Tiling spaces, codimension one attractors and shape

2016-04-18T11:58:33Z (GMT) by Alexander Clark J. Hunton
We establish a close relationship between, on the one hand, expanding, codimension one attractors of diffeomorphisms on closed manifolds (examples of so-called strange attractors), and, on the other, spaces which arise in the study of aperiodic tilings. We show that every such orientable attractor is homeomorphic to a tiling space of either a substitution or a projection tiling, depending on its dimension. We also demonstrate that such an attractor is shape equivalent to a (d+1)-dimensional torus with a finite number of points removed, or, in the nonorientable case, to a space with a two-to-one covering by such a torus-less-points. This puts considerable constraints on the topology of codimension one attractors, and constraints on which manifolds tiling spaces may be embedded in. In the process we develop a new invariant for aperiodic tilings, which, for 1-dimensional tilings is in many cases finer than the cohomological or K-theoretic invariants studied to date.