1-p)
A -1 /3-p -1 /3=0 12
2V3-p tan Fres 4E._an /_i_:%
(4-35)
o* (p) 1+ 8 (-p) Vitp _ 36 (1-0)
(4_0) '3"") ﬂ(4_p)2
(4-37)

It should be noted that equations (4-27) and (4-28) when divided

by equation (4-32) are true probability density functions of peak

heights.

Equation (4-32) shows that as the correlation p increases from
zero to unity N falls from 1/3 to 1/4. These limiting values have

a simple explanation. As the sampling interval is increased
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p>0 and N+ 1/3, the three events are then effectively independent
(figure 4-5(a)) and the chance that any one of them (e.g. the
centre one) is the highest one becomes one third. On the other
hand as the sampling interval is decreased p»1 and N+ 1/4. The
modified distributions of the two outer events are now centred

on the central ordinate (figure 4-5(b)); the areas P1 and P3 have
values of 1/2 and the probability that the central event in a peak

is 1/4.

4.3.3 Peak curvature; some general assumptions

To provide an adequate description of a surface in terms of a
distribution of asperities it is also necessary to specify their
radii of curvature. It is more convenient to discuss this in
terms of a distribution of curvatures and the method adopted by
Greenwood and Williamson in deriving curvatures from the digital
information will be adhered to. The assumption here is that one
is justified in fitting a parabola to the profile by three-point

analysis.

The problems involved in this assumption and the limits within
which this analysis are justified are complex. They will be
briefly discussed here. However, it may be noted that the results

obtained are subject to the limitations discussed below.

Figure 4-7(a) shows one possible arrangement of three events

which will give a peak at height y with a curvature C given by
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C =2y " Y4 "9 (4-38)

A negative sign being here omitted to correspond to a convention

that a peak has a positive curvature.
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A number of assumptions are made in arriving at equation (4-38),

they will be taken one by one. Firstly, the curvature is assumed
to be given by the second differential. This, in general, is a

valid argument because

A3
LR

curvature = ; 377 (4-39)
' 1+ (Ez
dx
. d2?y dy . . .
which reduces to curvature = =z when qx 1S small, a situation

likely to be true in regions near to the peaks.

The next assumption is that Yo is always at the apex of a
vertical parabola, i.e. the highest point of the peak is at
Yo In general, as figureVA-S shows, the apex y* of a vertical
parabola is shifted relative to the ordinate of Yo by the shift s

where s = — ' (4-40)
2Y3 Y4171

In addition, the height of the peak, hitherto assumed to be Yo? is
at the apex of the parabola at y*. Thus the error in the original
assumption is given by

- 2
1 (¥e17v-9)
8 (ZyO—y_l-y+1)

y*_yO = (4—41)
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For a typical case if Yo is 3, ¥, is + 1 and Y is -1 then the
error in the height is +-%§-which taken as a percentage of the
normal range of the surface (assumed to be 6) works out at less than
a two percent error. (All heights normalised by the RMS value o).
For a given degree of asymmetrybbetween Ye1 and Vg the error gets
progressively smaller as Yo gets higher, a fact of considerable
practical importance because it is at the higher peaks that the
contact occurs. However, in all this the basic assumption is that
an estimate of the curvature, as usually defined, can be made using
equation (4-38), an assumption which will be progressively less

severe as p+l, when the fourth order central differences become

small i.e. the curvature at Yo

1
= "(2}'0‘(}7_1 + Y+1)) - "1-2' GI‘YO (4-42)

Given the assumptions which have been discussed above, then
the probability of the configuration for the closely correlated
and independent cases is given by P1 X P2 X P3 where Pl’ P2

and P3 are the areas shown in figures 4-7(a) and (b)

4.3.4 Peak Curvature

In general the probability of an ordinate being a peak at
height between y and y + 8y and of curvature C covering all

possible configurations will be given by

y+8y {y
£*(y,C,p) = J J £(y0)»£C(y_1/yg) + £(v,1=2y47y_1C/lyy»y_y) dy_; dy,
y y¢
(4-43)



from which the probability density of an ordinate being a peak
at height y with curvature C is

2y—y_1—C

y
f* (y,C,p) = £(y) . J f(y_4/y) . f(————) dy_ (4-44)
1 Y Y_l 1

y=C
This is an expression giving the curvature with three-point

analysis for a general autocorrelation function.

For the exponential autocorrelation function, equation

(4~-44) becomes

1 2 y 1
£* (y,Cyp) = — exp (-y7/2) J _—
V2T 2m(1-p2)
y-C
(y_;=py)? (2y-y_,=C-py)?
exp |- ——— | exp |- dy_,
2(1-p?) 2(1-p2)

(4-45)

which is a convolution integral thus enabling simple graphical

equivalents to be drawn. Equation (4-45) reduces to:

7]
—y2 | (1-p)y-c/2 |
f*(y,C,D) = gxp._(..——"_.l__./_gz_‘ expi|- erf c

2172 (1-p2) (1 - p2) 2(1-p2)

(4-46)

which for p = O becomes

2
exp(-y~/2) :
f* (y,C) = ————————— exp [}(y—C/Z )2] erf (C/2) (4=47)
2mvV2

- 84
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The probability density function that any'ordinate is a peak
of curvature C at any height is obtained direct from equation

(4-46) by integrating, giving

1/2
f*(C,p) = [ 1 } ! exp [}__;jii___l erf < (4-48)
’ 4m(3-p) (1-p) 4(3-p) (1-p) 2157

and for p = 0

£% (C) = —— exp ( “13; ) erf (C/2) | (4-49)
V127

These distributions of equation (4-48) and(4-49) are skewed

towards zero curvature as found experimentally by Greenwood and
Williamson (1966) from digital analysis of surface§ generated by
random processes such as bead blasting. These authors suggest a
Gamma function as a suitable description of the distribution but
these equations are nearer to a Rayleigh distribution and for 1arge.
curvatures become very nearly Gaussian., A comparison of Lliese
equations with results derived from surface profiles will be given
in Section 4.3.7. In Section 4.3.6 the relationship of equation

(4~49) to a Rayleigh distribution is discussed again.

The mean curvature C* for all peaks is obtained by finding the
first moment of f* (C,p) in equation (4-48).

Thus

C* (p) = (3-p) V1-p / 2N V1 ’ (4-50)

where the expression has been normalised by N the ratio of peaks
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to ordinates (equation 4-32).

4.3.5 Other parameters

The curvature (or strictly) the second differential of the

profile as a whole is given by

—2
£(C,p0) = L exp |— (4-51)
V41 (3-p) (1-p) 4(3-p) (1-p)

Equation (4-51) is a Gaussian distribution having a mean of zero
and a standard deviation of v2(3-p)(1-p). A simple check on this
value of the standard deviation is obtained by finding the variance

of curvature from equation (4-35).

Thus
2

E [ 2y0—(y_1+y+1)] =6~ 8 + 2p2 (4-52)

The distribution of slopes as well as curvature is important
because one widely used criterion for the onset of plastic flow
(Blok 1952, Halliday 1955)’uses the mean slope of the flanks of
the asperities. The slope distribution of the profile f(m,p)is '
easily obtained as in the case of curvature of the profile as a
whole because the formula itself involves a simple linear
relationship of the Gaussian variates Y1 and Vi1 and so is

itself Gaussian with mean zero and variance given by

2(1-p2).



87

Hence

o, 1/2
f(m,p) = exp [__:m.__1 [%w(l-oz)] (4-53)
4(1-p?)

from which the average modulus of the slope m can be obtained
taking into account the spacing and variance to give °
1/2

= _ o . |1p? —54)
mo= — - (4-54)

4.3.0 Effect of assumptions on curvatures*

In this section the effect of the assumption that the apex of the
peak occurs at Yo will again be considered. From figure 8, if R

is the radius of curvature

1

= * - = 2

Y_1 y 5g (4+s)
. 1 2

= * - =

Yo 7 2R °
1 2

= - -

Ve T 7R (478)

using the spherometer formula approximation to a true circular

peak.

% T am indebted to Mr. A. Dyson (Shell Research Ltd.), Adrian
Visiting Fellow of the University, for suggesting the approach
used in this section.
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. 1 C
Letting ¢ =z where C = ZYO Y17 Y1

C
= vk - 2
o1 y 752 (4*s)
C
= % = = 2
yO y 222 5
C
= * - 2 -c)2
Yyg1 &Y 222 (2-5)

Now the probability density of a peak of curvature C at a true

maximum height of y* whose apex is a distance s from v, is ‘given
%

by £ (y*,C,s). This can be determined from the co-ordinate space

Y_1:Y9°Y41 by a transformation whose Jacobian J is given

b(y_l ’YO’Y+1)

by
a(Y*aC;S)
0Y_4 bY_l aY__l
oy* > oC ’ os
oy oy oy
where J = nug s >n0 s .)9 (4-56)
vy” “u v S
6y+1 ay+1 Ey+1
cy* > ¢C * ©s
1 C
1, - 572 (2+s)2, - oz (2+s)
1 C
J = 1, - 532 s2, - 7z S
-1 C
1, - 512 (2-s)?, + Z (2-s)

c/e ' (4-57)
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If we now consider the case where Y_1s Vg and ¥y, are all
independent then their joint probability density is f(y_l,yo,yl)
given by

2 g2 g2
1 Y e Ya

———5s eXp
(2“)3/2 | 2

Using the transformation

*
f(y—l’YO’yl) .J=1f (Y*,C,S) (4-58)

(for a justification see Davenport and Root 1958) yields

C

2(2“)3/2

% (y*,C,s) =

exp|- (4= —So(urs)D “r(yr- S 622 (ya- —C(4-5)2))
242 202 242

A , )
(3y*2- %5 y*(222+3s2) + %F (294+3s%+122252)

= ——————75 exp |-

2(2m)°> 2

(4-59)

Now the total curvature distribution of the peaks is obtained by

%
integrating with respect to y* to give f£(C,s). Thus

2 .
exp |- L %+ 120252) (4~60)

*
f(C,s) =
R27V3 120"

which is a Rayleigh distribution - demonstrating the existence of
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a Rayleigh distribution of curvatures rather than a Gamma function as
suggested as a possible distribution by Greenwood and Williamson

(see discussion of equation (4-49) above). To take into account

all the possible peak apex positions this equation has to be
integrated with respect to s. The limits of integration
corresponding to s = *%/2 have to be used because within these limits
the curvature is positive if Yo > V41091 which corresponds to our

definition of a peak. (see equations (4-55)). Then,

2/2 2 2.2
*
f(c,s) = C/_ exp (- %E . exp (- ¢ 2 )ds
227v3 Za/2 2
1 c2
= exp (- 15) .erf (C/2) (4-61)
V127w

-

As can be seen equation (4-61) is identical with equation (4-49)
illustrating that as far as the curvature of all the peaks is
concerned the errcrs due to this particular assumption are zero.

Exactly the same argument can be followed in the correlated case.

4.3.7 Analysis of surface profiles

The validity of the theory given above has been checked using
digital analysis of profile meter outputs. For this purpose
Aachen 64-13, a typical ground surface used in an 0.E.C.D. research
‘programme was used. The experimental results were derived from
surface profiles having been ob£ained by data logging the output
from both a Talysurf 4 and a Talystep as explained in Section 3.

The results presented are based upon five profiles each



" 'TABLE 4.1

Relation between sampling interval (2) and correlation (p)
between successive samples on Aachen 64-13.

Sampling interval (um) |15 6.0 3.0 2.0 1.0 0.5 0.25

Correlatior (p) 0.10 0.40 0.63 0.74 0.8 0.92 0.96

TABLE 4.2

Showing second order joint distribution practically for Aachen 64-13.
Joint distribution of Aachen 64-13 between adjacent ordinates.

Sampling interval (um) 1.25 2.5 15
Correlation p 0.825 0.68 0.1

¢ practical 0.96 0.67 0.52
o theoretical 0.99 0;73 0.565

The results in the Table were obtained from 1000 data points. In
the particular record of Aachen 64-13 used in this exercise the
sampling rates were in rational units of micro-inches rather than
micrometres; the 2.5 ym and 1.25 um corresponding to 100
micro-—-inch and 50 micro-inch spacing respectively.
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consisting of some 10,000 ordinates. Statistical analysis
shows that the normalised standard errors of the results presented
below are approximately 27 for mean values, and 57 for individual

points on the probability distributions.

By suitable selection of data in the computer it was possible
to present results for sampling intervals between 0.25 pum and
15 ﬂm. It was thus found (figure 4-9) that the model used was a
good representation of the data obtained from thé surface profiles;
the distribution of ordinates was close to Gaussian with an RMS
vaiue (o) of 0.5 ﬂm and the autocorrelation function was close to
exponential Qith a correlation distance (B*) of 6.5 ym. In
subsequent discussion the theoretical values of the correlation
(p are used for the selected values of the sampling interval as
shown in Table 4.1. It will be observed that any divergences
between these values and those obtained from the profiles are, for
the most part, within the limits of experimental error. Figure 4-10
shows the joint distribution of two ordinates on Aachen 64-13
obtained from the analysis of this same data and Table 4.2 provides

a comparison of theory and experiment for this material.

In the results presented in graphical form, sampling intervals
(2) of 15, 6, 3, 2 and 1 ﬂm (corresponding to correlations of 0.10, 0.40,
0.63, 0.74 and 0.86 respectively) have been selected to display
certain important features. Figure 4-11 shows a comparison of
theory and experiment for the probability that an ordinate is a

peak at height y (equation (4-27). It will be observed that for
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Figure 4-12. Characteristics of the distribution of peaks. The full
line gives the mean value and the broken line the
standard deviation; they are normalised by the standard
deviation of the ordinates (o). The experimental points
are derived from digital analysis of profiles from
Aachen 64-13.
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g =15 ﬁm down to £ = Bﬁm the agreement between theory and
experiment is good. However, for & = 1 um, figure 4-11(e), there
is a marked divergence, the number of peaks detected falling
significantly below the tﬁeoretical values. The results for all
values of the sampling interval are shown in figurel4—12.in

which the mean value and the standard deviation of the distribution

of peaks, equatious (4-31) and (4-35), are plotted against the value

of the correlation between successive samples. The most significant

divergence between theory and experiment is the fact that, for the
shorter sampling intervals the mean values lie above the

theoretical ﬁredictions (see also figure 4-11(e)).

Figure 4-13 presents theory and experiment for the probability
that an ordinate is a peak of given curvature. As before, for
L =15 ﬂm down to 3 ﬁm the agreement is excellent but again there
are significant differences for the shorter sampling interval of
£ =1 ym., It will be observed from the magnituces of the
curvatures shown in figures 4-13(a), (b), (c¢), (d), (e), that as
‘the samplingvinterval is decreased one is concerned with asperities
of smaller and smaller radius. This is made quite clear in
figure 4-14 which compares theoretical values of the mean curvature
of the peaks with the values found from the profiles using
differing sampling intervals. Once more the only significant
divergence between theory and experiment occurs at the shortest

sampling interval (& = 1 um).

The results obtained at the shorter sampling intervals suggest
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FIG 4-13b

PEAK CURVATURE DISTRIBUTION CORRELATION O-40

oI5
O PRACTICAL,
—— THEORETICAL.

&

3 O'IO—
z
us
Q
P
[
3
a
§

O-05[

1 | i
30 60 90

CURVATURE (mm-!)



(;50) TEAIVANID

oom owﬁ 0

<00

0ro

- 1ed132109Yy3 -
ieot3idoead o

© 4810

£9'0 UOTIBISIIOD UWOTINGIIISIP dINJBAIND Yedg *(2)gI-% 9In31g

ALISNEA ALITIIEVIO0dd



PROBASILITY DENSITY.

oI5

oo

FIG. 4-13d
PEAK CURVATURE DISTRIBUTION CORRELATION O-74,

——

THEORETICAL.
- -0 —— PRACTICAL,

1
o 250 500 750

CURVATURE  (mm-1)



([ =9 TINIVAEOD

008 009 Q0%

owm

o@oﬂ

*

1eo132109Y3
1eo1308ad O

98°0 UOTIIBTSII0D UOTINGIIISIP SINIBAIND Nedq

o

G0

€0

(®)€1-y 2an314

ALISNIG@ ALITIIVI0dd



Figure 4-14.
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that the measurement of the surface profiles are affected by the
finite size of the stylus. In figure 4-13(e) a value of the nominal
stylus curvature has been indicated, this is taken as the reciprocal
of the nominal tip dimension of the stylus. The character of the
divergence between theory and experiment shown in figure 4-13(c)

is certainly consistent with the assumption that it arises from

the finite size of the stylus. The total number of peaks detected
is less than that forecast by the theory and the distribution has

apparently been distorted towards smaller values of the curvature.

It is, of course, equally possible.that the surface used in
this work does not conform at these shorter wavelengths to the
model assumed here. TFigures 4~11(e) and 13(e) would then imply that
the structure of shorter wavelengths, although present in the
model, does not exist upon the surface. In an attempt to resolve
this queétion experiments were performed with a stylus having a
smaller tip dimension. A discussion of the experimental procedure
and the special problems involved has been given in Chapter 3. The
results are shown in figure 4-15 where the ratio (N) of peaks to
ordinates is plotted against the correlation (p) between successive
samples. It will be recailed that the theory (equation (4.32))
forecasts that this ratio varies between 0.33 (p = 0) and
0.25 (p = 1). Figure 4-15 shows once more a divergence between
theory and experiment for sampling intervals of less than 2 um;
in this region the number of peaks detected falls well below the
theoretical values. Similar plots showing a decline have been

presented by Sharman (1967), but no explanation of the cause was
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advanced. Figure 4-15 also shows that when using a stylus with

a smaller tip dimension the decline is delayed to smaller values
of the sampling intervals. Clearly, therefore, stylus resolution
is a significant factor in the behaviour in this region. This is
clearly brought out by looking not at just the distribution of the

peaks but also at the distribution of the valleys.

That the stylus resolution is important in the valley
distribution as wcll as the peak distribution can be seen in
figure 4-16., This shows a part of a graph taken on Aachen 64-13
with no magnification difference between the horizontal scale and
the vertical scale. The magnification of 2000 that was chosen is
necessary for two reasons; (a) the recorder would not see the
possible sharp changes in the slope at the bottom of the valleys if
the magnification was lower in the horizontal direction, and (b)
the surface is fine enocugh in roughness to require a reasonable
magnification vertically. It can be seen that the valleys appear
to be sharper than the peaks. This is due to the stylus tip and is

not simply a characteristic of the surface.

It is a straightforward exercise to check that this is so.
This is done by making an epoxy replica of the surface and
retracking in the same way; using a replica turns the peaks into
valleys and vice-versa. The same effect was noticed - the

apparent valleys were still sharper.

The reason for this apparent curvature discrimination of the

stylus against peaks rather than valleys is because the stylus is in
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TABLE 4.3

Comparison of some peak and valley results for 0.25 um sampling
tip of stylus (um).

Tip of Average Average Ratio Ratio
stylus (um) curvature curvature peaks/ valleys/
of peak of valleys ordinates ordinates
-1
(mm 7) (mm-1)
2.5 x 2.5 400 500 0.04 0.06
0.25 x 0.25 700 1000 0.082 0.085
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effect a non-linear filter. This is brought about because when

a stylus runs over a peak tﬁe effective radius of curvature of

the movement of the stylus is equél to the radius of the peak,
plus the radius or equivalent radius of the stylus. When the
stylus runs into a valley one of two things happens, (a) the stylus
runs in and out of the bottom of the valley, or (b) the stylus
does not bottom. In case (a) the radius of curvature of the locus
of the stylus is that of the valley bottom minus the radius of the
sty lus. In the figure a rounded stylus has been shown for clarity.
In case (b) where the étylus does not bottom there is a

discontinuity in the slope of the locus because the stylus has
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effectively jammed in between the valley sides, figure 4-17(b). From

both of these cases it is clear that the valleys are sharper than
the peaks — as revealed by a stylus instrument. This fact has been
noticed in the digital analysis of the information. Some results

are shown in Table 4-3., It shows the difference up clearly.

Another consequence of the difference in sharpness of the
peaks and valleys can be seen in the ratio of the number of peaks
and valleys to the number of ordinates shown in Table 4-3. There
appear especially for th; big stylus to be more valleys than
peaks. This is a result of four things: the big stylus, the
quantisation interval, the sampling interval and the three-point
definition of a peak or valley. Because the stylus is large the
peak appears blunt, this in turn means that for the short sampling
interval there is little height difference between successive

ordinates; this difference in some instances will be smaller than



the quantisation interval for a few ordinates near to a peak where
the changes in level are small anyway, and because of the three-
point definition no peak is registered. The effect will tend to be

the opposite for valleys.

From the results obtained in this section it is clear that the
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stylus resolution does have a significant effect on the results of a

digital analysis of a surface profile especially for the case of a

small sampling interval.

4.4 Some applications of the model

4.4.1 Extension to three dimensions - definition
of a summit

In Section 4.3.2 a peak was defined by reference to selected
points on a profile. Thus a peak was defined as a high point on a
two-dimensional representation of the surface. Similarly we shall
now consider a summit as a high point on a three~dimensional
representation of the surface. A peak was simply represented by
three-point analysis. We now consider the corresponding

representation of a summit.

Obviously in engineering terms a summit or strictly three
summits would automatically be defined if a plate were to be
rested on a surface. If the plate is made larger, to cover more of
the surface then the same three summits would not likely be those
that contacted in the first case. The definition considered here

is that for the first contact. As before the surface will be
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considered to be made up of individual elements which may be the
sampled digital values. Figure 4-18(a) shows that the minimum convenent
number of ordinates required for a definition is five; one in

the centre being higher than four, each of equal weight, on the
four sides. 1In this picture the surface is assumed to be
isotropic so that these four ordinates are all the same distance
from the central one. This definition corresponds to a summit
which is defined when a circular plate of radius equal to unit
ordinate spacing is‘laid on the surface. If the radius taken is
Y2 times the ordinate spacing the number of ordinates now required
is 9. However, in this case, the ordinates in the definition are

not equal weight relative to the central ordinate (figure 4-18(b)).

Another simple justification for the five ordinate model is
that the equation of a summit of height z, having an apex at

2

x=0,y=0is z =2 - ax xy which has four

- 2 _
o % 3,y° - 2a

3
unknowns, consequently at least four points need to be available in

order to define it. For this purpose only the five point model

needs to be used.

To show how difficult it is to define a summit even in these
simple ways consider figure 4-18(c). Just by changing the
ordinate configuration the minimum number of ordinates in the
definition changes from 5 to 7; the six ordinates surrounding the
central one S being of very nearly equal weight. This suggests
that the number of summits likely to be found on a surface by any
digital means is likely to be variable depending on the method of

definition.



Take the simplest case, assuming isotropic geometry and
denoting the ordinates orthogonal to the y values as x values,

the configuration defining a peak is shown in figure 4-18(a).

The co-variance matrix M in the case of a general correlation

function is given in the following order Ya10 Xep0 Yoo X210 Y

E(y+1-y+1), E(y+1.x+1), ¢

M = . . . o . . (4—62)
. . . .+ E(y_y v
L ey py P3Py
Py 1 P1 P P53
M=, 11 1 1 1 (4-63)
Py Py Py 1 Ps
Py P3P P 1

When the autocorrelation function is exponential

2 V2

h and Py =Py (4-64)

- p2
For the case when the ordinates can be considered independent

Py 0 and the joint probability density f(y+1, X,10 Vo0 ¥_1» y_l)

98
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becomes

£(y, 19X, 15Y,s% y)=————‘1
+1°7+1°70°"-127-1 (2n)5/2
- 1 y2 4x2 212 g2
exp ( 2 (y+l+x+1 +y0+x—1+y—l))
(4-65)

which gives the probability of a summit at vy, fo(y) to be given

by
: 4
£y) = — [1 + erf (y//f)}
16v2w
2 1 2
exp (- y°/2 = —— o%(y) exp (- y°/2)
Y21

(4-66)

where the circle over the letter f indicates a summit property
as distinct from an asterisk for a peak property.

rd

The case where the ordinates are correlated is clearly much
more complicated. We shall, therefore, make a number of gross

simplifications to obtain some feel of the probable solution.

For the case when o) is large compared with Pqs then the

equation (4-66) becomes

4
£ (y,0) = 3/___ {1 + erf (y//f %—;—S— )}

exp (-y2/2) £° (y,p) =



100

To convert equations (4-66) and (4-67) to true probability
densities require that they are divided by the ratio of summits
to ordinates in both cases. In the case of equation (4-66) this

ratio is one fifth and for equation (4-67) it is one sixteenth.

If nine ordinates had been used for the definition then for

the case of independent events

W) 1 + erf {y//1)
256/2n

exp (-y7/2) £y L $8 W

(4-68)
The ratio of summits to ordinates is one ninth in this case.
Making again the not inconsiderable assumption that for the

correlated case p”*>>p” is large compared with the other

correlations between all ordinates other than the central one,
-FIM)ta fCorA
a situation likely to be most true for values of correlation between

zero and high correlation, then

£ (y,p) = 1 + erf
256

(4-69)

from which it is clear that under these circumstances and with



these assumptions the ratio of summits to ordinates would be

L
256 °

represent the sort of spread of sampling interval and definition

Consequently assuming that equations (4-66) to (4-69)

that can be expected then the variation in the number of summits
found over a given area could be very high; the actual value

depending on the sampling interval and the definition. Just how
valid the assumptions are that were made in the high correlation

case will be discussed in Section 4.5.

Another point concerning the assessment of the number of
summits as a fraction of the number of ordinates occurs when trying
to predict the number of summits from the number of peaks in the
two dimensional case. If the ordinates are independent of each
other and one is considering three-point analysis, the probability
of one ordinate being a peak is 1/3. Simply squaring this to give
the probability that this ordinate is a summi t implies that

f£* (y+1, Yoo y_l) is independent of f* (x X—l) which it

+1°7%0°
obviously is not. The reason for this is that if Yo is a peak in
one direction, this fac; means that, on average, Yo lies above the
centre line; it therefore has a greater probability than normal
of also being a peak in the other direction. One could carry out
an experiment in which an area of surface is completely covered
with a grid of data logged traces. Scanning the surface in the

y direction, the number of peaks in every trace could be counted
and the total number of peaks in the aréa found. A similar
procedure could be followed by scanning in the x direction with

a similar result if the surface is isotropic. But the ratio of

summits to ordinates is not simply the square of the ratio of peaks

to ordinates found in one scan. In our second scan we wish

101
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to find tﬁe number of summits; that is the number of points,
previously defined as peaks, wﬁich are peaks a second time. For
tﬁe independence case discussed above, tﬁis ratio would be 3/5.
Hence the number of summits in an area cannot be determined
directly from one digital trace, the only really valid way to deal
with summits is by using'the multi-normal distribution in the

three-dimensional case.

To summarise. The correct procedure for estimating digitally the

ratio of summits to ordinates is to work from the three-dimensional
definition and this should preferably be the five-point definition
because it is the logical extension of the three-point definition
of a peak; 1like that definition it uses the minimum amount of data.

Moreover all of the outer points have equal weight in the definition.

4.,4.2 Variability and confidence limits

The importance of B* in the specification of surface finish
has been stressed but it has additional significance in its own
right. Consider the measurement of the Ra or RMS roughness value
of a random type of manufactured surface; it is often desired to
know the confidence limits of such a measurement and this is easily
expressed if one knows the standard deviation of a large number of
such measurements made upon the same surface. Alternatively this
can be estimated if 8* 1s known. It can be shown that the standard

deviation of such a measurement of the Ra roughness of a random



FIG. 4-19

EFFECT OF STYLUS RESOLUTION.

+025 jjim

(b)
5/jm

CHART (a) IS A PROFILE OF A S.MALL SECTION ON A
FINELY LAPPED GAUGE BLOCK

CHART (b) SHOWS A SECTION OF THIS SAME SURFACE
AS MEASURED BY THE SHARP STYLUS
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surface, when normalised as a ratio of the mean value is @PProximately

R

1/V2M (4-70)

In this equation M is the ratio of the assessment length used

in the measurement of Ra to the distance between points on the

surface (2.38*%) which just provides effectively independent events.

(This ratio M is analogous to the bandwidth-duration product used
in communications theory to estimate the reliability of data,

Bendat and Piersol (1966)).

For example on the 8 mm cut-off range, the Talysurf 4
instrument has an assessment length of 3.8 mm. The value of 2.38%
for Aachen 64-13 1s 15 um. Thus the normalised value of the
standard deviation of Ra readings on this surface should be 4.57.
A measured value of the standard deviation for Aachén 64-13 based

on a large number of readings was 4.3%.

Knowledge of this, the effective number of degrees of freedom
of the wa&eform, enables the variations in other parameters to be
estimated from a limited length of profile, for instance, the RMS
valﬁe, the variation in which again has a formula similar to
(4-70). This is derived from a knowledge of the variance in the

mean square estimation of the signal.

L 2
Var.(Mean Square) = %- J (1 - lgl) |(C(B)) + 2u2 c(R)| dB
-L

(4-71)
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where C (B) is the autocorrelation and p is the mean value of the

waveform (Bendat and Piersol 1966).

4.4.3 Application of the model to theories
of surface contact

In this section the relationship between separation of bodies,
load, area of contact and conductance under elastic deformation will
be discussed to provide a physical background to the application of

models of surface asperities.

In Chapter 5 the contact of bodies will be considered
taking the size and shape of the upper specimen into account, however,
a similar approach to that of Greenwood and Williamson will be taken
in the present section. This latter part has been carried out
by Mr. R. A. Onions and will form part of his Ph.D., thesis, the

following 1s a summary of his results.

As ip the Greenwood and Williamson treatment it will be
assumed that the peaks are independent and do not interact upon
deformation. The contact between a non-deformahle flat surface
and a deformable surface, having the characteristics of the model
of this chapter, will be assumed. As in most models of surface
contact tﬁe dependent variables (Area, Load, Contact resistance)
are calculated as functions of one independent variable (the

separation).

In this approach the surface 1s considered to be made up of

asperities made up of spherical caps of radius R.
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Consider the contact of one of those asperities, the area of
contact SA is given by 8A = 7TRw using Hertz's theory where w

is the compliance.

For two surfaces whose mean levels are separated by k, at any

level y, only a-prepeortioh of peaks f* (y,C) equation (4-47) will

have a curvature C., Hence the p:. ,...tion ¢ real area of contact
due to peaks at this height having this curvature s (GA)y C is
given by
- (84) = —— w f* (y,0) (4-72)
y,C C

where in this formula it is assumed that only the independent peaks
are to be considered, hence the use of f* (y,C) rather than
- f* (y,p,C). TFor all peaks at this height having any curvature

equation (4-72) has to be integrated with respect to C

© Fx
mean (8A), = m(2.38%)2 (3-K) ( 260 4 (4-73)
0
2
since R = Sg;gaﬁil— for independence.

For all peaks contributing to the area A lying between k and =

mean (6A) = w(2.38%)2 J (y-k) fw £#(y,0) dc d 4=-74
k o € yo e
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hence the total area of contact A is given by

A = 7(2.38%)2 N J (y-k) f EiéZLEl dC dy  (4-75)
k 0

where N is the number of asperities per unit area estimated at the

mean linc from B*2.

Similarly expressions for the total load W and the conductance

(Holm 1958) may be obtained.

W = N2 E* (2.3B*)o J (y—k)3/2 J 2,0 dc dy

37
k 0 T
(4-76)
and G = N(2.38%) I (y-—k)]'/2 J £#(y,0) dC dy (4-77)
rm V2 X 0 /C

where r is the resistivity.

Usiné these expressions, graphs can be plotted showing the
variation of real area of contact with load (figure 4-20), contact
resistance with load (figure 4-21), variation of mean real area
with dimensionless separation (figure 4-22) and variation of mean
pressure with dimensionless separation and load (figures 4-23
and 4-24). These graphs will be discussed in Section 4.5.3 together
with the implications of the differences when compared to those

obtained by Greenwood and Williamson.
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4.5 'Discussion

4.5.1 Digital analysis

The points associated with three-point analysis and the loss
of information inherent in its use have been mentioned, together
with the other difficulties involved in its implicit assumptions.
The main point at issue in this sort of approach is to decide the

range of sampling intervals from which it is acceptable to use

information in devising theories for surface contact.

The significance of the shorter wavelength structures (revealed
by the use of the shorter sampling intervals) in the contact and
rubbing of surfaces may be questioned; in any event, a lower limit
to the acceptable range is set by stylus resolution. At the other
extreme it is clear that the use of very long sampling intervals
will give results which have little phyéical significance. A more
relevant spacing of ordinates is that which will define the dominant
or main structure of the profile. This spacing is that which just
makes successive ordinates independent of each other; this corresponds
to the zero order Markov'sequence equation (4-20). How these
ordinates have to bé spaced for independence depends on the tfpe
of autocorrelation function, see Section 4.2.1. Dependent on the
arguments then put forward as a general guide to the main structure
of relevance in contact problems a sampling interval of 2.38%*

has been used.

There are a number of ways in which to justify the spacing of
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events at 2.3B*, none of them precise. However, estimates can be
made by considering different ways of defining the main wavelengths.
_For independent events the main structure of the waveform has an
equivalent wavelength of about 108%. This can be seen by using a
simple Bernouilli argument. Let the profile have two states; the
one corresponding to when the profile is above the mean line
(state 0) and the other (state 1) when the profile is below the
mean line. For there to be a crossover and back, corresponding

to the equivalent of about half a wavelength, then there must be

a change of state — equivalent to a transition of say Po1 followed
some time later by Pio* During this time only P11 transitions

would be allowed.

Hence the-probability of half a wavelength happening in two -

adjacent intervals is Poy for three intervals it is

* P10’
m-2

pOl . p11 . plO and for m 1nteryals 1t 1s po1 Pll . plO'

Hence the average number of intervals n over which there has been

a transition across the mean line and back is given by the mean

value of the distribution. Thus

[¢2]
Jipy . pit2 . p
_ (Lt Por P Pio :
n = — (4-78)
T po, - X2 L p
L Poy - P13y 10
1=2

which reduces when Pg; = P31 = Pyg = 1/2 to
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[+

}oioa/mt T /2t - 172
o= i=2 C_ i=1

I am? ] /2t - 172
i=2 1=1
koL

a+2 § 1727 - 2qeny 2 - 12
n = im ke 171 : =3
: 1/2
(4-79)
because J  1/28%1 1/2

i=1

Now, taking into account the fact that because the profile has been
over the mean line and back within three intervals means that the
actual distance over the mean line is nearer two, n becomes after-
the end corrections have been taken away near to the value 2.

[

Hence the dominant wavelength A is about four times the event

spacing i.e.
A v 9.28% n 10B% (4-80)

Coﬁsider now the power spectruﬁ (figure 4-3). Most of thé
energy is contained in frequencies up to the cut-off w = %*
implying an equivalent wavelength of 68%* and longer. If the shorter
wavelengths are removed by a sharp filter then the mean centre line
spacing is about 58% (see Bendat 1963) which gives the effective
wavelength of about 10f*., Hence the broadscale structure has an
equivalent wavelength that is (a) about four times the distance
of independence and (b) about 108*, This gives the effective

independence length to be about 2.58%, Another way of approach is

to consider the digitising of the random waveform after the high
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frequencies w > %% have been filtered out. The necessary spacing
would be about 2.5 times smaller than the cut-off wavelength which

* 3 .
yields 2285 nv 2.58% . The value of the autocorrelation which

corresponds to this is about 107 (2.38*) which means that the
independence length 2.3B8* ties up with the correlation length
proposed by Peklenik (1967). 1In this and future chapters we will
most often refer to independence length rather than correlation
length. This is because the words independence length convey better
the physical meaning, there is no difference other than this. A
statistical reason why a value of correlation between 10 and 207%
should be used is that the RMS of the conditional probability
(equation 4-8) becomes 95% (a well accepted confidence limit) of

that of the profile.

The only difficulty with the use of low correlation values for
definitions is their difficulty:in measurement, however, it seems
likely that they will be useful not only for the exponential but

also other monotonic shapes such as the Gaussian correlation function.

4.5.2 Summary of results

The results derived from the model here presented are shown
in Table 4-4, Tﬁis shows the way in which the significant
characteristics of a surface profile depend on the two independent
parameters ¢ and B*. To emphasise the importance of the scale of
size used in the aﬂalysis each characteristic is shown (except for

the plasticity index ¥, (described in Section 4.5.3) for two scales.



" 'TABLE 4-4

Characteristics of a random profile in terms of ¢ and B*

Characteristic Main Structure Fine Structure
L = 2,3p% £ = 0.23R%"

Mean peak height . 0.82¢ 0.47¢g

RMS peak lheight 0.71c 0.9 ¢

Ratio of peaks 0.33 0.26

to ordinates : '

Average upward ok %

or downward slope 0.24 o/8 1.66 o/8

Mean peak %2 %2

curvature 0.45 o/ . 20 o/8

Plasticity Index 0.3(%-)(%2 -
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The main structure is derived assuming @ sampling length
of 2.3B8* and a fine scale structure assumes asperity dimensions

one order of magnitude smaller, namely 0.238%,

For Aachen 64-13 used in the digital analysis the shorter
asperities described by 0.23B* sampling lie just within the
resolution of the normal stylus. It can be seen immediately by
comparison of the results that the differences between the
small scale of size asperities and the main structure is considerable
especially in the characteristics involving derivatives. This fact

must be of consequence in contact theory.

4.5.3 'Plasticity index and comparison with theory of
" - Greenwood and Williamson .

An important aim of recent étudies-of the topography of
surfaces has been to provide an estimate of the chances that a given
surface will be subject to plastic flow during contact;

Blok (1952) and Halliday (1955) considered the shape of asperities
which could be pressed flat without recourse to plastic deformation.

It was shown that this criterion could be expressed in the form

m < k H/E” (4-81)

where H is the hardness and E” = E/(1-v2), E being the Young

Modulus and v the Poisson ratio; m as above is the average slope
and k is a numerical factor, in the range 0.8 to 1.7 depending on

the assumed shape of the asperity. Greenwood and Williamson (1966)

assessed the probability of plastic deformation using their model
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in which asperities, each of radius R, are disposed in a Gaussian
distribution of heights of standard deviation o*. 1In this model
there is always a finite chance of plastic flow; however, it was
shown that it depended very little upon the load but was critically
dependent upon a plasticity index ¥ given by

- o*.1/2

v o= (ﬁ-—) &) (4-82)

The plasticity criterion of equations (4-81) and (4-82) are
similar in fofm. The Blok-Halliday criterion, is, however, unduly
severe because it assumes complete depression of the asperities.

The plasticity index of Greenwood and Williamson (1966) takes

account of the fact that only the tips 6f asperities are normally
involved in contact. The present work emphasises the simplificat;ons
which have been made in these plasticity criteria because they take
no account of the existence, upon surfaces, of superposed asperities
of differing scales of size, figure 4-1. The plasticity calculations
of equatién (4-81) and (4-82) assume that the deformation of each

of the asperities is independent. Therefore the plasticity index of
equation (4-82) has a significance only if it applies to the

main long wavelength structure; it should then indicate the

probability of plastic flow over regions associated with this scale
of size. If values of R corresponding to smaller scale structure
are used the arguments involved in the derivation of equation (4-82)

become invalid because the deformation of adjacent asperities interact.

In deriving a value of the plasticity index y for Table 4-4

a value of the mean curvature of the peaks derived from



FIG 4-25
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equation (4-50) has been used. Tﬁe value of ¢ derived in this way
underestimates'tﬁe probability of flow because the curvature of
the peaks increases witﬁ ﬁeigﬁt. Tﬁus tﬁe ﬁighest peaks, which
are those involved in contact have a smaller radius than the total
peak population. Numerical integration of equation (4-46) shows
the way in which the mean peak curvature varies with height. The
results are shown in figure 4-25. It will be seen that for the
broad-scale structure (p = 0.1) the upper peaks are almost three
times sﬁarper than tﬁe average. The effect.of thisvcan be seen
most clearly in figure 4-23 which shows'how the mean contact
pressure varies with surface separation. It is clear that the
‘agreement between the model proposed in this thesis and that of
Greenwood and Williamson agree very well for the case where in our
model the peak curvature is assumed to be constant. This arises
from the near-Gaussian distribution of peaks obtained in our model.
However, for the full model of this thesis where the curvature
varies with height the curve of mean pressure againét separation is
different from that of Greenwood and Williamson. In fact it is
about twice as high for small separations. The important feature
of this new curve is that it brings out even more clearly the fact

that the mean pressure at the contacts is a constant over a wide

range of separations and loads.

Another feature of this model and its comparison with that
of Greenwood and Williamson (1966) is worthy of comment. The
Greenwood and Williamson model is specified by three parameters;

o* the standard deviation of the peak distribution, R the radius
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of curvature of the peaks, and n the density of asperities per unit
area. In the terms of our theory the required parameters are
completely defined by o the standard deviation of the height

distribution, and B* the correlation distance. The theory of

contact based on our model involves a statistical distribution of
peak heights and peak curvatures. Comparing the two models o¥%

is proportional to o, R is proportional to B*%;/c and n is
proportional to 1/8*2, Hence for all random surfaces when the
Greenwood and Williamson model is used the parameters should be

related by the equation

ok Rn = constant (4-83)

There is some evidence (J. A. Greenwood, private communication)
from the analysis of bead blasted surfaces that this relation is

indeed true.

As a verification of this, Table 4-5 shows the values of this
product for some random processes other than bead-blast. Each of

the surfaces in this table are typical of the process.

They show that over a wide range the values do tend to be
constant. For those surfaces examined the constant was 0.05 with
a standard error of 0.005 which when considering the spread in

individual readings taken over a surface is remarkably good.

This value of 0.05 or thereabouts could be predicted because
consider the values of o*, R, n obtained from a random waveform,

using Table 4~4 and letting the probability of an ordinate being a
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" TABLE 4-6

Relationship between surface parameters for surfaces generated by
random processes (sampling interval 2.5 um)

Specimen RMS of Average Average Non-dimensional
No. peak Summits per Radius of Product
distrib. sq. cm. Curvature
33-10 12.3 30 000 .00125 0.047
34-02 2.5 77 000 .003 0.057
37-16 2.25 35 000 .00084 0.066
40-20 0.69 720 000 .0025 0.122
25-18 1.0 1 360 000 .06055 0.074
26-03 1.25 1 440 000 .00049 0.088
27-20 0.62 1 290 000 .00083 0.066
28-11 0.90 1 270 000 .00066 0.075
60-04 0.33 1 450 GGO .001 0.049
61-01 0.22 2 000 000 .001 0.045
64-13 0.4 1 800 000 .0008 0.059
66-14 0.69 1 470 000 .001 0.100

Average 0.068 * 0.006




summit equal K, the sample interval % and the correlation p
between ordinates. Then

1/2

(o

(1-p) vl+p _ m_(1-p)
2v3-p tan_1 VStll l;(tz:m“1 V%Sfa

1+p

o = |1 +

1 2 N /1 22

C* (3-p) V1-p . g

and n =K . %2 assuming unit area

R

tan ! (3-p) / (1+p)

here N =

(4-84)

For the case where independent events are-used then X = 1/5 for

the first five ordinate summit model and the product becomes

1/2
1+ (1-p) VY1+p - (1-p) 2N Vn “x
/=5 tan"L/32 -1 /30 (3-0)V1-p
L 2v3~p tan V/1+p A(tan /1+p)}

(4f85)

1 3.55. 0.05

Table 4-6 shows similar results obtained when sampling with an

interval of 2.5 pym. This shows that even whén the sampling has not

been chosen for independent events the value of this product is
still nearly the same being 0.068 * 0.006 indicating that, over
a wide range of size of surface roughness produced by random

manufactured surfaces, and over an order of magnitude in the
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sampling interval, this product can be regarded as constant.
Given tﬁis proviso, an estimate of K can be made for a range of
interval witﬁin whicﬁ tﬁe correlation is higﬁ. Remember that in
the definition of the summit discussed previously in Section 4.4
the calculation of tﬁe equation for a summit for the case of high

correlation was complex.

According to this the ratio of summits to ordinates for a
correlation of 0.80 would be about 0.1 and not 8.004 as would
result from equation (4-69). This indicates that the gross
assumption made in deriving the equation, namely that only corre-
lations to the centre ordinate were significant, is obviously not
justifiable in the highly correlated case, which must be a reasonable

-

conclusion because as p1+1 so does pzand Py

4.5.4 Comparison of theory and experiment

Thé comparison of theory and experiment shows that the model
which has'been adopted can provide a description of the geometrical
features of profiles from a typical manufactured surface; the
statistical distribution of surface characteristics are accurately
forecast over a wide range. This range covers an order of magnitude'
in the linear dimensions of the asperities and more than two
orders of magnitude in their curvatures. Divergences appear only
at shorter wavelength and these arise, at least in part, from the

resolution of the stylus.

First consider the results of figure 4-15, the exponential

correlation function adopted here requires that at short sampling
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intervals (N¥+1/3) the number of peaks detected should be very
nearly inversely proportional to the sampling interval. However,
with the normal stylus, reducing the sampling interval from 1 to

0.5 ﬁm increases the number of peaks by only 167 and a further
reduction to 0.25 causes no detectable increase in the number of
peaks. These results suggest thét either the fine scale structure
does not exist on the surface, or it is present and is not detected
by the stylus. The results obtained with the sharp stylus show
clearly that stylus resolution is a significant factor, at a
sampling interval of 1 ﬁm the replacement of the normal stylus by
the sharp stylus causes an increase of 20% in the number of peaks
detected. In addition, when using the sharp stylus a reduction in
the sampling interval to 0.5 um and to 0.25 um causes increasesvin
the number of peaks by 37 and 757%. Figqre 4-~14 shows that the use
of the sharper stylus also results in an increase in the mean
curvature of the neaks; 1in other words the sharp stylus reveals
more detail and finer detail. That the sharp stylus can reveal
detail upén surfaces which the normal stylus does not see is seen
from figure 4-19 which shows a typical random surface. Also

figure 4-4 shows an electron micrograph of a typical ground
surface. Thus, on the question of stylus resolution we see that
the effect of the finite dimension of the stylus is not likely to
produce a sharp cut-off in resolution (see American Standard ASA B46.5).
Nevertheless, assuming that the profile corresponds to the model of
an exponential autocorrelation function, the change in the tip
dimension from 2.5 to 0.25 ﬁm produces a smaller change in the

resolution than might be expected; perhaps the fine structure is



present but its_magnitude is smaller than is réquired by the
theoretical model. This possibility will be further explored, and
a possible explanation offered, in Chapter 7. However, it should
be noted that the tip dimension may not be the only factor which
determines the resolution of the stylus. Equation (4-54) shows
that as the sampling interval is reduced and‘structures of shorter
wavelength are involved the local slope of the surfaces become
steeper. Hence the stylus angle might also be important in the

resolution.

4.6 Conclusions

The main conclusions that can be drawn from the work in this

chapter are as follows:

1. It is possible to describe those geometrical characteristics
of a raudom surface significant iu its countact properiies
in terms of two parameters of the profile itself, namely

the RMS value and the correlation distance.

2. The $cale of size is of prime importance in the determination
of features likely gd be important in the functioning of the
surface. In particular the main structure as determined by
the autocorrelation function is the most important scale of

size to consider.

3. Providing that care in the definition and application of
digital techniques is applied it is a powerful tool in the

evaluation of surface parameters.
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5. PROPERTIES CONCERNING THE MOVEMENT OF BODIES ON
RANDOM SURFACES

5.1 Introduction

In Chapter 4 the evaluation of the geometrical properties of
surfaces likely to be of importance in contact phenomena has been
carried out using as a basic model of the surface the height
distribution and the autocorrelation function. During this
investigation it was found that good agreement existed between
" theory and practice over a wide range of sampling intervals. The
major divergence between theory and experiment occurred at
intervals which were of the same order of size as the stylus tip
dimension and smaller. This divergence was attributed, at least
in part, to the finite resolution of the stylus. One of the
purposes of this chapter is to investigate,in some more detail, the
characteristic of the motion of a stylus being tracked across a
random surface., The approach used will not be to describe in a
deterministic way the motion of the stylus, but instead, using the
concept of a Markov chain, the statistical char;cteristics of the
stylus motion will be deduced compared with the characteristics of
the profile itself. It will be shown that this basic approach can
also be used to deduce information about the movement of bodies |
much larger than a stylus.and in this way it becomes possible to
make useful comments about the Envelope System of surface texture

assessment.

This same approach has some significance in predicting the

changes that occur in surface geometry characteristics caused by
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rubbing surfaces under load. These questions and their significance

in the running-in process will be considered in detail in Chapter 6.
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In what follows the nomenclature given below will be used:

Subscript s - refers to stylus behaviour
Subscript e - refers to envelope behaviour
Subscript ¢ - refers to contact in general.

Remembering also that:

No superscript refers to the profile behaviour itself

Superscript * - refers to the peak behaviour
Superscript ° - refers to the valley behaviour
"Superscript ® - refers to summit behaviour.

In Section 5.2, a general approach to the movement of a body
over a random surface will be outlined. Following this, in
Section 5.3 some specific problems will be analysed using simplified

versions of this general theory.

5.2 Theory

5.2.1 Properties of gap between random surfaces

Consider figure 5-1 where yl(x) and yz(x) are random surfaces
of infinite extent having probability densities of fl(yl) and f2(y2).
If both have Gaussian ordinate height probability density functions
of mean value my and m, s RMS values oy and 9, respectively.then
the probability density of the gap f£(g) is given by

f(g) = f £,(vy) - £, (g¥y) dyg (5-1)

- 00
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which yields a Gaussian distribution of mean value m, -m, and

RMS value og

Yo2+02 so that if

g 172

Q
]

o, = 0, = 0, og = /2 0 - (5-2)

If one of the bodies is flat then Og = 0.

If the upper member (considered flat and having one degree of
freedom) is moved felative to the lower then because of the infinite
extent of both no vertical movement between the two would result;
the top one merely resting on the highest peak of the lower. On the
other hand if the upper member was of only limited length then some
vertical movement would be expected because the upper member, due
to its finite size, would effectively sample from the infinite
population of the random surface below it. Hence statistical
fluctuations in the vertical position of the flat body would result
if it were moved. The magnitude of this statistical fluctuation
would depend upon the relative size of‘the upper member to that of
the bandwidth of the random signal representing the profile of the
lower specimen. In two dimensions this is shown in figure 5-2 (a)
and (b) in which the length of a flat of length L is compared with .
two random surfaces, (a) having a bandwidth - indicated here by a
large correlation distance, and (b) having a short correlation
distance. The flat for these purposes is restrained from tipping,

a fact which is discussed later. It is clear that the

statistical fluctuations in case (a) will be much greater than for

case (b).



5.2.2 Effect of limited sample;
independent events

Consider a random surface having a correlation distance B*.
Regions separated by about 2.3B* can be considered to be

independent of each other in the case of a first-order random

surface, i.e. those having an exponential autocorrelation function.

Consider therefore that the surface is comprised of a chain of
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such independent events. Note that these events are not necessarily

peaks. The situation is shown in figure 5-3(a) in which a flat
upper member whose face is parallel to the mean line of the random
surface is imagined to be in contact with the surface, this in
effect gives only one degree of freedom. If there are N such
independent events within the sample L of the upper member, then
the probability of the contact being at event ¥y between y and

y + 8y is given by f(y) (F (y))N_1 8y, where f(y) is the
probability density function for the independent events and

y
F(y) = f f(yl) dyl, is the distribution function for event 1.

A similar situation arises for Yo Y3 and so on, Hence
assuming that these individual contacts are mutually exclusive
(which must be so for a system having only one degree of freedom)
the probability of a single contact between y and y + 8y is given

by fc(y)Gy where,

£,mey = N (FOTY £y (5-3)
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Equation (5-3) holds also for surfaces having other than
Gaussian height distributions and exponential autocorrelation

functions.

If N is large then contact is likely to occur when y is well
above the mean line in which case f(y) = 1. Equation (5-3) then

becomes (Gumbel 1959):
£.(96y = Nexp (- (1-F(y)) (N-1))£(y)8y (5-4)

which, for the special case of F(y) being Gaussian,
immediately reveals that the probability density of a single
contact at large y is more nearly exponential than that which
might have been expected having a knowledge of the height

density alone.

The probability density for a single contact at vy, (fc(y))

becomes

£,() =N exp (~(1-F(y)) (N-1)} £(y) (5-5)
For the particular case of a Gaussian distribution

N r N-1
f (y) = —=—— exp (-y%/2) (1 + erf y/V/2) (5-6)
¢ N Lo :
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From equation (5-6) it can be seen that N is the dominant

factor in determining the spread of fc(y).

For an upper member which is not flat then the situation
is more complicated. Consider figure 5-3(b) for instance,
in which a curved body is shown being lowered onto the surface

represented as a chain of independent events. In this case

fc(y) £ (y;) Fy) F (v « « . F (v

+

£, F ) F (y3) - FQyyp)

£l FOY 0 F Oy

(5-7)

where the individual values of Yys Ygs €tce, depend on the
shape of the upper member relative to the mean line of the

random surface.



Equation (5-7) reduces to

N F ()

£ = £ (v F‘(;;y (5-8)

1 j=1

e~ =2

i

5.2.3 Effect of limited sample;
dependent events

As before, for the sake of simplicity, we shall use a two-
dimensional approach. Consider a flat upper member being lowered
with one degree of freedom (y direction) on to a random profile.

This precludes multiple contact unless some compliance is allowed.
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The events are now dependent; and, as before, designating the events,

Y1Yy ceeeVy the probability of one contact in between

~y and y + 8y at the position of event Yy is given by

y+8y ¢y (v y - -
fcl(y)Gy = J J J ceene J f(yl,yz,y3,....yN) dyy -« -dy;

y -0 -—00 -0

- (5-9(2))

Similarly for a single contact at the position of event Yo only

fcz(y)ay is given by .

y (y¥dy ¢y y

f f J ..... I f(yl,yz,y3,....yN) dyN....dy2 dy1 (5-9(b))
T —00 -0

and SO 0N veuvwnns for a coﬁtact at the nth event position

y y+8y

J .....f f(yl,yz, .....yN) dyN.....dy2 dy1 (5-9(n))

-00 y



where f(yl’yZ’YB’ ""YN+Q is the joint probability density that
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Y1 has a value ¥q when Yo has a value Yo etc. Hence the probability

that the fall of the upper member is stopped by a contact in any

event position at height y is given by the sum of equations (5-9).

For the special case of a Markov process equation (5-9) can be

simplified and (5-9(a)) becomes:

]

y -—C0 —00 -—00

y y y
f£(y) sy I f(yz/y) f f(y3/y2) ceeen j f(yN/yN_l) dyN..,...dyl

-0 -0 -0

(5-10)

Equation (5-10) represents the probability that the upper member,
assumed here to be z flat, will be stopped in its fall onto Lhe
lower rough member by a contact in position 1 in between héight y
and y + 8y. In the equation the values of the cther events can be
anything provided that they all lie below the height y (otherwise
the contact would not be at position 1). Suppose that the other
events, although still being below y, had specific values, Y,
having a value in between Y, and v, * 8y, Y3 having a value in
between %Jand yb+ dy and so on up to Yy @s shown in figure 5-4 ..
then for this one particular configuration of the other events
relative to y, the equation for a contact at position 1 in between

y and y + 8y is

y+8y y y y
J f(yl) [ f(yz/yl) [ f(y3/y2) ..... J . f(yN/yN-l) dyH.....dy1



y+8y Y _+8y v, +8y
= a ' : b
£.,)8y I £(y;) J £(y,/v;) J E(Y4/¥y) e eee
y Ya. v,
Vi Hy
cee j f(yN/yN_l) dyy++.-.dy, dy,
Yk
(5-11(a))
which reduces to
. y +8y Y8y
fcl(}')Gy = f(y)G}'J f(yz/y)j f(y3/y2).....
Y, Yy,
yk+6y o
J f(yN/YN_l) dYN """ dyz
Y

where k is taken to be a general alphabetic character representing

the Nth event. Hence using the mean value theorem

fcl(y)éy = f(y)Gy.f(ya/y)ﬁy-f(yb/ya)GY ----- f(Yk/Yk_l)GY
(5-11(c))

Equation (5-11) can be rewritten

P1'Pa1 PhaPeb Pi k-1 (5-12)

where p, represents the probability of ¥y being in between
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y and y + §8y; P represents the conditional probability that Yo
is between Y, and v, * 8y (given that Y1 is in between y and

y + 8y); and so on. The probabilities p etc., are called

al’ Pba
transitional probabilities. Equation (5-12) represents a

homogeneous Markov chain.

For the special case when the events are independent,

equation (5-12) becomes

Py + Py s Py eeveePy | (5-13)

In the case of a Gaussian height distribution the transitional

probabilities can be written in terms of the second order normal

distribution:
- : (y o) ? L
Pal s —————  exXp [~ — | § ¥y (5-14)
V2m(1-p2) 2(1-p2)

Obviously equation (5-11(a)) represents only one. configuration
of the other events in the sequence relative to e Many more
configurations would have to be added in order to specify the

contact situation at y, as fully as equation (5-10).

If we use the terminology that the value of the event at
position 1 has the specific value of Y1 and Yy has the specific

value Yy then equation (5-12) can be better written

Py + Py + P3p + Pyg ""'pN(N-l) (5-15(a))
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and the homogeneous chain probability density corresponding to

equation (5-11) becomes

f(y) . f(yz/y) . f(y3/y2).....f(%ﬂ/YN_1) (5-15(b))

The concept of a first order chain can be adhered to even when

the contacting event is not at the end of the chain such as Yy

Under conditions for a contact at ym,for instance, the chain becomes -

£Cyy/y,)ennnn f(ym_l/ym) By ) e Ey /Y ) f(yN/yN_l)

(5-15(c))
which is a property of the reversibility of Markov chains.

To see why this should be so , consider a five element chain

Yyteee Vs the stochastic matriw
2
E(y))» E(y;y,), - - Elyyye)
M = L] L L]
2
E(ysyy) . -« EGD)

This becomes for a Markov chain (after being normalised by o2)
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1 p p2 p3 ot

p 1 p p? p3

p? p 1 p p2 (5-16)
p3 p? p 1 P

p" p3 p? o 1

from which the determinant is (1-p2)% which gives a cofactor matrix

(1-p2)3 , +p(1-p%)3 o , o , o
+p(1-p2)3, (1-p3) (1+p?2), p(1-p?)3 , ) , o
o, p(1-p2)3% , (1-p2)3(14p2), p(1-p?)3 ,
o, o » p(1-p2)3 , (1-p2)3(1+4p2), p(1-p?2)3
o, o , o » p(1-p2)3 , (1-p?)3
(5-17)

The exponent in the multi-normal distribution becomes

-1

;z—“—;;: (1'02)3(Y%+Y§) + (1“02)3(1+02)(Y%+Y§+Y2)
1-p

= 20(1-02) 3 (3, Y,y Y g+ 5Y, 49,V ¢)

(5-18)
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This can be split up, depending on which of the ordinates

YpeeeeeYs is considered to have the contact.

Suppose for instance that Y1 makes the contact, this means

that the ¥, value is fixed first, the exponent then becomes:

2 2 2 2 2
y (y,-py,) (y,-0y,) (y,-py.) (ye-py,)
1,727y M3l 4Py Vs s

2(1-p2)  2(1-p?) 2(1-p?) 2(1-p2)

(5-19)
from which the probability density becomes
(y,-p%)?
15/2 L exp (-y2/2) exp (- 22 7% )
(2m) (1-p?) 2(1-p?)
(y,-py,)2 (y,-py)2 (yc-py,)?2
exp (- ——2_ ) axp (- —2 3"y exp (- —24
2(1-p?) 2(1-p2) 2(1-p2)
(5-20)

vhich is = £(y;) . £(y,/y)) . £(y4/y,) . £(y,/y5) . £(y5/y,)

which is a true Markov chain situation for the contact at
position 1. However, if Yy had been fixed first to correspond to
the contact at position 2 then the exponent becomes

2 - 2 - 2 - 2 - 2
2,01 PY,) . (y570y,) , (v,~py3)*  (ygpy,)

2 +
2(1-p2) 2(1-p2) 2(1-p2) 2(1-p?)

(5-21)



from which the density becomes

 (y,=py,)?
1 1 2 1 P72
exp (- y5/2) exp (- ————)
(21r)5/2 (1-p2)2 2 2(1-p2)
(y.-py.)?2 (y,-07)% (ye—0y,)?
exp (- ——2 ) exp 0-—i—4Lﬁ exp V'*E—JL“
2(1-p?) 2(1-p2) 2(1-p2)

(5-22)

from which the density is seen to be

£y, /v)) « £(r) .« E(yglyy) « £(y, /v . EGrgly,)  (5-23)

which is a Markov chain which has a change of direction at Yo

Similarly if the chain was fixed at Yo simulating the contact at

A then f(yl, Yorerees Vo senees yN)

£y /y))eenn. £y __/v) - £ . @

Equation (5-24) is the same as equation (5-15(c)).

In fact for N ordinates in the chain the cofactor matrix becomes:

N-2 N-2
(l_pz) Iy p(l_pz) e o o .

o(1-p2)N 2 1oV 2142 L. L L

) : | e
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To summarise, for a surface which can be represented as a
Markov type of process, that is one in which adjacent events are
correlated by an exponential function, the probability of a contact
between a smooth flat upper member and the profile at a height y is

given by the expression

y+dy y y
J £(y)) J £(y,/yy) e J £y /yy-y) g +oee- dy,
y - -
(5-2¢(a))
y+8y y y y
e [ sy [ oraymy ol [ oy pangan o,
y -—C0 -00 =00
(5-26(b))
y+8y . y y
+J f(yN) J f(yN__llyN) I ..... J f(y1/y2) dy, «... dyy
v ~ —
(5-26(n))

-Any shaped upper member can be allowed for in equation (5-26)
simply by changing the limits of integration of successive events
to conform to the geometfy of the upper member relative to the

mean line of the surface of the lower member.

5.2.4 Behaviour of waveform between independent events

Consider an event Y5 positioned somewhere in between two
independent events i and Y, such that there is a correlation Py

between ¥y and i and Py between v; and yz,(figure 5-5) the



correlation between ¥, and Y, being virtually zero.

Then the probability density of ;o given specific values of

¥4 and Yoo is given approximately by

~( 2
(yi \91Y1+pzy2)

(1-02) (1-p2)

1
V21(1-p2) (1-p2)

1
£ (yi/yl’y2) = exp |- 7

(5-27)

which, whenever y. gets close either to y, or y,, reduces to the
i 1 2 :

familiar form

- 2
1 1 - g
B —— exp -_ e e —— e
/21 (1-p2) 2 (1-p2)

Equation (5-27) represents a Gaussian distribution whose mean value
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depends on how close it is to ¥4 and Yy and the heights of Yy and Yo

The standard deviation depends on the correlations between s and

Yy3Yg. Use of this formula enables some estimates to be made
of the excursions of the profile waveform between two fixed

independent events.

5.3 Applications

- 5.3.1 Stylus resolution

The usual assumption made regarding the use of stylus
instruments is that if f(y) is the height probability density of

the true profile, then the probability density of the measured
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profile as revealed by the stylus,fs(y),is almost identical.

For most practical purposes this is true enough but there may
sometimes be examples where this may not be true, particularly on
surfaces having a fine structure. The object of this sub-section
is to use the theory given above to explore this problem of stylus

resolution for random surfaces.

A stylus when tracked across a surface has one degree of
freedom so that it lends itself to the model of the contact of
bodies on random surfaces just given. The practical stylus has a
flat tip whose dimension is usually small compared with the
distance for independenée on a typical random surface (2.38%).
Indeed, it is obvious that unless this is so the stylus would be
incapable of performing its intended function of exploring the
surface contours; 1t would integraté elements of the profile.
Thus the model of the profile as a chain of independent events is
inappropriate for an investigation of stylus resolution. However,
the model using a first order Markov chain described in Section

5.2.3 can be used.

For an approximate solution of the stylus resolution problem

equation (5-26) can be used when simply two dependent events or

more are considered, for instance, the stylus can be assumed to be
supported by two events separated by the nominal tip dimension
(figure 5-6). These two events will be highly correlated; the
sharper the tip, the greater the correlation and the less the

effective integration due to the stylus.
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Under these conditions equation (5-26) becomes

y+8y ry
fs(y)éy = [ J f(yl,yz) dyl dy2
y -—C0

y (y+3y
+ f J f(yl,yz) dy1 dy2

®y
(5-28)
which by symmetry becomes
y+éy (¥
= 2 f f “£(y;5y,) dy,dy,
y ' -—00 .
y
= 2 f(y) 8y J £(y,/y) dy, (5-29)
For a Gaussian surface the density fs(y) becomes
. . 2 /9" . -
£ = @YD (L ert GIVZ/ED) (5-30)

V2

which, because

oo__l___ .2 ,/ﬁ =
f — exp (-y2/2) (1 + erf (y/V2 l+p)) dy =1

is a true probability density.

Equation (5-30) represents the probability density that a
stylus having a flat tip will fall to a height y (where y is

measured from the mean line of the surface).
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Taking the first moment of equation (5-30) gives the mean

height of the stylus above the mean line ;g i.e.

— @ 1
vy, = f — y exp (-y?/2)
s )
( 1 + erf (y/V/2 /%E%D)dy

where this is a ncn-dimensional value being expressed as a fraction

of the RMS value of the true profile.

Similarly the RMS value of the measured profile Ogs again
expressed as a fraction of the RMS of the real profile is given

by the second central moment. ’ o

of = | ¥ EMay - J y £ (y)dy )?
1-0,
= 1- Gz

from which

o, = /1-GD | (5-32)

Equations (5-31) and (5-32) are plotted in figure 5-7. They show
that at conditions where p n 1 when the two events are close and
the stylus tip is sharp the mean line of the measured profile

approaches that of the true profile i.e. ;; ~v 0, Also under these
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conditions the RMS of the measured profile apﬁroaches that of the
true profile i.e. g n 1. Both of these limits are physically
sensible, Consider as an example the case when a typical stylus
having a tip dimension of 2.5 um is tracked across Aachen 64-13 whose
independence (correlation) length is 15 um. For this situation o n 0.7
and according to the formula (5-32) the RMS value as measured would
be about 27 less than that of the true profile. Measured values
for this stylus and a few others, specially manufactured for this
exercise, are shown marked on figure 5-7. While it is possible to
get an idea of the RMS reduction brought about by having a stylus
not infinitely sharp, it is not so easy in the case of estimating
the mean level shift., To estimate the RMS value a large number of
tracks were made in a well-defined region on the surface for a
number of styli; one being really sﬁarp-(say, a tip dimension of
0.25 ym). The mean RMS value for readings taken with this stylus
was taken to be unity. RMS values for similar readings taken with
the other styli were then compared to this. Two points are worth
noting. First, it was possible to use a sharp stylus on the
Talysurf in this case because the specimen was not isotropic

(being ground) and consequently a large tip dimension parallel to
the lay was possible (7 um) which gives the necessary strength.
Second, it is not possible to do a similar exercise for the mean
height because of the difficulty in relocating the pick-up in the

same place after changing the stylus.

Obviously figure 5-7 only represents an approximation to the

true stylus behaviour both at the very high and low correlation



regions of the graph. At very high correlations it has already ‘
been pointed out in Chapter 4 that it is not only the tip dimension
that influences the stylus resolution, the stylus angle can also
have an effect. »Further, this effect is even more marked as the
RMS value of the surface increases without an increase in B*%,

At the low correlation end of the graph, as the stylus gets bigger,
the two events approach a separation where they can be considered
to be independent; then a new model must be used incorporating a
number of independent events, i.e. use would then be made of

equati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>