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ABSTRAcr 

The minimal social situation, which arises in living systems and 

subsystems at the level of the group, is a two-person game of incomplete 

information in which the players are ignorant of their interdependence. 

The win-stay, lose-change principle, based on the law of effect, explains 

how they nonetheless learn to cooperate when the game is repeated many 

times. In this paper the minimal social situation is generalized to 

groups of arbitrary size with the original two-person game representing a 

special case. Sane theorems are derived fran the assumption that the 

players follow the win-stay, lose-change principle, and the circumstances 

that result in joint cooperation are formally characterized. Whether or 

not an iterated multi-person minimal social situation results in joint 

cooperation under the win-stay, lose-change principle is shown to depend 

on the configuration of initial choices and the number of times that the 

group size is evenly divisible by two. Finally, sane implications for 

experimental research are outlined. 

KEY WORDS: cooperation, decision making, game, group, minimal social 

situation. 
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INTRODUCTION 

The minimal social situation, first described by Sidowski, Wyckoff, and 

Tabory (1956), is a two-person game of strategy in which the players are 

oblivious of their strategic interdependence. They are objectively 

interdependent because their payoffs are determined by each other's 

choices, but they are ignorant not only of the payoff structure of the 

game (as in other games of incanplete infonnation) but also of the fact 

that they are involved in a game of strategy. 

The following lifelike interpretation of the minimal social situation 

(Colman, 1982a, pp. 289-291) provides a useful intuitive background. Two 

ccmnuters travel on the same train every day. They always sit in adjacent 

canpartments, roth of which are uncanfortably cold. Each canpartment has 

a lever marked "heater", but there is no indication as to whether it 

should be turned to the left or right to increase the temperature. What 

the ccmnuters do not know is that there is a fault in the electrical 

wiring of the train: moving either lever to the left increases the 

temperature and moving it to the right decreases the temperature in the 

adjacent canpartment. As a consequence of this, when either of the 

ccmnuters turns the lever to the left or right, the other ccmnuter is 

rewarded with warmth or punished with cold. The ccmnuters cannot 

influence their own payoffs directly; their canfort or discanfort depends 

entirely on each other's choices, though neither of them realizes this. 

They would nonetheless roth benefit if they turned their levers to the 

left at the beginning of every journey. The following interesting 

question arises: Can they learn to cooperate in this way in spite of their 

ignorance of their interdependence and even, perhaps, of each other's 

existence? If so, then people can learn to cooperate without any 
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deliberate intention or awareness of the need for cooperation and without 

even knowing that they are involved in a social interaction. 

Sidowski, Wyckoff, and Tabory (1956) and Sidawski (1957) provided 

experimental evidence showing that pairs of subjects can--and generally 

do--leam to cooperate in the minimal social situation, and this finding 

has been replicated many times (Kelley, Thibaut, Radloff, &Mundy, 1962; 

Rabinowitz, Kelley, & Rosenblatt, 1966; Arickx & Van Averrnaet, 1981). In 

the original experiments, a situation strategically equivalent to the 

canmuters' dilemma was engineered as follows. Pairs of subjects were 

seated in separate rooms, unaware of each other's existence, and 

electrodes were attached to their bodies. Each subject faced an apparatus 

comprising a pair of buttons, which for convenience we shall label 0 and 

1, and a digital display showing the cumulative total of points scored. 

Their instructions were to press one of the buttons on each trial, 

attempting always to maximize rewards (points) and to minimize punishments 

(shocks). The electrical wiring was arranged in such a way that on every 

trial a 0 choice delivered a point and a 1 choice a shock to the other 

subject. In more recent experiments similar devices have been used, 

except that negative payoffs have usually involved deduction of points 

rather than electric shocks . 

Figure 1 about here 

The payoff matrix of the minimal social situation is shawn in Figure 

1. It is unnecessary to assign numerical values to the matrix elements : 

we need to assume only that each player prefers a positive payoff (+) to a 

negative payoff (-). One player chooses row 0 or 1, and the other player 
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chooses column 0 or 1. If both choose 0, then the outcome is the top left 

cell and both receive positive payoffs. If both choose 1, then both 

receive negative payoffs. If one chooses 0 and the other chooses 1, then 

the O-chooser receives a negative payoff and the 1-chooser receives a 

positive payoff. The rules of the game usually stipulate that the players 

choose simultaneously, although sequential choosing has also been 

studied. The payoff structure of Figure 1, called mutual fate control by 

Thibaut and Kelley (1959), has been used in most empirical investigations 

of the minimal social situation. It is obviously isomorphic with the 

commuters' dilemma described earlier. 

When the game is repeated many times, pairs of subjects generally 

learn to coordinate their choices while remaining unaware of their 

strategic interdependence (Sidowski, Wyckoff, &Tabory, 1956; Sidowski, 

1957; Kelley, Thibaut, Radloff, &MUndy, 1962; Rabinowitz, Kelley, & 

Rosenblatt, 1966; Arickx &Van Avermaet, 1981) . Although they usually 

assume (incorrectly) that their payoffs are determined in some way by 

their awn choices, they tend to choose 0 with increasing frequency over 

trials. In the long run, pairs of subjects often settle dawn to choosing 

o on every occasion. Subjects behave as if they were learning to 

cooperate, although from their point of view the situation is entirely 

non-social. How can this effect be explained? Kelley et al . . proposed 

that subjects in the minimal social situation and similar games of 

incomplete information learn to adopt a win-stay, lose-change principle, 

which is merely an application of Thorndike's (1911) law of effect. The 

principle does not generate any prediction about the players' initial 

chOices, but if the game is played more than once it implies that a player 

will repeat any choice that is followed by a positive payoff and switch to 
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the other choice after receiving a negative payoff . If both players 

choose 0 on the first trial, for example, then both receive positive 

payoffs and, according to the win-stay, lose-change principle, both will 

choose 0 on the second and all subsequent trials. We can represent the 

outcomes on successive trials by a sequence of ordered pairs corresponding 

to the row and column players' choices respectively: 

(0,0), (0,0), (0,0), .... 

If both players choose 1 on the first trial, then both receive negative 

payoffs which cause them to switch to 0 on the second trial, and these 0 

choices are repeated on all subsequent trials: 

(1, 1), (0,0), (0, 0), (0, 0), .... 

If one player initially chooses 0 and the other chooses 1, then the 

O-chooser receives a negative payoff and therefore switches to 1 on the 

second trial, and the i-chooser receives a positive payoff and therefore 

sticks with 1 on the second trial. On the second trial, therefore, both 

players will choose 1, followed (as shown above) by 0 on all subsequent 

trials: 

(0,1), (1,1), (0,0), (0,0), 

(1,0), (1,1), (0,0), (0,0), 

It is clear from this analysis that players who follow the win-stay, 

lose-change principle learn to cooperate--to choose mutually rewarding 

strategies--by the third trial at the latest, and continue to cooperate 

indefinitely after that. 

Experimental evidence shows, however, that people do not generally 

follow the win-stay, lose-change principle rigidly (Rabinowitz, Kelley, & 

Rosenblatt, 1966; Burnstein, 1969, Arickx & Van Averrnaet, 1981; Colman, 

1982b). In general, cooperative 0 choices begin to exceed chance 
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frequency after a few trials and continue to increase in frequency; after 

100 trials aOOut 75 per cent of choices are cooperative. According to the 

win-stay, lose-change prinCiple, of course, 100 per cent cooperation 

should occur after three trials. This means that players in the minimal 

social situation do not obey the law of effect strictly. But cooperative 

behaviour does tend to evolve and, in the light of overwhe1ming evidence 

from other branches of psychology, it seems reasonable to assume that 

people are governed to a large extent by the law of effect and therefore 

that they tend to follCM the win-stay, lose-change principle. This 

implies that the probability of a player's choice on trial! being 

repeated on trial t + 1 increases if the player is rewarded and decreases 

if the player is punished on trial t (Arickx &Van Avermaet, 1981). 

In the sections that follCM, we propose to generalize the minimal 

social situation to groups of arbitrary size. We shall then investigate 

the consequences of the win-stay, lose-change principle in these n-person 

games and characterize the circumstances that result in joint cooperation. 

GENERALIZATION 'ID N-PERSON GROUPS 

Preliminary formalization 

The ~-person minimal social situation is a game involving ~ ~ 2 

players, each of whom has a uniquely designated predecessor and 

successor. The game can be represented by a cyclic graph of valency 2. 

It is useful to imagine the ~ players sitting round a table, so that that 

l's predecessor is n and n's successor is 1. Each player has a choice of 

two strategies, 0 and 1, so the choices of the ~ players on a specified 

trial can be represented by an n-vector of zeros and ones which we call a 

configuration. If a player chooses 0, then that player ' s successor 

receives a positive payoff, and if a player chooses 1 then that player's 
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successor receives a negative payoff. According to the win-stay, 

lose-change principle, any player who receives a positive payoff will 

repeat the same strategy choice on the following trial, and any player who 

receives a negative payoff will switch strategies on the following trial. 

For any configuration, therefore, there is a unique configuration that 

follaYS it according to the win-stay, lose-change principle. A 

configuration consisting entirely of zeros will be repeated on all 

subsequent trials. Any configuration that leads ultimately to this zero 

configuration is called cooperative. The analysis in the previous section 

shaYS that in the two-person minimal social situation, which is merely a 

special case of the general ~-person game, all configurations are 

cooperative. 

Some typical configurations in a Six-person minimal social situation 

will illustrate these ideas. In this game, the configuration (1, 0, 1, 0, 

1, 0) is followed on the next trial by (1, 1, 1, 1, 1, 1), and then by (0, 

0, 0, 0, 0, 0); the initial configuration (1, 0, 1, 0, 1, 0) is therefore 

cooperative. On the other hand, the configuration (1, 0, 1, 0, 0, 0) 

generates the following sequence: (1, 0, 1, 0, 0, 0) , (1, 1, 1, 1, 0, 0), 

(1, 0, 0, 0, 1, 0) , (1, 1, 0, 0, 1, 1) , (0, 0, 1, 0, 1, 0) , (0, 0, 1, 1, 

1, 1), (1, 0, 1, 0, 0, 0), and the initial configuration is repeated. 

Such a configuration will evidently cycle for ever, never reaching (0, 0, 

0, 0, 0, 0), which shaYS that the initial configuration is noncooperative. 

An arbitrary configuration in an ~-person minimal social situation can 

be represented by the vector 

(~l' ~2' ... , Xn), 

where Xi E {O, 1}. The numbers ° and 1 can be regarded as elements of 

the field GF(2) of integers modulo 2. In the configuration (Yl' ... , 
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Yn) immediately following (~l' ... , x,,), since 0 + 0 = 1 + 1 = 0, 

and 1 + 0 = 0 + 1 = 1 in GF(2), 

Xi if Xi - 1 = 0 

Yi = 

Xi + 1 if Xi - 1 = 1, 

where the subscripts are reduced modulo n. Therefore, 

Yi = Xi - 1 + Xi (~= 1, ... , n) . 

The configuration immediately following (~l' ... , x,,) is therefore 

obtained by applying the linear transformation 

:!': (~l' ... , x,,)' -~ (x" + ~l' ~l + ~2' ... , x,,-l + x,,)' 

where x' denotes the transpose of the row vector x. The transfonnation 

matrix is an ~-square matrix :!' = [!u.] in which 

f:
ifi = j or i = j + 1 

ti j = 
otherwise. 

The general form of the transformation matrix is shown in Table 1. 

Table 1 about here 

If the initial configuration is ~ = (~l' ... , x,,), then the 

sequence of configurations (represented by transposed row vectors) on 

subsequent trials will be Tx', :!,2~', :!,3~', .... An initial 

configuration is cooperative, therefore, if Tkx' = (0, 0, ... , 0)' for 

same~, that is, if x = (~l' ... , x,,) lies in the kernel of the linear 

transformation Tk for same k. 
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FURMAL RESULTS 

Theorem 1. If the configuration (~l' ... , Xn) is followed 

immediateley by (0, 0, ... , 0), then either (~l' ... , Xn) = (0, 0, 

... , 0) or (~l' ... , Xn) = ( 1 , 1, ... , 1). 

Proof. If Xi = 0, then Xi _1 = 0, otherwise the ~th canponent of 

the transfonned vector Tx' would be 1. Similarly, bearing in mind that 1 

+ 1 = 0 in GF(2), if Xi = 1, then Xi - 1 = 1, otherwise the ith 

canponent of the transfonned vector would be 1. This theorem establishes 

that the only configurations that are immediately followed by joint 

cooperation are those in which all players make the same choice. 

Theorem 2. If ~ is odd, then the only cooperative configurations are 

(0,0, ... ,0) and (1,1, ... ,1). 

Proof. If Tx' = (0, 0, ... ,0)', then it follows fram Theorem 1 that 

either X = (0, 0, ... ,0) or X = (1,1, ... ,1), and if (0, 0, ... ,0) is 

not the initial configuration, then it must be preceded by (1, 1, ... , 

1). Suppose that (1, 1, ... , 1) is also not the initial configuration. 

Then Tw' = (1, 1, ... , 1)' for same w. Now if Wi = 0, then Wi - 1 = 1, 

otherwise the ith component of Tw' would be zero. For the same reason, if 

Wi = 1, then Wi - 1 = O. Therefore, Wi - 2 = Wi. Consider the vector 

component Wn: since ~ is odd, wn = wn - 2 = = ~l. This implies 

that if ~l = 0, then ~l-l = wn = 0, and if ~l = 1, then ~l-l = 
wn = 1, which yields a contradiction. We have therefore proved that if 

the number of players is odd, joint cooperation is achieved only if all 

players make the same initial choice, and it results after one trial at 

most. 

Theorem 3. If j = 2~, E E Z+ (where Z+ is the set of 

nonnegative integers), then 
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Tj: (~l' ... , Xn) -j- (~l-i + ~l' ... , Xn-i + Xn), 

where the subscripts are expressed modulo ~. 

Proof. Assume that the result is true for sane E. Then, if 9 = 2~, 

'I'C1: (~l' ... , Xn) --1(~1-'-.9- + ~l' ... , Xn-.9- + Xn)· 

The proof proceeds by induction on E. For E + 1, 2P+l = 29, and T2q = 

... , Xn) ... , Yn ), 

where 

because, whether xi -.9- = 0 or 1, xi -.9- + xi -.9- = O. Thus, 

:!,2~: (~l' ... , Xn) --1 (~1-2.9- + ~l' ... , Xn-2.9- + Xn)· 

We have proved that if the result holds for sane E then it holds for E + 

1. 	 The final step is to ShCM that it holds for E = O. In that case 9 = 

= 1, and Tl = T is the basic transformation 

:!': (~l' ... , Xn) -1 (Xn + ~l' ~l + ~2' ... , Xn - 1 + Xn) 

for which the result holds. We have therefore proved that any number of 

trials j that is a pCMer of 2 takes each component Xi of the 

configuration ~ into Xi + Xi'- i 

Theorem 4. A configuration (~l' ... , Xn) in an ~-person minimal 

social situation is cooperative iff Xi = Xi-~ for all ~, where ~ = 
bk, ~ = 2':', ~, !? E ~+ (the set of nonnegative integers), and b is odd. 

Proof. Fran Theorem 3 we have 

Tj: (~l' ... , Xn) -7 (~l- i + ~l' ... , Xn - i + Xn), 

where j = 2~, E E ~+. The kernel of Tj is therefore 

~l-i + ~l = ... = Xn-i + Xn = O}= {(~l' ... , 

Xi = xi+i for all i}.= {(~l' ... , 

Since ker TP is a subset of ker TP + 1 for all natural numbers E, the 

set of cooperative states is ker TP if ker TP = ker 'J:I11 for E < m. 



- -

-- ---

12 


The proof is constructive: we shall prove that if k = 2:, ~ = 2k = 

Let ~ = (~+ 1)/2. Then b = 2c - 1, and hence kb = k(2c - 1). Thus 

2ck =k (mod kb), that is, 

an = k (mod n) . 

New, if x E ker Tn, then Xi = Xi +!!l for all ~ (mod!:). It follaws 

that xi+!!l = X i + 2 !!l = X i + 3 !!l ••• , and therefore, since c is a positive 

integer, that 

Xi = Xi +cm for all i (mod!:). 

Since an = k (mod !:), 

Xi = Xi +~ for all ~ (mod!:), 

which shews that X E ker Tk. We have therefore proved that ker Tn is 

a subset of ker Tk, and hence, since ~ < ~, that 

ker Tk = ker Tn, 

as required. 

This theorem shaws that we can characterize the cooperative 

configurations in an !:-person minimal social situation as follaws. If n 

is odd, then the cooperative configurations are (~l' ... , Xn) such 

that Xi = X i + 1 for all ~ (mod ~). If ~ is even, then if ~ is the 

highest power of 2 that divides n evenly, then the cooperative 

configurations are (~l' ... , Xn) such that Xi = Xi +~ for all i 

(mod n). 

The proof also implies that, in an !:-person minimal social situation, 

if ~ is the highest power of 2 that divides ~ evenly, the first ~ players 

may choose arbitrarily, but the choices of the remaining players are 

determined for the configuration to be cooperative. It follows that the 

number of cooperative initial configurations is 2k. 
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DISCUSSION 


An abstract theory, if it is to be useful, should do two things. First, 

it should explain existing empirical data. Second, it should provide 

conclusions whose scope extends beyond existing data but can be 

empirically tested. The fonnal system developed in this paper explains 

existing data ina trivial sense, inasmuch as it incorporates the theory 

and experimental findings related to the two-person minimal social 

situation as a special case. 

The win-stay, lose-change principle, which has been used to explain 

the evolution of cooperation in the two-person game, is derived from the 

law of effect, originally formulated by Thorndike (1911) as follows: 

, 'Responses which are accompanied or closely followed by satisfaction 

[are] more firmly connected with the situation ... i those which are 

accompanied or closely folla..,red by discomfort ... have their connections 

with the situation weakened" (p. 244). (Thorndike later "repealed" the 

second part, which is sometimes called the negative law of effect.) Many 

behaviorist psychologists, including Skinner (1966, 1984), regard the law 

of effect as a behavioral parallel of natural selection in which only the 

most successful responses in an organism's behavioral repertoire survive 

while the unsuccessful responses became extinct. Several decades of 

psychological research have provided abundant corroboration of the law of 

effect in a wide variety of situations. It would be most surprising if it 

were found not to apply in the minimal social situation. It is worth 

pointing out, ha..,rever, that the win-stay, lose-change principle is an 

idealized version of the law of effect in which responses that are 

rewarded are invariably repeated and those that are punished are never 

repeated on the folla..,ring trial--the principle, unlike the law of effect, 
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is deterministic and non-cumulative. It is clear, however, that the broad 

outline of the theory presented in this paper would remain valid if a 

stochastic version of the win-stay, lose-change principle based on 

probabilistic learning theory were substituted. 

The formal results certainly extend beyond the scope of existing 

empirical data. .Many of the predictions that can be derived fran the 

analysis are counterintuitive but nevertheless easily testable. Among the 

interesting predictions that should be tested are the following. First, 

although the frequency of rewarding choices and joint cooperation tends to 

increase in the two-person minimal social Situation, the theory predicts 

no such increase in odd-sized groups. Second, whenever the number of 

players is even but not a power of two, configurations that are 

cooperative according to the theory should progress toward joint 

cooperation more frequently than noncooperative configurations. Third, 

multi-person groups in which the number of players is a power of two 

should behave like players in the two-person minimal social situation: 

irrespective of the choices made on the first trial, there should be 

steady progress toward joint cooperation. Fourth, the frequency of 

rewarding choices and joint cooperation should correlate with the number 

of cooperative initial configurations detennined by the theory. If any of 

these predictions turns out to be wrong, then the assumptions of the 

theory will have to be modified. 
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Table 1. Transformation Matrix for the ~-person Minimal Social Situation 

under the Win-stay, Lose-change Principle 

1 0 000 1 


1 1 0 0 0 o 


01100 o 

T = 0 0 110 

o 0 Oil 

o 0 0 0 Oil 
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FIGURE TITLE 


FIG. 1. The "mutual fate control" payoff matrix of the mini.:mal social 

situation. One player chooses between rCMS 0 and 1, and the other chooses 

between columns 0 and 1. The positive or negative payoff in the lCMer 

left half of each cell goes to the rCM-chooser, and the payoffs in the 

upper right halves go to the column-chooser. 




