Carr et al_2010_JPL.pdf (1020.21 kB)
Download file

Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern Cape coastline of South Africa

Download (1020.21 kB)
journal contribution
posted on 24.10.2012, 08:54 by Andrew S. Carr, Arnoud Boom, Brian M. Chase, David L. Roberts, Zoë E. Roberts
Pyrolysis–gas chromatography mass spectrometry (py-GC/MS) allows the characterisation of complex macromolecular organic matter. In lakes and wetlands this can potentially be used to assess the preservation/diagenesis and provenance of sediment organic matter. It can complement palaeoenvironmental investigations utilising ‘bulk’ sediment variables such as total organic carbon (TOC) and TOC/total nitrogen ratios. We applied py-GC/MS analyses to a ~32,000-year sediment record from the southern Cape coastline of South Africa. We used the results to evaluate the sources and extent of degradation of organic matter in this semi-arid environment. Marked down-core changes in the relative abundance of multiple pyrolysis products were observed. Correspondence analysis revealed that the major driver of this down-core variability in OM composition was selective preservation/degradation. Samples comprising highly degraded OM are primarily confined to the lower half of the core, older than ~12,000 years, and are characterised by suites of low-molecular-weight aromatic pyrolysis products. Samples rich in organic matter, e.g. surface sediments, are characterised by products derived from fresh emergent or terrestrial vegetation, which include lignin monomers, plantderived fatty acids and long-chain n-alkanes. Pyrolysates from the late glacial-early Holocene period, approximately mid-way down the core are characterised by distinct suites of long-chain n-alkene/n-alkane doublets, which may reflect the selective preservation of recalcitrant aliphatic macromolecules and/or enhanced inputs of the algal macromolecule algaenan/polymerised algal lipids. Increased TOC, lower δ[superscript 13]C and increased abundance of more labile lignin and fatty acid products at the same depths suggest this period was associated with increased lake primary productivity and enhanced inputs of terrestrial OM. TOC is the only ‘bulk’ parameter correlated with the correspondence analysis axes extracted from the py-GC/MS data. Distinct fluctuations in TOC/total nitrogen ratio are not explained by variation in organo-nitrogen pyrolysis products. Notwithstanding, the study suggests that py-GC/MS has potential to complement palaeolimnological investigations, particularly in regions such as southern Africa, where other paleoenvironmental proxy variables in sediments may be lacking or equivocal.

History

Citation

Journal of Paleolimnology, 2010, 44 (4), PP. 947-961

Version

AM (Accepted Manuscript)

Published in

Journal of Paleolimnology

Publisher

Springer Verlag

issn

0921-2728

eissn

1573-0417

Copyright date

2010

Available date

24/10/2012

Publisher version

http://link.springer.com/article/10.1007/s10933-010-9466-9

Language

en

Usage metrics

Categories

Exports