553.full.pdf (1.76 MB)
Download file

Mapping the Allosteric Action of Antagonists A740003 and A438079 Reveals a Role for the Left Flipper in Ligand Sensitivity at P2X7 Receptors

Download (1.76 MB)
journal contribution
posted on 14.05.2018, 13:33 by Rebecca C. Allsopp, Sudad Dayl, Anfal Bin Dayel, Ralf Schmid, Richard J. Evans
P2X7 receptor (P2X7R) activation requires ∼100-fold higher concentrations of ATP than other P2X receptor (P2XR) subtypes. Such high levels are found during cellular stress, and P2X7Rs consequently contribute to a range of pathophysiological conditions. We have used chimeric and mutant P2X7Rs, coupled with molecular modeling, to produce a validated model of the binding mode of the subtype-selective antagonist A438079 at an intersubunit allosteric site. Within the allosteric site large effects on antagonist action were found for point mutants of residues F88A, D92A, F95A, and F103A that were conserved or similar between sensitive/insensitive P2XR subtypes, suggesting that these side-chain interactions were not solely responsible for high-affinity antagonist binding. Antagonist sensitivity was increased with mutations that remove the bulk of side chains around the center of the binding pocket, suggesting that the dimensions of the pocket make a significant contribution to selectivity. Chimeric receptors swapping the left flipper (around the orthosteric site) reduced both ATP and antagonist sensitivity. Point mutations within this region highlighted the contribution of a P2X7R-specific aspartic acid residue (D280) that modeling suggests forms a salt bridge with the lower body region of the receptor. The D280A mutant removing this charge increased ATP potency 15-fold providing a new insight into the low ATP sensitivity of the P2X7R. The ortho- and allosteric binding sites form either side of the β-strand Y291-E301 adjacent to the left flipper. This structural linking may explain the contribution of the left flipper to both agonist and antagonist action.

History

Citation

Molecular Pharmacology, 2018, 93 (5), pp. 553-562

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/Biological Sciences/Molecular & Cell Biology

Version

VoR (Version of Record)

Published in

Molecular Pharmacology

Publisher

American Society for Pharmacology and Experimental Therapeutics

issn

0026-895X

eissn

1521-0111

Acceptance date

08/03/2018

Copyright date

2018

Available date

14/05/2018

Publisher version

http://molpharm.aspetjournals.org/content/93/5/553

Language

en

Usage metrics

Categories

Keywords

Licence

Exports