angeo-23-567-2005.pdf (553.08 kB)
Download file

On the coupling between unstable magnetospheric particle populations and resonant high m ULF wave signatures in the ionosphere

Download (553.08 kB)
journal contribution
posted on 22.05.2020, 13:36 by LJ Baddeley, TK Yeoman, DM Wright, KJ Trattner, BJ Kellet

Many theories state that Ultra Low Frequency (ULF) waves with a high azimuthal wave number (m) have their energy source in wave-particle interactions, yet this assumption has been rarely tested numerically and thus many questions still remain as to the waves' exact generation mechanism. For the first time, this paper investigates the cause and effect relationship between the driving magnetospheric particle populations and the ULF wave signatures as observed in the conjugate ionosphere by quantitatively examining the energy exchange that occurs. Firstly, a Monte Carlo method is used to demonstrate statistically that the particle populations observed during conjugate ionospheric high m wave events have more free energy available than populations extracted at random. Secondly, this paper quantifies the energy transferred on a case study basis, for two classes of high m waves, by examining magnetospheric Ion Distribution Functions, (IDFs) and directly comparing these with the calculated wave energy dissipated into the conjugate ionosphere. Estimates of the wave energy at the source and the sink are in excellent agreement, with both being of the order of 1010J for a typical high m wave. Ten times more energy (1011J) is transferred from the magnetospheric particle population and dissipated in the ionosphere when considering a subset of high m waves known as giant pulsations (Pgs). Previous work has demonstrated that 1010J is frequently available from non - Maxwellian IDFs at L=6, whereas 1011J is not. The combination of these studies thus provides an explanation for both the rarity of Pgs and the ubiquity of other high m waves in this region.

Funding

The authors would like to thank T. Fritz, PI ofCAMMICE (MICS), W. Peterson, PI of TIMAS and the Royal So-ciety and PPARC for funding the DOPE project. LJB is supportedby PPARC.

History

Citation

ANNALES GEOPHYSICAE, 2005, 23 (2), pp. 567-577 (11)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

VoR (Version of Record)

Published in

ANNALES GEOPHYSICAE

Volume

23

Issue

2

Pagination

567-577 (11)

Publisher

EUROPEAN GEOSCIENCES UNION

issn

0992-7689

Acceptance date

19/11/2004

Copyright date

2005

Language

English