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Abstract

We present a very general quantum-like model of lottery selec-
tion based on representation of beliefs of an agent by pure quantum
states. Subjective probabilities are mathematically realized in the
framework of quantum probability (QP). Utility functions are bor-
rowed from the classical decision theory. But in the model they are
represented not only by their values. Heuristically one can say that
each value ui = u(xi) is surrounded by a cloud of information related
to the event (A, xi). An agent processes this information by using the
rules of quantum information and QP. This process is very complex; it
combines counterfactual reasoning for comparison between preferences
for different outcomes of lotteries which are in general compelemen-
tary. These comparisons induce interference type effects (constructive
or destructive). The decision process is mathematically represented
by the comparison operator and the outcome of this process is deter-
mined by the sign of the value of corresponding quadratic form on
the belief state. This operational process can be decomposed into a
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few subprocesses. Each of them can be formally treated as a compari-
son of subjective expected utilities and interference factors (the latter
express, in particular, risks related to lottery selection). The main
aim of this paper is to analyze the mathematical structure of these
processes in the most general situation: representation of lotteries by
noncommuting operators.

Keywords: Lottery selection, subjective expected utility, quantum-
like model, belief state, decision operator, interference effects

1 Introduction

Recently quantum probability (QP) has begun to be widely used to
model the processes of decision making (DM) in cognitive psychology,
behavioral economics and finance. 1 From the outset we stress that,
in fact, QP is not a calculus of probabilities, but of quantum states,
“complex probability amplitudes”. Of course, probabilities can be
generated from this calculus - via the Born rule, see section 4, formula
(8). However, intrinsically the process of DM is represented in terms
of the amplitudes and not probabilities.2

One may consider the appeal to QP to model DM instead of the
usage of the conventional probabilistic measures too exotic. Yet, we
recall that as early as the 1970s, Tversky, Kahenman and other re-
searchers in psychology and economics following the seminal paradoxes
by Allais (1953), Ellsberg (1961) have been demonstrating cases where
classical probability (CP) prescription and actual human thinking per-
sistently diverge, seeking to explain these deviations away from the
normative DM frameworks (Kaheneman and Tversky 1972; Tversky
and Kahneman 1974, Shafir 1994, Kahneman, 2003; Kahneman and
Thaler, 2006).

The main inquiry of the experimental studies was often focused

1See, e.g., monographs Khrennikov (2004a, 2010), Busemeyer and Bruza (2012) ,
Bagarello (2012), Haven and Khrennikov (2013), Asano et al. (2015), reviews Bran-
denburger (2010), Pothos and Busemeyer (2013), Khrennikov (2015a), Haven and Sozzo
(2016), Takahashi et al. (2017), the recent handbook edited by Haven and Khrennikov
(2017a), and the first textbook for students (Haven et al. 2017); see also closely related
study by Narens (2015, 2016) who used the general formalism based on lattices. The first
steps in this direction were done in 1990th, see, e.g., Khrennikov (1999). We also mention
a few recent papers on applications to finances and economics (Hawkins and Frieden, 2012,
2016; Khrennikova, 2016, 2017; Haven and Sozzo, 2016).

2Typically this fundamental issue was not stressed in works on the QP-based models of
DM, since the basic effects, such as, e.g., violation of the Sure Thing Principle, were finally
expressed via the Born rule in terms of probability. However, this issue is very important
for our model and we shall turn to it later.
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on human evaluation and revision of probabilities in uncertain DM
situations. Following questions naturally emerged:

Do people obey the rules of classical probability theory, and if not,
in which circumstances? Are there any other laws that can be applied
to formalize human judgments and preferences?

After demonstrating first comprehensive evidence on deviation of
human preference formation from the postulates of von Neumann and
Morgenstern (1944) theories (VNM), Ellsberg (1961, p.646) proposed
that: “there would be simply no way to infer meaningful probabilities
for those events from their [participants] choices, and theories which
purported to describe their uncertainty in terms of probabilities would
be quite inapplicable in that area (unless quite different operations for
measuring probability were devised).”

A wide array of elegant generalizations of classical probabilistic
formulations of rational decision theories (VNM) were devised fol-
lowing the emerging empirical evidence. (We allude to von Neumann
and Morgenstern’s (1944) expected utility formulation under objective
risk, as well as Savage’s (1954) subjective expected utility over conse-
quences in uncertain states of the world.) Generalized utility theories
focused particularly on eliminating the linearity in probabilistic mea-
sures, and seeking to relax the assumption of agents’ possessing firm
and state-independent probabilistic estimates.3

As articulated by Machina (1989), the main appeal of the devised
generalizations of VNM formulations was to reach three goals; the em-
pirical (fit to the experimental data), the theoretical (allow to use the
formulation in the most general settings, from trading on the financial
markets, to insurance and gambling) and finally, the normative status
(logical implications such as rationality of the assumptions in VNM).

Another stream of case by case explanations, based on heuristics
and biases pioneered by Kahneman and Tversky4, also gained wide
recognition in behavioral economics, that mainly emerged due to ex-
tensive collection of empirical evidence on human preference formation
and judgment.

Yet, these convincing explanations of each such bias and its effect
on DM formation were placed under critique largely due to their lack
of theoretical coherence and normative appeal (e.g., Wolford, 1991;
Gigenzenger, 1996). We stress that prospect theory by Kahneman
and Tversky (1979), and the advanced version, cumulative prospect

3See (Kahneman and Tversky, 1979; Machina, 1982, 1989; 2005, Gilboa and Schmeidler,
1989, 1994; Schmeidler, 1989; Tversky and Kaheneman, 1992; Klibanoff et al., 2005).

4See (Kahneman and Tversky, 1972, Tversky and Kahneman 1974); see also an earlier
excellent survey of the behavioral factors that ought to falsify the postulates of modern
decision theories under uncertainty and risk by Simon (1959).
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theory by Tversky and Kahneman (1992) can be considered as great
accomplishments in the pursuit for a generalized and structured DM
framework, encompassing some of the effects of human heuristics and
biases.

Today, we still find ourselves at the theoretical crossroads, with
considerable divisions across conflicting, entrenched theoretical posi-
tions that revolve around the following dilemmas:

• Should we continue to rely on CP as the basis for descriptive and
normative predictions in decision making and perhaps ascribe in-
consistencies to methodological idiosyncrasies or intrinsic noise,
cf. (Costello and Watts, 2014)?

• Should we abandon probability theory completely and instead
pursue explanations based on heuristics and biases, as proposed
by Tversky and Kahneman?

Yet, a need for a DM framework with theoretical foundations
that can be utilized in economics, finance and other domains per-
sists. Hence, by generalizing or replacing classical VNM framework,
one is compelled to maintain the theoretical foundations of the al-
ternative decision theory. Probabilistic and statistical methods are
undeniably the cornerstones of modern scientific methodology in all
spheres of social science. Thus, although the heuristic approach to
decision making cannot be discarded completely and serves as an im-
portant tool to research the nature of human reasoning, it appears
that it is more natural to approach novel probabilistic models to for-
malize preference formation. Hence, in the present contribution we
proceed with the slogan:

QP instead of heuristics and biases!

Application of the laws of QP (treated as the calculus of probability
amplitudes), instead of CP, can resolve some paradoxes of classical DM
theory, see section 2. The number of different ‘paradoxes’ generated
by the classical DM theory is startling. The authors of a recent review
(Ert and Erev 2015) identified 35 basic paradoxes. The history of de-
cision theory, can be characterized by advancement of the theoretical
frameworks via creation and resolution of paradoxes through modi-
fications of the theory. As an example, von Neumann-Morgenstern
(VNM) expected utility theory was generalized to prospect theory
after numerous empirical studies (cf. Tversky and Kahenman, 1992;
Shafir 1994). However, any modification suffered from new paradoxes.

It seems that the use of QP can resolve such paradoxes (includ-
ing Allais (1953), Ellsberg (1961) and Machina (2009) paradoxes), at
least this is claimed in the recent paper of Asano et al. (2017), see this
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paper for the detailed mathematical modeling of these paradoxes. In
this paper the authors develop a model of selection of lotteries under
uncertainty based on the quantum formalism: representation of belief-
states as quantum states and introduction of comparison operator D
which is based on a classical utility function u(x). This operator is the
basic mathematical object of the theory and it provides the operational
representation of the process of comparison of utilities of two lotteries.
This quantum-like model can be coupled to expected utility approach
(endowed with either objective or subjective interpretations of util-
ity functions and probabilities). In particular, this model reproduces
VNM expected utility theory (in this case probabilities can be inter-
preted objectively) and prospect theory (including its representation
with cumulative probability weighting function, Tversky and Kahen-
man, 1992). Moreover, the quantum-like model of lottery selection
recreates one special form of the probability weighting function used
in prospect theory. We recall that in prospect theory, the probability
weighting function is the important concept to explain the violation
of independence axiom in VNM theory. Actually, from phenomeno-
logical discussions, various weighting functions have been proposed
(Prelec, 1998; Rieger and Wang, 2006; Tversky and Kahneman,1992;
Gonzales and Wu, 1999; Wu and Gonzales,1996). Especially, we note
the form of the two-parameter weighting function,

wλ,δ(x) =
δxλ

δxλ + (1− x)λ
, (1)

which was discussed in (Gonzalez and Wu, 1999). The parameters λ
and δ control the curvature and elevation of the function, respectively.
Such a phenomenological function with λ = 1/2 corresponds to the
subjective probabilities derived from the usage of the QP-framework,
see (Asano et al. 2017) for a detailed discussion. It would be interest-
ing to find a purely psychological motivation for this specific shape of
the weighting function corresponding to λ = 1/2.

The quantum-like model of Asano et al. (2017) not only repro-
duces the output of prospect theory (for the aforementioned special
choice of the weighting function), but depending on the belief-state of
an agent can lead to new decision rules, including the existence of new
parameters besides the subjective probabilities. These parameters are
given by relative phases expressing correlations between different out-
comes of lotteries A and B, within a single lottery or between two
lotteries. The presence of phases induces the effects of constructive
and destructive interference.

In this paper we advance the model proposed in (Asano et al.,
2017) by representing Alice’s beliefs about the lotteries’ outcomes by
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two arbitrary orthonormal bases.5 In the operator terms this corre-
sponds to representation of beliefs by two in general noncommuting
operators A and B, see (2). In (Asano et al., 2017) beliefs about the
lotteries were represented by commuting operators.6 In the case of
commuting A and B the interference effects were generated solely by
comparison operator D. In the general model with noncommuting lot-
tery operators there are two sources of interference between beliefs: a)
compelmentarity of lotteries, b) reflections generated by operator D.

In the probabilistic terms, in the present model the DM-process
is split into four sub-processes, see section 7. The previous model
(Asano et al., 2017) handled only one of these processes (Process 1,
see section 7). The new counterparts of the DM-process model de-
scribe mathematically Alice’s reflections in respect to the selection
of lotteries. These reflections are modeled with the aid of quantum
transition probabilities. For complementary lotteries (represented by
noncommuting operators), these probabilities are nontrivial and their
presence generates complex reflections of a decision maker, cf. (Asano
et al., 2017). The transition probabilities are involved in the creation
of more complex subjective probabilities for lotteries’ outcomes than
the probabilities of Process 1 only, see Asano et al. (2017). The
devised model is quite complicated from the viewpoint of mathemati-
cal computations. We reproduce the detailed model derivation in the
special appendix (appendix 1).

The structure of the model is very rich. To demonstrate at least
some of its distinguishing features, we analyze in great detail the ex-
ample of lotteries with two outcomes, see section 8 and appendix 2.
This simple example shows that, in fact, a quantum-like agent uses the
probability amplitudes (and not the squares of their absolute values)
as weights for averaging of utility function. So, the agent evaluates
expected utility via usage of square roots (probability amplitudes).
Of course, the straightforward probability interpretation of this con-
struction is impossible (since amplitudes need not be non-negative real
numbers). For the probabilistic interpretation, one has to proceed
with four counterparts of the process of decision making considered
in section 7. At the same time modeling based on amplitudes is at-

5Since the present model generalizes the model from (Asano et al., 2017), it resolves
the paradoxes of the classical DM theory, see (Asano et al., 2017) for detailed presentation
(with corresponding numerical simulation).

6It is worth noting that both representations, by commutative and noncommutative
operators, have been popular in cognitive modeling, see (Pothos and Busemeyer, 2009;
Wang and Busemeyer, 2011; Trueblood and Busemeyer, 2011, Broekaert et al., 2017) and
(Khrennikov, 2003, 2004a,b, 2006, 2010, 2015c; Busemeyer et al., 2011; Khrennikov and
Basieva, 2014; White et al., 2014; Asano et al., 2015).
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tractive by its simplicity. One can proceed in this direction by using
signed and complex “probabilities” which are widely used in quantum
mechanics and recently started to be applied to decision making, see
de Barros et al. (2016, 2017).

Now we turn to the interpretation of QP as the calculus of proba-
bility amplitudes. In the models in (Asano et al., 2017) and this paper,
the decision rule is represented in the form 〈DΨ|Ψ〉 ≥ 0, where Ψ is the
belief state of an agent. Although, as was emphasized, this decision
rule can represented in the form of comparison of averages of the util-
ity function u(x) with respect to subjective probabilities (or weighting
function of them), the probabilistic representation is not intrinsic. Of
course, its derivation is important to couple the quantum-like model
with the existing DM-models of the VNM and prospect theory type.
However, such a probability representation shadowed the fundamen-
tal feature of our model which does not pre-assume that agents really
compare lotteries by through calculation of averages (with respect to
probabilities or their weighting). An agent uses the objective or sub-
jective probabilities (Pi) and (Qj) corresponding to the outcomes of
lotteries A and B to create her belief states about these lotteries, |ΨA〉
and |ΨB〉. Then she superposes these states to create state |Ψ〉 of her
beliefs about two lotteries. This state is substituted in the quadratic
form of comparison operator D and the value of this form in state
of superposed beliefs Ψ determines agent’s concrete decision. This is
the individual decision, not statistical. However, it can be coupled
to statistics through the probabilistic decomposition of the quadratic
form 〈DΨ|Ψ〉, see section 7. This decomposition expresses potentiality
of realization of the concrete decisions encoded in the belied state Ψ.
The comparison operator D is a cognitive feature of an agent. In this
model the process of decision making is algorithmic and it is reduced
to calculation of the value of the comparison-form on the belief-state.

We remark that, as well as prospect theory or regret theory, our
quantum-like model of DM is of the descriptive type. As the cre-
ators of other descriptive theories, we try to explain paradoxes and
decision problems. Our explanation is derived from the quantum the-
ory endowed with the information interpretation of states. An agent
whose information processing can be described by the quantum for-
malism uses the belief-weighting procedure based on coefficients in
state’s expansion with respect to a basis corresponding to a set of be-
liefs. Such beliefs-weighting explains the basic paradoxes of DM the-
ory. For the moment, we do not have a neurophysiological mechanism
of such weighting, see (Khrennikov, 2011, de Barros, 2012, Busemeyer
et al., 2017) for some attempts to model it.
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2 From the von Neumann-Morgenstern

expected utility theory to quantum(-like)

modeling of subjective expected utility

In their book von Neumann and Morgenstern (1944) introduced an
expected utility function over lotteries, or gambles. The type of un-
certainty which was embedded in their expected utility7 approach was
objective uncertainty (i.e. an uncertainty which is formalizable by us-
ing objective probabilities). A key theorem in the VNM theory estab-
lishes the so called expected utility representation, which in essence
requires that preferences over lotteries satisfy a specified number of ax-
ioms8. As economic history has shown, some of their axioms were not
as ‘natural’ as expected and Allais’ paradox (see Allais, 1953) showed a
violation of the so called substitution axiom9. Whilst VNM developed
an axiomatic choice framework along objective uncertainty, it surely
is the case that real life decisions can revolve around subjective choice
situations. The purpose of Savage’s theory is to consider choice under
subjective uncertainty (see Savage, 1954). In words, the Savage model
can be summarized as follows (Kreps (1988) (p. 195-196): “ Savage
models ...hold that you should assess probabilities for the subjectively
uncertain events, probabilities that add up to one, and then choose
whichever gamble gives the highest subjective expected utility.”

Savage (1954) formulated the famous Sure Thing Principle which is
an essential axiom (amongst seven other axioms) which allows for the
existence of an equivalence relation between a preference over acts10

and an ordering of expected utilities.
We remark that in purely probabilistic terms, this principle is

equivalent to the validity of the law of total probability (see Khren-
nikov, 2010). Hence, a violation of this law for our quantum-like
model of DM will be equivalent to a violation of Savage’s Sure Thing
Principle (see Busemeyer et al., 2006). We note that the well known
Ellsberg paradox (see Ellsberg, 1961) specifically refers to a violation
of the sure-thing principle11.

7We note that in economics there has been a long standing discussion between expected
value and expected utility. This debate relates to the so called St. Petersburg paradox
(see Blavatskyy , 2005 and Samuelson, 1977).

8In essence, those preferences need to satisfy the ‘substitution’ and ‘continuity’ axioms.
9This axiom says that for three lotteries, a,b and c the preference of lottery a over

lottery b will imply that the weighted average of lotteries a and c is preferred over the
weighted average over lotteries b and c.

10An act, as per Kreps (1988), p. 128, is a function from a set of states to a set of prizes.
11The sure thing principle can also be found back in von Neumann-Morgenstern’s theory

but only if one considers probabilities without finite support (see Krep, 1988, p. 59 and

8



In the expected utility representation of the Savage approach (as
well as in the VNM approach), the utility function will be bounded and
unique (up to an affine transformation). The linearity12 of the pref-
erence function is tightly connected to the substitution axiom which
forms part of the VNM theory. Violation of this axiom, was shown
to occur via the Allais paradox which we already mentioned above.
More paradoxes exist. The Machina paradox (see Machina, 2009) will
challenge a whole variety of expected utility approaches, such as the
max-min expected utility (see Gilboa and Schmeidler, 1989) and the
Choquet expected utility (see Gilboa and Schmeidler, 1994). See also
Haven and Sozzo (2016) for more of a discussion on why non-classical
probability can be an answer in the presence of such paradox (see also
Machina, 1983, 1987 and Erev et al., 2016).

All these DM-theories are mathematically formalized with the aid
of classical probability (CP), the axiomatics of Kolmogorov (1933).
Those axiomatics are based on the set-representation of events and
the measure-representation of probabilities. Let us make the follow-
ing point. The constraints posed on a DM-model by the CP-calculus
can have fundamental consequences. The most important set of CP-
constraints is related to the set-representation of events. In fact, this
is the special representation of classical Boolean logic. Thus, prac-
tically all probabilistic utility models (not only the expected utility
ones) are based on the implicit assumption that all agents use the
special calculus of propositions known as the Boolean algebra.13 This
assumption precedes, e.g. the axioms about the rationality of agents.
To even formulate such axioms, one has to appeal to Boolean logic.
We also remark that expected utility theory uses mathematical expec-
tation which corresponds to the CP-model.

It would be interesting to investigate what consequences will emerge
if we consider a relaxation of some of the axioms of CP for DM under
uncertainty. However, this general project has a very high complexity:
one can create a huge variety of novel ‘non-Kolmogorovean models’
and to analyze all possible consequences for DM is really impossi-
ble. In particular, in mathematical applications we can find a variety
of generalized averaging procedures leading to nonclassical notions of
mathematical expectation. Therefore, it would be natural to try to
go beyond CP (and Boolean logic) on the basis of some concrete and

following).
12Mark Machina did note in Machina (1982) (p. 295) that ....“from the fact that differ-

entiable functions are ‘locally linear’, and that for preference functionals over probabililty
distributions, linearity is equivalent to expected utility maximization.”

13There are a few exceptions. For example, Narens (2015, 2016) used intuitionistic logic
to provide a framework for DM that is not Boolean.
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well developed non-CP model which has already demonstrated its ap-
plicability to the solution of non-trivial problems in not only natural
science but also in economics, psychology and other areas of social
science.

Such a non-CP model is now well known: this is the probabilistic
counterpart of the mathematical apparatus of quantum mechanics -
QP, cf. (Khrennikov et al., 2014; Boyer-Kassem et al., 2015). It is
essential we make a remark about possible interpretations of quantum
mechanics. The variety of interpretations of quantum mechanics is
huge and we have no possibility to present even the most important
ones (see Khrennikov, 2010).

Let us point to the recently developed subjective probability inter-
pretation, known as Quantum Bayesianism (QBism) (see e.g. Fuchs
and Schack, 2011). By this interpretation, QP is the machinery used
by agents to update subjective probabilities for outcomes of experi-
ments. QBism stresses the private agent perspective in quantum the-
ory. The only shortcoming of QBism (from our perspective) is that it
handles only decisions about outcomes of observations done for quan-
tum physical systems. This shortcoming of QBism was discussed
in the papers by Khrennikov (2016a) and Haven and Khrennikov
(2017b), where we extended the applications of QBism to areas out-
side of quantum physics. Development of QBism is very important for
justification of applications of the quantum formalism to modeling the
process of decision making based on subjective probability - QBism is
the only interpretation of QP based on subjective probability.

Thus, QP is treated as formalizing the DM-process by an agent
who follows the rules of quantum logic. The latter relaxes some basis
rules of classical logic. Here, in particular, an agent can violate the
law of distributivity between conjunction and disjunction. The QBism
interpretation of the quantum formalism is very supporting for its
applications to decision making, since it justifies the use of subjective
probability.

In this paper we shall present a concrete QP-based model of the
DM-process under uncertainty which is generated by a complex infor-
mation environment, including internal representations of lotteries by
a decision maker. Here lotteries should not be reduced to mechanical
devices such as roulettes. These are generators of events with complex
inter-relation, inside each of the lotteries as well as between lotteries.
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3 Quantum-like model of selection of

lotteries

There are two lots, say A = (xi, Pi) and B = (yi, Qi), where (xi) and
(yi) are outcomes and (Pi) and (Qi) are probabilities of these otcomes.
All of the outcomes are different from each other. Which lot do you
select?

3.1 Classical probability modeling

An agent, say Alice, can simulate the experience that she draws the
lot A (or B) and gets the outcome xi (or yi). Let us represent such
an event by (A, xi) (or (B, xi)). As usual, Alice assigns the utilities
u(xi) and y(xi) of (A, xi) and (B, yi), respectively. Here, u(x) is a
utility function of outcome x. 14 By using the utility function the
agent evaluates various comparisons for making the preference A � B
or B � A.

The first mathematically consistent theory of decision making was
VNM expected utility theory based on VNM axioms (Completeness,
Transitivity, Independence, Continuity). VNM axioms are given for
the relation of utilities like u � v and the operation using probability
like pu+(1−p)v. This motivates an agent to operate with the expected
utilities, EA =

∑
u(xi)Pi and EB =

∑
u(yi)Qi, and to use their

difference as the criterion for making the preference.
However, the VNM decision theory is not free of paradoxes as we

observed in section 2. This problem is fundamentally coupled to the
interpretation of probability used in the VNM theory. VNM used
the frequency (statistical) interpretation of probability. Therefore it
is natural to test models of decision making based on other interpre-
tations. The most powerful alternative to the frequency probability
is the subjective probability. The subjective probability is not the
frequency of an event obtained on the basis a large number of trial
experiments, rather it is the measure of belief about whether a specific
outcome is likely to occur.

14In the classical model the utility of an event depends on only its outcome. However,
in the quantum-like model utility has the complex Hilbert space representation encoding
all circumstances of realization of outcomes.
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3.2 Representation of lotteries by orthonor-
mal bases in belief-state space

In our model of decision making we describe subjective probability by
using the framework of quantum theory, cf. with the classical model-
ing with the aid of subjective probabilities, e.g. (Gilboa, 2009). We
emphasize that the quantum formalism operates with a state before
measurement. In quantum-like models of cognition and decision mak-
ing a quantum state is treated as the belief state of an agent. Such a
state formalizes the mental representation for uncertain (unmeasured)
events.

Consider the space of belief states of an agent. In accordance with
the quantum-like modeling of cognition belief-states are represented by
normalized vectors of a complex Hilbert space H. These are so-called
pure states. More generally, belief-states are represented by density
operators encoding classical probabilistic mixtures of pure states. But
in this paper we restrict our consideration to pure belief-states (al-
though it will be convenient to represent them by operators.)

Lotteries A and B are mathematically realized as two orthonormal
bases in H : (|ia〉) and (|jb〉). 15 Any vector |ia〉 represents the event
(A, xi) - “selecting of the A-lottery which generates the outcome xi.

′′

The same can be said about vectors of the B-basis. These events are
not real, but imaginable. Alice plays with potential outcomes of the
lotteries and compares them.16

We can also represent lotteries by Hermitian operators, the lotter-
ies operators:

A =
∑
i

xi|ia〉 , B =
∑
j

yj |jb〉. (2)

As in the classical theory, each outcome xi has some utility ui =
u(xi) (say amount of money). Thus our model is based on a mapping
from eigenstates of the “lottery-operators” to utilities (amounts of
money), |ia〉 → u(xi), |jb〉 → u(yj). Thus starting with two lotteries

15In the Dirac notations (see, e.g., (Dirac, 1995)) a vector is denoted by a rather complex
symbol, |φ〉. However, this symbolism is convenient to compose the scalar product. Each
vector |φ〉 determines the continuous linear functional on H which is denoted as 〈φ|. Then
action of the functional 〈φ| on the vector |w〉 is represented by the formal multiplication
of these two symbols: 〈φ||w〉 ≡ 〈φ|w〉, the scalar product of these two vectors, see, e.g.,
(Dirac, 1995). This algebra will be heavily used in this paper, see especially appendix 1.
We also remark that any pure state |φ〉 determines the orthogonal projector; in the Dirac
notations, σφ = |φ〉〈φ|. This is the density operator representation of a pure state.

16This is a kind of counterfactual reasoning. From this viewpoint, we treat the quantum
formalism as a mathematical device for counterfactual reasoning. Of course, we well aware
that this not the only possible representation for such a reasoning; in future other models
of counterfactual reasoning can be in the use.
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A and B with outcomes (xi) and (yj) with corresponding utilities
ui = u(xi) and vj = u(yj), Alice represents these utilities (coupled to
their lotteries) by two orthonormal bases in the belief-state space H :

ui → |ia〉, vj → |jb〉. (3)

We emphasize coupling of utilities to lotteries. Utility (derived
from some monetary amount) has not only the value, but also so to
say the “color” determined by circumstances surrounding the corre-
sponding lottery - lottery’s context. Therefore even the same outcome
z = xi = yj of two lotteries (having the same utility value u = u(z))
may be represented by two different vectors: |ia〉 6= |jb〉. Moreover,
outcomes inside each lottery are also coupled through selection of the
fixed orthonormal basis. Finally, we remark that mapping (3) en-
codes the correlations between outcomes of lotteries (and their utili-
ties). These correlations are mathematically expressed through quan-
tum transition probabilities. We shall define them in the next section,
see, e.g., (Haven et al, 2017) for details.

The lotteries operators can be noncommuting, i.e., [A,B] 6= 0. In
quantum theory noncommuting Hermitian operators represent com-
plementary (or incompatible) observables: they cannot be measured
jointly. In our quantum-like model of lottery selection, we can speak
about complementary lotteries which are represented by noncommut-
ing operators. In the DM-process for complementary lotteries, Alice
does not create the the joint image of outcomes of both of them. In
mathematical terms the latter means the impossibility to determine
the joint probability distribution for the pairs of outcomes (xi, yj).
Thus, instead of weighting probabilistically the pairs of outcomes, Al-
ice analyzes the possibility of realization of an outcome say xi of the
A-lottery and she accounts its utility u(xi). Then under the assump-
tion of such realization she imagines possible realizations (yj) of the
B-lottery and compares the utilities u(yj) and u(xi). ”Suppose I have
selected the A-lottery and its outcome xi was realized. What would
be my earning (lost) if (instead) I were selected the B-lottery and its
outcome yj were realized?” This kind of counterfactual reflections is
mathematically described by the Hilbert space formalism and transi-
tion from the A-basis to the B-basis. Outputs of these comparisons are
weighted through accounting Hilbert space coordinates, see the discus-
sion on QP as a calculus of probability amplitudes at the very end of
introduction. This accounting is described by the special comparison
operator D. Since Alice cannot handle both lotteries simultaneously,
she starts with imaging one of them say A, as in the above considera-
tion. Then she performs similar counterfactual reasoning starting with
the B-lottery. The comparison operator D has two counterparts rep-
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resenting the processes A→ B and B → A comparisons, see section 6,
formula (20). In the operator terms transitions from one basis to an-
other are represented by transition operators Eia→jb , Ejb→ia , see (19).
And the comparison operator D is compounded of these operators.

3.3 Quantum transition probabilities

We now consider the notion of the quantum transition (conditional)
probability. For our applications, it is sufficient to consider transitions
between the states (|ia〉) and (|mb〉). We have

〈mb| ia〉 =
√
p(mb|ia)eiθia→mb , (4)

where p(mb|ia) = p(ia → mb) is the probability of transition from the
state ia to the state mb. Thus

p(mb|ia) = |〈mb| ia〉|2 (5)

This is the Born rule of quantum theory. Symmetry of a scalar product
implies that

p(ia → mb) = p(mb → ia), i.e., p(mb|ia) = p(ia|mb).

We also remark that the corresponding transition phases are related
as θia→mb

= −θmb→ia .

4 Probabilities and phases

Here we shall discuss the meaning of coefficients in the expansion of a
quantum state |ψ〉 with respect to an orthonormal basis. For simplic-
ity, we consider the two dimensional state space. Here we represent
some dichotomous observable by Hermitian operator A with the eigen-
values (x1, x2) and eigenvectors |1〉, |2〉. Any state |ψ〉 can be expanded
with respect to this basis:

|ψ〉 = c1|1〉+ c2|2〉, (6)

where c1, c2 are complex numbers and

|c1|2 + |c1|2 = 1. (7)

By using the quantum terminology the state |ψ〉 is superposition of the
(eigen)states |1〉, |2〉. We remark that the use of the linear space rep-
resentation is very common in a variety of cognitive and psychological
models, see, e.g., (Shepard, 1987; Nosofsky, 1988; Wills and Pothos,
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2012). Thus one might think that the only uncommon feature of the
model is the use of complex numbers. However, since each complex
number z can be represented as z = u + iv, where u, v are real num-
bers, any complex linear model of dimension n can be treated as the
real model of dimension 2n.

The main distinguishing feature of the quantum model is that the
coefficients have a probabilistic meaning given by the famous Born’s
rule. For the state |ψ〉 of the form (6), the numbers

pj = |cj |2 (8)

are interpreted as the probabilities of the outcomes xj of the observable
A having the basis of eingenvectors |1〉, |2〉. Thus the absolute values
of the coefficients in the expansion (6) have the clear meaning: these
are square roots of probabilities, |cj | =

√
pj . However, any complex

number has also the phase: cj = |cj |eiθj , j = 1, 2. The interpretation
of phases is more complicated. Why do we need phases at all? Why
is it not sufficient to work with states with real coefficients? From
the viewpoint of the Born rule, it seems that it would be sufficient to
proceed with superpositions of the form:

|ψ〉 =
√
p1|1〉+

√
p2|2〉. (9)

One of the possibilities to provide a consistent interpretation to the
phases is to consider the dynamical model of states generation. The
crucial point is that to have the law of conservation of probability,
see (7), we have to consider the unitary dynamics. And a unitary
dynamics can generate nontrivial phases starting with superpositions
of the form (9). The dynamics of the quantum state is described by
the Schrödinger equation:

i
∂|ψ〉
∂t

(t) = H|ψ〉(t), |ψ〉(0) = |ψ0〉, (10)

whereH is the generator of quantum dynamics, a Hermitian positively
definite operator. It has the dimension of frequency, i.e., 1/time. 17

Therefore H can be called the oscillation operator. To understand
better its meaning, let us consider its eigenvalues ω1, ω2 and corre-
sponding eigenvectors |e1〉, |e2〉. In this basis the Schrödinger equation

17In physics the left-hand side of the equation contains also the Planck constant having
the dimension of action= time× energy. Therefore the generator has the dimension of
energy. It is called Hamiltonian and has the meaning of the energy observable. In applica-
tions outside of physics we treat it formally as dynamics’ generator. In financial modeling
(Haven and Khrennikov, 2013) H was interpreted as a kind of financial energy; in social
modeling (Khrennikov, 2016b) it was interpreted as a kind of social energy. However, such
interpretations suffer of the absence of measurement methodology.
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is the system of two ordinary differential equations for the complex
coordinates zj(t), j = 1, 2,

i
dzj
dt

(t) = ωjzj(t), (11)

Its solution has the form

zj(t) = e−iωjtz0j . (12)

These are two oscillatory processes. Their combination gives the com-
plete state-oscillations:

|ψ〉(t) = e−iω1tz01|e1〉+ e−iω2tz02|e2〉. (13)

Thus even if, for the initial state, the coefficients z0j ∈ R, the dynamics
generates nontrivial phases and complex coefficients .

Following the model of dynamical decision making (Khrennikov,
2004a, 2004b, 2006; Pothos and Busemeyer, 2009, Asano et al., 2015),
agent’s state evolves driven by the Schrödinger equation until the mo-
ment of decision making T = Tdm. The simplest problem of decision
making can be represented as a measurement of some observable, say
dichotomous, represented by a Hermitian operator A with eigenvec-
tors |1〉, |2〉. By expanding the state |ψ〉(t) with respect to this basis
we get the representation:

|ψ〉(t) = c1(t)|1〉+ c2(t)|2〉, (14)

where cj(t) = e−iγjt
√
pj(t).Now at the instant of the self-measurement

of the mental observable A an agent uses the state

|ψ〉 = e−iθ1
√
p1|1〉+ e−iθ2

√
p2|2〉, (15)

where θj = γjT and pj = pj(T ). If the operator A coincides with H,
then θj = ωjT (but this is the very special situation).

For this state, an agent makes the A-observation and she ob-
tains the output aj with the probability pj . This is the objective
probability model of decision making: for a large ensemble of agents
the probability-frequency of the output xj equals to pj (Khrennikov,
2016a; Haven and Khrennikov, 2017b). Another model is based on the
subjective interpretation of probability (Khrennikov, 2016a; Haven and
Khrennikov, 2017b). An agent assigns subjective probabilities of the
outputs by extracting them from the state (15), then she computes
odds O(1/2) = p1

p2
and she makes her choice depending on the value

of odds.
In this paper we shall study a more complex problem of comparison

of two lotteries which cannot be reduced to quantum-like modeling
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of a single observable. The process of comparison involves two in
general incompatible observables A and B. We shall proceed with the
subjective interpretation of probabilities. However, the main feature
of the quantum-like process of decision making, namely, reduction
of this process to elementary oscillations, will be crucial even in the
coming model of comparison of lotteries, see section 7.

5 Belief-state

The state of Alice’s beliefs about the lottery A can be represented as
superposition

|ΨA〉 =
∑
i

√
Pie

iθai |ia〉.

The probability of realization of the event (A, xi) is given by the Born
rule and equals to Pi = |〈ia|ΨA〉|2. In the same way the state of beliefs
about the lottery B can be represented as superposition

|ΨB〉 =
∑
i

√
Qie

iθbi |ib〉.

To point that an index serves to describe the lottery A (lottery B), we
shall label it by its own index, say ia or jb. And we omit these labels,
a, b, when the meaning of indexes be clear or their coupling to A and
B would not be important.

Alice superposes her belief-states about the lotteries and her total
belief-state is created via superposition of her beliefs about the A-
lottery and the B-lottery. Thus the overall ψ is the superposition of
the ψ’s s for two individual lotteries.

|Ψ〉 = |ΨA〉+ |ΨB〉. (16)

However, since in general the states representing Alice’s beliefs about
the lotteries are not orthogonal18, i..e., in general 〈ΨA|ΨB〉 6= 0, the
vector |Ψ〉 is not normalized and the state of combined beliefs is ob-
tained via normalization: |Φ〉 = |Ψ〉/‖|Ψ〉‖. To make presentation
simpler, we shall proceed with the vector |Ψ〉, i.e., without normal-
ization.19 In future we shall call such vectors unnormalized states or
simply states (if this would not generate misunderstanding).

18Nonorthogonality of the states |ΨA〉 and |ΨB〉 means that the beliefs about two lot-
teries are not complementary. There is an “overlap” between them. The presence of such
overlap plays the important role in the process of decision making, see section 8.

19Since the normalization factor is positive and the decision rule is based on inequality
〈DΨ|Ψ〉 ≥ 0, this factor does not play any role in the process of comparison of lotteries,
see section 6.
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In further calculations it is useful to use the operator representation
of |Ψ〉 :

σ ≡ σΨ = |Ψ〉〈Ψ| = σA + σB + σB→A + σA→B, (17)

where
σA = |ΨA〉〈ΨA| =

∑
i,j

√
PiPje

i(θai−θaj)|ia〉〈ja|

σB = |ΨB〉〈ΨB| =
∑
i,j

√
QiQje

i(θbi−θbj)|ib〉〈jb|

σB→A = |ΨA〉〈ΨB| =
∑
i,j

√
PiQje

i(θai−θbj)|ia〉〈jb|

σA→B = |ΨB〉〈ΨA| =
∑
i,j

√
PiQje

−i(θai−θbj)|jb〉〈ia|.

We remark that, since |Ψ〉 is not normalized, trσ 6= 1. But we repeat
that this is not important in the process of lotteries selection described
in section 6.

If we consider the normalized state |Φ〉, then corresponding oper-
ator σΦ = |Φ〉〈Φ| is a density operator - the operator representation
of pure state |Φ〉. But we stress that the state of beliefs about two
lotteries is a pure state.

The ability to create superposition of states is the main distin-
guishing feature of an agent using the rules of quantum logic. How-
ever, besides creation of superpositions, quantum-like Alice can also
create mixtures of belief-states:

σ =
1

2
[σA + σB]. (18)

By operating with such mixtures Alice can reproduce decision making
corresponding to VNM expected utility model.

6 Comparison operator

In the classical expected utility theory Alice calculates the averages of
the utility function. In the quantum-like model Asano et. al (2017)
the utility function determines the comparison operator. Invention
of such an operator is based on mappings from eigenstates of the
“lottery-operators” to utilities (amounts of money), |ia〉 → u(xi) and
|jb〉 → u(yj), see section 3.2.

We remark that we simply borrow the utility function from classi-
cal (objective or subjective) utility theory. Thus we do not contribute,
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e.g., in analysis of possible shapes of utility functions. Then we use
QP to model subjective probabilities. And this modeling is encoded
in quantum representation of the belief-state. However, this represen-
tation is only the first step towards the quantum world of decision
making. The crucial step is the quantum-like operational description
of the process of comparison of lotteries with the aid of quantum states
transitions which are encoded in the comparison operator. This pro-
cess can be structured as combination of comparison of a few SEUs
and the interference type factors of the cos θ-form, where θ represents
the combination of phases of a few processes of preferring of outcomes
of the lotteries. These interference factors represent additional fea-
tures of the subjective images of lotteries in the mind of an agent, in
particular, risks, see (Asano et al., 2017), for discussion.

Let us introduce the transition operators

Eia→jb = |jb〉〈ia|, Ejb→ia = |ia 〉〈jb|. (19)

We have, e.g., Eia→jb |ia〉 = |jb〉. This operator describes the process
of transition from preferring the state |ia〉 to preferring the state |jb〉.
The operator Ejb→ia = |ia〉〈jb| describes transition in the opposite
direction. We stress that these are transitions between the belief-states
of Alice. We remark that Ejb→ia = E?ia→jb , i.e., elementary transitions
in opposite directions are represented by adjoint operators.

Now we introduce the two comparison operators:

DB→A =
∑
n,m

(u(xn)−u(ym))eiγmb→naEmb→na =
∑
n,m

(u(xn)−u(ym))eiγmb→na |na〉〈mb|.

DA→B =
∑
n,m

(u(ym)−u(xn))eiγna→mbEna→mb
=
∑
n,m

(u(ym)−u(xn))eiγna→mb |mb〉〈na|.

The operator DB→A represents the utility of selection of the lottery
A relatively to the utility of selection of the lottery B. We can say
that by transition from the potential outcome (B, ym) to the potential
outcome (A, xn) Alice earns utility u(xn) and at the same time she
loses utility u(ym). (If u(x) = x and x has the meaning of cash amounts
(say USD), then by such a transition Alice (potentially) earns xn−ym
USD.)

In the same way we interpret the transition operator DA→B. This
operator represents the utility of selection of the lottery B relatively
to the utility of selection of the lottery A. These operators represent
the process of Alice’s reflections in the process of decision making. Her
mind fluctuates between preferring outcomes of the A-lottery to out-
comes of the B-lottery (formally represented by the operator DB→A)
and inverse preferring (formally represented by the operator DA→B).
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Finally, she has to compare how much she can earn (in average) by
preferring A to B comparing with preferring B to A. This process is
formally described by the complete comparison operator:20

D = DB→A −DA→B. (20)

This operator has the form:

D =
∑
n,m

(u(xn)−u(ym))eiγmb→na |na〉〈mb|−
∑
n,m

(u(ym)−u(xn))eiγna→mb |mb〉〈na|

(21)

=
∑
n,m

unm(eiγmb→na |na〉〈mb|+ eiγna→mb |mb〉〈na|),

where
unm = u(xn)− u(ym).

Since all quantum observables are represented by Hermitian operators,
the phases should be related as follows:

γna→mb
= −γmb→na . (22)

The comparison operator D gives us the integral judgment. Only
heuristically can we treat the D-based judgment as the result of com-
parison of two relative utilities represented by the operators DB→A
and DA→B. We remark that the operators DB→A and DA→B are not
Hermitian. Hence, they cannot be treated as observables. We have
that D?

A→B = −DB→A and D = DB→A +D?
B→A.

The quantum analog of (subjective) expected utility theory is based
on the natural decision rule:

Decision rule. If the average of the comparison operator D is
non-negative, i.e., 〈D〉 = trDσ = 〈DΨ|Ψ〉 ≥ 0, then A � B.

Using Eqs. (17) and (20) the trace can be written as the sum of
four components:

trDσ =
1

2
trDσA +

1

2
trDσB + ∆1 + ∆2,

where

∆1 =
1

2
tr(DB→AσA→B − trDA→BσB→A),

∆2 =
1

2
tr(DB→AσB→A − trDA→BσA→B).

20The operators DB→A and DA→B are basic for comparison of lotteries. As everywhere
in quantum theory, the order of preferring plays the crucial role. The first operator encodes
preferring of A over B and the second one encodes preferring of B over A. Then Alice
compares their outputs. This last comparison is encoded in the operator D.
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Which, together with the formal expressions for each components de-
rived in Appendix 1, facilitates an operational understanding of the
decision-making process as we shall see in the next section.

From calculations in appendix 1, we obtain that

1

2
trDσA =

∑
i,j,m

ujm

√
p(mb|ia)PiPj cos ΘA

ij;m, (23)

where ΘA
ij;m = θia→mb

− γia→mb
+ θai − θaj .

1

2
trDσB =

∑
i,j,n

unj

√
p(na|ib)QiQj cos ΘB

ij;n (24)

where ΘB
ij;n = θib→na − γib→na + θbi − θbj .

Calculations in appendix 1 show that it is natural to consider the
following combinations of traces for comparison operators and “tran-
sition states”, see (42), (43):

∆1 =
1

2
tr(DB→AσA→B−DA→BσB→A) =

∑
i,j

uij
√
PiQj cos Θij . (25)

where Θij = θbj − θai + γjb→ia ;

∆2 =
1

2
tr(DB→AσB→A−DA→BσA→B) =

∑
i,j,n,m

unm

√
p(mb|ia)p(na|jb)PiQj cos Γij,nm,

(26)
where Γij,nm = θjb→na − θia→mb

+ γna→mb
+ θbj − θai.

7 Analysis of the basic counterparts of

the process of comparison of lotteries

As we have seen, the average of the comparison operator is naturally
decomposed into four counterparts representing special subprocesses
of the process of decision making. We start with the simplest expres-
sion.

Process 1: Its output is represented by the quantity ∆1, see (25).
To simplify considerations, let us assume that all phases Θij in the
sum are equal21, i.e., Θij ≡ Θ. Thus

∆1 =
[∑

i

u(xi)
√
Pi
∑
j

√
Qj −

∑
j

u(yj)
√
Qj
∑
i

√
Pi

]
cos Θ.

21As was mentioned, the model has very rich structure. It can generate very complex
behavioral patterns. We consider only the simplest of them.
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Following Asano et al. (2017), consider the normalized difference

∆1∑
i,j

√
PiQj

=
[∑

i

u(xi)P̃i −
∑
j

u(yj)Q̃j

]
cos Θ, (27)

where the quantities

P̃i =

√
Pi∑

i

√
Pi
, Q̃j =

√
Qj∑

j

√
Qj

(28)

can be interpreted as subjective probabilities.22 Alice assigns these
probabilities to outcomes of the lotteries in the process of comparison
of the relative utility of the B → A transition (based on her beliefs
encoded in the σB→A counterpart of her belief state) with the relative
utility of the A → B transition (based on her beliefs encoded in the
σA→B counterpart of her belief state). We remark that the quantities

〈u〉P̃ =
∑
i

u(xi)P̃i and 〈u〉Q̃ =
∑
j

u(yj)Q̃j

are expected utilities for the lotteries with respect to these subjective
probabilities. Thus, for this part of the process of comparison of two
lotteries, Alice assigns subjective probabilities (P̃i) and (Q̃j) given by
the square root transformation of the original probabilities (Pi) and
(Qj).

23 Then she calculates subjective expected utilities and compare
them. The final step of comparison is taking into account the sign of
the factor cos Θ. This is really nontrivial quantum counterpart of the
decision process.

We remark that the square root transformation of probabilities
can be directly coupled to selection of weighting functions in prospect
theory, see (1) in introduction.

Process 2: Now we analyze the counterpart of the decision mak-
ing process based on the comparison average given by the quantity

1

2
tr DσA =

∑
i,j,m

ujm

√
p(m|i)PiPj cos Θij;m,

see (23). In this subprocess Alice uses only the part of her belief-
state (given by ΨA) representing her beliefs about the A-lottery. She

22We remark that
∑
i P̃i = 1 and

∑
j Q̃j = 1.

23The latter can be treated as objective statistical probabilities. As was pointed out
in introduction, the quantum formalism specifies the square root transformation as the
map determining subjective probabilities. This is the very special form of the weighting
function, see (1), used in the classical SEU-theory. As was already pointed out, it is
important to find purely psychological justification for fixing λ = 1/2 in (1).
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compares these A-beliefs with possible transitions to the B-states.
Such transitions are expressed through the transition probabilities
p(m|i) = p(ia → mb) and the phases θia→mb

and γia→mb
. These phases

represent correlations between the events (A, xi) and (B, xm). These
quantities are of the subjective nature. Alice tries to treat two lot-
teries separately, but she has a variety of correlations between them
coming from the analysis of the situation and the previous experience.
The transition probabilities p(m|i) are also subjective quantities.

To simplify analysis, we again assume that all trasition phases
Θij;m are equal, i.e., ΘA ≡ Θij;m. Besides the subjective probabilities
P̃i, we consider subjective probabilities of transition from the lottery
A to the lottery B given by

Q̃m;A =

∑
i

√
p(m|i)Pi∑

i,m

√
p(m|i)Pi

. (29)

(We have
∑

m Q̃m;A = 1.)24 Consider now the normalized quantity

trDσA

2
∑

i,j,m

√
p(m|i)PiPj

=
[∑

j

u(xj)P̃j −
∑
m

u(ym)Q̃m;A

]
cos ΘA

= [〈u〉P̃ − 〈u〉Q̃A
] cos ΘA,

where the quantities in the brackets are expected utilities with re-
spect to the corresponding subjective probability distributions. Thus
in this decision subprocess Alice assigns subjective probabilities to
the A-events (by using the square root transformation). Then she
assigns subjective probabilities p(m|i) for transitions ia → mb. They
can be interpreted in the following way. Alice assumed that the event
(A, xi) would happen (with the probability P̃i, but with the probabil-
ity p(m|i) she changes her mind and assumes that the event (B, ym)
would happen. The output of such mental fluctuations is assignment of
subjective probability to the events (B, ym) conditioned on the beliefs
about the A-states, the probability Q̃m;A. Then Alice computes the
difference between expected utilities. If cosΘA ≥ 0, then she uses this
difference to order the lotteries as A � B. However, if cos ΘA ≤ 0,
then B � A. Thus the ordering is opposite to SEU-ordering. (We
recall that this is not the final ordering of the lotteries, but just or-
dering generated by the subprocess under consideration.) From the
viewpoint of classical SEU-theory, this situation seems to be coun-
terintuitive. The role of phases in quantum-like modeling of lottery

24If Alice were acting on the basis of the classical (Kolmogorov) probability and if she
were not using the square root weighting of probabilities, then the quantity Q̃m;A would
be equal to the original probability Qm =

∑
i p(m|i)Pi.
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selection is a complex question. It was discussed in (Asano et al.,
2017), where the cos θ-factor was associated with risks.

Process 3:
The counterpart of the decision process based on comparison cor-

responding Alice’s beliefs about the B-lottery is analyzed similarly
- again under the assumption of coincidence of all phases: in (24)
ΘB ≡ Θij;n. Consider subjective probabilities of transition from the
lottery B to the lottery A given by

P̃n;B =

∑
i

√
p(n|i)Qi∑

i,n

√
p(n|i)Qi

. (30)

(We have
∑

m P̃n;B = 1.) Then we have

trDσB

2
∑

i,n

√
p(n|i)QiQj

=
[∑

n

u(xn)P̃n;B −
∑
j

u(yj)Q̃j

]
cos ΘB (31)

= [〈u〉P̃B
− 〈u〉P̃ ] cos ΘB.

Thus the output of this counterpart of the decision process is based
on comparison of subjective expected utilities and relative phases.
One of the expected utilities is based on the subjective account of
probability of the transition (in Alice’s mind) from the beliefs about
the B-lottery to the A-lottery and another is so to say straightforward
subjective probability based on the square root transform of the initial
probabilities (Qj).

Process 4:
Finally, we analyze the most complicated counterpart of the pro-

cess of decision making corresponding to the comparison term ∆2.
This term compares the utilities of transitions B → A and A → B
when Alice appeals to the counterparts of her state representing be-
liefs about these transitions. This process is characterized by ambi-
guity and intensive fluctuations of Alice’s mind in both directions;
the intensity of these fluctuations is given by the transition proba-
bilities p(na|jb) = p(jb → na) and p(mb|ia) = p(ia → mb). Cor-
relations between outcomes of lotteries are encoded in the phases
θjb→na , θia→mb

= −θmb→ia . Since the general form of dependence of
∆2 on the phases is very complex, we again assume that

∆2 =
∑
i,j,n,m

unm

√
p(mb|ia)p(na|jb)PiQj cos Γ, (32)

where Γ = θjb→na−θia→mb
+γna→mb

+θbj−θai. Now, as in the previous
processes, we can represent this comparison term as difference of two
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expected utilities with respect to the subjective probabilities (P̃i;B)
and (Q̃j;A) :

∆2∑
i,j,n,m

√
p(mb|ia)p(na|jb)PiQj

cos Γ

=
[∑

n

u(xn)

∑
i

√
p(n|j)Qj∑

j,n

√
p(n|j)Qj

−
∑
m

u(ym)

∑
i

√
p(m|i)Pi∑

i,m

√
p(m|i)Pi

]
cos Γ =

[〈u〉Q̃A
− 〈u〉P̃B

] cos Γ.

To finalize this the most complex counterpart of the process of com-
parison of the lotteries, Alice takes into account the signs of difference
between subjective expected utilities and of the interference cos-term.

Complete process of lottery selection. Under the simplifica-
tion assumption about phases, we can write the average of the com-
parison operator as

〈D〉Ψ = c1[〈u〉P̃ − 〈u〉Q̃] cos Θ + c2[〈u〉P̃ − 〈u〉Q̃A
] cos ΘA (33)

+c3[〈u〉P̃B
− 〈u〉P̃ ] cos ΘB + c4[〈u〉Q̃A

− 〈u〉P̃B
] cos Γ.

where the weights cj > 0, j = 1, 2, 3, 4, can be found in the above
considerations for the subprocesses 1-4.

In the accordance with the decision rule, if 〈D〉 ≥ 0, then A � B.

8 Example: lotteries with two outcomes

Consider two lotteries, A and B, having two outcomes (x1, x2) and
(y1, y2) and the utilities, ui = u(xi) and vj = u(yj). The probabilities
Pi, Qj will be specified later. We start with calculation of the matrix
of the comparison operator D in the basis |1a〉, |2a〉. By definition we
have

D = (u1 − v1)[|1a〉〈1b|+ |1b〉〈1a|] + (u1 − v2)[|1a〉〈2b|+ |2b〉〈1a|]

+(u2 − v1)[|2a〉〈1b|+ |1b〉〈2a|] + (u2 − v2)[|2a〉〈2b|+ |2b〉〈2a|].

Consider in the qubit space two bases

|1a〉 =

(
1
0

)
, |2a〉 =

(
0
1

)
. (34)

and

|1b〉 = (|1a〉+|2a〉)/
√

2 =
1√
2

(
1
1

)
, |2b〉 = (|1a〉−|2a〉)/

√
2 =

1√
2

(
1
−1

)
.

(35)
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We can find the matrix of the comparison operator D in the basis
|1a〉, |2a〉 :

D =
1√
2

(
4u1 − 2v1 − 2v2 2u2 − 2v1

2u2 − 2v1 2v2 − 2v1

)

8.1 Starting with the uniform probability dis-
tributions

Let now P1 = P2 = Q1 = Q2 = 1/2, i.e.,

|ψA〉 = = (|1a〉+|2a〉)/
√

2 =
1√
2

(
1
1

)
, |ψB〉 = (|1b〉+|2b〉)/

√
2 =

(
1
0

)
.

(36)

|ψ〉 = |ψA〉+ |ψB〉 =
1√
2

(
1 +
√

2
1

)
. (37)

We obtain the following inequality determining selection of lotteries:
〈ψ|D|ψ〉

= C
(

(1+
√

2)2u1+(1+
√

2+1)u2−((1+
√

2)2+2(1+
√

2)+1)v1−((1+
√

2)2−1)v2

)
=

= C ′
(

[(1 +
√

2)u1 + u2]− [(1 +
√

2)v1 + v2]
)
≥ 0, (38)

where C,C ′ are positive factors.
The main point is that the weights of utilities for both lotteries

coincide with the coefficients (up to normalization) in the expansions
of the (unnormalized) state |ψ〉 (which combines Alice’s beliefs about
the lotteries) with respect to the corresponding bases. We can rewrite
the comparison inequality as follows

(u1P̃1 + u2P̃2) ≥ (v1Q̃1 + v2Q̃2), (39)

where the subjective probabilities are given by the expressions:

P̃1 = Q̃1 =
(1 +

√
2)

2 +
√

2
=

1√
2
,

P̃2 = Q̃2 =
1

2 +
√

2
.

Thus by using the state expansion with respect to the A-basis, see (34),
and by treating amplitudes, the coefficients with respect to the A-basis,
as subjective probabilities, Alice calculates SEU for the A-lottery. We
stress that she uses the subjective “probabilities-amplitudes” encoded
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in the state |ψ〉 combining beliefs about both lotteries and not proba-
bilities (objective or subjective) encoded in the state |ψA〉 representing
solely beliefs about the A-lottery. Now we remark that the complete
belief state |ψ〉 can be represented as well in the form:

|ψ〉 = (1 +
√

2)|1b〉+ |2b〉. (40)

Alice uses this representation to calculate SEU for the B-lottery.
How can one explain, e.g., the increase of probability of the out-

come x1 comparing with the outcome x2? In the state |ψA〉 both these
outcomes are equally possible. Now Alice started to combine (by using
the rules of quantum logic)25 the beliefs about the two lotteries and
she found that some beliefs about the B-lottery encoded in the state
|ψB〉 can be interpreted as the beliefs in favor of the outcomes x1 and
x2, but the additional weight assigned to x1 is higher than the weight
assigned additionally to x2. (In our example the latter is zero.) This
is a kind of constructive and destructive interference for probabilities
assigned to beliefs in favor of the outcomes x1 and x2, respectively.
We recall that

|ψB〉 = (|1b〉+ |2b〉)/
√

2 =
1

2
[(|1a〉+ |2a〉) + (|1a〉 − |2a〉)]. (41)

The beliefs in favor of x1 which are present in the states |1b〉, |2b〉 in-
terfere constructively and beliefs in favor of x2 interfere destructively.

In this simple two dimensional example we considered the quan-
tum process of lottery selection straightforwardly as weighting of the
utility function with respect to the coefficients in the expansion of the
complete belief-state with respect to lotteries’ bases and comparison
of such weighted sums - ‘averages”. ‘The example is good for the illus-
trative purpose, since here the coefficients are positive. This gives the
possibility to interpret them straightforwardly as probabilities and the
weighted sums as averages of SEU. In general such direct coupling to
subjective probability is impossible, see appendix 2, where we consider
the case of lotteries with arbitrary objective probabilities P1, P2 and
Q1, Q2. As was shown in section 7, in general such coupling can be
established through decomposition of the process of decision making
into four subprocess. Each of them can be described in terms SEU
with QP-realization of subjective probabilities. The example of this
section can (but need not) be considered as a sign that it may be
that decision makers do not use the language of probability (neither
objective nor subjective) at all, but they proceed with signed or even
complex weighting of utility, see appendix 2 for continuation of this
discussion.

25These rules are formally represented by linear algebra in complex Hilbert space. So,
Alice expands |ψB〉 with respect to the A-basis.
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9 Concluding remarks

In this paper we present a novel quantum-like model of lottery se-
lection based on representation of beliefs of an agent by pure quan-
tum states. Subjective probabilities are mathematically realized in
the framework of QP. Utility functions are borrowed from the clas-
sical theory, but they are represented not only by their values. In
the quantum representation each event of realization of an outcome
of a lottery and its utility are “blurred”. Heuristically one can say
that each value ui = u(xi) is surrounded by a cloud of information re-
lated to the event (A, xi). An agent process this information by using
the rules of quantum information and QP. In general this process is
very complex; it combines fluctuations between preferences for differ-
ent outcomes of lotteries. These fluctuations induce interference type
effects (constructive or destructive). The decision process which is
formally represented by the comparison operator can be decomposed
into a few subprocesses. Each of them can be formally treated as
comparison of SEUs and interference factors (the latter express, in
particular, risks related to lottery selection).

Model’s structure is very rich and further analysis of this structure
will demand essential mathematical and interpretational efforts and
we plan to continue research in this direction.
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Appendix 1: calculations of quantum

averages

We start with calculation of average trDB→AσA.

trDB→AσA = tr
(∑
n,m

unme
iγmb→na |na〉〈mb|

)(∑
i,j

√
PiPje

i(θai−θaj)|ia〉〈ja|
)

=
∑
i,j,n,m

unm
√
PiPje

i(θai−θaj+γmb→na )〈ja|na〉〈mb|ia〉
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By using the definition of quantum transition (conditional) probabil-
ities, see (4), (5), we obtain:

trDB→AσA =
∑
i,j,m

ujm

√
p(mb|ia)PiPjei(θia→mb

+γmb→ja+θai−θaj)

In the same way we obtain

trDA→BσA = −tr
(∑
n,m

unme
iγna→mb |mb〉〈na|

)(∑
i,j

√
PiPje

i(θai−θaj)|ia〉〈ja|
)

= −
∑
i,j,n,m

unm
√
PiPje

i(θai−θaj+γna→mb
)〈na|ia〉〈ja|mb〉

= −
∑
i,j,m

uim

√
p(ja|mb)PiPje

i(θmb→ia+γia→mb
+θai−θaj)

This gives us expression (23) for trDσA. The calculations leading to
expression (24) for trDσB just repeat the previous ones.

Now we find traces for comparison operators and “transition states”:

trDB→AσB→A = tr
(∑
n,m

unme
iγmb→na |na〉〈mb|

)(∑
i,j

√
PiQje

i(θai−θbj)|ia〉〈jb|
)

∑
i,j,n,m

unm
√
PiQje

i(θai−θbj+γna→mb
)〈jb|na〉〈mb|ia〉

=
∑
i,j,n,m

unm

√
p(na|jb)p(mb|ia)PiQjei(θia→mb

−θjb→na+γna→mb
+θai−θbj).

trDA→BσB→A = −tr
(∑
n,m

unme
iγna→mb |mb〉〈na|

)(∑
i,j

√
PiQje

i(θai−θbj)|ia〉〈jb|
)

= −
∑
i,j,n,m

unm
√
PiQje

i(θai−θbj+γna→mb
)〈jb|mb〉〈na|ia〉

= −
∑
i,j

uij
√
PiQje

i(θai−θbj+γia→jb
).

In the same way

trDA→BσA→B = −
∑
i,j,n,m

unm

√
p(mb|ia)p(na|jb)PiQjei(θjb→na−θia→mb

+γmb→na+θbj−θai)

and

trDB→AσA→B = tr
(∑
n,m

unme
iγmb→na |na〉〈mb|

)(∑
i,j

√
PiQje

i(θbj−θai)|jb〉〈ia|
)

=
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∑
i,j

uij
√
PiQje

i(θbj−θai+γjb→ia ).

Thus

∆1 =
1

2
tr(DB→AσA→B−DA→BσB→A) =

∑
i,j

uij
√
PiQj cos(θbj−θai+γjb→ia).

(42)
Then

∆2 =
1

2
tr(DB→AσB→A −DA→BσA→B) =

1

2

∑
i,j,n,m

unm

√
p(na|jb)p(mb|ia)PiQjei(θia→mb

−θjb→na+γna→mb
+θai−θbj)

−1

2

∑
i,j,n,m

unm

√
p(mb|ia)p(na|jb)PiQjei(θjb→na−θia→mb

−γna→mb
+θbj−θai).

Finally, we get

∆2 =
∑
i,j,n,m

unm

√
p(mb|ia)p(na|jb)PiQj cos(θjb→na−θia→mb

+γna→mb
+θbj−θai).

(43)

Appendix 2: lotteries with two outcomes

and arbitrary probabilities

We consider the same bases for the lotteries as in section 8, see (34),
(35), but now the probabilities P1, P2 and Q1, Q2 are arbitrary.

|ψA〉 =
√
P1|1a〉+

√
P2|2a〉, |ψB〉 =

√
Q1|1b〉+

√
Q2|2b〉. (44)

The complete belief-state can be written as

|ψ〉 = c1|1a〉+ c2|2a〉, (45)

where

c1 =
√
P1 +

√
Q1 +

√
Q2√

2
, c2 =

√
P2 +

√
Q1 −

√
Q2√

2
. (46)

Hence, the decision inequality has the form:

〈ψ|D|ψ〉 ∼
(

[2c2
1u1 +2c1c2u2]− [(c1 + c2)2v1 +(c2

1− c2
2)v2]

)
≥ 0. (47)

It can be rewritten as

〈ψ|D|ψ〉 ∼ 2c1[c1u1 + c2u2]− (c1 + c2)[(c1 + c2)v1 + (c1 − c2)v2]
)
≥ 0.

(48)
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Thus Alice assigns to the outcomes of the lotteries the weights c1, c2

and d1 = c1 + c2, d2 = c1 − c2. As we have seen in (45), the weights
c1, c2 correspond to the coefficients in the expansion of the complete
state |ψ〉 with respect to the A-basis. It is easy to see that

|ψ〉 =
d1|1b〉+ d2|2b〉
‖d1|1b〉+ d2|2b〉‖

. (49)

The comparison inequality (48) can be written as comparison of two
subjective utilities with respect to the probabilities:

P̃1 =
c1

c1 + c2
=

√
P1 +

√
Q1+

√
Q2√

2√
P1 +

√
P2 +

√
2Q1

, (50)

Q̃1 =
c1 + c2

2c1
=

√
P1 +

√
P2 +

√
2Q1

2[
√
P1 +

√
Q1+

√
Q2√

2
]
, (51)

and P̃2 = 1− P̃1, Q̃2 = 1− Q̃1. Thus

〈ψ|D|ψ〉 ∼
(

(c1 + c2)[u1P̃1 + u2P̃2]− 2c1[v1Q̃1 + v2Q̃2]
)
≥ 0. (52)

However, as was emphasized in section 8, generally the quantities
P̃1, P̃2 and Q̃1, Q̃2 cannot be interpreted as probabilities since P̃2 and
Q̃2 can become negative (and, hence, P̃1 and Q̃1 can become larger
than 1). Therefore to keep to the probabilistic reasoning, we have
to split the process of comparison of the lotteries in the four compo-
nents (see section 7); each of this component can be interpreted as
comparison of two subjective utilities.

At the same time appearance of negative and even complex “prob-
abilities” is rather common in quantum theory, starting with works of
Dirac and Wigner, see Khrennikov (2009) for detailed review. One can
proceed formally with such signed or complex distributions and de-
velop sufficiently advanced mathematical formalism, including analogs
of the central limit theorem and the law of large numbers (Khrennikov,
2009) . Recently signed “probabilities” were actively used to model
the proces of decision making (de Barros et al., 2016, 2017). One can
consider the calculus of signed (or even complex) distributions as an
alternative to the QP-calculus.
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