2 files

Ar-40/Ar-39 ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland

journal contribution
posted on 07.10.2015, 10:20 by P. L. Clay, H. Busemann, S. C. Sherlock, Tiffany Louise Barry, S. P. Kelley, D. W. McGarvie
Major volatile contents (H[SUBSCRIPT: 2]O, CO[SUBSCRIPT: 2], F, Cl, and S) and [superscript: 40]Ar/[superscript: 39]Ar ages have been determined in variably degassed rhyolite obsidians from Pleistocene–Holocene aged subaerial and subglacial eruption environments from the Torfajökull volcanic center and the monogenetic volcano at Prestahnúkur (Iceland). Icelandic subglacial rhyolites preserve residual H[SUBSCRIPT: 2]O contents of 0.08–0.69 wt.%, undetectable CO[SUBSCRIPT: 2], 840–1780 ppm F, 430–2000 ppm Cl and 6–45 ppm S. Most subglacial obsidians have degassed volatile signatures at the time of their eruption under ice. One eruption (Bláhnúkur, Torfajökull) showed H[SUBSCRIPT: 2]O contents which exceed those expected for quenching at atmospheric pressures (up to 0.69 wt.% H[SUBSCRIPT: 2]O) and are consistent with eruption at ~40 kbar of pressure or equivalent to under ~450 m of ice. Altered and microcrystalline groundmass in some subglacial rhyolites yield variable volatile contents that are likely the result of micro-scale variability and the presence of alteration products. Two subaerial rhyolite obsidians gave low volatile contents consistent with quenching at the surface. New [superscript: 40]Ar/[superscript: 39]Ar ages were determined on the subglacially erupted rhyolites and provide broad constraints on the timing and frequency of glacio-volcanism during the Pleistocene. Three subglacial eruptions at Torfajökull yielded ages of 108 ±22 ka (Bláhnúkur), 255 ±20 ka (Hábarmur) and 236 ±7 ka (Háskerðingur) which fit into a range of previously determined ages at Torfajökull of 67–384 ka. A new age of 132 ±19 ka was determined for the monogenetic subglacial eruption at Prestahnúkur. Holocene-aged subaerial volcanic glass produced no ages due to large amounts of air-derived [superscript: 40]Ar (84–93%). Preliminary apparent [superscript: 40]Ar/[superscript: 39]Ar ages from the limited feldspar phenocrysts available in these crystal-poor samples yield erroneous apparent plateau ages far older than eruption ages suggesting a homogenously distributed excess Ar component. Disturbances to the [superscript: 40]Ar/[superscript: 39]Ar geochronometer are correlated with a heterogeneous distribution of volatiles in glass and linked to hydration (e.g., Kaldaklofsfjöll), mild alteration (e.g., Hábarmur) and alteration and/or recrystallization of glass (e.g., Bláhnúkur). Our observations indicate however, that unaltered, subglacially erupted glasses that are partially to wholly degassed are promising materials for the application of the [superscript: 40]Ar/[superscript: 39]Ar geochronometer. The precision to which we can date these young glassy samples currently limits the use of [superscript: 40]Ar/[superscript: 39]Ar geochronometer as a tool for understanding the exact timing and duration of glaciovolcanism in the recent past.



Chemical Geology, 2015, 403, pp. 99-110 (12)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Geology


AM (Accepted Manuscript)

Published in

Chemical Geology





Acceptance date


Copyright date


Available date


Publisher version



The file associated with this record is under a 24-month embargo from publication in accordance with the publisher's self-archiving policy, available at http://www.elsevier.com/about/company-information/policies/sharing. The full text may be available in the publisher links provided above.