
Using Evidential Reasoning to Make Qualified Predictions
of Software Quality

Neil Walkinshaw
Department of Computer Science,

The University of Leicester,
UK

ABSTRACT
Software quality is commonly characterised in a top-down
manner. High-level notions such as quality are decomposed
into hierarchies of sub-factors, ranging from abstract no-
tions such as maintainability and reliability to lower-level
notions such as test coverage or team-size. Assessments of
abstract factors are derived from relevant sources of infor-
mation about their respective lower-level sub-factors, by sur-
veying sources such as metrics data and inspection reports.
This can be difficult because (1) evidence might not be avail-
able, (2) interpretations of the data with respect to certain
quality factors may be subject to doubt and intuition, and
(3) there is no straightforward means of blending hierarchies
of heterogeneous data into a single coherent and quantita-
tive prediction of quality. This paper shows how Evidential
Reasoning (ER) - a mathematical technique for reasoning
about uncertainty and evidence - can address this problem.
It enables the quality assessment to proceed in a bottom-
up manner, by the provision of low-level assessments that
make any uncertainty explicit, and automatically propagat-
ing these up to higher-level ‘belief-functions’ that accurately
summarise the developer’s opinion and make explicit any
doubt or ignorance.

Categories and Subject Descriptors
6.4 [System Management]: Quality Assurance

General Terms
Human Factors, Measurement

Keywords
Quality Models, Evidential Reasoning, Estimation

1. INTRODUCTION
Software quality is notoriously difficult to define and mea-

sure [1]. It is difficult to define because it is an abstract,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’13, October 9, 2013, Baltimore, USA
Copyright 2013 ACM 978-1-4503-2016-0/13/10 ...$15.00.

nebulous concept that it is difficult to capture in precise
terms. Furthermore, many of the underlying factors, such
as code quality or usability, can be highly subjective and
are largely dependent upon individual preconceptions or in-
tuitions. Therefore, even if there is a consensus on how the
various factors contribute to the final measurement, the fi-
nal measurement itself can be subject to bias, and cannot
be taken at face value.

Quality is commonly modelled as a decomposition into hi-
erarchies of sub-factors – c.f. Boehm [2], Diessenboeck et al.
[3], ISO/IEC 9126 [4] (recently revised to ISO/IEC 25010
[5]). The problem is that there is no consensus on what
shape these hierarchies should take, which is indicated by
the sheer number of different quality models that abound.
Often, specific domains have their own, highly intricate qual-
ity models. For example the recent DO178-C standard for
certifying aircraft software [6] involves 228 different quality
objectives, with specific combinations that vary according to
the safety-criticality of the component in question. In their
study on use of software quality models in practice, Wagner
et al. interviewed 25 practitioners [7] and recorded the use
of 31 different quality models.

Even once a particular quality model has been agreed
upon, there still remains the challenge of deriving a final
quantitative assessment. Evidence can be qualitative and
quantitative, and originate from disparate sources such as re-
quirements reviews, test outcomes, design inspections, code
metrics, user assessments, and results from verification tools.
Blending such a broad spectrum of results into a single reli-
able conclusion about software quality relies upon individual
(and invariably subjective) judgement.

These two dimensions - the multi-factorial, complex na-
ture of software quality and the difficulty of combining and
measuring these factors present a real practical barrier to
assessing and communicating software quality in practice.
There is little agreement on what constitutes ‘software qual-
ity’, there is no widely accepted means by which to aggre-
gate and collectively interpret the various quality factors,
and there is no widely accepted basis by which to allow for
the subjective doubt or confidence on the part of the asses-
sor.

Ultimately, this problem prevents the grounded, objec-
tive discussion of software quality. In an industrial context,
communication about quality between developers, clients,
management and other stakeholders, can be reduced to a
mixture of ad-hoc metrics and intuition. Shared definitions
of software quality are often implicit and poorly-defined, and
subjective confidence in the various facets that lead to the

assessment can be obscured. A final decision that is based
on software quality in these terms is unsatisfactory because
it lacks “epistemic justification” - there is no clear line that
can be drawn from the facts and evidence to the final as-
sessment.

The problem is well established in Software Engineering,
and has been the subject of an extensive amount of work.
Previous work by Fenton et al. and Wagner [8, 9, 7, 10]
have proposed the use of Bayesian Networks to construct an
explicit link between low-level quality indicators and high-
level conclusions about quality. Though plausible, Bayesian
Networks can be difficult to use in practice. They rely on
the configuration of (potentially complex) probability tables,
which rely on the availability of prior probability informa-
tion. Their reliance upon prior probability information also
makes it impossible to provide an meaningful assessment
for a system where the assessor is ignorant of certain quality
factors.

The general problem of forming high-level decisions or as-
sessments from complex sets of factors is well established
beyond the domain of software engineering. Insurance and
credit companies are forced to assess an individual’s life ex-
pectancy or credit-worthiness from a raft of (often dubious)
metrics. In health care, the choice of a treatment programme
or surgical procedure similarly comes down to a wide range
of interdependent factors. The formal study of this type of
problem is rooted in an area of research known as Opera-
tions Research, which dates back to the Second World War
when militaries were faced with similar multi-factorial de-
cisions with respect to troop-movement and logistics. This
has given rise to several techniques, which provide a mathe-
matical basis upon which to structure, reason about complex
decision problems.

The specific problem of systematising and analysing deci-
sion problems with multiple factors or criteria is known as
Multi-Attribute Decision Analysis (MADA) of Multi-Criteria
Decision Analysis (MCDA) (we choose to use MADA in this
paper). This paper shows how MADA techniques (specif-
ically the Evidential Reasoning Technique [11]) can be ap-
plied to systematically assess and communicate software qual-
ity. The paper makes the following contributions:

1. It shows how the task of assessing software quality can
be formalised as a MADA problem.

2. It shows how the MADA Evidential Reasoning tech-
nique can be applied, to incorporate levels of subjec-
tive doubt on the part of the assessor that may be
attributed to various quality factors.

3. It walks through a small proof-of-concept, by applying
the approach to the assessment of the NASA CM1 data
collection and processing system for spacecraft.

4. It provides an openly-available tool that can be used
with custom quality definitions.

2. BACKGROUND
The section starts with a brief overview of the relevant

work on quality modelling. This is followed by a small moti-
vating example, which will then form the basis for our case
study.

2.1 Defining, Measuring, and Communicating
Software Quality

‘Software quality’ is notoriously difficult to define [1]. Nu-
merous quality frameworks have been proposed, which en-
compass factors such as ‘maintainability’, ‘testability’, ‘us-
ability’ (in terms of ISO 9126), or modularity and software-
system independence (in McCall’s quality model). Individ-
ual quality factors can often assessed in different ways. Ul-
timately, software quality is multifaceted, and there is no
universally agreed basis for defining or assessing it.

Given the breadth of the concept ‘software quality’, for
our examples we focus on a slightly narrower aspect of qual-
ity assessment that is notoriously difficult to assess in its own
right: the maintainability of a system. It is however impor-
tant to bear in mind that the technique discussed here is not
tied to this specific aspect.

The challenge of assessing maintainability has been the
subject of an extensive amount of research by Diessenboeck
and Wagner et al. [3, 10]. Maintainability is particularly dif-
ficult to assess because it can draw upon such a broad range
of factors. Defining exactly what constitutes maintainabil-
ity, how it can be measured, and how these measures can be
combined is intrinsically difficult.

To illustrate this, we consider a relatively simple model
for assessing software maintainability, based on the three
dimensions that were considered by Wagner [10] in a small
case-study1: ‘Analysability’, ‘Quality Assurance’, and ‘Im-
plementation quality’. These are all abstract concepts, so we
need to break them down into more concrete notions that we
are able to assess more directly. Thus ‘Analysability’ (refer-
ring to the ease with which the source code can be inspected)
might be assessed by the size of the code-base, coupled with
its complexity. ‘Quality Assurance’ might encompass the
testability of the system and the adequacy of test sets. Ad-
equacy is notoriously hard to assess, so we choose to break
it down into code coverage and data coverage. To assess
‘Implementation quality’ we simply consider the quality of
the code comments and identifiers.

The hypothetical hierarchy of factors discussed above is
visualised in Figure 1 (ignore the bar-plots below the line
– these are discussed later on). Edges are annotated with
(again hypothetical) weightings for each of the different fac-
tors, showing the extent to which they contribute to parent-
factors. This provides a nice illustration of one dimension
of the challenge we face; how can one derive a high-level
assessment of software quality from such broad range of in-
terrelated factors of varying importance?

Finally, and perhaps most importantly, there is the issue
of accounting for human doubt and ignorance. The person
in charge of assessing these various factors will rarely (if
ever) be 100% confident in their assessments. There may
be question marks over the integrity of the various sources
of evidence. They might not be sure about how to inter-
pret a particular metric, or might not trust it enough to
absolutely rely on it as a basis for assessing a given fac-
tor. Doubt and ignorance are intrinsic to any assessment of
software quality. However, they tend to be ignored by con-
ventional approaches to assessing quality, even though there

1We choose this model because it is (a) relatively small,
forming a suitable basis for illustration, and (b) has been
used as the basis for illustrating a similar quality assessment
technique, with respect to the same case study that we will
be using.

Maintainability

Analysability

0.4

Quality Assurance

0.4

Implementation quality

0.2

Size

0.4

Complexity

0.6

Testability

0.6

Adequacy

0.4

Comment
Quality

0.7

Identifier
Quality

0.3

Code
Coverage

0.5

Data
Coverage

0.5

po
or

ex
ce
lle
nt

po
or

po
or

ex
ce
lle
nt

ex
ce
lle
nt

po
or

po
or

ex
ce
lle
nt

ex
ce
lle
nt

po
or

ex
ce
lle
nt

po
or

ex
ce
lle
nt

Figure 1: Hypothetical software maintainability fac-
tors (above dashed line), illustrating initial manual
assessments (below the line)

is a risk that they could seriously affect (or even undermine)
the overall assessment.

2.2 Motivating Example
As a motivating example, we consider the problem of as-

sessing the quality of a software system that is intended for
use on a spacecraft. Clearly, the decision of whether a piece
of software is of sufficiently high quality to be deployed is
particularly critical in this context. The notorious Ariane 5
explosion clearly illustrates why.

The system in question is the NASA CM1 data collection
and processing system. The system has been used as a case-
study for numerous software-engineering research projects,
and its use here was particularly inspired by Wagner’s use
of the system evaluate his (similarly motivated) approach
for assessing software quality [10]. Furthermore, the data
has been published and is openly available, as part of the
PROMISE experimental software engineering data reposi-
tory [12].

Specifically, we want to assess CM1 in terms of its main-
tainability. The data published on PROMISE has been op-
timised for this, thanks to previous work by Abdelmoez [13]
and Wagner [10]. The repository includes an extensive col-
lection of code metrics for the system, along with a fully
reverse-engineered UML model, along with metrics of the
model.

Although the system has been extensively studied in terms
of its maintainability, existing approaches have (as men-
tioned previously) ignored the intrinsically subjective hu-
man factor. Existing approaches tend to attempt to draw a
straight line from data (i.e. code and model metrics) to con-
clusions about quality or maintainability. In practice how-
ever, the data tends to be subject to interpretation. Metrics
only give a partial (often even a misleading) view of software
quality. The relationship, for example, between cyclomatic
complexity and the actual code complexity, between LOC
and the size of the system, or the number of comments and
code understandability, are all highly contentious. In most
cases metrics can at best corroborate or inform, but it is

ultimately up to the developer to interpret them.
Besides interpretation, another problem with the use of

quantitative data from tools (or other developers) is the fact
that the data may be unreliable. Static analysis tools can
fail to parse or resolve certain relations in the code, or data
that has been collected by hand might apply to a different
version of the source code than the one we are assessing.
This is a salient point for the CM1 system, where Shepperd
et al. [14] have highlighted some important inconsistencies
in the data-set over different studies that have utilised the
data sets.

So this is our motivating scenario. How can we systemati-
cally assess the maintainability of CM1, given the knowledge
available to us about its source code and model metrics?
How can we assess the system in such a way that we can in-
corporate our doubt about the interpretation or provenance
of the data? And how can we capture this information in a
form that it can be readily communicated in its entirety to
other interested stakeholders?

3. EVIDENTIAL REASONING
The field of MADA is very broad, and the underlying

analysis problem has many variants. One popular exam-
ple is the multi-objective optimization problem, where the
challenge is to identify ‘the best’ solution to a problem that
involves numerous factors. This is commonly solved with
the help of evolutionary algorithms, and is an example of
a MADA problem that has featured extensively in software
testing research [15].

However, the scenario considered here is an instance of a
somewhat different problem. We do not want to produce or
identify a specific ‘solution’. In our case all of the artefacts
under analysis are already there, but we need to use them
to arrive at a justifiable and transparent judgement about
their quality. In our context, given the various (potentially
interrelated) quality factors, which may be assessed in dif-
ferent quantitative or qualitative ways, we wish to arrive at
a coherent decision about the overall quality of the system,
which explicitly accounts for any uncertainty on our part.
This is the subject of a large section of MADA research into
reasoning about evidence and uncertainty. Its core theo-
retical framework, known as Dempster-Schaefer Theory, is
introduced below.

3.1 Dempster-Schaefer Theory
The Evidential Reasoning technique considered in this pa-

per (described in the next section) is based on a theoretical
framework known as Dempster-Schaefer Theory of Evidence
[16, 17, 18]. The theory is concerned with the challenge
of taking subjective ‘beliefs’ from various sources, and to
combine them in to an aggregate form, such that all of the
individual sources of evidence are taken into account.

In this framework, we can take a set of factors (e.g. system
reliability, or value for money). Each factor is associated
with a vector of scores, often (but not necessarily) this is
from 1-5 (i.e. poor to excellent) or some other suitable cat-
egorisation. This is illustrated in Table 1, which considers
some possible factors that one might consider when pur-
chasing a car. The factors of interest (value, fuel efficiency
and reliability) are column headers, and the scale (poor to
excellent) is used to label the rows. Each cell in the table
forms a belief statement (e.g. “The fuel efficiency of the car
is poor”).

Value Fuel Efficiency Reliability
Poor 0.0 0.1 0.1

Indifferent 0.0 0.1 0.2
Average 0.0 0.8 0.2

Good 0.6 0.0 0.1
Excellent 0.2 0.0 0.1

Table 1: Example probability distributions that at-
tribute belief to various factors in a car purchasing
decision problem.

Our subjective opinion (and doubt) about the various fac-
tors can be expressed as a ‘probability distribution’ over the
scale for each factor. For example, as far as value is con-
cerned, a car might be relatively cheap, but we may not
be confident that it will be durable, reliable, or fuel effi-
cient (all of which could undermine its ultimate value for
money). Thus, given our uncertainty, we might be inclined
to attribute it a distribution of [0.0, 0.0, 0.0, 0.6, 0.2] over the
categories poor to excellent - so on balance we are confi-
dent that it represents good value for money, but, given our
ignorance, we are willing to concede that there is a small
chance that it represents excellent value for money, pending
its durability etc. Table 1 shows an example of how what
some probabilities might look like for the other factors.

The term ‘probability distribution’ is used in quotes be-
cause it is not a true probability distribution in the Bayesian
sense. In Dempster-Schaefer theory, this distribution is ac-
tually referred to as a ‘Belief Function’ – a term that will
be also be adopted throughout the rest of this paper. The
crucial difference is that, unlike Bayesian probability distri-
butions, the sum of probabilities does not need to add up to
1. This is to allow for a more genuine weighting for each cat-
egory in the scale. For example, for the value factor in Table
1, we may be convinced of our scores of 0.6, and 0.2. What
about the remaining 0.2? In Bayesian probability, under the
Principle of Indifference this would be evenly divided across
Poor, Indifferent, and Average, giving each a weighting of
0.067. However, in Dempster-Schaefer theory, this weight
is simply left as “unknown”. The benefit (especially with
respect to our domain of reasoning about software quality)
is that this draws a firm line between information that is
confidently ‘known’, and facts about which we are ignorant
or dubious.

Ultimately, given a set of beliefs (which can be structured
in this tabular form), Dempster-Schaefer theory is concerned
with combining the different beliefs across the different fac-
tors. This can be used to derive high-level beliefs about the
system that take the various factors into account. With re-
spect to Table 1, given the belief-functions over the various
factors, we can combine them to produce a high-level com-
bined belief function that conveys to us the quality of the
system as a whole. Over the past 40 years numerous differ-
ent belief-combination approaches have been developed to
do so. One such approach, Evidential Reasoning, extends
the Dempster-Schaefer theory and is presented in more de-
tail below.

3.2 Evidential Reasoning
Most realistic decision processes are too complex to neatly

fit into the tabular format presented above. As discussed
previously, concepts such as software quality can be hierar-

chical in nature. It is also unrealistic that each factor is given
an equal importance. For example, a car buyer might place
an emphasis on reliability over value. This adds yet another
dimension to our assessment - we need to incorporate not
only the different degrees of belief for various factors, but
also their different respective weightings.

This delineates the problem considered by Evidential Rea-
soning, and reflects the illustration in Figure 1. Let us sup-
pose that we have a multi-levelled decision problem, where
different factors are combined according to weights. Let us
suppose that each of the lowest-level factors is associated
with its own Belief Function (shown below the dashed line)
that denote their individual assessments. How can we aggre-
gate these different beliefs to draw a meaningful conclusion
about the system as a whole?

Evidential Reasoning (ER) was developed by Yang et al.
[11]. It is an algorithmic approach to evidence-based reason-
ing that is founded upon Dempster-Schaefer Theory, which
can process complex hierarchical decision problems of the
type shown in Figure 1. The following notation and defi-
nitions are closely based on those provided by Yang et al.
[11].

To introduce the basic notation, we start by considering
a simple 2-level hierarchy, with the general attribute at the
top (e.g. Maintainability), which is composed of a set E of
l lower-level attributes, so E = {e1, . . . , el}. The weights of
the attributes are denoted w = {w0, . . . , wl}, where wn is
the relative weight of en and 0 ≤ en ≤ 1. Each attribute is
assessed according to a set of g grades H = {H1, . . . , Hg}
(e.g. the scale from 1 to 5). Thus, the user’s assessment for
a basic attribute ei (denoted S(ei)) can be represented as
the following distribution:

S(ei) = {(Hn, βn,i), n = 1, . . . , g} i = 1, . . . , l (1)

Here, βn,i denotes the degree of belief that attribute ei is
assessed to the grade Hn. It is always the case that βn,i ≥ 0
and ΣN

n=1βn,i ≤ 1. In other words, the sum of the belief
functions for an attribute can be less than 1; a degree of
ignorance or even total ignorance is permitted.

The Evidential Reasoning problem is to, for some hierar-
chy of factors, take a set of belief functions corresponding to
the leaf-nodes, and to propagate and combine those beliefs
(obeying the weights w) to produce a single high-level belief
function βn(n = 1, . . . , g) at the root of the hierarchy, which
fairly aggregates the assessments for all of the attributes ei
where i = 1, . . . , l. With respect to Figure 1, the challenge
is to produce a probability distribution for the general at-
tribute ‘Quality’ that aggregates all of the evidence from the
lower-level attributes.

3.2.1 The Evidential Reasoning Algorithm
The ER algorithm [11] provides a means by which to com-

bine the belief functions for attributes. Given a hierarchy of
attributes, it operates from the bottom-up, combining lower-
level attributes, and propagating the belief functions up to
the top, to yield a general belief-function. Most of the fol-
lowing description shows how a set of lower-level attribute
assessments can be combined. This will be followed by a
brief description of how this can be extended to a hierarchy.

The high-level process of processing a hierarchy is shown
in Algorithm 1. The entry-point is the beliefFunction

function. It is given as input the root-node of our tree n, a

input: node, InitBeliefs, w, l
/* node is the current node in the belief-tree (initially

this is the root-node) */
/* w is a weighting for each node (in terms of its

contribution to its ancestor) */
/* l is the number of levels that form a belief-distribution

(usually 5) */

1 beliefFunction(n, InitBeliefs, w, l) begin
2 if isLeaf(n) then
3 return InitBeliefs(n);
4 else
5 return computeBeliefs(descendants(n),

InitBeliefs, w, l)) ;

6 end

7 end

input: Nodes, InitBeliefs, w, l
/* Nodes is a list of (sibling) nodes, where the beliefs

are to be aggregated. */
/* w and l are as defined for beliefFunction */

8 computeBeliefs(Nodes, InitBeliefs, w, l) begin
9 for i = 1→ |Nodes| do

10 βi ← beliefFunction(n, InitBeliefs, w, l);
11 end
12 return aggregateBeliefs(β,w, l) ;

13 end

Algorithm 1: Functions beliefFunction and compute-

Beliefs, which together recursively carry out a depth-first
traversal of the tree of factors, propagating belief functions
from the bottom-up.

mapping from the leaf nodes of the tree to their respective
belief functions InitBeliefs, a mapping from all nodes to
their respective weightings w (where the weights of a set of
siblings sum to 1), and the scale used to assess nodes l (usu-
ally 1-5). Here, InitBeliefs corresponds to the definition
given in Equation (1).

The process essentially consists of a depth-first traversal
of the tree. The base-case is that the node is a leaf-node (line
2), which means that the user-supplied belief function can
simply be returned from initBeliefs. Otherwise the com-

puteBeliefs function is called (line 5), which is responsible
for computing a belief function from the belief functions of
its child-nodes (passed as a list of descendants, identified
by the descendants function). The computeBeliefs func-
tion starts by iterating through the given node list Nodes,
obtaining their respective belief functions (this is the point
of recursion, with call to beliefFunction). Once the set of
belief functions have been collected for all sibling nodes (pos-
sibly by recursion), the functions are combined by passing
them to the aggregateBeliefs function.

The aggregateBeliefs function represents the core of the
ER approach. This is where the belief functions of multiple
sibling nodes are combined into one, overall belief function.
The generated belief function is slightly different in nature to
the belief functions supplied in initBeliefs and described in
Equation (1). It not only contains a value for each level 1 to
l. It also contains an extra bar, which aggregates the doubt
or ignorance - where belief functions provided in initBeliefs
did not sum up to 1, which implies an implicit element of
doubt on the part of the user.

Given the intricacy of the process, there is not enough
space here to describe it in detail. A detailed description
is available in the paper by Yang et al. [11]. To be self-
contained, the algorithm is presented in Appendix A (in a
procedural form, which is intended to make it easier to read
in a summary form than the declarative form used by Yang).
Where possible, in-line comments have been used to at least

provide an intuition of its workings.
At a high-level, this depth-first process of identifying belief-

functions and combining them propagates the values that
are assigned to the leaf-nodes up the tree, combining them
in the process. In the process, any levels of doubt or igno-
rance are made explicit in the additional bar computed by
aggregateBeliefs. This culminates in an aggregate belief
function at the root of the tree, which combines all of the
belief functions from the leaf-nodes, incorporates the weight-
ings for individual nodes at each level, and makes the level
of doubt explicit.

3.2.2 Illustration
The tree processing procedure can be illustrated with re-

spect to the small example in Figure 1. We start by passing
the root node (‘Maintainability’) to beliefFunction. Since
this is not a leaf node, it calls computeBeliefs to combine the
belief-distributions of its children. In processing the child-
nodes (lines 9-10) the belief-function for each node is re-
trieved with a recursive call to beliefFunction. Starting
with the left-most node (‘Analysability’), this is a non-leaf
node, which prompts another call to computeBeliefs, pass-
ing its child-nodes (this illustrates the depth-first processing
of the tree).

Since all of these are leaf-nodes, their belief-functions are
combined by the aggregateBeliefs function to produce a
new, aggregated belief-function for ‘Analysability’. Having
retrieved this belief function, the computeBeliefs function
moves on to retrieve the belief function for its next sib-
ling node ‘Quality Assurance’. This, being a non-leaf node,
prompts a further depth-first search-aggregation process un-
til the lower level belief functions have been combined to
produce its belief-function. This process continues until all
three nodes have their (aggregated) belief functions. Finally
these are combined to produce the final overall belief func-
tion for ‘Maintainability’.

4. APPLYING EVIDENTIAL REASONING
TO SOFTWARE QUALITY

At the core of software quality lies the challenge of assim-
ilating a wide range of sources of evidence about disparate
factors into a single coherent assessment. Judgements about
individual factors are often subjective, and can incorporate
a certain degree of doubt or ignorance. As such, it would
seem to be an ideal fit for Evidential Reasoning.

ER enables the abstract notion of quality to be broken
down into its constituent parts and to quantify the relative
weights that each part plays in the overall conclusion. It
enables the precise specification of the extent to which there
is any doubt or ignorance associated with assessments of in-
dividual factors, and to factor these in to the final high-level
conclusion. Consequently, high level assessments of software
quality can be formalised, weighted, and appropriately mod-
ulated according to the subjective certitude or doubt on the
part of the assessor.

There are three high-level steps that are required for the
application of ER to assess software quality. First of all, it is
necessary to encode our interpretation of ‘software quality’
as a weighted hierarchy (as illustrated above the dashed line
in Figure 1). Secondly, we have do decide upon a rating scale
against which we wish to assess all of the factors. Finally, we
have to provide our low-level belief-functions that indicate

our subjective (and potentially dubious) assessments of the
lowest-level elements in our quality hierarchy. These steps
are discussed in their respective subsections below.

4.1 Developing or Selecting a Hierarchy of Qual-
ity Factors

As discussed previously, software quality is intrinsically
hierarchical [2, 19, 3, 10]. Existing quality standards and
other literature in the area tend to adopt the approach of
starting from the high-level notion of quality and gradually
decomposing it into more concrete notions that are individ-
ually more straightforward to understand and assess. When
it comes to deciding what the specific factors are, and how
they are related to each other, there is little agreement [3,
7]. Accordingly, this question is left open in this paper. The
approach presented is not tied to any specific hierarchy.

If there is no existing quality definition in place, then the
developer can develop their own. We have illustrated this
by developing our own illustrative hierarchy in Figure 1. Of
course, this hierarchy is small, focussing solely on maintain-
ability, and is merely for the sake of illustration. In practice,
a model could be more expansive, with more levels. An al-
ternative situation is that the host organisation has adopted
an existing definition of software quality (e.g. the ISO/IEC
9126 standard). If this is the case, then the factors have
already been provided for us. All that remains is to at-
tribute to them their respective weights (i.e. the relative
extent to which sibling factors contribute to the assessment
of their parent). In the absence of any opinions about rela-
tive weightings, they are evenly weighted by default.

It is important to emphasise that the the definition of
software quality is not affected by the availability (or lack
of) evidence. If, for example, a quality hierarchy definition
includes test coverage, this forms a part of the calculation
of software quality, even if there is no test coverage data
available. This is an important distinction from typical ap-
proaches to assessing software quality, which are forced to
tailor their definitions of software quality to the available,
measurable data. With the ER approach, if we are igno-
rant about a particular factor, it can still be included in the
form of belief functions that are all zero (signifying total ig-
norance). This means that the same definitions of quality
can be used across a range of systems; absence of evidence
is simply reflected in an increased “ignorance score” for the
final result.

4.2 Selecting a rating scale
The ER approach relies on a scale that can be uniformly

applied to all factors. The scale should broadly range from a
low value, indicating a negative assessment, to a high value
indicating a positive one. The scale adopted in this paper is
1-5, where 1 = ‘poor’ and 5=‘excellent’. However, one might
choose to make the scale more or less granular, depending
on the level of detail at which the quality of the system is
to be assessed.

4.3 Deriving Initial Belief Functions
Of course, what constitutes ‘poor’ and ‘excellent’ is, de-

pending on the factor in question, intrinsically subjective.
The final, and most complicated step in the process is to
elicit this opinion from the assessor for each of the factors,
in the form of a ‘belief function’.

A belief function is produced every factor at the lowest

1

0

0.6
0.30.1

B
el
ie
f

Rating

 1 2 3 4 5

1

0
0.20.05

B
el
ie
f

Rating

 1 2 3 4 5

0.20.050.05

Figure 2: Examples of two belief functions. The
values on the x-axis range from 1 (poor) to 5 (excel-
lent).

level of the hierarchy. For each of these, the assessor has
to combine: (1) Their (potentially ad-hoc) analysis of the
relevant artefacts. (2) Quantitative measurements in the
form of code or model metrics. (3) Their understanding of
how these various sources of evidence relates to the factor
in question.

Two examples of possible belief functions are shown in
Figure 2. These have two dimensions: the rating scale and
the ‘belief’ scale. The rating scale is as discussed above,
and the levels are arranged on the x-axis. The attribution
of belief values to different ratings represents the subjective
balance of opinion of the assessor. The sum of the belief
values cannot exceed 1 (but does not have to sum up to 1
either). If the belief values sum up to 1, this indicates that
the developer is absolutely certain about the balance of their
opinion. If not, it indicates that there is a degree of doubt
[11].

The example on the left in Figure 2 represents an instance
where the assessor is reasonably certain that the factor in
question should be rated ‘excellent’ or ‘good’ (with a bias
towards ‘excellent’). The assessor may have an in-depth
knowledge about the system, the various sources of evidence,
and their relation to the factor, and be reasonably confident
about the assessment. They do however concede that there
is the chance that they have misinterpreted the evidence.
They might be aware that the metrics, though positive, can
still be misleading, so they must accept that there remains
a very small possibility that the factor could be merely be
‘adequate’, despite the overwhelming evidence to the con-
trary.

The example on the right illustrates a different possible
scenario. The assessor is highly doubtful about how to assess
this factor. There might not be any metrics available, and
they might be forced to resort to their intuition, or back-
ground knowledge. From this, they have an inkling that it
may be good or excellent, but admit that there is a chance
that the factor could also be assessed as very poor. Ulti-
mately, they are simply unsure. This is reflected by the fact
that all of the belief values are very low, and fail to add up
to 1.

5. ILLUSTRATIVE CASE STUDY
This section provides a proof-of-concept illustration of

how ER can be applied to assess software quality. It is to
be emphasised that this section does not seek to provide an
empirical evaluation. This would necessitate a large num-
ber of software systems and human assessors, and is part of
our ongoing work. Instead, this section acts as a proof-of-

concept.
The section will illustrate how, in spite of varying degrees

of uncertainty and ignorance, evidence and opinion about
quality can be processed in a systematic way to produce a
comprehensive assessment. The result is not just a single
number or decision, but a tree. This illustrates the value of
being able to incorporate ignorance and uncertainty, along-
side clear links from evidence to high-level judgements about
software quality.

5.1 Case Study and Implementation
For our case study, we assess the NASA CM1 system de-

scribed in Section 2.2 in terms of its maintainability. As
sources of ‘evidence’, we rely entirely on the data about the
CM1 system that are available on the PROMISE repository
[12]. This includes a table2 that evaluates each of the 327
source code modules according to 37 source code metrics.

To begin with, we must identify a suitable hierarchy of
factors that are deemed to constitute ‘maintainability’. For
this we adopt our example hierarchy, shown in Figure 1, and
also adopt the weightings attributed to the various factors.
We also choose the rating 1-5, as this is commonly used and
intuitive (c.f. Likert scales).

The next step is to produce the ‘belief functions’ for the
leaf-nodes (i.e. to replace the illustrative plots below the
dashed line in Figure 1 with actual data). The belief-functions
are listed below, along with some of the underlying thought
processes that were used to generate them. Space restric-
tions prevent a detailed treatment of each factor, but this
should still suffice to provide an intuition of the general pro-
cess.

• Size: For this we consider the non-blank non-comment
LOC, and Halstead Length metrics. Most of the mod-
ules have reasonably small numbers (i.e. < 10 LOC
and < 500 Halstead), but there are about 20 modules
where both LOC and Halstead metrics spike up. To-
gether these give us a reasonably good picture of size,
so we propose the following belief function:
[0.0, 0.0, 0.35, 0.5, 0.1].

• Complexity: The type of complexity considered here
is not specified in the quality model, and is therefor
somewhat ambiguous. We opt to focus on the code
complexity, for which there are several metrics at our
disposal, including Cyclomatic Complexity and Hal-
stead Difficulty. When viewed on a scatter-plot these
are all roughly correlated with each other. Looking
more closely at Cyclomatic Complexity (which is some-
what simpler), there seems to be a significant degree
of complexity. 74 of the modules have a Cyclomatic
Complexity > 10 (three > 70). It is also acknowledged
that complexity is notoriously difficult to assess with
metrics (e.g. these metrics focus almost exclusively
on logical complexity, as opposed to data complexity).
As a result we propose the following belief function:
[0.2, 0.4, 0.3, 0.0, 0.0].

• Testability: To gauge testability, we look at the branch-
ing structure, by looking at the number of decision
points with multiple conditions, and the Parameter

2Specifically, we use the metrics file that has been pre-
processed by Shepperd et al. [14], who have attempted to
remove implausible or erroneous data.

((comment_quality:1)implementation_quality:0.2,
(testability:0.6,(code_coverage:0.5,
data_coverage:0.5)adequacy:0.4)
quality_assurance:0.4,(complexity:0.6,size:0.4)
analysability:0.4)maintainability;

5
comment_quality 0.05 0.05 0.1 0.3 0.3
code_coverage 0 0 0 0 0
data_coverage 0 0 0 0 0
testability 0.25 0.4 0.25 0 0
complexity 0.2 0.4 0.3 0 0
size 0 0 0.35 0.5 0.1

Figure 3: ERTool input for CM1 example.

Count. From these the testability seems to be quite
poor. Although the average parameter count tends to
be quite low (around 2), there are 30 instances with 4
or more parameters. The multiple-condition decision
count is quite high (average 10.4), with several spikes
(in one case up to 124). This leads to the following
function: [0.25, 0.4, 0.25, 0.0, 0.0].

• Code coverage and data coverage: We do not
have any access to the test coverage information for
this system. Thus, we can say nothing about them,
which leads to the following belief function for both:
[0.0, 0.0, 0.0, 0.0, 0.0].

• Comment Quality: The only useful metric available
is called “Percentage Comments”, indicating the pro-
portion of the module that is dedicated to comments.
This is generally quite high (an average of 30%), so
we can be inclined to infer that a large proportion of
comments indicates that the quality is relatively high.
Of course, we cannot know this. We hedge our bets
by tilting our confidence towards good / excellent, but
we leave 0.2 of our ‘belief mass’ unassigned, indicating
our doubt [0.05, 0.05, 0.1, 0.3, 0.3].

To compute the belief functions, we have developed an
openly-available proof-of-concept tool (ERTool)3). This takes
as input a three-part text file. The first part contains a de-
scription of the tree and the weights of the branches, using
the Newick format4. This is followed by a number, denoting
the number of elements in the rating scale. Finally, this is
followed by a list of belief functions for the leaf-nodes of the
tree. As output it produces a hierarchy of bar plots, an ex-
ample of which is shown later. For the case study, the input
is shown in Figure 3.

This illustrates the simplicity of the approach. The full
quality model and all of the necessary user input can be
captured in 12 lines of text.

5.2 Result and Discussion
The ER algorithm produces the final hierarchical assess-

ment, shown in Figure 4 - a tree of ‘belief functions’. Each
belief function describes precisely our assessment of the var-
ious factors. The leaf-nodes simply reflect our initial scores
discussed above. However, things become more interesting
as different assessments are folded together. The ER algo-
rithm combines assessments from the bottom-up, obeying

3https://bitbucket.org/nwalkinshaw/ertool/overview
4http://en.wikipedia.org/wiki/Newick_format

https://bitbucket.org/nwalkinshaw/ertool/overview
http://en.wikipedia.org/wiki/Newick_format

Figure 4: ER-assisted Assessment of Software Maintainability for CM1

the different weightings that are attributed to different fac-
tors in the process. This results in a full picture of the
assessor’s opinion about all of the factors that (they con-
sider) to contribute to software maintenance. Although the
behaviour of the ER algorithm can be difficult to discern
from an algorithmic perspective, several of its behavioural
properties are nicely illustrated here.

Looking at the combination of Size (skewed towards the
positive end of the ratings), and Complexity (skewed to-
wards the negative end), the result (Analysability) roughly
centres on the median point, tapering off towards both ex-
tremes.

The combination of Adequacy and Testability is interest-
ing, because Adequacy offers no new information. When
combined with Testability, the result retains the same char-
acteristics of the Testability function, but the magnitudes of
the bars are substantially attenuated.

Finally, the overall assessment at the top of the hierarchy
is accompanied by a special bar, denoting the doubt inherent
in the overall assessment. This is computed from those belief
functions where the total sum of beliefs did not add up to 1
(implying a degree of uncertainty or ignorance).

There remains the big question of whether the final re-
sult in Figure 4 is sensible and valid. From the context
adopted in this paper, given the lack of prior knowledge
about the system and restriction to the selected metrics,
it makes sense. The metrics (especially for complexity and
testability) are not favourable, which leads to a relatively low

quality score around the 2-3 mark. However, at the same
time there is a lot of doubt. The total ignorance about test
outcomes and relatively poor alignment between the avail-
able metrics and other quality factors contribute to an over-
all ‘doubt score’ that suggests that this assessment is highly
dubious.

This explicit characterisation of doubt is perhaps the most
useful characteristic of Evidential Reasoning. Alternative
approaches that combine metrics would provide a single, un-
qualified figure, which would be wide open to (mis-)interpretation.
However, in this case, the assessment provides a clear and
complete picture of the author’s subjective assessment of
CM1, replete with doubt and ignorance.

It is important to re-iterate that this section does not
seek to empirically validate the use of ER in any way. One
can safely assume that, with more contextual information
about the developers and development processes involved
etc., a completely different picture of software quality might
emerge. However, the important point is that this assess-
ment accurately captures the author’s subjective assessment
of the system, when limited to reasoning about a relatively
restricted set of metrics of potentially questionable prove-
nance [14]. As will be discussed later, the construction of
a more systematic validation study is a part of our ongoing
and future work.

6. RELATED WORK
The problem of incorporating uncertainty and subjectivity

to the assessment of software quality is well-established. So
far, the main proposed approach to addressing this has been
to recode quality models as Bayesian networks, and to use
their capacity to represent probability and uncertainty. This
approach has been espoused by the work of Fenton et al. [9,
8], and has recently been extended by Wagner [10].

The work presented in this paper is especially compara-
ble to the Bayesian network approach presented by Wagner.
Indeed, the use of the CM1 data to validate our approach
was partly inspired by his evaluation on the same data [10]
(albeit with respect to slightly different quality models), to
provide insights into the relationships between the two ap-
proaches.

On the surface, the two approaches are highly similar
in nature. Both deal with a tree-structured quality model
(though this need not necessarily be the case for Bayesian
models). Both feed evidence into the bottom layers, in the
form of distributions that approximate the confidence of the
assessor. In both cases the data is propagated up to form an
overall assessment. The interpretation of the metrics data
that is used to formulate the low-level distributions is very
similar.

The key difference between the approach presented here
and Bayesian network approaches is, ultimately, that this
approach is not based upon Bayesian statistics [18]. It will
still produce a valid assessment, even if there are no prior
distributions, or there is no evidence for particular factors.
This allows the approach presented here to distinguish be-
tween uncertainty and total ignorance. If we do not know
about a factor (such as the test-coverage for CM1), but it
is still a part of our quality model, this ignorance is made
explicit in the final assessment.

There does not seem to be an obvious way in which such
ignorance could be factored in to a Bayesian model. Bayesian
models rely on the (often unrealistic) premise that every
eventuality can be attributed with a probability. When no
prior information exists, the only option is to resort to the
Principle of Indifference, by providing a ‘flat’ probability
distribution in which all eventualities are equally possible.
This is however artificial and can lead to misleading models;
the coercion of probabilities into a distribution despite the
the absence of any prior knowledge or evidence can end up
obscuring ignorance. ER models on the other hand make
any ignorance explicit. If a model provides a positive qual-
ity assessment, but there is an absence of evidence or prior
distributions for many of the factors, this knowledge is made
explicit in the final outcome.

7. CONCLUSIONS AND FUTURE WORK
This paper has shown how, in principle, the Evidential

Reasoning approach can be applied to reason about software
quality. It enables developers to define their own quality
models (or to use existing ones), and allows for uncertainty
when these factors are assessed. Moreover, in contrast to
existing Bayesian approaches, it also distinguishes between
mere uncertainty and complete ignorance. Regardless of the
quality model and the available knowledge or evidence, it is
always capable of producing an assessment that makes any
areas of doubt and ignorance explicit, thus maintaining the
integrity the final model.

As a proof-of-concept, the approach has been developed
into a small, openly available tool. This was used to pro-
vide a high-level assessment of the NASA CM1 module, al-

beit one that was restricted to the data available from the
PROMISE repository, and with respect to a small quality
model. The simplicity of the approach is indicated by the
amount of input required for the tool; the full model and all
of the probability distributions require only 12 lines of text
in this paper.

This paper does not provide a full validation of the ap-
proach. This would require feedback from developers, cov-
ering a sufficiently large number of systems. Producing this
more comprehensive evaluation forms the core part of our
ongoing and future work.

Acknowledgement
The author thanks Marc Roper at the University of Strath-
clyde and the anonymous reviewers who provided helpful
feedback on earlier drafts of this paper.

8. REFERENCES
[1] B. Kitchenham and S. Pfleeger, “Software quality: the

elusive target [special issues section],” Software, IEEE,
vol. 13, no. 1, pp. 12–21, 1996.

[2] B. Boehm, J. Brown, H. Kaspar, M. Lipow,
G. MacLeod, and M. Merrit, Characteristics of
software quality. North-Holland Publishing
Company, 1978, vol. 1.

[3] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J. Girard, “An activity-based quality model for
maintainability,” in Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on.
IEEE, 2007, pp. 184–193.

[4] “Iso/iec 9126-1, software engineering – product quality
– part 1: Quality model,” 2001.

[5] “Iso/iec 25010, systems and software engineering –
systems and software quality requirements and
evaluation (square) – system and software quality
models,” 2011.

[6] “Rtca/do-178c ”software considerations in airborne
systems and equipment certification”,” 2010.

[7] S. Wagner, K. Lochmann, S. Winter, A. Goeb, and
M. Klaes, “Quality models in practice: A preliminary
analysis,” in ESEM, 2009, pp. 464–467. [Online].
Available:
http://doi.acm.org/10.1145/1671248.1671308

[8] N. E. Fenton, M. Neil, and J. G. Caballero, “Using
ranked nodes to model qualitative judgments in
bayesian networks,” IEEE Trans. Knowl. Data Eng,
vol. 19, no. 10, pp. 1420–1432, 2007. [Online].
Available:
http://dx.doi.org/10.1109/TKDE.2007.1073

[9] M. Neil, B. Littlewood, and N. Fenton, “Applying
bayesian belief networks to system dependability
assessment,” in Safety-Critical Systems: The
Convergence of High Tech and Human Factors:
Proceedings of the 4th Safety-critical Systems
Symposium Leeds, UK 6-8 February 1996, F. Redmill
and T. Anderson, Eds. Leeds, UK: Springer, 1996,
pp. 71–94.

[10] S. Wagner, “A bayesian network approach to assess
and predict software quality using activity-based
quality models,” Information & Software Technology,
vol. 52, no. 11, pp. 1230–1241, 2010. [Online].

http://doi.acm.org/10.1145/1671248.1671308
http://dx.doi.org/10.1109/TKDE.2007.1073

Available:
http://dx.doi.org/10.1016/j.infsof.2010.03.016

[11] J.-B. Yang and D.-L. Xu, “On the evidential reasoning
algorithm for multiple attribute decision analysis
under uncertainty,” IEEE Transactions on Systems,
Man, and Cybernetics, Part A, vol. 32, no. 3, 2002.

[12] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall,
F. Peters, and B. Turhan. (2012, June) The promise
repository of empirical software engineering data.
[Online]. Available:
http://promisedata.googlecode.com

[13] W. Abdelmoez, K. Goseva-Popstojanova, and
H. Ammar, “Maintainability based risk assessment in
adaptive maintenance context,” in 2nd International
Predictor Models in Software Engineering Workshop
(PROMISE 2006), Philadelphia, PA, 2006.

[14] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data
quality: Some comments on the nasa software defect
data sets,” submitted.

[15] K. Lakhotia, M. Harman, and P. McMinn, “A
multi-objective approach to search-based test data
generation,” in Proceedings of the 9th annual
conference on Genetic and evolutionary computation.
ACM, 2007, pp. 1098–1105.

[16] A. P. Dempster, “A generalization of Bayesian
inference,” Journal of the Royal Statistical Society,
Series B, vol. 30, pp. 205–247, 1968.

[17] G. Shafer, A Mathematical Theory of Evidence.
Princeton University Press, 1976.

[18] J. Y. Halpern, Reasoning about Uncertainty.
Cambridge, Massachusetts: The MIT Press, 2003.

[19] J. McCall, P. Richards, and G. Walters, Factors in
Software Quality. NTIS Springfield, 1976.

Appendix A: Aggregating Belief Functions

input: β,w, l
/* β is the list of belief functions. βi refers to the

belief function for node i. βn,i refers to the specific
‘belief-value’ for node i at level n. */

/* The other parameters are described in Algorithm 1 */

1 aggregateBeliefs(w, l, β) begin
// The following loop aggregates the belief masses.

2 for i = 1→ (|β| − 1) do
3 for n = 1→ l do
4 mn,i ← wiβn,i;

// Calculate basic belief-masses
5 if i = 1 then
6 cn,i ← mn,i;

// For initial computation of k

7 end

8 end
9 m̄H,i ← 1− wi;

// Calculate the remaining weight (not attributed to
βi)

10 m̃H,i ← wi

(
1−

l∑
n=1

βn,i

)
;

// Calculate the level of ignorance (unassigned
Belief-mass) for node i

11 mH,i ← m̄H,i + m̃H,i;

12 k =
[
1−

l∑
t=1

l∑
j=1
j 6=t

ct,imj,i+1

]−1
;

// Compute normalizing factor
13 for n = 1→ l do
14 cn,i+1 ←

k(mn,imn,i+1 +mn,imH,i+1 +mH,imn,i+1);
// Compute combined belief mass for level n,

adding node i+ 1 to aggregated beliefs

15 end
16 c̄H,i+1 ← k(m̄H,im̄H,i+1);

// Compute remaining weight after adding node i+ 1
to aggregated beliefs

17 c̃H,i+1 ← k(m̃H,im̃H,i+1 +m̄H,im̃H,i+1 +m̃H,im̄n,i+1);
// Compute remaining belief mass after adding node

i+ 1 to aggregated beliefs

18 end
// After the final iteration, for n = 1, . . . , l, cn,|β|

represents the combined belief masses for all factors
in β.

19 for n = 1→ l do

20 βn ←
cn,|β|

1−c̄H,|β|
;

21 end

22 βH ←
c̃H,|β|

1−c̄H,|β|
;

// Compute the aggregated Belief function β (and the
ignorance-level BH) for β

23 return β

24 end

Algorithm 2: aggregateBeliefs function.

http://dx.doi.org/10.1016/j.infsof.2010.03.016
http://promisedata.googlecode.com

	Introduction
	Background
	Defining, Measuring, and Communicating Software Quality
	Motivating Example

	Evidential Reasoning
	Dempster-Schaefer Theory
	Evidential Reasoning
	The Evidential Reasoning Algorithm
	Illustration

	Applying Evidential Reasoning to Software Quality
	Developing or Selecting a Hierarchy of Quality Factors
	Selecting a rating scale
	Deriving Initial Belief Functions

	Illustrative Case Study
	Case Study and Implementation
	Result and Discussion

	Related Work
	Conclusions and Future Work
	References

