Pharmacokinetics and pharmacodynamics of curcumin

Curcuma spp. contain turmerin, essential oils, and curcuminoids, including curcumin. Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6- heptadiene-3,5-dione] is regarded as the most biologically active constituent of the spice turmeric and it comprises 2–8% of most turmeric preparations. Preclinical data from animal models and phase I clinical studies performed with human volunteers and patients with cancer have demonstrated low systemic bioavailability following oral dosing. Efficient first-pass metabolism and some degree of intestinal metabolism, particularly glucuronidation and sulfation of curcumin, might explain its poor systemic availability when administered via the oral route. A daily oral dose of 3.6 g of curcumin is compatible with detectable levels of the parent compound in colorectal tissue from patients with cancer. The levels demonstrated might be sufficient to exert pharmacological activity. There appears to be negligible distribution of the parent drug to hepatic tissue or other tissues beyond the gastrointestinal tract. Curcumin possesses wide-ranging anti-inflammatory and anticancer properties. Many of these biological activities can be attributed to its potent antioxidant capacity at neutral and acidic pH, its inhibition of cell signaling pathways at multiple levels, its diverse effects on cellular enzymes, and its effects on cell adhesion and angiogenesis. In particular, curcumin’s ability to alter gene transcription and induce apoptosis in preclinical models advocates its potential utility in cancer chemoprevention and chemotherapy.With regard to considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat or prevent human diseases, curcumin is currently a leading agent.




All Rights Reserved