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Abstract—Many applications in security, from understanding
unfamiliar protocols to fuzz-testing and guarding against po-
tential attacks, rely on analysing network protocols. In many
situations we cannot rely on access to a specification or even
an implementation of the protocol, and must instead rely on
raw network data “sniffed” from the network. When this is
the case, one of the key challenges is to discern from the raw
data the underlying packet structures – a task that is com-
monly carried out by using alignment algorithms to identify
commonalities (e.g. field delimiters) between packets. For this,
most approaches have used variants of the Needleman Wunsch
algorthm to perform byte-wise alignment. However, they can
suffer when messages are heterogeneous, or in cases where
protocol fields are separated by long variable fields. In this
paper, we present an alternative alignment algorithm known
as segment-based alignment. We show how this technique
can produce accurate results on traces from several common
protocols, and how the results tend to be more intuitive than
those produced by state-of-the-art techniques.

1. Introduction

Network protocols play a fundamental role in the be-
haviour of distributed systems. Faults and vulnerabilities in
protocol behaviour can easily lead to unexpected behaviour
in the wider system and become focal points for attacks. The
risk of such problems can be mitigated by activities such
as fuzz-testing and intrusion detection [1], [5], [18], [22],
[25], [34], [35], [39]. For such approaches, it is generally
necessary to have an existing model that describes the
expected behaviour of the network traffic.

In practice however, such models tend to be only readily
available for generic protocols with well-established char-
acteristics. Generating such specifications by hand can be
an arduous, error-prone task, especially when the protocol
in question is unfamiliar and not accompanied by detailed
documentation (e.g. the implementation is provided in a
third-party component). For this scenario, a host of protocol
inference techniques have emerged.

A crucial step for any inference technique is to infer the
packet structures from the data – to separate out the packets,
and to identify within packets the various data fields and

field headers. Current approaches [3], [11], [12], [24], [40],
[45] tend to identify common patterns by attempting to align
the sequences. Alignments can identify commonalities and
variances, which can in turn be used to identify, for example,
the tokens that are used to delimit packets, the key field
identifiers, and the data fields.

Although there has been a substantial amount of research
in the area, most of the emphasis has been placed on either
stages prior to the alignment [3], [40] or on challenges such
as the inference of state machines (once packet types have
been identified) [9], [10], [23], [24], [42]. The underlying
algorithm that is used to align packets to identify their
structure tends to be the same for most techniques – the
Needleman-Wunsch algorithm [31].

Although well suited for its original purpose of protein
sequence alignment, Needleman-Wunsch can become prob-
lematic when applied to sequences of bytes from network
packets. For one, it is highly sensitive to various param-
eters (such as the “gap-penalty” parameter) that, though
honed through decades of use on protein sequences, are far
from straightforward to identify for network packets (and in
all likelihood need to be varied on a per-protocol basis).
Secondly, it can produce highly inaccurate results when
messages have an identical packet structure, but happen to
contain variable-length data fields.

This paper proposes the use of segment-based se-
quence alignment [28] to align network packet data. In-
stead of aligning messages on a character-by-character basis,
segment-based alignment constructs alignments in terms of
entire sub-strings. The algorithm is not dependent upon
parameters. Also, because it operates in terms of sub-
sequences, it is more forgiving of slight discrepancies when
comparing sequences that would confound Needleman-
Wunsch. The approach has proven to be a successful re-
placement for Needleman-Wunsch within Bioinformatics,
and in this paper we seek to show that it can provide a simi-
lar replacement with respect to protocol reverse-engineering.

This paper makes the following contributions:

• We present a technique based on segment-based
alignment to reverse engineer packet structures from
network traces.

• We present a novel approach to evaluate the accuracy



of the alignments. Instead of relying on the con-
ventional analytical approach of scrutinising inferred
packet structures, we use what we consider to be a
more empirically valid approach. We use the inferred
packet structures to synthesise new network mes-
sages, which we send to servers, and track whether
or not the packet is parsed as valid or not.

• We offer a preliminary qualitative comparison of
the alignments produced by our approach against
those produced by the current state of the art – the
Protocol Informatics (PI) [3] framework, which is
based on Needleman-Wunsch algorithm.

The rest of this paper is structured as follows: In Section
two, we give a brief overview of the process of protocol
reverse engineering, sequence alignment, and provide a
motivation for this work. Section three explains the concept
of segment-based alignment in more detail. In Section 4,
we explain our implementation, detailing how we integrate
segment-based alignment, and how message patterns are
extracted. In Section five, we evaluate the quality of the
message patterns extracted from the traces. We conclude
this paper by listing some of the findings and future work.

2. Background

We begin with a general overview of protocol reverse
engineering techniques, and proceed to present a concise
introduction to sequence alignment and how it has been used
to infer the message structure of network protocols. We then
conclude this section with a discussion of the limitations of
the state of the art and the motivation behind this work.

2.1. Protocol Reverse Engineering

Network protocol specifications are the backbone of
several security applications [5], [18], [22], [25], [34], [35].
Given an undocumented protocol (e.g., SMB or Skype),
the goal of protocol reverse engineering is to extract a
complete description of how to interact with them. This
entails inferring the message format, which captures the
structure of all messages, and the rules that govern the order
in which these messages can be sent and received (often
modelled as a state machine).

There are two common approaches for inferring protocol
specifications: (1) by reverse engineering protocol executa-
bles (e.g., using dynamic execution analysis of the server
while processing messages) [6], [7], [10], [13], [43], or (2)
by analysing network traffic [2], [3], [4], [11], [23], [40],
[42]. The choice of approach invariably depends on the
context. In this paper, we concerned with the scenario in
which one does not have access to the protocol executable,
and thus is unable to use intrusive analysis approaches to
scrutinise its behaviour. Accordingly, we focus on the latter
approach of reverse-engineering protocols from network
traffic.

Figure 1 illustrates the common sequence of steps that
tend to be adopted by most traffic-based reverse engineering

Table 1. AN ALIGNMENT OF A SET OF MULTIPLE HTTP MESSAGES
USING THE NEEDLEMAN-WUNSCH ALGORITHM AND THE

PROGRESSIVE ALIGNMENT HEURISTIC.

(a) Non-aligned messages:
1 GET / HTTP/1.1
2 GET /indx.html HTTP/1.1
3 GET /k.ico HTTP/1.1
4 GET /img.png HTTP/1.1
5 GET /st.css HTTP/1.1

(b) Aligned messages:
1 GET /--------- HTTP/1.1
2 GET /indx.html HTTP/1.1
3 GET /---k.ic-o HTTP/1.1
4 GET /i-mg.-png HTTP/1.1
5 GET /--st.-css HTTP/1.1

***** *********
GET /--------- HTTP/1.1

techniques to infer the message structure. Generally, the
approach consists of the following steps:

1: Message pre-processing:. Network data tends to
be transmitted via ‘layered’ protocols. Protocols that sit on
top of each other and accomplish different functions (as
per the OSI [47] or TCP/IP [16] reference models). We are
conventionally only interested in one layer of messages (i.e.
the Application Layer), containing the target protocol. This
means that we need to employ techniques by which to filter
out contents of the network data that are not relevant to our
reverse-engineering task. Typical examples of how this can
be accomplished are discussed by Kim et al. [22].

2. Clustering: . Typically, application protocols in-
volve multiple different types of messages, where each type
has its own format. The clustering step serves to group
messages of the same type together, so that they can be
subjected to a more fine-grained analysis to extract their
shared format (the alignment step that is the main subject
of this paper). In order to facilitate clustering, packet data
is often cleansed, e.g. by filtering out irrelevant data, or by
using dimensionality-reduction techniques [26].

3. Alignment: . Sequence alignment algorithms take
as input the clustered protocol messages and align them, ex-
posing the structural aspects of field similarities, differences,
and gaps. Typically, the alignment result is translated into
a form of regular expression (or XML format) to represent
the message format of each message type identified in trace.

2.2. Sequence Alignment in Packet Structure In-
ference

Sequence alignment algorithms have long been used in
Bioinformatics [14], for example to identify relationships
between protein sequences. An alignment can show pre-
cisely where two sequences are identical – which zones of
the two sequences match each other, potentially indicating
that they are related in some way. Previous protocol infer-
ence techniques have sought to adopt this intuition to infer
the message structures. The rationale is that packets that are
related to each other have certain similarities; they share
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Figure 1. Common approach of inferring protocol message formats from captured network traffic.

key-words and use the same symbols to act as delimiters
between different parts of a packet.

To illustrate this intuition, we can consider the set of
packets in Table 1 (a), containing simple request messages
from the HTTP protocol. An alignment of the messages is
shown in Table 1 (b). Similar characters (bytes) are aligned
to each other. Because these messages have different lengths,
gaps are inserted into each message in order to align it
with other messages. As a result, the alignment clearly
outlines the two keywords (GET & HTTP/1.1) and the
variable field in the middle (in this case the URI). The lower-
most sequence at the bottom is referred to as the consensus
sequence, which summarises the alignment.

The alignment shown in Table 1 is produced by the
Needleman-Wunsch algorithm [31] (which is designed to
align pairs of sequences) and progressive alignment tech-
nique (explained later – which supports the tractable ex-
tension of Needleman-Wunsch from pairs to multiple se-
quences). Typically, there are two types of algorithms;
global (Needman Wunsch is a global algorithm) and local
(e.g., Smith Waterman [14]). Global alignment algorithms
have the goal of matching entire sequences with each other
(i.e. finding a corresponding position for every element).
Local alignment algorithms on the other hand merely fo-
cus on identifying regions that are strongly similar. Global
alignment algorithms tend to be better suited to pairs of
sequences that are broadly of a similar length and content,
whereas the latter is better suited to sequences that are more
diverse in nature.

Traditional global and local alignment algorithms are
based on dynamic programming which cannot be easily
extended to align more than three sequences as it becomes
prohibitively expensive. For this reason, different heuristics
have been developed to align multiple sequences, such as
progressive multiple sequence alignment [14]. This approach
operates by initially aligning two sequences(typically the
most similar pair) using Needleman Wunsch algorithm, and
then ‘progressively’ adding additional sequences to this
fixed alignment.

2.3. Motivation

Most protocol reverse engineering techniques are based -
one way or another - on the Needleman-Wunsch algorithm
(and its Progressive Alignment derivatives). As discussed
above, this can work when protocol messages tend to be of a

similar length and content. However, this is not necessarily
the case with network messages. These can contain long
variable and optional fields, as is the case in HTTP proto-
col for example. Additionally, with Needleman-Wunsch the
quality of a sequence alignment critically depends on the
judicious selection of user-defined parameters (e.g. a gap
penalty) which can be very difficult to choose [12], and can
vary from one protocol to another. As a consequence, if the
messages are heterogeneous, and the parameters fail to count
for the specific characteristics of a message set or protocol,
alignments can easily become highly inaccurate.

Let us consider the pairs of messages shown in Table
2. Here we show two pairs of HTTP messages of the same
type, each message consists of a request-line message and
optional headers. One set consists of messages that share
strong similarity (the stream of bytes is similar from start to
the end). The other set contains request-line messages of the
same protocol that are less similar because the URI fields
are of different lengths and contents, and omit some of the
message headers.

We illustrate the aforementioned problems by aligning
these messages with the Protocol Informatics tool [3], which
is based upon Needleman-Wunsch. First it is necessary to
select the Needleman-Wunsch parameters (scores for when
a pair of aligned characters match and mismatch, and a
penalty for any gaps that are introduced). We consider the
default settings (match=1, mismatch=0, gaps=0) as used in
the Protocol Informatics for protocol analysis.

The results are shown in Table 3. The alignment results
show that when messages share significant similarity, the
choice of the standard user-parameters can provide good
alignment results. The message elements that we would
expect to be aligned – ‘GET /’, ‘HTTP/1.1\r\nHost:
www’ and the ‘\r\n\r\n’ at the end of the message are all
correctly aligned.

However, when the messages are dissimilar, the same
algorithm with the same parameters fails to produce a
suitable alignment. Although the first ‘GET /’ and the
final ‘\r\n\r\n’ are aligned correctly, it fails to match the
‘HTTP/1.1’ header. Whereas this example is necessarily
small for the purpose of illustration, it is apparent the prob-
lems illustrated here can easily be exacerbated as the number
of messages, their lengths, and heterogeneity increase.



Table 2. TWO SLIGHTLY DIFFERENT SETS OF HTTP GET MESSAGES.

Sets HTTP GET Messages

Similar GET /myimage.jpg HTTP/1.1\r\nHost: www.bbc.com\r\nUser-Agent: Dillo/3.4\r\n\r\n
GET /thisisabitlongeruri/documents/index.html HTTP/1.1\r\nHost: www.le.ac.uk\r\n\r\n

Less Similar GET /myimage.jpg HTTP/1.1\r\nHost: www.bbc.com\r\nUser-Agent: Dillo/3.4\r\n\r\n
GET /thisisabitlongeruricontainsmanycharacters/documents/index.html HTTP/1.1\r\n\r\n

Table 3. ALIGNMENTS OF THE HTTP MESSAGES BY NEEDLEMAN-WUNSCH WITH THE STANDARD PARAMETERS (MATCH=1, MISMATCH=0, GAP=0).

Message type Alignment Result

Similar GET /my--im---a------ge--------------------.jpg---- HTTP/1.1\r\nHost: www.bbc.com\r\nUs-er--Agent: Dillo/3-.4--\r\n\r\n
GET /--thi-sisabitlongeruri/documents/index.---html HTTP/1.1\r\nHost: www.-------------le--.a-------------c.-uk\r\n\r\n

Less Similar GET /my--im---a------ge.jpg HTTP/1.1\r\nHost: www.bb---c.com\r\nU----se-------r-Ag--e---------nt: D--i--------llo-----/3-.4-\r\n\r\n
GET /--thi-sisabitlonge--------------r--------------uric--o----n-tains-manychar-a-cters/document---s/index.html-- HTTP/-1.-1\r\n\r\n

3. Segment-based Alignment

This paper proposes the use of segment-based alignment
[28] to work around the intrinsic limitations imposed by
global alignment algorithms such as Needleman Wunsch.
The approach has been successfully adopted within Bioin-
formatics to improve the alignment accuracy for long and
large corpora of protein sequences. In this section we will
present segment-based alignment in more detail. We will
start by presenting the scoring scheme that is used to assess
the similarity of sequence “segments”. We will then explain
how this scheme is used to align sequences.

A segment is a contiguous sub-sequence of symbols
(or in our case bytes) within a sequence. Segment-based
sequence alignment operates by identifying similar pairs
of segments within the sequences that it seeks to align.
These matched pairs of segments are commonly referred
to as a fragment. Each fragment is given a weight (score)
that reflects its significance among other fragments (detailed
below). The approach then seeks to find a consistent set of
fragments from all possible sequence pairs (again detailed
below), maximising the total score of these fragments. The
total score of an alignment is defined as the sum of weights
of the fragments involved that can be included into one
single alignment without these fragments contradicting each
other. The approach does not employ any kind of gap
penalty which avoids the well-known difficulties concerning
choosing appropriate gap penalty parameters. The rest of
this section provides details on how the scores are computed,
and how these feed into the alignment process.

3.1. Scoring Scheme

A scoring scheme is a function that computes a quality
score for any possible alignment of a given set of sequences.
This enables the use of heuristic optimisation techniques to
identify optimal alignments [14], using the scoring function
as an “objective function”. For the segment-based approach
the scoring scheme is based on similarities between seg-
ments (as opposed to the Needleman-Wunsch approach of
only focussing on individual characters).

For its use in Bioinformatics, there is the additional
complication that characters are not simply identical or
different. Different pairs of characters (proteins) can share
varying degrees of similarity. Consequently, to compute the

scores accurately it is first necessary to provide a matrix that
provides the similarity between any given pair of characters
in the set of characters being considered. The scoring for
a particular fragment (consisting of a pair of segments x
and y) is computed first of all by summing up the similarity
scores (according to the aforementioned matrix) for every
pair of characters. This score is denoted f(x, y).

Once the similarity score is computed, each fragment
f is assigned a weight w(f) [14]. This is computed by
establishing the probability P (f) of the random occurrence
of a fragment of the same length that results in the same
score. The intuition behind this is that the less likely a given
collection of fragments is to occur just by chance, the more
likely it is to be related so the higher its score should
be. The probability of a fragment of a particular length
obtaining a given score is established experimentally; before
the alignment, a probability table is computed, whereby
the probabilities for large numbers of fragments of a given
length and score are computed, and are used to populate the
table. Once P (f) is computed, the weight can be computed
as w(f) = −logP (f).

3.2. Computing Alignments

The process of computing alignments of sequences
amounts to finding the best combination of localised
matches between sequences (fragments), whilst also ensur-
ing that individual fragments do not contradict each other
(e.g. violate the ordering of the sequence as a whole). In
other words, fragments that have been chosen to be part of
an alignment must be consistent.

For a single pair of sequences, alignment consists of
finding a set of fragments that (a) do not conflict with each
other, and (b) produce the highest score when their weights
are summed up. These can then be chained together by a
recursive chaining procedure [38].

Because direct extension of the pairwise alignment in-
creases the computational complexity of the algorithm expo-
nentially, a greedy heuristic tends to be used to align multi-
ple sequences [28], [29]. Similarly to pairwise alignment, a
consistent set of fragments with a maximum set of weights
have to be selected. The multiple-sequence alignment pro-
cess (for a set of N sequences) can be summarised with the
following steps:



1) All 1
2N(N − 1) pairwise maximum alignments are

constructed, the result is the set of fragments F .
2) F is sorted according to the computed weights in

a greedy fashion:

a) Fragments are incorporated one by one
into the multiple alignment starting with
the fragment of maximum weight, provided
they are consistent with fragments already
added.

b) Inconsistent fragments are skipped.

3) A multiple alignment is constructed from the se-
lected (consistent) set of fragments.

4. A Segment-Based Alignment Tool to Iden-
tify Packet Structures

In this section, we present a technique that uses segment-
based alignment to determine the structure of network proto-
col messages. Our approach follows the same generic stages
as most other approaches, as shown in Figure 1. We pre-
process the network messages and first apply a clustering
algorithm to group them into messages that are of a similar
type. We then align messages of the same type - however
this time we use the segment-based alignment algorithm.
These phases – pre-processing, clustering, and alignment
are described below.

4.1. Data Preprocessing

The data pre-processing stage consists of two steps. First
of all it is necessary to extract the relevant network traffic,
and secondly it is necessary to provide an encoding that
enables us to group together similar messages so that they
can be clustered.

4.1.1. Traffic Classification. For this step we use a port-
based method [22] to separate out relevant network traffic.
This separates out messages according to their destination
port-numbers, which are typically standardised for a given
protocol1. We also use this step to make sure that there
are no malformed packets, and there is no misuse of port
numbers (e.g. use of non-standard port numbers for commu-
nication [25]). We also utilise this step to extract only data
that belongs to the application protocol; data that belong
to the transport layer, network layer and link layer are
discarded.

4.1.2. Feature Generation & Selection. Since we intend
to cluster our data, it is necessary to re-code the data in
such a way that a clustering algorithm is going to be able
to identify similarities and differences between messages.
To enable this we reduce the ‘dimensionality’ of the data
by identifying and selecting certain features in protocol
messages that can guide the clustering algorithm. For this

1. There are alternative approaches that could readily be adopted instead
when the port-numbers are not fixed [22].

we use n-grams [8], [40] to tokenise protocol messages.
An n-gram is a sub-sequence of n consecutive characters
from a longer sequence. The set of possible n-grams are
arranged in a frequency matrix. A network packet can thus
be characterised as a sequence of numbers, where each
number corresponds to the frequency of a given n-gram in
the packet.

Messages from the same type normally have similar n-
gram frequency distributions [40], therefore, we use the
n-gram occurrences as a feature to distinguish between
protocol messages. To normalise the amount of contribution
of each n-gram, we apply the Term Frequency-Inverse Term
Frequency (TF/IDF) as a weighting scheme [36]. To keep the
number of dimensions (i.e. n-grams) as small as possible,
we also eliminate n-grams that carry no discriminative
features, that is by removing n-grams which occur very
infrequently.

4.2. Message Clustering

In this step we cluster similar protocol messages into
distinct clusters. We use an agglomerative hierarchical clus-
tering algorithm with complete linkage clustering criteria
[21]. This creates a hierarchy of clusters, where coarse, large
clusters higher up are split up into more granular lower-
level ones. Clusters are obtained by cutting the generated
tree (also known as a ‘dendrogram’) at a given threshold T .

Agglomerative hierarchical clustering depends upon the
selection of a distance measure to quantify the distances
between messages. We use the Jaccard similarity coefficient
[36]. The distance is defined as D(a, b) = 1−S(a, b), where
S is the similarity of two messages represented by a and
b features respectively. The chosen distance measure is a
binary measure and commonly used for clustering network
messages [10], [36], [42].

At this point it is important to note that, as is the case
for all approaches that use clustering as a basis for finding
sequences to align, the success of clustering can be highly
sensitive to the choice of clustering parameters. This can
include the choice of n when selecting n-grams, as well as
the choice of parameters that are specific to the clustering
algorithm in question. Our choice of parameters is informed
by the recent empirical studies by Esoul et al. [15], who used
these to derive suitable clustering parameters for network
packets.

4.3. Segment-Based Alignment

We adopt the Dialign multiple sequence segment-based
alignment technique [28] to align network packets. Specif-
ically, our implementation is derived from the open-source
implementation of Dialign-2 [30]. As input, we provide the
individual clusters of messages produced by the clustering
step.

Existing implementations such as Dialign-2 tend to be
heavily tailored towards the domain of Bioinformatics. For
example, there are about 22 “proteinomic” amino-acids,
which is why conventional implementations only consider



Table 4. A POSITION WEIGHT MATRIX GENERATED FROM THE SET OF
ALIGNED HTTP MESSAGES INTRODUCED IN THE BACKGROUND (SEE

TABLE 1). IT SHOWS ON THE TOP THE NUMBER OF COLUMNS (POSITIONS)
AND THE ALPHABET AS THE MATRIX ROWS. TO PRESERVE SPACE, THE

MATRIX ONLY SHOWS THE USED CHARACTERS OF THE ALPHABET.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
T 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0.4 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0
k 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0.2 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0.2 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0.2 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
. 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 1 0
/ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

22 symbols. For these, the configuration of the distance-
matrix that is used to compute alignment scores tends to be
tailored to amino acids, using carefully constructed distance
matrices, such as the BLOSUM 62 substitution matrix [19].

In order to apply segment-based alignment to network
packet sequences, it was necessary to expand the range
of symbols. We adopt the convention of encoding every
symbol in a packet as a hexadecimal pair. Since we are
carrying out byte-wise analysis of the network stream, there
are 256 possible characters that could be represented in
this way. Secondly, it is necessary to replace the protein-
specific similarity matrix; we provide a more straightforward
identity-matrix instead. Two characters obtain a score of 1
if they are identical, and a score of 0 otherwise.

Recall that the similarity score for a fragment is then
used to compute a weighting for the fragment, based on
the probability that a random fragment of the same length
would produce the same score. This relies on the prior
computation of a probability table, which in our case had to
be recomputed to suit the expanded set of characters and the
new scoring tables. We computed this probability table by
running 550,000 random experiments for all combinations
of lengths from 1 – 40 and scores.

4.4. Pattern Extraction

In the context of network packets, aligned regions tend
to correspond to one or more protocol fields. For each cluster
of aligned messages, the messages are listed in aligned form
(similar to the example alignments shown in Table 1(b)).
This means that every aligned position can be referred to in
terms of a column (e.g. column 1 refers to the first character
in every sequence etc.).

To extract a message pattern, we generate a Position
Weight Matrix (PWM), also known as Position Specific
Scoring Matrix (PSSM). A position weight matrix (PWM)
is commonly used method to represent motifs in biological
sequences [46]. Typically, a PWM consists of one row for
each character of the alphabet, and has one column for
each position in the alignment. A PWM is constructed
by counting the occurrences of each character observed

Table 5. THE EXTRACTED MESSAGE PATTERN FROM THE
CORRESPONDENT PWM WHEN THE GENERALISATION PARAMETER

(T )=0.6.
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at each position (each coefficient in the matrix indicates
the number of times that a given character occurred at a
given position), we then normalise the frequency so that the
occurrence rate of each character falls within the interval
[0,1], where 0 indicates that particular character in that
column (position) did not occur across all messages, and
1 indicates that character occurred in every single message
at that particular position. The coefficients of the matrix
can now be interpreted as probabilities of a given character
occurring at a given position.

As an example, Table 4 shows the PWM that corre-
sponds to the set of sequences that was shown in Table
1. Here, the character ”G” has been observed across all
aligned messages in position 1, therefore, assigned weight
of 1, while the character ”i” observed only twice at position
6, thus given the weight 0.4.

After we generate the PWM matrix, we then select a
threshold value T between 0 and 1, which we use as a basis
for controlling pattern generalisation to the level we desire.
A value of 1 indicates that, for an alignment, we are only
prepared to consider a character to be a part of an alignment
if it occurred in every message at a given position. Lower
values indicate that we are allowing a degree of error - for a
proportion (1−T ) of the aligned messages not to contain that
specific character. For example, if T = 0.6, this indicates
that we are only interested in alignments that apply to at
least 60% of the sequences. The rest of the characters will
be filled with gaps as illustrated in Figure 5 using the same
PWM generated in the previous step. The figure shows the
extracted pattern shown on the top as well as the position
and weight assigned to each character.

5. Experimental Evaluation

In this section we seek to experimentally evaluate the
accuracy of the packet structures that are inferred, and
whether they can be of practical use. In previous works that
have sought to address similar problems, (e.g. the Discoverer
packet structure inference tool [11]) packet structures were



Table 6. SUMMARY OF NETWORK TRACES.

Protocol Sample Size (Number of Messages) Type

HTTP 4000 Text
SIP 5000 Text

TFTP 2000 Binary
SMB 5000 Binary

inferred from sets of sequences from a known protocol
such as HTTP, and the message structure was compared
to a reference version produced by an off-the-shelf network
traffic analyser (e.g. Wireshark2).

Our ultimate goal is to use the inferred packet structures
for the purpose of protocol testing. As a consequence,
we are not just interested in whether the inferred packet
patterns can be parsed. We are also interested in knowing
whether the inferred packet structures can be interpreted by
a server. Since our ultimate goal is to use inferred packet
structures for activities such as protocol fuzz-testing, we
are also interested in potentially inferring packet structures
that, though not entirely valid according to some reference
implementation, are still capable of eliciting responses from
a server.

Accordingly, unlike the evaluation of Discoverer, we
do not solely focus on the accuracy of the inferred packet
structure itself. We also use our inferred message patterns to
automatically synthesise messages that are sent to the server
in question, and monitor its responses.

Specifically, in this part of our evaluation we seek to
answer the following questions:

RQ1 Are inferred message patterns syntactically correct?
RQ2 Can inferred message patterns elicit valid server

responses?

5.1. Subject Protocols

We have chosen four data samples of open (documented)
network protocols, which have been obtained from an online
repository of network trace files [32]. Network protocols can
either be in a textual or binary format. Depending on their
format, they can pose completely different challenges from a
clustering and alignment perspective. Accordingly, we have
selected two protocols from each family. A summary of
the data samples is shown in Table 6. Their details are as
follows:

HTTP & SIP:. HTTP and SIP are both text-based
application-layer protocols. The messages for both protocols
tend to be long and consists of several fields. Despite the
fact that HTTP and SIP share similar message properties,
both protocols are used for totally different purposes. The
main purpose for the HTTP is to access and retrieve web
documents, the SIP protocol is mainly used to manage
(establish, modify, and terminate) communications sessions
[37]. Furthermore, SIP is a stateful protocol, whereas HTTP
is not.

2. https://www.wireshark.org/

Test ClientInferred Packet Structure
Test ServerEthernet

Wireshark

packet 
generator

Figure 2. Evaluation methodology for the inferred request/response mes-
sage patterns.

TFTP & SMB/CISF:. TFTP and SMB/CIFS are
binary application-layer protocols. TFTP is a file transfer
protocol with a simple message formats. TFTP is also ex-
tensively used to support remote booting of diskless devices
and on some occasions for malicious purposes [12]. The
SMB/CIFS is a network file sharing protocol with complex
message formats. SMB/CIFS protocol consists of several
flavours known as dialects where each dialect consists of a
set of extra messages that define a particular version [20],
[27]. SMB is a proprietary protocol. The equivalent open-
source implementation of SMB is widely known as the
Common Internet File System (CIFS) [20].

Another important difference between this evaluations
and others is that, for various reasons (often performance
related in the case of Needleman-Wunsch based approaches)
evaluations of messages truncate messages, and only con-
sider the front portion (which is often assumed to contain
the most interesting fields) [40], [41]. In our case we do not
truncate the messages, and always use the entire packet.

5.2. Experimental Set-up

Our experimental setup is illustrated in Figure 2. For
each protocol we infer a set of protocol structures (one for
each inferred packet type). These are then provided to a sim-
ple test client. The test client synthesises a network packet
from the inferred message structure and sends the packet to
the test server – an off-the-shelf server implementation for
the protocol in question. The test server accordingly sends
responses, which we analyse to determine whether the server
considered the messages to be valid or not. Furthermore, we
monitor all of the messages that are sent to the server with
a network analyser (Wireshark in our case) to determine
whether the messages are syntactically valid. The details of
the individual components are elaborated below:

A Test Client:. A program that can package and
send message patterns. For this task we have developed
a packet generator that is able to synthesise and send
different message patterns for the four selected protocols.
The message synthesis is carried out in a naı̈ve way: The
final alignment text (c.f. the bottom line in Table 1, or the
message pattern along the top of Table 5, including any ‘-’s
that fill gaps, is sent verbatim.

For SMB this required a degree of tailoring; the SMB
server can communicate with SMB clients through either
raw TCP transport (port 445) or through NetBIOS Session
(port 139). We have implemented SMB packet generator to
send packets using the traditional NetBIOS session because



the samples of traces we obtained from the online repository
also used this type of transport. Accordingly, before we send
SMB packets to the SMB server, it is first necessary to
establish a NetBIOS session [20].

A Test Server:. An implementation of the target
protocol. For each protocol, we have installed a suitable
off-the-shelf server. For the HTTP protocol, we have set
up Lighthttpd server (version 1.4.33) which is mature in
development and with specific server responses. For SIP
we have installed Asterisk (Version 11.7.0). We have set up
Asterisk to listen on the same port and transport protocol
observed in the original captured traces (UDP transport,
port 5060). For TFTP we installed tftpd server (netkit-0.17).
Finally, we chose Samaba Server (version 4.3.3) as the
dedicated server to test SMB extracted message patterns.

A Network Analyser:. We have chosen Wireshark
(more accurately, the command line version TShark) to
automatically dissect and log data (will be explained head
the type of data we are interested to log) of the generated
patterns.

5.3. Methodology

Both research questions revolve around packets that we
generate (automatically) from inferred message patterns. For
every cluster (message type), we infer a set of message
patterns that are slightly different from each other (explained
below), and send them over the network. It is important to
note that the number of packets that were synthesised varied
for each protocol, depending on the number of message
clusters that were generated (i.e. the number of message-
types that were inferred). Whereas the clustering resulted in
two clusters for HTTP and TFTP, it yielded five clusters for
SIP and eight clusters for SMB.

RQ1: Are inferred message patterns syntactically cor-
rect?. To answer RQ1, we use Wireshark to automatically
sniff the packets that we have generated and sent across
the network. We employ a feature integrated into Wireshark
known as Expert Information [44]. This feature provides
more information on captured network packets and whether
or not they are valid (according to their target protocol). The
feature is provided to assist users and experts to understand
the behaviour of protocol packets.

If network packets are erroneous, Expert Information
consists of a specific severity level of the error, and a group
to which these errors belong. In our experiment, packets
are flagged as invalid when their expert information be-
long to the groups protocol (violate protocol specifications),
undecoded (data could not be decoded for some unknown
reason), and malformed as syntactically invalid packets.
We also, consider unrecognised packets by Wireshark (as
the intended application protocol) as syntactically invalid
packets. Thus, the answer to RQ1 is obtained by logging
the expert information for all sent packets (both inferred
request & response packets), and counting the number of
valid and invalid packets.

To assess the sensitivity to the threshold T , the experi-
ment was repeated, increasing T from 0 to 1 in increments
of 0.1.

RQ2: Can inferred message patterns elicit valid server
responses?. To answer RQ2 we monitor the response codes
to the synthesised request messages from the test servers.
Depending on the protocols, their response is either a valid
response, or indicates that the server has failed to properly
parse the message. If there is no response at all, this is
counted as an invalid response.

For HTTP and SIP the status-code element is a three-
digit number indicating the result of the attempt to under-
stand and satisfy the request. The first digit of the status
code defines the class of the server response. For the HTTP
protocol and SIP protocols, a “400 error” code signifies a
bad request – i.e. a poorly formed message, so we count
this as invalid. Other responses indicate that the message
has been parsed correctly. These may (for both protocols)
include a 402 error (URI / URL not found) – we count this
as valid, because it is a response to a packet that probably
has a valid structure, albeit with a nonsensical URL.

For TFTP protocol, we have observed three types of
responses: 01 (File not found), 02 (Access violation), and
05 (Illegal TFTP operation). Server errors with codes 01
and 02 are not caused by invalid packet structures, and are
thus treated as valid. The 05 error code is received due to
malformed packets, and are thus considered invalid.

For Samba responses, the only responses we observed
were either because a request was pointing towards a miss-
ing file, or because there was an invalid combination of
parameters (even though the parameters had been correctly
parsed). These were counted as valid responses. There were
however many requests to the server that did not receive any
response at all; these were all treated as invalid responses.

As above, the experiment was repeated for different
values of the alignment threshold T , increasing from 0 to 1
in increments of 0.1.

5.4. Results

RQ1: Are inferred message patterns syntactically cor-
rect?. The plots in Figure 3 contain the proportion of valid
vs. invalid packets sent for each protocol. For the HTTP
and SIP protocols the results indicate that we were able to
generate syntactically valid message patterns for most values
of T. However, lower values of T tend to produce more
synthetically valid packets than higher values. For HTTP
all packets are valid for T < 0.5, and for SIP over half of
the packets are valid for T < 0.8.

For the binary TFTP and SMB/CISF protocols, the
validity of the packets is much more sensitive to the T
parameter, and fails to yield any valid packets for T > 0.3
in both cases.

Conclusion: For all protocols, if we choose a suitable
threshold value T , which tends to be T ≤ 0.3 for all proto-
cols, the inferred protocol structures are sufficiently accurate
to enable the synthesis of syntactically valid messages.



Figure 3. Number of syntactically valid/invalid message patterns - as
indicated by Wireshark - in relation to the choice of the generalisation
threshold (T ).

Figure 4. Number of valid/invalid message requests - returned by protocol
servers - in relation to the choice of the generalisation threshold (T ).

RQ2: Can inferred message patterns elicit valid server
replies?. The plots in Figure 4 show the indications from
the server responses as to whether the synthesised messages
were valid or not. In contrast to the results for RQ1, syn-
thesised packets for HTTP generated with low values of
T failed to elicit valid server responses. Instead, this only
occurred for T values in the range from 0.40 to 0.80.

For SIP, the successful responses were again restricted
to lower threshold values (for T ≥ 0.5 all packets were
treated as invalid). As with HTTP, even though Wireshark
categorised several of the generated packets to be valid, they
elicited an invalid response from the server.

With TFTP the responses from the server exactly
matched the categorisations by Wireshark. Again, low values
of T tended to lead to synthetic packets that elicited a valid
response.

With SMB, the responses from Samba pretty much

matched the syntactic validity assessments by Wireshark.
Again, lower values of T tended to yield more valid packets.
However, as was the case with HTTP, a lower value of T
did not guarantee the best response. For SMB, T = 0.1 led
to a majority of synthesised packets being parsed as valid
by the server.

Conclusion: For all protocols, if we choose a suitable
value for T , it is possible to synthesise packet structures
from inferred protocol structures where at least half of the
packets will be correctly parsed by the server. The selection
of T is not as clear cut as with RQ1; values that led to
packets that were deemed to be syntactically correct do not
necessarily lead to packets that are recognised by the server
in question. Finding a suitable value of T may therefore
require a degree of experimentation. Since lower values of
T tended to produce the best results (at least for SIP, SMB
and TFTP), it would make sense to start off with lower
values and work upwards.

5.5. Discussion

5.5.1. Selecting a suitable Threshold. Our experiments
indicate that the inferred packet structures can be accurate
enough to synthesise valid packets. However, the validity
does depend on the choice of a threshold parameter T .
Choosing a high T means that an inferred packet will only
contain those aligned symbols that occur in the majority
of messages. If we choose a low value of T , we allow the
alignment to encompass characters that occurred in a smaller
proportion of the messages.

Although a low value of T has tended to produce the
best results, it is generally a bad idea to set T too low
(e.g. 0). If T is too low, the final alignment will end
up containing many characters that are irrelevant to the
packet structure - i.e. are not delimiters or keywords but
instead belong to field data. However, these can still lead to
combinations of characters that can lead to messages that
are invalid, which is what appears to have happened with
the HTTP traces, which contained various optional headers
and variable-length fields.

Accordingly, when it comes to selecting a suitable value
of T , it is important to accommodate the similarity of the
data. In general it makes sense to start from a low value of T ,
e.g. T < 0.3. However, if the data is highly heterogeneous,
then it is probably worth considering a higher value to avoid
too many false-positives.

5.5.2. Threats to Validity. With respect to external and
internal validity, we consider the following threats:

• We have only applied it to four protocols. It is of
course possible that there are different protocols for
which the performance of the approach would be
different.

• For each protocol, we downloaded samples of traffic
from a repository. However, since this data was not
collected in an active testing environment, it is gen-
erally not the case that every feasible behaviour of
the protocols in question was covered in the traces.



• With respect to internal validity, our server-responses
were from specific server implementations. It is pos-
sible that other implementations of the same protocol
could have provided different responses.

We did take care to mitigate these threats where pos-
sible. We selected protocols that were broadly diverse (all
are widely used, spanning both text and binary families).
The network data is intended to represent ‘typical’ network
usage. It was not biased by the authors and is not (at least in
its descriptions) associated with a specific purpose. For the
network servers, all have been used in previous studies and
considered to be accurate implementations of the original
protocol specifications. As will be discussed in the Future
Work section, we intend to address these threats further with
a larger empirical study.

6. Qualitative Evaluation

This section provides a brief qualitative assessment of
the alignments generated, and compares these to equivalent
alignments generated by the Needleman-Wunsch based Pro-
tocol Informatics tool [3] (which is also to the best of our
knowledge the only publicly available implementation of a
protocol message alignment tool).

To illustrate the difference in the quality of alignments,
we have generated a small set of similar HTTP request
messages consisting of ten GET messages, shown in Table
7. Each message is composed of a request-line and various
header fields. We could not use genuine trace messages
because we need to keep them sufficiently short to fit into
this paper. The aim of this comparison is to show how our
segment-based alignment fares against the state-of-the art,
and to explain some of the phenomena that were discussed
in the previous experiments.

In our comparison, we will focus on protocol fields that
are correctly aligned by both tools. The protocol fields of
interest here are keywords and delimiters, since these fields
are hard-coded in protocol implementations and considered
a prerequisite for correct parsing [17]. We consider the set
of protocol keywords in these messages to be:

GET, HTTP/1.1, Host, User-Agent,
Connection, close

We consider the set of delimiters to be:

/, [space], :, \r\n

6.1. Results

The alignment produced by Protocol Informatics (using
the default user parameters) is shown in Table 8. The
corresponding segment-based alignment is shown in Table
9. The tables are best viewed in colour, where the keywords
and delimiters are highlighted in red and blue respectively.

Both approaches successfully align the GET followed
by the space and the ‘ /’, which begins all messages. They
also successfully align the ‘\r\n\r\n’ that is used to finish
each message.

However, for the keywords and delimiters that happen
in between, the PI approach makes several misalignments,
whereas they are all correctly aligned by the segment-
based algorithm. The PI algorithm misaligns the HTTP/1.1
segments for messages 4 and 8. This is because it mis-
aligns the space before the keyword HTTP/1.1, forcing the
HTTP/1.1 to the end of the message. These are correctly
aligned by the segment-based algorithm. The PI approach
also fails to correctly align any of the User-Agent key-
words, which are again correctly aligned by our approach.

One apparent reason for the improved quality of the
segment-based alignments versus PI is that the latter focuses
solely on the alignments of individual characters, whereas
the former incentivises alignments of longer segments. This
is why the segment-based alignments tend to successfully
align the User-Agent keyword, whereas the same key-
word disintegrates in the PI alignment.

7. Conclusions and Future Work

We have shown how a segment-based alignment algo-
rithm can be used to align network packets for the purpose
of detecting packet structures. This is a departure from
typical approaches, which have been based on variants of the
Needleman-Wunsch algorithm, which is prone to inaccuracy
when applied to network data.

Specifically, we have:

• Shown how segment-based alignment can be used
to generate accurate alignments.

• Developed a proof of concept implementation.
• Experimentally shown that the packet structures

identified by our alignments can be used to au-
tomatically synthesise new messages that can be
recognised by a server.

• Show that the messages tend to be syntactically
valid, albeit for a suitable choice of threshold pa-
rameter.

For our future work we intend to improve our segment-
based alignment implementation in several directions, both
with respect to the immediate inference technique, as well
as applications that it can feed into.

With respect to the alignment itself, we intend to run a
larger experiment, taking into account a broader range of
network protocols, and factoring in other variables, such
as the volume of data used for an alignment. We also
intend to further study the role of T , and to come up with
more concrete heuristics as to how to choose a suitable
value. We intend to examine the fine-grained structure of
the identified message patterns, using more detailed pattern
inference algorithms such as the Sequitur algorithm [33].

Ultimately, our goal is to use the inferred packet struc-
tures as a basis for effective automated fuzz-testing of
network protocols. Therefore, alongside our work on im-
proving the alignment activities, we are seeking to construct
an automated network protocol fuzzer that can, thanks to
technologies such as this one, devise useful test cases for
protocols just by observing their passive interactions. For



Table 7. TEN SYNTHESISED HTTP MESSAGES.

No Message

01 GET / HTTP/1.1\r\nHost: www.google.co.uk\r\nUser-Agent: Dillo/3.4\r\n\r\n
02 GET /myuri.html HTTP/1.1\r\nHost: www.abc.cba.net\r\n\r\n
03 GET /myveryverylonguril.html HTTP/1.1\r\nUser-Agent: Firefox\r\n\r\n
04 GET /verylongutiueyryhwpirrytbeyuujw.html HTTP/1.1\r\n\r\n
05 GET /shorteruri.png HTTP/1.1\r\nHost: www.bbc.com\r\nUser-Agent: Dillo/3.4\r\n\r\n
06 GET /abitlongeruri.html HTTP/1.1\r\nHost: www.abc.cba.net\r\n\r\n
07 GET /veryextsj.jpg HTTP/1.1\r\nUser-Agent: Firefox\r\n\r\n
08 GET /lklkjlkjlkwefrweriuw bjsdfcbjhjsdfkSDFJSGDFJHNBIUWEIWYUERuiyrweiu.html HTTP/1.1\r\n\r\n
09 GET / HTTP/1.1\r\nHost: www.le.ac.uk\r\nUser-Agent: wget/1.2\r\n\r\n
10 GET /thisislonglonglonglongrilieuiueiuelk.html HTTP/1.1\r\nHost: www.google.co.uk\r\nConnection: close\r\n\r\n

this we specifically intend to develop more sophisticated
packet synthesis methods, to enable the generation of large
volumes of diverse network traffic that can be used to expose
and highlight vulnerabilities in networks.
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[4] G. Bossert, F. Guihéry, and G. Hiet. Towards automated protocol
reverse engineering using semantic information. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’14, pages 51–62, New York, NY, USA, 2014.
ACM.

[5] J. Caballero, M. G. Kang, S. Venkataraman, D. Song, P. Poosankam,
and A. Blum. Fig: Automatic fingerprint generation. In In 14th
Annual Network and Distributed System Security Conference (NDSS,
2007.

[6] J. Caballero and D. Song. Automatic protocol reverse-engineering:
Message format extraction and field semantics inference. Comput.
Netw., 57(2):451–474, Feb. 2013.

[7] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: automatic
extraction of protocol message format using dynamic binary analy-
sis. In Proceedings of the 14th ACM conference on Computer and
communications security, CCS ’07, pages 317–329, New York, NY,
USA, 2007. ACM.

[8] W. B. Cavnar and J. M. Trenkle. N-gram-based text categorization.
In In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, pages 161–175, 1994.
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