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Abstract 

Tropical peatland fires play a significant role in the context of global warming through emissions of 

substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from 

these fires is still poorly developed with few studies reporting the associated mass of peat 

consumed. Furthermore, spatial and temporal variations in burn depth have not been previously 

quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss 

and its variability. An extensive airborne LiDAR (Light Detection and Ranging) dataset was used to 

develop a pre-fire peat surface modeling methodology, enabling the spatially differentiated 

quantification of burned area depth over the entire burned area. We observe a strong 

interdependence between burned area depth, fire frequency and distance to drainage canals. For 

the first time, we show that relative burned area depth decreases over the first four fire events and 

is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for 

recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel 

consumed that are 206 t ha-1 for initial fires, reducing to 115 t ha-1 for second, 69 t ha-1 for third and 

23 t ha-1 for successive fires, which are 58% to 7% of the current IPCC Tier 1 default value for all fires. 

In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha-1 for first to fourth fires, 

respectively. Furthermore, we show that with increasing proximity to drainage canals both burned 

area depth and the probability of recurrent fires increase and present equations explaining burned 

area depth as a function of distance to drainage canal. This improved knowledge enables a more 

accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.
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Introduction 

Tropical peatlands store huge amounts of carbon as incompletely decomposed plant material that 

has accumulated over thousands of years in waterlogged, anaerobic environments. Current 

estimates indicate that they cover an area in the range of 39–66 million hectares (ha), which is 10–

16% of the global peatland resource (Page et al., 2011). As a result, tropical peatlands are one of the 

largest near-surface pools of terrestrial organic carbon, with a total peat carbon pool of 82–92 Gt, of 

which 65% is located in Indonesia (Page et al., 2011). In addition to carbon storage, these wetland 

ecosystems also play a significant role in supporting biodiversity, with a unique combination of 

habitats and endemic and endangered species (Posa et al., 2011; Wibisono et al., 2011). Further, 

they provide a wide range of valuable environmental goods and services including forestry and 

fishery products, flood mitigation and climate regulation (Rieley and Page, 1998). 

 

Over the last two decades, the connected processes of land use change (logging, deforestation, 

conversion to plantation estates and small-holder agricultural plots), drainage and fire have 

contributed to loss and degradation of this ecosystem, resulting in increased greenhouse gas (GHG) 

emissions (Page et al., 2002; Ballhorn et al., 2009; Hooijer et al., 2010, 2012; Jauhiainen et al., 2012), 

local and regional air pollution (See et al., 2007; Heil & Goldammer, 2001), a severely reduced 

biodiversity (Posa et al., 2011) and loss of local livelihood opportunities (Chokkalingam et al., 2005). 

In their natural state, these peatlands have a high water table, at or just below the peat surface for 

most of the time, and are covered by forest (Rieley & Page, 2005). Disturbance or loss of the forest 

canopy and persistent lowering of the water level promote an enhanced rate of aerobic peat 

decomposition (Hooijer et al., 2012; Jauhiainen et al., 2012) while also greatly enhancing the risk of 

both vegetation and peat fires (Langner et al., 2007). In Southeast Asia, nearly all peatland fires are 

of anthropogenic origin, started by farmers or private companies as well as government agencies on 

both small and large scales as part of livelihood activities or to facilitate the conversion of forest land 

to plantations or timber estates (ADB/BAPPENAS, 1999; Bompard & Guizol, 1999; Bowen et al., 
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2000; Siegert et al., 2001). Under certain conditions (e.g. where peatlands have been subject to 

disturbance and drainage, and during dry weather conditions), fires set to clear vegetation can ignite 

the peat, resulting in long-lasting and smoldering fires that release large amounts of carbon to the 

atmosphere (Page et al., 2002; Rein et al., 2008; Ballhorn et al., 2009; Langner & Siegert, 2009; 

Watts & Kobziar, 2013). Since the 1997/98 El Niño-induced drought and associated widespread fires, 

tropical peatland fires, especially in insular Southeast Asia, have recurred on an almost annual basis 

during most dry seasons, causing on-going loss of stored carbon, as well as heightened tensions 

between neighbouring countries (van der Werf et al., 2008; Gaveau et al., 2014). 

 

The current scale of carbon emissions from peatlands in Southeast Asia, whether from biological 

oxidation or fire, has increased interest in tropical peatlands in the context of global warming (Page 

et al., 2002; Hooijer et al., 2010), but any attempt to secure financial support for emissions reduction 

(e.g. through REDD+ or other carbon market schemes) requires reliable methodologies that can 

measure, report and verify (MRV) GHG emissions on a regular basis before, during and after any 

emissions mitigation intervention has been undertaken. The IPCC publication “2013 Supplement to 

the 2006 IPCC Guidelines for National GHG Inventory: Wetlands” (Drösler et al., 2014) provides the 

basis for the development of a GHG emissions accounting methodology for fires on drained organic 

soils. Required parameters for quantification of fire-driven carbon loss are area of peatland burnt, 

mass of dry matter (peat fuel) available for combustion, and combustion factor. The mass of fuel 

available is derived from measurements of depth of burn and peat bulk density which, in 

combination with data on peat carbon content, can be used to calculate the loss of carbon during 

combustion, or with emissions factors, to calculate the gaseous products of combustion (Drösler et 

al., 2014). For detailed emission estimates (e.g. at Tier 2), data on the variation in the mass of fuel as 

well as regional factors for stratification (e.g. by fire frequency or drainage intensity) need to be 

incorporated. Knowledge gaps in these areas (in particular, spatial and temporal variations in depth 

of burn, but also peat bulk density and carbon content) contribute to the overall uncertainties 
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related to the scale of emissions from peatland fires. Due to the often restricted accessibility, 

especially in remote locations, and the difficulties in approaching burning peat fires in the field, 

there are only a very limited number of studies providing ground-based data on the mass of peat 

consumed during tropical peatland fires (Page et al., 2002; Ballhorn et al., 2009). Remote sensing 

approaches are an efficient tool to overcome these problems. Airborne Light Detection and Ranging 

(LiDAR) technologies, specifically, can provide terrain surface elevation information with a geometric 

accuracy in the range of decimeters to centimeters depending on vegetation type and terrain 

conditions. LiDAR is based on the transmission of laser pulses towards the ground and the detection 

of the backscattered radiation. By measuring the time delay between the transmission of a pulse and 

the recording of the return signal, surface elevation can be derived. Reddy et al. (2015) used pre- 

and post-fire LiDAR data to estimate elevation change from a temperate peatland fire with an 

average elevation loss of 0.46 ± 0.18 m. Ballhorn et al. (2009) used LiDAR to determine depth of burn 

for single fire events in peat swamp forests in Central Kalimantan, Indonesia, by measuring the 

elevation difference at the border between burned and unburned peatland. On average a mean 

burned area depth of 0.33 ± 0.18 m was observed. Both studies neither investigated the impact of 

repeat fires nor proximity to drainage features. Assuming that both variables have an 

interdependent effect on the lowering of the peat surface in burned areas, the uncertainty of carbon 

loss estimates will be reduced by analysing them in a space time domain.  

 

The main objectives of the current study were i) to investigate and hence to better understand the 

dependence of total and relative burned area depth on fire frequency and distance to drainage 

canals, ii) to define burned area depth as a function of these factors and iii) to produce revised 

carbon loss estimates for recurrent fires on tropical peatlands. 

In our study we define burned area depth as the difference between pre- and post-fire terrain 

elevation, where we use the term burned area depth as the total cumulative depth measured. 

Relative burned area depth is referred to as the lowering of the peat surface after a single fire event 
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in comparison to the terrain elevation before that fire, i.e. including a preceding lowering in the case 

of two or more fires. Relative burned area depth values are derived from the total burned area 

depth measurements. 

 

Materials and methods 

Study area 

Our 220,000 ha study site (Fig. 1) is located in a peatland dominated landscape in the Kapuas District 

of Central Kalimantan, Indonesia, which is part of the former Mega Rice Project (MRP). The MRP was 

a resettlement project initiated by the Indonesian government in 1995, which was ended in 1998 

when it was recognized to be failing (Muhamed & Rieley, 2002). The associated construction of more 

than 4,000 km of drainage canals led to serious degradation of more than one million hectares of 

peatland. Additionally the area was and is subject to both legal and illegal logging activities since the 

mid 1980s.  

 

Using historical Landsat imagery and recent RapidEye scenes we determined that nearly 50% of the 

220,000 ha had been affected by up to eight fire events between 1990 and 2011 (Fig. 1 and 2). 

 

An analysis of NOAA AVHRR hotspots (Langner & Siegert, 2009; Li et al., 2003) and Terra/Aqua 

MODIS active fire data (Giglio et al., 2003) in relation to their distance to drainage canals (Figs. 3a 

and 3b) confirmed previous results indicating that the likelihood of fire was increased by clearance 

and drainage (Page et al., 2002), even 15 years after drainage had commenced.  

LiDAR point cloud filtering 

The 700,000 ha small-footprint airborne LiDAR dataset was acquired between 15.08.2011 and 

15.10.2011 with an Optech Orion M200 airborne laser scanner at a nominal altitude of 800 m above 

ground with an average point density of 2.8 points per m². Ground and off-ground points were 

classified by applying a hierarchic robust filtering to the LiDAR point cloud. This method is based on 
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point cloud pyramids from coarse to fine resolution and iteratively interpolates the Digital Terrain 

Model (DTM) by using linear prediction (Kraus, 1998). In the first iteration, a rough approximation of 

the surface is computed starting at the coarsest pyramid level with all points being equally weighted. 

Under consideration of the weight function calculated from the residuals of the points, the surface is 

iteratively recomputed until a stable situation is reached. The DTM is then compared to the data of 

the next pyramid level and points with a defined tolerance to the surface are used as input for the 

next iteration (Pfeifer et al., 2001). This process also includes the classification of the point cloud. In 

order to permit a faster processing we applied this method on a thinned out point cloud where we 

computed a preliminary DTM with 1 m resolution. Subsequently we reintroduced all points from the 

original point cloud lying below the DTM and selected the deepest point for each 1 m cell. Based on 

this dataset we performed a detailed manual quality control where we eliminated all remaining non-

ground points (mostly bushes and dead lying trees). The quality control was individually adjusted to 

the occurring land cover type, e.g. areas with dense low vegetation like ferns and shrubs were 

filtered more rigorously. Figure 4 shows an example of the filtering result with different vegetation 

types and fire frequencies. The final DTM was generated from the deepest points within 5 m cells by 

using a Kriging algorithm (Papritz & Stein, 2002). The vertical accuracy of the DTM was assessed 

based on 441 checkpoints, which were measured by differential GPS and total station measurements 

during a field survey conducted in 2010.  For the land cover types peat swamp forest and burn scar 

the DTM had a vertical accuracy of 0.12 m RMSE and 0.19 m RMSE, respectively. For all land cover 

types identified the modelled surface was within a 95% confidence interval of the true surface. 

 

Burned area delineation 

Earth observation based active fire data from the NOAA AVHRR and Terra/Aqua MODIS sensors 

were analysed for the determination of years with fire occurrence. The AVHRR active fire product 

(Langner & Siegert, 2009; Li et al., 2003) was used for the years 1997–2000, while the MODIS active 

fire product (Giglio et al., 2003) was employed for the years 2000–2011. The preliminary hotspot 
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analysis indicated a selection of the years 1997, 2001, 2002, 2004, 2005, 2006, 2009 and 2011 for 

burned area mapping. Additionally 1990 was chosen to get a picture of the area before the 

establishment of the MRP. For the further delineation of the burned areas these fire hotspot 

datasets were not implemented. 

 

A total number of 49 Landsat-5 TM and Landsat-7 ETM+ scenes (Level-1T) with 30 m spatial 

resolution from 1990 to 2011 were automatically classified based on object-based classification 

algorithms. The images were atmospherically corrected with the ATCOR-2 software, which employs 

the MODTRAN atmospheric transfer model to convert the Digital Numbers (DNs) into surface 

reflectance (Richter et al., 2006). Recently burned areas (2009–2011) were identified by visual 

interpretation of high resolution RapidEye images (5 m spatial resolution), acquired on 10.02.2010 

and 29.07.2012, as well as the LiDAR DTM. The RapidEye images were geometrically corrected by a 

semi-automatic image-to-image matching procedure in order to fit the Landsat imagery and 

atmospherically corrected with the ATCOR-2 software. The edges of automatically classified historic 

burned areas were refined based on the RapidEye images in areas where they were still clearly 

visible. The 2011 burned area analysis only considered data acquired before the LiDAR flight 

campaign. Fire frequency was determined by overlaying resp. intersecting the burned areas for 

every year of fire occurrence. 

 

Drainage canals and logging tracks identification 

Drainage canals and recent logging tracks (skid rails and ditches) were identified by visual 

interpretation of the LiDAR DTM. 
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Spatial modelling of the pre-fire peat surface 

Comparison of different interpolation techniques 

Southeast Asian peatlands are typically located at low altitudes where they have developed smooth 

convex-shaped domes that feature slight topographic gradients with a rise of only about 1 m per km 

(Anderson, 1983; Diemont & Supardi, 1987; Neuzil, 1997; Page et al. 1999; Rieley & Page, 2005). This 

characteristic facilitates spatial modeling of a pre-fire peat surface. Pre-fire elevation in selected 

burned areas was modelled by spatial interpolation using reference elevation values from 

surrounding unburned areas. A parametric interpolation technique originating from the field of 

Computer Aided Geometric Design (Bézier approximation), as well as five methods commonly used 

in geosciences (Inverse Distance Weighted, Natural Neighbour, Trend, Spline and Kriging) were 

tested against an unburned model site of 10,000 ha with a simulated burned area (approx. 2,000 ha) 

at its center. This approach allowed the evaluation of the modeled surface not only in those areas 

used as reference for interpolation, but also within the extent of the excluded area, which is usually 

not known in the operational application of the method. Values in Table 1 show the error statistics 

related to the difference between modeled surface and DTM. They are based on a validation set of 

100,000 random points divided into two classes depending on their location in the test site 

(reference area or interpolated area). Mean and standard deviation of the errors in the interpolated 

area are lowest in the case of Bézier approximation. Minimum and maximum of the interpolated 

area are in the same dimension as in the reference area and arise from the natural heterogeneity of 

the peat surface rather than from outliers in the model. 

 

We additionally tested our approach based on the filtered LiDAR ground points in order to exclude 

any potential bias referable to the DTM interpolation. Since no significant difference was observed 

and, operationally, it is more efficient to use values derived from the DTM, we decided to further 

use the approach based on the DTM.    
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Implementation of Bézier approximation 

According to the interpolation results of the different methods (Table 1), Bézier approximation was 

implemented for the pre-fire peat surface reconstruction (5 m spatial resolution). Bézier surfaces are 

a straightforward extension to Bézier curves. With the use of the Bernstein binomial coefficients a 

Cartesian product is applied to the equations of the parametric curves (Salomon, 2006). In general 

the number of reference points defines the polynomial order of a Bézier surface. In order to model a 

continuous surface based on thousands to millions of points an alternative approach is necessary. 

For this purpose a least squares method for estimating Bézier surfaces, presented by Engels (Engels, 

1986), was adapted. 

 

We applied Bézier approximation to two test sites of approx. 15,000 ha (Block A/E) and 22,000 ha 

(Block B), in which approx. 1,700 and 2,300 ha had been affected by up to seven fire events (Fig. 1). 

Requirements for their selection were twofold: Firstly, the whole extent of the site had to be 

situated completely on peat since other landscapes have different surface characteristics that, in the 

case of an irregularly undulating terrain, cannot be appropriately described with the limited number 

of parameters of the Bézier method. Secondly, the burned areas had to have an unburned reference 

area on, ideally, each side which was used for interpolation. Reference points for the interpolation 

were generated exclusively in areas with a distance of at least 200 m from large drainage canals. 

Buffer zones of 20 m around logging tracks and 30 m around burned areas were excluded to avoid 

any impact of potential misclassifications, e.g. introduced by differing spatial resolutions.  

 

Bézier approximation was performed with different polynomial orders. The RMSE was calculated for 

each model, where the most accurate result was achieved for five consecutive polynomial orders 

with non-significantly differing values (Table 2). Since reference data of the unburned pre-fire peat 

surface were not available, outliers of the models within the interpolated area could not be 

identified based on a single model. In order to compare the five qualified models and to make them 
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robust against unquantifiable outliers, mean and standard deviation of the five models were 

calculated. The mean was used for further analyses, where areas with standard deviation higher 

than the modelling accuracy, i.e. 13 cm in Block A/E and 10 cm in Block B, were excluded, with 

significant differences occurring solely within burned areas near the edges of the processed areas. 

The difference between the modelled surface and the LiDAR DTM indicated a measure of burned 

area depth at each pixel. 

  

For validation purposes, values derived from the peat model were compared to measurements 

derived directly from the LiDAR DTM. A contour based approach similar to that described in Ballhorn 

et al. (Ballhorn et al., 2009) was applied to 30 locations representing burned areas that burned only 

in 2009. Areas 100 m along and 50 m across the burned area borders were analysed by calculating 

the differences in mean elevation between the burned and unburned sides (10 m zone around the 

boundary excluded). On average a burned area depth of 0.179 ±0.089 m was determined. For 

comparison, the difference between normalized peat model values in both directions of the burned 

area border was calculated with an average of -0.188 ±0.096 m and a non-significant disparity of 

0.009 m. 

 

Quantification of burned area depth considering fire frequency and distance to drainage canals 

For the quantification of burned area depth a sample based method was applied. Approximately 50 

random points per ha with at least 5 m spacing were generated within the burned area. Allowing for 

the lower spatial resolutions of the satellite images used for burned area delineation, the total 

extent of the burned area was reduced by a buffer zone of 30 m. Points with a distance to drainage 

canals of smaller than 200 m were excluded from analyses. Furthermore, only points with a distance 

equal to or greater than 20 m from small logging tracks were considered in order to assure no points 

lay directly within these features, potentially resulting from digitisation inaccuracies. Analyses 
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discriminating between fire frequencies excluded points within a distance of 30 m from fire 

frequency class borders. 

 

To analyse the relationship between burned area depth and distance to drainage canals the random 

points within the burned area were classified into 100 m intervals regarding their distance to the 

nearest canal. Mean elevation differences between the reconstructed peat surface and the DTM 

were calculated for each distance class. Standard deviation and 95% confidence interval of the mean 

were determined for validation purposes. Values within each class met the requirement of a normal 

distribution (Table S1). 

 

For the analysis of burned area depth as a function of fire frequency, the mean differences between 

modeled surface and DTM as well as associated standard deviations and confidence intervals of the 

means were calculated for each fire frequency class (Table S2). 

 

In order to investigate the dependence of burned area depth on both the number of fire events and 

the distance to drainage canals, a multidimensional analysis considering either factor was 

performed. Logarithmic trend lines were fitted to the total number of sample points of each fire 

frequency class as functions of the distance to drainage canals with residual standard errors 

between 0.13 and 0.15 m. Since, collectively, the highest fire frequencies (four and more) occur only 

up to a distance of 400 m from canals, larger distances were not considered for this class. 

 

Sampling and analysis of peat bulk density and carbon content 

Peat characteristics were determined following the protocol described in Hooijer et al. (2012).  

Peat samples were obtained during the dry season (June–October) of 2012 and 2013 from 18 soil 

pits located in the study area. Four pits were located in forest with high drainage impact (approx. 

50 m from nearest canal) but no fire disturbance and five pits in forest with low drainage impact 
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(>1000 m from nearest canal) and no fire disturbance. Nine pits were located in burnt peatland with 

moderate to high drainage impact (100–400 m from canals). 

 

Sampling of peat for bulk density determination was at 0.1 m intervals between 0.1 and 0.4 m. Three 

replicate samples were taken at each depth, using sharpened steel rings of 8 cm diameter and 8 cm 

length that were custom made to reduce peat compression. Peat bulk density was determined by 

drying samples at 105°C for up to 96 hours, with measurements at interim intervals to ensure there 

was no further weight loss, i.e. no moisture was left in the samples. 

 

Peat samples for carbon analysis were taken from three of the bulk density sampling pits, at 0.2 m 

below the surface. Two of the pits were in unburnt forest, and one in a burnt area. Nine replicate 

samples were analysed for each location. Carbon concentration was analysed by measuring weight 

loss after burning the peat for 6 hours in a muffle furnace at 550°C. 

 

Results 

Burned area depth 

Interdependency between burned area depth, fire frequency and distance to drainage canals 

The results of this study show a strong interdependency between burned area depth, number of fire 

events and distance to drainage canals. The relationship between burned area depth and the 

distance to canals (without considering fire frequency) expresses itself in a non-linear decrease of 

burned area depth with increasing distance from these drainage features (Fig. 5a). An impact of 

canals on the burned area depth can be observed up to a distance of at least 800 m. 

 

In relation to fire frequency (without considering distance to drainage canals), relative burned area 

depth decreases for each successive fire event over the first three fires (-0.17 m, -0.10 m, -0.06 m). 

For locations experiencing four or up to seven fires, the mean relative depth is -0.13 m (Fig. 5b). 
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Parametric t-tests for unequal variances proved the decrease to be statistically significant with all 

levels of significance being smaller than 0.001. An investigation of the spatial distribution of each fire 

frequency class showed that areas with four fires or more occurred only up to a specific maximum 

distance of 600 m from drainage canals, while locations with less fire events occurred across a wider 

zone up to 1,300 m from canals. About 60% of the points experiencing four or more fire events were 

within a distance of 200 to 300 m from canals and about 95% were between 200 m and 400 m, i.e. 

these burn scars were highly concentrated in the zone nearest to the canals. Consequently, close 

proximity to canals not only influences burned area depth but also the probability of high frequency 

fire events (i.e. four or more consecutive fires). The bias towards high frequency fires occurring 

closer to canals may explain the higher relative burned area depth for these fires. 

 

For the multi-criteria analysis of burned area depth in relation to both fire frequency and distance to 

drainage canals, logarithmical trend lines were applied to each fire frequency class as functions of 

the distance to drainage canals (Fig. 5c). For all fire frequency classes relative burned area depth 

decreases with greater distance from canal. Concurrently, but operating independently of the 

distance to canals, the relative burned area depth decreases with every successive fire event. In 

consideration of the fact that the class of two fire events at large distances from drainage canals is 

described by a small number of sample points the assumed decrease in relative burned area depth 

for an increasing number of fire events can be approved. The difference between three and four to 

seven fire events, with five fire events on average for the higher frequency class, is 0.06 m. Hence, 

relative burned area depth from the fourth fire event onwards may be between >0 and 0.05 m with 

similar values per fire event. The multi-criteria analysis further rebuts the potential assumptions that 

higher burned area depth close to canals (Fig 5a) could be an exclusive result of higher fire 

frequencies in these areas (otherwise trend lines would be approximately constant) or, vice versa, 

higher burned area depth for higher fire frequencies (Fig. 5b) could exclusively result from closer 
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distances to canals (otherwise trend lines would approximately overlay). Both investigated factors 

affect burned area depth in an interdependent and mutually reinforcing way. 

 

Validation of pre-fire peat surface subsidence measurements 

As validation we compared our results with previous airborne LiDAR measurements, where an 

average depth of burn value of 0.33 m was determined for single fires predominantly in a zone of 

between 0 and 100 m from drainage canals (Ballhorn et al., 2009). In the Ballhorn study, the fires 

investigated occurred shortly before the LiDAR data acquisition, hence other biological oxidation 

processes would not have played a significant role in the observed burned area depth, even with 

close proximity to canals. In our study, we observed a minimum value of 0.21 m for single fires at a 

distance of 200 to 300 m from canals. Assuming that subsidence decreases with distance to canals, 

our results can be considered to be consistent with those from Ballhorn et al. (2009). 

 

Peat bulk density and carbon content values  

The average bulk density of peat samples taken over the near-surface layer of 0.1–0.4 m depth in 

low drainage, unburnt, forested locations was 0.117 ± 0.018 g cm-3 (n=48) and 0.125 ± 0.017 g cm-3 

(n=60) in high-drainage forest, yielding an overall average value of 0.121 ± 0.018 g cm-3 which was 

taken to be representative of areas experiencing a first fire. The near-surface peat from pits located 

in burnt areas had a somewhat lower average bulk density of 0.115 ± 0.020 g cm-3 (n=313) and this 

value was taken to be representative of all burnt areas, regardless of fire frequency. The average 

bulk density value for the forested sites is very similar to the average value of 0.122 ± 0.052 g cm-3 

obtained by Warren et al. (2012) for the nearby forested Sebangau peatland. 

 

The average carbon content of peat samples at 0.2 m depth was 55.3%, with a standard deviation of 

4.2%. Average values for forested and burnt areas were identical. This is very close to the average 

value of 56.3 ± 4.6% reported by Jaya (2007) from the nearby Blok C and Blok E areas of deep peat; 
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also to the average value of 54.0 ± 3.3% reported by Warren et al. (2012) for the nearby Sebangau 

peatland; and to the average value of 56% determined by Page et al. (2011) for Southeast Asia as a 

whole. 

 

Mass of peat fuel and carbon loss values 

Using the above information on fire-related peat surface subsidence, combined with average values 

for bulk density and carbon content of peat in the study area, it is possible to provide average values 

for fire-driven peat fuel consumption and carbon loss (Table 3). In the absence of any specific 

information, a combustion efficiency of 1.0 was applied (a simplifying assumption which assumes 

complete combustion of all organic carbon) (Yokelson et al., 1997). When no information about 

distance to canals is available, the values in Table 3 can be used for mass of peat fuel and carbon loss 

estimates for successive fires. We have simplified this to account for one, two, three and four or 

more fire events, on the basis that for fire frequencies over three, each fire results in a similar 

relative burned area depth of 0.02 m as a conservative assumption.  

 

Where there is no information available on fire frequency, it would also be possible to apply the 

mass of peat fuel and carbon loss values presented in Table 4a which are based on the location of 

the burn scar in relation to distance from canal. Where information on both fire frequency and 

distance from canal is available, this allows greater stratification of peat surface subsidence and 

carbon loss (Table 4b). Alternatively, the trend functions applied to the single fire frequency classes 

could be used to calculate burned area depth for distances from drainage canals between 200 and 

800 m (Table 4b). For larger distances, the constant values provided in Table 4 may be applied. For 

distances less than 200 m the values for the 200–300 m interval may be applied as a conservative 

approach. 
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Discussion 

Our results for burned area depth are in the same order of magnitude as field measurements (Van 

Leeuwen et al., 2014) and consistent with previous airborne LiDAR measurements published by 

Ballhorn et al. (2009), where a contour based approach was applied to derive average depth of burn 

directly from the LiDAR DTM. However, the advancement of the approach presented here is that 

through applying a spatially explicit model, the complex dependence of burned area depth on 

distance to canal and fire frequency can be mathematically described and the wide variation in 

depth within burned areas is better captured. Single measurements can attain burned area depths 

of up to -1.19 m and even for the same fire frequency at similar distances from drainage canals, 

standard deviations of 0.10 to 0.19 m for the means of the different classes are observed. By 

investigating the full extent of burned areas, a large number of sample points can be derived 

covering all combinations of fire frequencies and distance intervals within the study area. The 

sampling method further makes results less biased and more robust against possible errors due to 

uncertainties of both the LiDAR point cloud filtering and the interpolation methodology, with 95% 

confidence intervals being less than 0.015 m for all mean values. 

 

With this novel approach we show a strong interdependence between burned area depth, distance 

to drainage canals and fire frequency. While the impact of drainage proximity on burned area depth 

is presumably a consequence of decreasing water table depths i.e. increasing moisture content of 

the upper peat column, with greater distance from canal, the decrease of burned area depth for 

successive fire events may be explained by a number of factors. These include the reduction in the 

amount of aboveground fuel load in terms of live and dead wood, which is mostly consumed by the 

first and second fires respectively. Concurrently, the change in post-fire vegetation cover, which is 

increasingly dominated by ferns and sedges (Fig. 2), leads to a faster speed of fire spread, with less 

chance of smoldering peat fires becoming established (Hoscilo et al., 2011, 2013). Furthermore, 

chemical changes in peat during and after fires result in a reduction in the more labile, easily-
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combustable constituents (Milner L, Boom A & Page SE. Effects of fire on the organic geochemistry 

of tropical peat. Manuscript in preparation). 

 

In this study we also paid specific attention to the various factors that can result in a lowering of the 

peat surface in burned areas. The peatland in our study area has been strongly impacted by fire but 

also by other processes that contribute to lowering of the peat surface following drainage (i.e. 

physical compaction and biological oxidation). Since the entire area has been affected by drainage 

and has subsided, including the reference points, the modeled pre-fire surface does not represent 

the actual initial peat surface. Instead, the measurements used in our analyses have to be 

considered as relative measurements of the difference between burned and unburned peat 

surfaces. The non-fire processes that contribute to subsidence are most active shortly (up to five 

years) after drainage (Hooijer et al., 2012). These processes had, therefore, already stabilized when 

the LiDAR data were acquired, enabling us to provide a clearer assessment of the specific role played 

by fire in peat and hence carbon loss. In addition, as shown in Hooijer et al. (2012), the lowered peat 

water table around drainage canals has a strong impact on all subsidence processes (biological 

oxidation, physical compaction, fire), bringing down the peat surface over distances of up to one 

kilometer from canals, even in the absence of fire (Hooijer et al., 2014). In our study area, this 

impact was greatest in a zone of about 200 m from canals, i.e. the zone of greatest water table 

drawdown, and it was assumed that over larger distances, non-fire subsidence was more uniform 

than fire subsidence. By excluding this 200 m zone from both modelling and analyses, the relative 

effect of non-fire subsidence processes on measured subsidence was reduced.  

 

With regard to the reporting of the mass of peat fuel combusted and associated carbon losses, we 

compared our results to the values provided by the IPCC. For the first fire, the Tier 1 IPCC 

methodology would have yielded a peat fuel consumption value of 353 ± 183 t ha-1 equivalent to a 

carbon loss of 195 ± 101 t C ha-1 (for a peat carbon content of 55.3% as applied to our results for first 
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fires). Using the revised values for burned area depth presented in this study, the peat fuel 

consumption value for a first fire is 206 t ha-1 with a carbon loss of 114 t C ha-1 (some 42% lower). 

The IPCC approach is based on depth of burn data from three studies, two of which acquired data 

during intense ENSO-related droughts (1997 and 2006) (Page et al., 2002; Ballhorn et al., 2009). Thus 

not only are our results more conservative but also a more accurate value to be used in further 

quantification and reporting of Indonesian peatland fire carbon losses across a more representative 

sample of fire years and not just those associated with extended ENSO-related dry seasons. For a 

second fire, the value for the mass of peat fuel is 115 t ha-1, resulting in a carbon loss of 64 t C ha-1; 

for a third fire these values are 69 t ha-1 and 38 t C ha-1, respectively, and for fourth and subsequent 

fires the peat fuel and carbon loss values reduce to 23 t ha-1 and 13 t C ha-1, respectively. In order to 

compare the scale of carbon losses using previous methodologies and the present revised approach, 

we calculated fire-related carbon loss across the whole study area shown in Fig. 1 and within the test 

sites. Based on the carbon loss values provided in Table 4b that involve a more detailed 

stratification, total carbon loss since 1990 amounts to 18.4 Mt C for the approx. 100,000 ha burnt 

area of the study area. When taking default values provided by the IPCC (Drösler et al., 2014), 

however, carbon losses would have been overestimated by approximately 130% at 42.2 M t C. 

Within the test sites, values for total carbon loss are equally divergent with 876,000 t C using our 

revised approach and 2,115,000 t C (Drösler et al., 2014). By way of comparison, carbon losses were 

calculated for the total volume of peat combusted (difference between the modelled surface and 

the LiDAR DTM), where the 200 m zone and logging tracks were excluded. They amount to 357,000 t 

C compared to 374,000 t C using the revised approach and 971,000 t C using the IPCC default value. 

Thus this revision of the methodology allows more accurate, stratified reporting of mass of peat fuel 

combusted and the associated carbon loss based on fire history. In combination with appropriate 

gaseous emissions factors (Drösler et al., 2014) this should enable Indonesia to report its fire 

emissions from degraded peatlands at IPCC Tier 2 level. 
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Supporting Information captions 

Table S1 Burned area depth as a function of distance to drainage canals. 

Table S2 Burned area depth as a function of fire frequency. 

 

Tables 

Table 1 Comparison of different interpolation techniques for modelling the pre-fire peat surface. 

Error statistics are related to the difference between modeled surface and Digital Terrain Model 

(DTM). They are based on 100,000 random points divided into two classes depending on their 

location in the test site. (IDW: Inverse Distance Weighted; NN: Natural Neighbour) 

Reference area 

 Bézier IDW NN Trend Spline Kriging 

Mean [m] 0.000 0.000 0.001 0.000 0.001 0.001 

Std [m] 0.134 0.138 0.145 0.303 0.225 0.147 

Min [m] -0.885 -0.777 -0.766 -3.579 -2.086 -0.773 

Max [m] 0.614 0.731 0.722 0.982 2.729 0.704 
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Interpolated area 

 Bézier IDW NN Trend Spline Kriging 

Mean [m] 0.000 0.049 0.060 -0.071 0.878 0.070 

Std [m] 0.133 0.187 0.138 0.168 9.780 0.208 

Min [m] -0.725 -0.822 -0.631 -0.863 -57.376 -0.935 

Max [m] 0.454 0.805 0.504 0.495 112.834 0.862 

 
 
 
Table 2 Results of Bézier approximation with different polynomial orders. 

Polynomial 

order 
5 6 7 8 9 10 11 

Test site Block A/E 

RMSE [m] 0.143 0.133 0.131 0.128 0.128 0.127 0.331 

Min [m] -1.238 -1.159 -1.188 -1.187 -1.152 -1.131 -5.222

Max [m] 0.690 0.707 0.694 0.670 0.658 0.643 9.101 

Test site Block B 

RMSE [m] 0.130 0.107 0.101 0.100 0.099 0.098 0.133 

Min [m] -1.323 -1.003 -0.866 -0.866 -0.853 -1.066 -2.183

Max [m] 0.964 0.618 0.587 0.580 0.570 0.595 1.959 

 
Table 3 Values for mass of peat fuel and total carbon loss from first through to fourth+ fires (carbon 

loss is reported per fire event). 

Fire event First fire Second fire Third fire Fourth+ fire 

Average relative burned area depth [m] 0.17 0.10 0.06 0.02 

Mass of peat fuel (t ha-1)* 206 115 69 23 

Carbon loss value [t C ha-1]* 114 64 38 13 

* Calculation of mass of peat fuel values assumes a peat bulk density value of 0.121 ± 0.018 g cm-3 

for the first fire (average for the upper 0.4 m of peat in forested areas in the study area; value is the 

average of 0.117 + 0.018 g cm-3 in low-drainage forest (n=48) and 0.125 ± 0.017 g cm-3 (n=60) in high-
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drainage forest) and of 0.115 ± 0.020 g cm-3 (n=313) for second and subsequent fires (being the 

average for the upper 0.4 m of peat in burnt areas).Calculation of carbon loss values assumes a peat 

carbon content of 55.3 ± 4.2% (average for peat at a depth of 0.2 m in the study area; this value 

applies to both forested and burnt peatland; n=27); and a combustion efficiency of 1.0 (a simplifying 

assumption based on complete combustion of all organic carbon). 

Table 4 Values for total carbon loss from burned areas according to distance from drainage canal, 

regardless of fire frequency (a) and considering fire frequency (b). 

Distance to canal (DC) [m] 200–
<300 

300–
<400 

400–
<500 

500–
<600 

600–
<700 

700–
<800 

≥800 

(a) 
Average burned area depth [m] -0.38 -0.34 -0.28 -0.26 -0.23 -0.21 -0.19 

Carbon loss value [t C ha-1] * 254 228 187 174 154 141 127

(b) 

FF=1 

Average burned area depth [m] 0.21 0.18 0.16 0.14 0.12 0.11 0.10 

Burned area depth [m] as function of DC (x): f1(x)=0.0875*ln(x)-0.6905,  

x∈ℜ, 200≤x<800 

Carbon loss value [t C ha-1] * 141 120 107 94 80 74 67 

FF=2 

Average burned area depth [m] 0.37 0.31 0.26 0.23 0.20 0.17 0.15 

Burned area depth [m] as function of DC (x): f2(x)=0.1821*ln(x)-1.3761, 

x∈ℜ, 200≤x<800 

Carbon loss value [t C ha-1] * 235 197 165 146 127 108 95 

FF=3 

Average burned area depth [m] 0.44 0.39 0.35 0.32 0.29 0.27 0.25 

Burned area depth [m] as function of DC (x): f3(x)=0.1590*ln(x)-1.3220,  

x∈ℜ, 200≤x<800 

Carbon loss value [t C ha-1] * 280 248 223 204 184 172 159 

FF=4+ 

Average burned area depth [m] 0.49 0.45 0.41 0.39 0.37 0.35 0.33 

Burned area depth [m] as function of DC (x): f4+(x)=0.1275*ln(x)-1.1928, 

x∈ℜ, 200≤x<800 

Carbon loss value [t C ha-1] * 312 286 261 248 235 223 210 
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* Calculation of carbon loss values for (a) and (b) FF=1 assumes a peat bulk density value of 0.121 ± 

0.018 g cm-3 for the first fire (average for the upper 0.4 m of peat in forested areas in the study area; 

value is the average of 0.117 + 0.018 g cm-3 in low-drainage forest (n=48) and 0.125 ± 0.017 g cm-3 

(n=60) in high-drainage forest) and a peat carbon content of 55.3 ± 4.2% (n=27); and a combustion 

efficiency of 1.0 (a simplifying assumption based on complete combustion of all organic carbon). 

Calculation of carbon loss values for (b) FF=2–FF=4+ assumes a peat bulk density value of 0.115 ± 

0.020 g cm-3 (n=313) for second and subsequent fires (being the average for the upper 0.4 m of peat 

in burnt areas); a peat carbon content of 55.3 ± 4.2% (average for peat at a depth of 0.2 m in the 

study area; this value applies to both forested and burnt peatland; n=27); and a combustion 

efficiency of 1.0 (a simplifying assumption based on complete combustion of all organic carbon). 

 

Figure captions 

Fig. 1 Fire frequency and drainage canals in the study area. The boxes indicate the test sites for the 

investigation of fire-related peat surface subsidence. 

 

Fig. 2 Peatland in the study area that has been affected by one, two, three or more than three fires. 

Clearly visible is the decreasing amount of above-ground fuel potentially available for combustion: 

with each successive fire event the amount of deadwood decreases and vegetation becomes more 

heavily dominated by ferns and sedges. 

 

Fig. 3 Distribution of NOAA and MODIS fire hotspots in relation to distance from drainage canals in 

the study area (a) and within the test sites (b). 

 

Fig. 4 Exemplary LiDAR point cloud profile of 5 m width and 180 m length separated into ground an 

off-ground points. Different land cover types (peat swamp forest, burned area, drainage canal) are 

clearly visible. Dense low vegetation like ferns and swamp grasses lead to fewer ground returns – in 
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this example mainly covering the area burned once in 2009. The white rectangle superimposed on 

the ortho photo (bottom of the figure) shows the extent of this profile.  

 

Fig. 5 Burned area depth in relation to fire frequency and distance to drainage canals. (a) Mean 

burned area depth as a function of the distance to canals by means of a line graph (without 

considering fire frequencies). (b) Mean burned area depth as a function of fire frequency (without 

considering distance to drainage canals). The cross indicates the mean cumulative burned area 

depth for each fire frequency class and the whiskers the standard deviation. The diagram shows that 

cumulative burned area depth increases with every subsequent fire event and that the relative 

burned area depth decreases for the first three fire events. (c) Burned area depth as a function of 

distance to drainage canals for each fire frequency (FF) class. 
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