2021_Liu_P_PhD--added-DOI-ch4(1).pdf (41.11 MB)
Download file

Learning Digital Geographies through Geographical Artificial Intelligence

Download (41.11 MB)
posted on 11.01.2022, 14:44 by Pengyuan Liu
As the distinction between online and physical spaces rapidly degrades, digital platforms have become an integral component of how people’s everyday experiences are mediated. User-generated content (UGC) shared on such platforms provides insights into how users want to represent their everyday lives, which augments and reinforces our understanding of local communities through time and layers dynamic information across and over the geographic space. Inspired by the development of the newly arisen scientific disciplines within geography: geographical artificial intelligence (GeoAI), this thesis adopts deep learning approaches on graph representations of human dynamics illustrated through geotagged UGC to explore how place representations are augmented and reinforced through users’ spatial experiences by classifying their multimedia activities and identifying the spatial clusters of UGC at the urban scale. Having the place representations described through UGC, this thesis explores how these representations can be used in conjunction with various official spatial statistics to understand and predict the dynamic changes of the socio-economic characteristics of places.
The principal contributions of this thesis are: (1) to provide frameworks with higher classification and prediction accuracy but requiring fewer sample data; thus, contributing to an advanced framework to summarise spatial characteristics of places; (2) to show that multimedia content provides rich information regarding places, the use of space, and people’s experience of the landscape; thus, benefiting a better understanding of place representations; (3) to illustrate that the spatial patterns of UGC can be adopted as a valuable proxy to understand urban development and neighbourhood change; (4) to reinforce the concept that Spatial is Special. Spatial processes are commonly spatially autocorrelated. The mainstream of machine learning methods do not explicitly incorporate the spatial or spatio-temporal component to address such a speciality of spatial data. This thesis highlights the importance of explicitly incorporating spatial or spatio-temporal components in geographical analysis models.



Stefano De Sabbata; Yudong Zhang

Date of award


Author affiliation

School of Geography, Geology and the Environment

Awarding institution

University of Leicester

Qualification level


Qualification name