essd-10-1093-2018.pdf (14.73 MB)
Download file

The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses

Download (14.73 MB)
journal contribution
posted on 18.09.2018, 13:35 by Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, Suranjana Saha
The Global Energy and Water cycle Exchanges (GEWEX) Data and Assessments Panel (GDAP) initiated the GEWEX Water Vapor Assessment (G-VAP), which has the main objectives to quantify the current state of the art in water vapour products being constructed for climate applications and to support the selection process of suitable water vapour products by GDAP for its production of globally consistent water and energy cycle products. During the construction of the G-VAP data archive, freely available and mature satellite and reanalysis data records with a minimum temporal coverage of 10 years were considered. The archive contains total column water vapour (TCWV) as well as specific humidity and temperature at four pressure levels (1000, 700, 500, 300 hPa) from 22 different data records. All data records were remapped to a regular longitude–latitude grid of 2°  ×  2°. The archive consists of four different folders: 22 TCWV data records covering the period 2003–2008, 11 TCWV data records covering the period 1988–2008, as well as 7 specific humidity and 7 temperature data records covering the period 1988–2009. The G-VAP data archive is referenced under the following digital object identifier (doi): https://doi.org/10.5676/EUM_SAF_CM/GVAP/V001. Within G-VAP, the characterization of water vapour products is, among other ways, achieved through intercomparisons of the considered data records, as a whole and grouped into three classes of predominant retrieval condition: clear-sky, cloudy-sky and all-sky. Associated results are shown using the 22 TCWV data records. The standard deviations among the 22 TCWV data records have been analysed and exhibit distinct maxima over central Africa and the tropical warm pool (in absolute terms) as well as over the poles and mountain regions (in relative terms). The variability in TCWV within each class can be large and prohibits conclusions about systematic differences in TCWV between the classes.

History

Citation

Earth System Science Data, 2018, 10 (2), pp. 1093-1117

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

VoR (Version of Record)

Published in

Earth System Science Data

Publisher

Copernicus Publications

issn

1866-3508

eissn

1866-3516

Acceptance date

01/06/2018

Copyright date

2018

Available date

18/09/2018

Publisher version

https://www.earth-syst-sci-data.net/10/1093/2018/

Language

en

Usage metrics

Categories

Keywords

Licence

Exports