Biased versus Partial Agonism in the Search for Safer Opioid Analgesics.pdf (855.93 kB)
Download file

Biased versus Partial Agonism in the Search for Safer Opioid Analgesics

Download (855.93 kB)
journal contribution
posted on 29.07.2021, 10:02 by J Azevedo Neto, A Costanzini, R De Giorgio, DG Lambert, C Ruzza, G Calò
Opioids such as morphine-acting at the mu opioid receptor-are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2(-/-)) animals indicate that morphine analgesia is potentiated while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2(-/-) mice. Moreover, studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. Several new molecules have been identified as mu receptor G-protein-biased agonists, including oliceridine (TRV130), PZM21 and SR-17018. These compounds have provided preclinical data with apparent support for bias toward G proteins and the genetic premise of effective and safer analgesics. There are clinical data for oliceridine that have been very recently approved for short term intravenous use in hospitals and other controlled settings. While these data are compelling and provide a potential new pathway-based target for drug discovery, a simpler explanation for the behavior of these biased agonists revolves around differences in intrinsic activity. A highly detailed study comparing oliceridine, PZM21 and SR-17018 (among others) in a range of assays showed that these molecules behave as partial agonists. Moreover, there was a correlation between their therapeutic indices and their efficacies, but not their bias factors. If there is amplification of G-protein, but not arrestin pathways, then agonists with reduced efficacy would show high levels of activity at G-protein and low or absent activity at arrestin; offering analgesia with reduced side effects or 'apparent bias'. Overall, the current data suggests-and we support-caution in ascribing biased agonism to reduced-side-effect profiles for mu-agonist analgesics.

Funding

This research was funded by the Italian Ministry of University (2015WX8Y5BB PRIN grant to GC) and from the University of Ferrara (FAR grant to GC, CR and RDG; FIR grant to CR). Work on opioids in the laboratory of DGL is funded by British Journal of Anesthesia and British Heart Foundation.

History

Citation

Azevedo Neto, J.; Costanzini, A.; De Giorgio, R.; Lambert, D.G.; Ruzza, C.; Calò, G. Biased versus Partial Agonism in the Search for Safer Opioid Analgesics. Molecules 2020, 25, 3870. https://doi.org/10.3390/molecules25173870

Author affiliation

Department of Cardiovascular Sciences

Version

VoR (Version of Record)

Published in

Molecules

Volume

25

Issue

17

Pagination

3870

Publisher

MDPI

issn

1420-3049

eissn

1420-3049

Acceptance date

23/08/2020

Copyright date

2020

Available date

29/07/2021

Spatial coverage

Switzerland

Language

English