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Spatio-thematic Accuracy in the Evaluation of the English Safer Cities Programme

Abstract

The Safer Cities Programme in England as a whole implemented over 3,600 crime 
prevention schemes in 20 cities between 1988-1995 (total costing £30 million). The 
large-scale evaluation of the Programme ’s impact on domestic burglary has estimated 
that, overall, schemes of the Safer Cities Action reduced burglaries by 56,000 and were 
cost-effective (a saving of about £31 million). Using two cities: Bristol and Coventry 
within the Safer Cities Programme as a case study, this research aims to explore some 
of the accuracy issues in the GIS processing involved in the evaluation. This thesis a) 
describes how spatio-thematic accuracy can be estimated using Monte Carlo and 
dasymetric methods within the context of the Safer Cities Programme Evaluation; b) 
thereby provides a precise quantitative statement on the errors involved in the 
geographical data processing; and c) examines how spatial errors may affect the 
conclusion of the Evaluation using multi-level modelling. On average, the results show 
that the overlay method used in the Evaluation has over-estimated the household 
counts by 3.6% and 5% for Bristol and Coventry respectively. Subsequently, the 
Safer Cities Programme Evaluation has underestimated the action intensity by -0.8 
and -9% and the burglary risk by -7%  and -5%  (for Bristol and Coventry 
respectively). Multi-level modelling shows that the mean errors due to the spatial 
interpolation estimated by the Monte Carlo dasymetric method are -1.5%, 2.3% and
0.7% for Coventry, Bristol, and the two cities combined respectively. In all cases, 
these are well within the standard errors generated by the overlay method. It is 
concluded that spatial and thematic errors have no significant impact upon the 
conclusions of the Safer Cities Programme Evaluation. However, spatial analyses 
show that potential burglary hot spots might have been missed as a result o f such 
errors in crime pattern analysis. The analysis o f the error distribution shows that a 
geographical area would have a higher error rate if it has: dense population; is near 
the city centre; or has an irregular geographical boundary. The implications in GIS 
applications, and crime prevention fo r  decision and policy makers are discussed.
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Plate 1: Monte Carlo simulation on Bristol satellite image 1995. Oil on canvas. 20” x 40”.



Preface

My journey

As a child, influenced by my Chinese culture, I thought that one would find a meaning 

through education. Such a search took me away from my homeland (Hong Kong, a 

former British colony) to England. Later, I was told that getting a PhD would be the 

highest academic achievement. The award was perceived as a marker of one’s destiny 

on the journey of searching for a meaning, whatever that meaning might be. My 

journey has taken twenty-two years. During this time, I got married, have a daughter, 

trained as a psychologist, work as a scientist, and in my own time, practise as an artist.

The PhD itself has taken me 5 years and 11 months to complete. It took me one year 

to find out what to do, more than one year to work out how to do it and gather all the 

data sets required, and another year to implement the methodology. Surprisingly, it 

has taken two and half years to write it all up. The writing up is a far more dynamic 

process than I expected. It has enabled me to discover areas of omission, which 

required further analyses. In other words, the writing up of this thesis is an integral 

part of the research process.

Expression: one/1 /we; active voice /  passive voice

Traditionally, a passive voice is encouraged within a scientific discipline to emphasise 

one’s objectivity. Other disciplines tend to encourage an active voice for readability. 

The style of writing follows a fashion of the culture, which changes in cycles. 

Ultimately it is a matter of personal taste. It depends on the object or subject to be 

emphasised in the sentence. A PhD thesis emphasises one’s originality. Since this 

research is based on the work carried out by a whole research team which I was a 

member of, there is an occasion that is difficult to disentangle between the two. So 

the subject ‘we’ is used to refer to the evaluation team as a whole within the context 

of the Safer Cities Programme. The subject ‘I’ is used to refer to the work carried out 

by me. For a general statement I use ‘one’ or a passive voice when the object is the 

subject for discussion.



Art, science and process

I use scientific knowledge to inform my work of art, and my artistic practice to 

articulate my scientific research. For instance the satellite image of Bristol was 

painted in oil on canvas and the Monte Carlo simulation was performed by throwing 

dots of white paint at random on the canvas from a distance (Plate 1). The process 

enabled me to consolidate my thought on the methodology on this research (though its 

implementation in Lisp-Stat was somewhat tricky).

While writing up the thesis, I was invited to review the two minute aeroplane factory 

exhibition by Chris Burden at the Tate in London. The installation consisted of an 

automatic assembly line to manufacture and fly model aeroplanes at the rate of one 

every two minutes. The planes were made of balsa wood, tissue paper, rubber bands 

and plastic. The process of science and technology was laid bare in front of 

spectators, and regarded as a work of art. This further blurred the boundary between 

art and science. It emphasised the process. In a similar vein, the process of doing this 

research has been laid bare for the reader to examine. While there is a strict definition 

about what science or scientific practice is, there is no formal definition of art. If one 

defines art as what an artist produces, this thesis is a work o f art.

Coming home

The completion of this thesis coincides with the first international symposium on 

Spatial Data Quality, which happens to be in Hong Kong this summer. Although I 

(with my family) have been back to Hong Kong many times, going home to present 

the summary of this research at the symposium has a symbolic meaning to me. It is a 

classic Chinese story, which depicts a young man who left home in search of 

education and the highest position with the emperor, through a long and difficult 

journey, finally achieved the success and returned home. The famous legend Butterfly 

Lovers (Liang Shan Bo and Zhu Ying Tai set in the fourth century in Southern China) 

is one of the variance derived from such a story line. The story has a good ending. It 

is with such a note that I would like this preface to end, and the thesis to begin. I hope 

the reader would enjoy tracing some of the steps I took during my journey of this 

research.
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Chapter 1 Introduction

Chapter One 

Introduction

The subject of this research is to explore some of the accuracy issues in the application of 

Geographical Information systems (GIS) within the specific context of the Safer Cities 

Programme Evaluation. GIS is now a mature technology widely used in industry across 

different disciplines. Thus this study would not seek to define what GIS is but focus on 

the issue of spatial data operations within the context of criminology in general and a 

crime prevention initiative in particular, namely the Safer Cities Programme. It is 

assumed that the readers would be familiar of what GIS is. For those who would like to 

follow up the history and definitions of GIS, they are advised to refer to the literature (see 

McHarg, 1969; Berry, 1987; de Man, 1988; Carter, 1989; for historical development; and 

for debate on the concept of GIS, Maguire, 1991; Goodchild, 1990; Openshaw, 1991).

In recent years, practical applications of GIS stretch from decision analyses to decide on 

the location of supermarkets, and fire stations (Strang, 1996) to the analyses of the spatial 

distribution of crimes and their preventive action. Since the Home Office in Britain is 

regarded as the ‘Law and Order Department’ within which this case study is placed, this 

research is primarily concerned with the evaluation of crime preventive action using GIS 

(Law and Ekblom, 1996). “Reduction in crime, particularly juvenile crime, the fear of 

crime, and maintenance of good order” - is the number one aim (of the seven) in the 

Home Office’s new statement of purpose (Home Office Annual Report, 1998, also see 

Appendix 1). As one will see later, the aims of the Safer Cities Programme supported 

this. The impact of GIS technology is not limited within the boundary of geography as a 

discipline, but also other disciplines such as social science and economics within a wider 

context. However, in order to focus the domain of this research, this chapter overviews 

specifically the impact of GIS in general upon crime pattern analyses and policy making 

which are relevant to the concerns of the Home Office. GIS has been seen by both the 

Home Office and police forces as an important crime analytical tool for understanding 

crime problems and the development of crime prevention measures. The question, ‘Can

1



Chapter 1 Introduction

crime pattern analysis make a significant contribution to reducing levels of crime?’ has 

been one of the major pre-occupations for the Home Office as exemplified by the Safer 

Cities Programme upon which this case study is based.

As an introduction, this chapter locates the specific context of this research within a 

global context of GIS applications in crime prevention. This chapter examines the 

theoretical importance of the topic. Section 1.1 describes the impact of GIS technology 

upon the general context of crime prevention and policy making. Section 1.2 briefly 

introduces some of the particular concerns on the accuracy issues in the GIS processing 

which is to be further explored in this research. Section 1.3 outlines the structure of this 

thesis.

1.1 Impact of GIS technology on criminology and policy making

In the last fifteen years, there have been increasing uses of GIS in crime reduction 

programmes around the globe. Ecological research in criminology has received a revived 

interest as a result of using GIS to handle aggregational data (Bursik, 1988, Farrington et 

al.y 1993; Sampson and Groves, 1989). Shaw and McKay (1972) have used GIS to study 

delinquency patterns in Chicago neighbourhoods. In general, studies of the scenes of 

crime in terms of their area characteristics have formed a major theme of empirical 

research in criminology (Brantingham and Brantingham, 1991). The advances of GIS 

technology have enabled a revival of the formal application of ecological concepts to the 

analysis of crime problems and, more generally, to understanding social changes and 

conflicts in cities (the concept known as Chicago School in 1930s, see Park, 1936).

On the operational level, most police forces in Britain over the years would have 

experimented with ‘pin-in-the-wall’ type maps. However, such a task is time consuming, 

and with limited flexibility, difficult to maintain. GIS’s unique ability to overlay separate 

data sets makes it an excellent tool for identifying factors related to the multidimensional, 

multifaceted crime problem (Rich, 1995). GIS enables crime problems in particular areas 

to be accurately identified. For example it provides an answer, in seconds, to questions

2



Chapter 1 Introduction

like, “Where did the burglaries with an entry via the back door in ‘A’ Division occur over 

a weekend?” This in turn assists in the development of efficient preventive measures to 

combat the problems identified. Furthermore, rather than rely solely on the police feeling 

of where the problems lie, it provides firm, factual evidence for the existence of problem 

areas. Even if the problems identified are already known to the police, the analysis 

provides a much more suitable basis for decision making. Applications of GIS can thus 

lead to more efficient policing by focusing attention on clearly identified problems and 

enabling limited human resources to be used more effectively (Houghton and Berry,

1989; Ratcliffe and McCullagh, 1998).

In the 1980s when GIS was relatively uncommon and expensive, staff in the Home Office 

already examined the range of micro-computer tools which might assist with crime 

pattern analysis; and in conjunction with Staffordshire Police, developed a prototype 

crime analysis system which could be used by a police force in an operational 

environment (Houghton and Berry, 1989).

More recently, there have been numerous studies reported which claim to use GIS for 

crime pattern analyses and policy decision aids. For example, Brunsdon (1989) 

developed an expert system using Bayes’ Theorem to analyse crime hot spots over time 

such as the hot spots shown in Figure 1.1. Johnson et al (1997) suggest that the 

geographical location of repeat victimisation may contribute to burglary ‘hot spots’. 

Systems that show not only the patterns of crimes on maps but also the relationships 

between levels of crime and the social, demographic and physical variables have also 

been reported (Hirschfield et al, 1995a & b; Hirschfield and Bowers, 1997; Bowers and 

Hirschfield, 1999). However, the study is inconclusive as it is based only on the recorded 

crime data available on Merseyside covering a twelve-month period. In contrast, the 

Safer Cities Programme evaluation reported in Chapter 2 is based on the recorded crime 

data available for 16 English cities and boroughs covering a six-year period (Ekblom et al 

1996a).

3
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Figure 1. 1: Burglary counts displayed in one of the Safer Cities.

At the same time as GIS development, there is a shift on the emphasis o f policing from 

police-based approach to community based crime prevention known as problem oriented 

policing (Goldstein, 1990; Rossmo and Fisher, 1993; Spelman and Eck, 1987). The 

implementation o f this approach has used GIS to map different forms of crime profiles. 

There is also an increase demand from the policy and decision-makers for these kinds o f 

crime reduction programmes (usually funded from central government) to be the subject 

o f vigorous evaluation.

4
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In the U.S., Maltz et al (1991) developed and implemented a crime pattern mapping 

system called Micro-computer-Assisted Police Analysis and Deployment System 

(MAPADS) for police and community groups based on the Chicago Police Department. 

The mapping system was found to have an impact upon the following areas:

• combining data sets from different sources

• providing an ‘institutional memory’ of a geographical area (beat)

• providing detectives with the ability to search spatial pattern more readily

• permitting ‘proactive management’

• improving community relations between the police and community organisations.

However since no formal evaluation was carried out to test the significance of the above 

impact, the observations were only indicative rather than conclusive.

In Australia, there was a similar crime prevention programme based on a target hardening 

approach at Waverley, Sydney (Devery, 1992). Although some form of evaluation was 

carried out by comparing the results with other areas within Sydney, the cost 

effectiveness of the programme could not be quantified as no cost data were collected to 

measure amounts of effort.

From the above, one can see that using GIS to help implement crime prevention 

programmes is not unique to England but a common trend across the globe. However, the 

Safer Cities Programme Evaluation was probably the largest and most comprehensive 

evaluation of a crime prevention programme in this century both in terms of its size, and 

scope. The Programme cost £30 million and its Evaluation took more than 30 person- 

years to complete. Chapter 2 describes the context of the Safer Cities Programme, and 

the outcome of its Evaluation. For a more comprehensive account of the Evaluation, see 

the attached Home Office Research Study (Ekblom et al, 1996a). The summary of results 

and conclusions is also published separately as the Home Office Research Findings 42 

(Ekblom, et al 1996b). The purpose of this research is not to substantiate the findings of

5



Chapter 1 Introduction

the Evaluation, but to take the opportunity, using the Safer Cities Programme as the 

context, to explore some of the accuracy issues in GIS processing (see Chapter 4).

1.2 GIS and spatial accuracy issues

There is now an emphasis from government and public sector bodies such as the Inter­

departmental Group for Geographical Information (IGGI) and the Association of 

Geographical Information (AGI) respectively on making the most efficient use of 

geographical information by sharing data. However, although the use of geographical 

data is rapidly increasing, our understanding of associated data processing error, 

especially for the integration of multiple spatial data sets (which is a typical application 

of GIS as exemplified by the Evaluation of the Safer Cities Programme) lags far behind 

(Lunetta et al., 1991). As the spatial data sets become a common source for many 

applications, accurate data handling using GIS become increasingly important. Indeed, 

based on a literature review and telephone interviews with thirty people from various 

public organisations, Rich (1995) identified the data quality issue as the most serious 

obstacle to the increased application of GIS for crime control and prevention.

The process of applying GIS to a crime prevention programme and its evaluation is 

problematic. It involves combining different kinds of data sets that have been acquired at 

different scales and to different levels of precision. Uncertainty about the accuracy in 

GIS processing becomes critical for this kind of data integration (Chrisman, 1984,

Tomlin, 1991). However, despite the advance of GIS technology, and its impact upon the 

wider community, error handling in GIS is still a relatively neglected area especially for 

the ‘end-users’ who are not GIS experts. Although future GIS may have modules 

addressing the problems of error, few incorporate such modules today (Drummond and 

Ramlal, 1992; Goodchild, 1995). Spatial accuracy is a major concern in GIS applications 

and it demands priority for research initiatives (Goodchild and Gopal, 1989; Lunetta et al, 

1991; Star et al, 1991).

6
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A comprehensive understanding of the nature of geographical information is crucial in 

the data manipulation process and for the success of GIS as a whole. We need to address 

questions such as: What are the consequences of bringing together different data sets 

which may be collected at different scales and times? How accurate is the overlay of 

different geographical features during the GIS processing? Usually, neither the GIS 

vendors (developers) nor the users are willing to take an extra effort to address issues of 

accuracy. This research ‘travels the extra-mile’ and attempts to explore some of these 

issues further.

13 Structure of the thesis

Conceptually, the structure of this thesis follows the classic research process:

1. reviewing literature (Chapter 2, 3)

2. formulating aims and objectives (Chapter 4)

3. developing methodology (Chapter 5)

4. implementing the method (Chapter 6, 7)

5. presenting and discussing the results (Chapter 8-11) with a conclusion (Chapter 12)

However, the large scale of the Safer Cities Programme Evaluation, and both the multi­

disciplinary and inter-disciplinary nature of this research have made the task of assessing 

the GIS accuracy challenging. In a sense I am attempting to ‘ride two horses’ at the same 

time: crime prevention practices and the GIS methodology. Each is an inter-disciplinary 

area. The literature review reflects this dual-concem. There are three blocks of literature 

review scattered around the first half of the thesis. Two of these are about the context of 

the case study. This is due to the dual nature of the context, that is, the Safer Cities 

Programme evaluation (Chapter 2) and the issues within it: the application of GIS 

(Chapter 3). In particular the GIS accuracy issue was singled out as one of the most 

important areas for detailed analyses (Chapter 5).

7
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From an initial literature review of spatial accuracy issues, a classification o f error 

groups is formulated which provides a framework for the subsequent exploration 

(Chapter 3). Chapter 4 sketches the outline of my research by mapping the general 

framework developed in Chapter 3 upon the specific context of the case study described 

in Chapter 2. It describes the aim, objectives, and scope of this research. A further 

literature review was carried out to formulate the methodology used in this research 

(Chapter 5). In particular, it provides a substantive review of the methods used in spatial 

error handling. Chapter 6 provides a quick but preliminary assessment of the accuracy in 

the Evaluation while Chapter 7 describes the detailed implementation of the more 

accurate but labour-intensive method. Chapters 8-10 present the results in a step by step 

fashion and show how the household counts, action intensity and the outcome of the 

burglary risk are affected by the accuracy assessment. Chapter 11 reports testing to see 

whether the results described above are significant or not by referring back to the context 

of the Safer Cities Programme Evaluation and examines how the results may affect its 

conclusion. Finally Chapter 12 provides the conclusion of this research, discusses its 

implication and indicates future research. Figure 1.2 shows the dynamic structure of this 

study which readers may find useful as a guide.
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Chapter 1 Introduction

2. Context 3. Classification

1. Introduction

6. Preliminary model
5. Methodology

7. Implementation

4. Aims and objectives

8-11. Analyses of Results I-IV

12. Conclusion and Discussion

Figure 1.2: Structure of the thesis

The next step is to examine the historical precedence for the Evaluation of the Safer 

Cities Programme upon which the case study is based. This is provided within the terms 

of references of Chapter 2.
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Chapter Two 

GIS within the context of the Safer Cities Programme Evaluation

The details of the Evaluation of Safer Cities Programme has been published in Home 

Office Research Study (164) on the Safer cities and domestic burglary and included in 

this thesis as addendum (Ekblom, et al 1996a). This chapter provides a summary 

description of the Evaluation. This is necessary as it provides detailed terms of reference 

and the historical precedence for this case study. Many aspects of the Programme are 

glossed over, but certain issues, in particular the technical details, are expanded. First, 

Sections 2.1 and 2.2 describe the historical context of the Phase one Safer Cities 

Programme and its evaluation, respectively. The rest of the chapter covers the evaluation 

methods from several perspectives. It starts with a general description of the evaluation 

strategy (Section 2.3); then more specifically the Scoping and Scoring principles used 

which are central to both data analyses and GIS processing in the evaluation. Section 2.5 

describes the various sets of data used, the conceptual linkages between the data which 

centre on a spatial database, and the practical linkages and storage in terms of hardware and 

software arrangements. Section 2.6 describes the selection of a specific crime type 

(domestic burglary) for the Evaluation and this research. The outcome of the Evaluation 

of the Safer Cities Programme is summarised in Section 2.7 for domestic burglary. 

Finally Section 2.8 discusses the issues of spatial accuracy in the Evaluation which this 

research attempts to address.

2.1 The context of the Safer Cities Programme in England

Phase one of the Safer Cities Programme was inaugurated in 1988 and wound up in 

Autumn 1995. Altogether, it cost about £30 million, including £8 million administrative 

costs. Substantial levered-in funds were also obtained from other sources. The Safer 

Cities Programme was set up by the Home Office as part of the British Government’s 

wider programme: Action for Cities, initiated by the former Prime Minister Margaret
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Thatcher to deal with the multiple social, physical and economic problems of some of the 

larger urban areas. The objectives of Safer Cities Programme were to:

1. reduce crime;

2. lessen fear o f crime; and

3. Create safer cities within which economic enterprise and community life could 

flourish.

Most Safer Cities initiatives were based locally. These were developed from the 1980s 

concept that crime is best tackled at the local level. The initiatives also adopted a 

‘partnership’ or multi-agency approach to crime prevention as exemplified by an earlier 

programme, the so-called ‘Five Towns’ initiative (Liddle and Bottoms, 1992; and 

Ekblom et al, 1996a).

Twenty English cities or boroughs (the so-called Safer Cities for short) were chosen for 

Phase one of the Programme implementation on the basis of the annual crime statistics 

collected by the Home Office. Four of the twenty cities were selected as ‘pilot projects’ 

to establish working procedures for the implementation of the Safer Cities Programme. 

The subsequent 16 cities of the above were included in the evaluation. These were: 

Birmingham; Bradford; Bristol; Coventry; Hartlepool; Hull; Islington; Lewisham; 

Nottingham; Rochdale; Salford; Sunderland; Tower Hamlets; Wandsworth; Wirral; and 

Wolverhampton (See Figure 2.1 for map).
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Figure 2.1: Safer Cities in England
^  Safer Cities in the county areas (each symbol may consist of more than one Safer City)

A local group was set up, which consisted of a co-ordinator and a small team, in each of 

the Safer Cities. The term Safer Cities project was used to refer to such local group and 

their activities in the context of the Programme. Each co-ordinator was guided by a 

steering committee representing local government, police, probation, voluntary bodies 

and commerce. The Safer Cities project co-ordinators were recruited locally and drawn 

from a wide range of backgrounds, including police, social work, probation and local 

government. They were given some initial training and support from professionals in the 

Home Office and elsewhere. They were also provided with an initial ‘crime and social 

profile’ of their local areas, by the Research and Statistics Department of the Home 

Office (now known as Research Development and Statistics Directorate, RDS). These 

profiles included a beat-by-beat picture of recorded crime rates and were time-consuming
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to produce. The Safer Cities project committees set the priorities for the project and 

oversaw implementation (Ekblom et al, 1996a; also see Tilley, 1992; Sutton, 1996 for a 

discussion of the roles of the co-ordinators and their committees).

Safer Cities Action /  Schemes

Safer Cities projects initiated a wide range of local preventive activities, including 

awareness-raising about crime prevention among citizens and local agencies such as 

burglary alarm systems, and the development of safety strategies in local communities 

such aS neighbourhood watch, training in the youth centres, and among others. These 

activities were called schemes within the context of the Safer Cities projects. These 

schemes were implemented by a variety of local organisations with grants up to £250,000 

annually per city from the Home Office (Safer Cities Programme) and other local or 

national resources on the ground. Altogether, the Safer Cities Programme initiated some 

3,600 schemes at a cost of £22m.

The crime preventive action (or action for short) was intended to take the rational, 

problem-oriented approach developed in the 1980s and 1990s (Tilley, 1993b; Laycock 

and Tilley, 1995; Sutton, 1996). The term ‘scheme’ is usually used to describe the crime 

preventive activities within the context of the Safer Cities Programme. The term ‘action’ 

is used specifically to describe the nature of the preventive action within the context of its 

Evaluation. This ‘preventive process’ involves the following steps:

1. Identify local crime patterns by analysing crime data and the contextual 

information.

2. Set objectives.

3. Adopt appropriate preventive measures (tailor-made rather than off-the-shelf).

4. Implement action.

5. Evaluate what has been done.

6. Make changes where necessary.

13
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The schemes deliberately addressed a wide range of crime problems using various 

methods. The crime problems were classified according to the Home Office’s catalogue 

of crime statistics. These included: assault, domestic violence, sexual assault, domestic 

burglary, commercial burglary, criminal damage, robbery, fraud, vehicle-related theft, 

shop theft, theft on person and other theft.

The majority of schemes focused on crime reduction (Programme Objective 1), while 

others addressed fear of crime (Programme Objective 2). Some schemes focused on the 

city as a whole (eg, through publicity campaigns, information initiatives such as crime 

prevention buses, or multi-agency programmes), and some schemes focused on 

vulnerable individuals, groups of homes, particular institutions (such as schools and 

clubs), or particular localities (eg, housing estates, car parks or city centres).

Preventive methods can be classified as either ‘situation’ or ‘offender-oriented’. The 

situation preventive action comprised measures such as better security hardware, alarms, 

improved lighting, and surveillance measures. The offender-oriented schemes covered 

youth work, holiday play schemes, credit unions, adventure playgrounds, employment 

advice, even morality plays in schools. Out of the 3010 schemes classified, 30% of the 

proximal components are offender-oriented, and 70% situational (for more detailed 

classification, see Law and Ekblom, 1996).

2.2 The evaluation of the Safer Cities Programme

Within the British socio-political context at that time, the Safer Cities Programme 

coincided with the Government’s Financial Management Initiative, and was subject to 

scrutiny in terms of value for money (cost-effectiveness). The Programme impact 

evaluation (required by the Treasury) was carried out by a team of social researchers and 

scientists within the former Research and Planning Unit (part of the Home Office RDS).

I was one of the scientists in the Evaluation Team responsible primarily to implement the 

evaluation strategy using GIS. The evaluation strategy was designed by the team leader 

Dr Paul Ekblom (Principal Social Researcher).
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Evaluation of the Safer Cities Programme is not to be confused with the local process 

evaluation conducted by the co-ordinators themselves. The latter was for ensuring that at 

least a minimal assessment was made of each scheme funded. The local process 

evaluations were part of the conditions of grant (see Youell’s, 1993, evaluation guide).

As such, they were carried out at a number of levels, for different purposes. The 

standards of the local process evaluations varied and were difficult to compare. For 

example, Tilley (1993a) evaluated a number of ‘themes’ such as Safer Cities schemes 

using CCTV in car parks and domestic burglary. The success which projects had in 

fostering local community safety strategies was also assessed (Tilley, 1992). This was to 

facilitate the continuation of local co-ordinated crime prevention after the Safer Cities 

projects closed as planned. Process evaluation assembled good practice information, 

used detailed retrospective case studies of ten selected burglary schemes was 

complementary to the much larger-scale Programme evaluation (see Tilley, 1993a; and 

Tilley and Webb, 1994 for details of the process evaluation).

In contrast to the process evaluation, the focus in the RDS study was on the impact of the 

Safer Cities Programme as a whole (and hence so-called impact evaluation). We 

attempted to answer two key questions in terms of the Programme Objectives:

1. Was there any change in crime and fear of crime in the Safer Cities project 

cities?

2. If so, to what extent can this change be attributed to the effects of Safer Cities 

actions, as opposed to other causes?

This was an extremely challenging task in terms of linking measures of Safer Cities 

action to measures of outcome, and collecting and integrating the wide range of data sets. 

Changes in crime were likely to be influenced by many local factors, and by background 

trends at city and national level. All these could mask any impact of Safer Cities and thus 

needed to be taken into account as much as possible. Furthermore, many schemes were 

small in resource terms, or spread thinly over large areas. Their individual impact was
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likely to be modest. It was best to consider a large number simultaneously. However, 

with the conventional single-scheme study, the location of the scheme, its timing, target 

crime problem (eg burglary) and target victim population (eg elderly residents) are all 

known in advance, a ‘bespoke’ evaluation can be designed around these parameters. By 

contrast, an ‘industrial-scale’ impact evaluation would require a general-purpose approach, 

given the number, variety and size range of the schemes (for example setting up youth 

activities, improving the security of doors and windows on entire council estates, funding 

all-female taxi services, or installing street lighting outside a retirement home). (See 

Ekblom, 1990; Ekblom et al, 1994; Ekblom and Pease, 1995; Polder, 1992; and Junger- 

Tas, 1993 for wider discussions of the difficulties of evaluating crime prevention 

initiatives.)

23  The Programme impact evaluation strategy

In answering the questions set out in the above (Section 2.2), we linked measures of 

preventive action to measures of outcome (crime surveys of residents, recorded crime 

statistics) at the small area level and looked for change in outcome differentially associated 

with the presence of action. We had to cope with the major difficulty of not knowing in 

advance where and when the schemes were to be implemented within the Safer Cities. To 

minimise the risks of delivering inconclusive findings, and to conduct a ‘fair test’ which 

balanced the risk of mistakenly reporting success of Safer Cities against that of 

mistakenly reporting failure, the strategy devised was ground-breaking in several ways, 

and as far as we know, represent a pioneering approach (Ekblom, 1992; Ekblom and Pease, 

1995, Law and Ekblom, 1994a & b; Ekblom et al, 1994; 1996a). This involved several 

steps:

1. Devise in advance of knowing where local schemes were to be implemented, a 

strategy for sampling small areas within each city which would give a good 

chance of hitting the eventual preventive action.
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2. Combine diverse sources of data covering different territorial units (EDs, beats, 

‘neighbourhoods’) using a GIS and its associated relational database.

3. Retrospectively, when the location of action was known, compare changes in 

crime in areas where there had been more action with areas with less or none (see 

internal comparison).

4. Compare changes in the Safer Cities with similar cities not in the Programme 

(see external comparison).

5. Consider the collective impact of a large number of schemes simultaneously 

(rather than conducting a series of single-scheme studies) to increase the 

likelihood of detecting the weak signal of the ‘Safer Cities effect’ against 

background noise in the form of strong local random fluctuation of crime levels.

6. Take a global view of Safer Cities Programme impact through a ‘dose-response’ 

analysis incoiporated within statistical modelling (the dose = the input of action 

within each small area; the response = change in outcome measure, such as the 

incidence of burglary, in the same small area).

7. In support of Step 6, develop ways of identifying which scheme had the 

potential, if it worked, to affect which outcome measure (see ‘scoping’).

8. Quantify the input of preventive action per measurement site, that was potentially 

detectable by the relevant outcome measure (see ‘scoring’).

9. Use multi-level modelling to explain variation in outcome measures such as 

crime victimisation or fear, in particular to take separate account of individual 

explanatory factors (such as survey respondents’ age or tenure) and area 

explanatory factors (including the score of preventive action and also contextual 

factors such as unemployment).

External comparison

Areas receiving Safer Cities action at some point over the three-year period were 

compared with those which did not. A set of nine (carefully matched) comparison cities 

was also examined to provide a picture of more general national trends in similar urban
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areas, over six years (including three years prior to the Safer Cities Programme). These 

cities were matched to Safer Cities equivalents by four 'family groups ’ taken from a 

classification of local authority districts based on the 1981 Census (Craig, 1985). They 

were also selected for comparability of total recorded crime rates over the period 1986- 

90.

To reduce cost and effort, areal unit-level data for the comparison cities were not 

collected. Instead, their city-level annual figures were used to construct two ‘indicators’ 

of crime rates. A global indicator was based on all comparison cities, with burglary 

incidence risk weighted to adjust the population composition by family group (in the 

comparison cities) to the composition in the Safer Cities. There was, however, 

considerable variation in crime trends observed between the family groups. Therefore, a 

family indicator was calculated separately for each family group of Safer Cities, based on 

the appropriate comparison cities. The comparison cities for the crime statistical analyses 

include: Barnsley, Burnley, Hackney, Haringey, Liverpool, Manchester, Oldham, Leeds 

and Southwark.

Internal comparison

For internal comparison, the outcome measure (such as the burglary counts) was 

converted into incidence rates per 100 households. For crime statistics, the standard beat 

maps were digitised by professional consultants (GDC Ltd). The spatial data were 

merged with population data from the 1991 Census on GIS by means of simple overlay 

operations. In effect, each beat was ‘tiled’ with the Census data from the EDs which 

most closely approximated its territory. This process also enabled us to link to the beats 

contextual data from the Census and its derivatives (such as the Index of Local 

Conditions, which is a set of measures of deprivation; DOE 1995). (Multi-level 

modelling is explained in detail later in the Methodology, Chapter 5).
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2.4. Scoping and Scoring principles

The scoping and scoring principles mentioned earlier (Step 7 and 8 in Section 2.3) are not 

only essential for quantifying the Safer Cities action, but also central to the use of GIS in the 

Evaluation. Furthermore, they provide a way of removing some of the irrelevant factors 

that derive from the vicissitudes of measurement, which otherwise would obscure 

relationships in the statistical modelling. This section re-describes the principles in detail.

Scoping

Scoping operates on the data to determine whether a given preventive scheme, if it

works, can be said to have the potential to influence a given outcome measure. There are

four dimensions to scoping (Ekblom et cd, 1994):

• Space - is a given scheme located close enough to a survey sampling point for the 

outcome measure (eg incidence of burglary) taken at that point to be potentially 

influenced?

• Time - is the timing of the action such that it was able to exert an influence on the 

outcome measure?

• Problem - space and time considerations apart, is there a plausible cause-effect 

relationship between the nature of the action in a given scheme, and the crime or fear 

problem covered by the outcome measure in question?

• Subgroups - is a given scheme directed towards a particular population subgroup - eg 

women? Does the outcome measure cover this subgroup (eg in a women-only question 

in the survey)?

To implement the scoping principle, we specified each outcome measure in terms of a Zone 

of Detection (ZD) whose dimensions correspond to the four aspects just outlined, and each 

scheme in terms of a Zone of Influence (ZI) characterised by the same four dimensions, and 

looked for the zone of overlap (ZO). To be in scope, a scheme had to overlap with the 

outcome measure on all four dimensions simultaneously. Figure 2.2 shows the relationship 

between ZI, ZD, and ZO.
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ZI

ZO

ZD

Figure 2. 2: An idealised diagram representing the scoping process

We chose the smallest feasible units for defining the space and time dimensions of ZD, ZI 

and ZO - namely the 1991 Census Enumeration District (ED) and the month, for the 

Survey, and beat and year for the crime statistics.

Scoring

Our outcome measures cover for example the risk of being burgled over a particular time 

period, averaged over a group of respondents sampled in a particular geographical area (e.g. 

an ED as the ZD). The risk is averaged as a population estimate per 100 households in the 

ZD, for burglary, say; or per individual in the ED, for assault. Generalising, either 

households or individuals are the unit at risk o f victimisation. To link this outcome measure 

to dosage in a conceptually tight way suitable for statistical modelling, we devised a score 

representing the dose of input of preventive action received, for the same units - i.e. the 

input per unit at risk o f victimisation.

Since we did not know exactly which household or individual has received any input from a 

given scheme, we worked with averages on this side of the equation too. These averages 

operated both over the populations and households contained within spatial territories, and 

over the time periods of measurement. On the spatial/geographic side, a particular 

scheme’s ZI might be much bigger than the ZD with which it overlapped, and the ZD would 

then only receive a proportion of the total input. Therefore, we needed to adjust the input
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score down to reflect the share-out of the input over the wider area. Likewise, only part of 

the ZD might be affected by the scheme. In this case we had to dilute the input further to 

reflect the reduced probability that any particular respondent received the action. Both 

geographical share-out and dilution were calculated using population data from Census 

Small Area Statistics relating to the ZI, ZO and ZD. For instance, if a scheme was directed 

at women only (eg sexual harassment), then we would use the adult female population as 

the base; if at households (eg residential burglary), then we would use households. On the 

temporal side, we again had share-out and dilution to adjust for since for example a scheme 

might only have started up halfway through the measurement period (see Ekblom et al,

1994 for details). Altogether, then, we adjusted the original total financial input (A) to a 

scheme by factors representing geographic share-out of action and dilution of measurement, 

and temporal share-out and dilution i.e. the action score (S) = A x Share-out x Dilution / 

temporal share-out and dilution.

Since Share-out = / Na and Dilution = 1/

where

is population-based in the Zone of Overlap 

Na population-base in the Zone of Influence 

Nzd population-base in the Zone of Detection

by substituting the values of the share-out and dilution into the above, Equation 2.1 shows 

scoring calculations.

S = (A x N20/N zi/Nzd)-t* (2.1)

where

S is action score 

A amount of action in £

T* number of years the action took place which is subject to the same principle of 

share-out and dilution but in temporal scale
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The contract for implementing the scoping and scoring principles within a GIS (using 

ARC/INFO) was awarded to North-West Research Regional Laboratory (NWRRL) at 

Lancaster University in consultation with the Home Office Evaluation Team. The scoping 

and scoring system was developed using the ARC Macro Language (AML), a high level 

language which allowed not only the compilation of ARC/INFO command sequences but 

also the use of a range of programming constructs such as looping and logical operations as 

well as the creation of menu interfaces. The final version of the scoping and scoring system 

was eventually transferred onto the Home Office GIS, updated and managed by me.

2.5. The structure of the spatial database, data sets, hardware and software

The realisation of the evaluation strategy described earlier (Section 2.3, 2.4) required the 

use of state-of-the art computing centred around a GIS, and the integration of a large 

number of different data sets, both spatial and non-spatial units (Ekblom et al, 1994; and 

Law and Ekblom, 1994a & b). This involves linking the following different types of 

measure (over time and at the small-area level such as enumeration districts in up to 30 

cities):

1. action data (what preventive schemes are located where);

2. outcome data (including monthly recorded crime totals per police beat over a 5 

year-period, and before- and after- surveys of people’s perception of safety and 

experience of victimisation); and

3. covariate data (principally from the Census Small-Area Statistics at area level 

and individual level - survey demographics).

Outcome data

The recorded crime data (as the outcome measure for the Programme Objective 1,

Section 2.1) were collected for up to twelve major offence categories per beat, from 14 of 

the 16 Safer Cities evaluated from 1987, the year before the Safer Cities Programme 

began, to 1992 (there were problems with data supply in the other two, Wandsworth and

2 2



Chapter 2. GIS within the context of the Safer Cities Programme evaluation

Islington). Beats were on average about ten times the area and the population of the EDs 

used in the survey. The before- and after- surveys of people’s perception (as the outcome 

measures in terms of Programme Objectives 1-3) was carried out by MORI Ltd under a 

contractual arrangement managed by the Home Office Evaluation Team.

In terms of data analyses, all three types of data were linked together through multiple 

regression within multilevel modelling -  a relatively new statistical technique which 

enables simultaneous examination of changes in crime risk over time in households, 

localities and cities (Ekblom et al, 1993 and Chapter 5 for detail). The Safer Cities action 

and covariate measures were used to explain variation in the outcome measures (such as 

the risk of being a burglary victim). The various data sets were linked relationally, most 

through INFO within ARC/INFO. Figure 2.3 shows these relations, Figure 2.4 the 

computing arrangements. The relations were described using the so-called EAR (Entity- 

Attribute-Relationship) model (Everest, 1986). Composite keys (attributes common to 

different data sets) enabled action, outcome and context data to be linked.

Crimes
(Beat-ED)

Beats
(Beat-ID)

NP7
Action locations
(Scheme-ID, Beat-ID, ED-ID)

Action
classification:
Schemes
(Scheme-ED)

Action: Schemes 
(Scheme-ED)Census EDs

(ED-ID)

Surveys
(ED-ID) many : 1

Figure 2.3: The E-R diagram of the spatial database
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Entities and attributes of the various data sets (with key attributes underlined) include:

• Action: Schemes (scheme-ID. dates, financial input, implementation status,

target crime type, target victim type etc.)

• Action Classification: Schemes (scheme-ID. methods, mechanisms etc.)

• Action location: Action locations (scheme-ID. beat-ID. 91 ED-ID)

• Crimes: Crimes (beat-ID. month, crime_types ..., area, perimeter)

• Surveys: Survey (respondent-ID, ED91-ID. wave, postcode, respondent 

demographics, responses....)

• Census: 1991 EDs (ED91-ID. counts)

Two topological data sets were also required to make various spatial linkages:

• ED-91 boundary data bought commercially

• Police beat boundary data digitised bespoke

A compete set of the Entity-Attribute Tables is listed in Appendix 2 in INFO format.

The architecture of the computer arrangements for data storage and manipulation is shown 

in Figure 2.4. The action, action location, Census and crime data were transferred from 

various sources into an INFO database using ARC/INFO on a VAXstation 4000.60 under 

VMS. I developed a custom-built, user-friendly, front-end system for data manipulation 

and retrieval with the consultant support from ESRI-UK Ltd. I further developed a menu- 

driven classification system to categorise the action data within ARC/INFO. The Census 

data were originally stored on the VAX under VMS and processed by means of C91 on a 

personal computer (PC DEC 386), before transfer into INFO. The survey data was handled 

using SPSS on the VAX. Reassignment from 1981 to 1991 ED was done through 

importing and exporting of files to NWRRL’s own GIS. The surveyed EDs were 

represented in INFO for extracting demographic covariates from the Census, and for 

scoping and scoring; likewise the various time periods covered by the surveys. Scoping and
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scoring, as described earlier, was carried out within ARC/INFO and all the data sets were 

brought together for statistical modelling using the ML3 software on another personal 

computer.

Maps Action Census Surveys

Digitizer MIS C91 SPSS

GIS

ARC INFO

ML3

Results

Figure 2.4: System architecture for the Evaluation

2.6 Selection of a crime type for the Phase One evaluation: Burglary schemes

To maximise its possible measurable impact on that crime type, we selected a particular 

crime type for Phase one reporting of the Safer Cities Programme. To select a particular 

crime type for detailed analyses, the following factors were considered:

• the frequency of co-ordinators targeting

• the development of preventive practice

• the locality (localised effect).
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The simple descriptive statistics of the action using the Safer Cities Management 

Information System would provide a picture of the above factors. Figure 2.5 shows that, 

by 1995, of the 2,300 Safer Cities schemes in all 16 cities, over half were targeted on 

dwellings. Furthermore, a third of the schemes were targeted on burglary (Figure 2.6). 

The values represent total specified funds in £ thousands spent on that category.

dwellings £5.380

- puttciub £154 
shops £368

offices £198 
public btdgs £527

I ndust estates £ 2 5  ' cfis* ts £1'038

Figure 2. 5: Physical targets of the Safer Cities action (based on Ekblom et al, 1996a)

other £2,230

racial har

fear of crime £1,739

theft shops £288

draorder 

domes! viol £631 theft pers £217

drug

theft of vehicle £456

alcohol £240

vandterrVgraff £3604

theft from vehicle £687
sexual £314 burglary £5,892

Figure 2. 6: Target crime types of the Safer Cities action (Ekblom et al, 1996a)
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Altogether, some 500 schemes were targeted on domestic burglary. Some £4.4m of Safer 

Cities funds were spent (excluding the further levered-in funds or in-kind assistance from 

other local or national sources). Nearly 300 schemes were targeted on domestic burglary 

at the local level. A further 62 schemes, such as publicity campaigns, were targeted at 

city level. Of the local schemes, three-quarters focused on domestic target hardening.

This included door, window and fencing improvements, entry systems, and security 

lighting around individual houses or blocks. A number of weaknesses were tackled 

together in a security package for the dwellings. Eight percent were focused on 

community-oriented action. Such as providing crime prevention outreach workers, 

raising awareness of prevention, fostering neighbourhood watch, and property marking. 

The amount spent per scheme varied from a few pounds to over £100,000. The areas 

which schemes covered ranged from single blocks of flats to whole districts. On average 

about 5,200 households were covered. Geographically this was equivalent to 26 

Enumeration Districts (EDs) from the 1991 Census.

Schemes such as publicity campaigns targeted at city level would not be the subject of the 

evaluation as their ‘thin spread’ was unlikely to have had significant impact that was 

measurable locally. Thus burglary on dwellings was chosen for detailed analyses because 

co-ordinators often targeted it, preventive practice is relatively well-developed, and 

burglary schemes tend to be local and have localised effects (Ekblom et al, 1996a). Thus 

the Phase one evaluation focused upon burglary action only.

2.7 The outcome of the Evaluation of the Safer Cities Programme

Out of the 3600 schemes described above, just over 500 schemes (15%) were set up to 

prevent domestic burglary. Most upgraded physical security, though some mounted 

community-oriented initiatives. The action usually centred on local neighbourhoods or 

estates. The results of nearly 300 of the schemes showed that the Safer Cities Action 

reduced burglary and was cost-effective. Simply implementing action in a police beat 

reduced local risks by nearly 10%. Physical security measures against burglary seemed
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to work independently. Community oriented activities required reinforcement with 

action against other types of crime in general. While the overall cost of each burglary 

prevented ranged between £300 and £900 in low and high-crime areas respectively, the 

average financial cost of a burglary to the state and the victim was about £1100 

(estimated). In total, this represents an estimated saving of £31 million from the 56,000 

burglaries prevented.

Reduction in burglary risk was greater where there was more intense burglary action but 

to achieve these bigger falls cost disproportionately more. ‘Marginal cost’ estimates per 

extra prevented burglary ranged from about £1,100 in the highest risk areas to about 

£3,300 in the lower risk ones. In monetary terms extra expenditure was justified only in 

high-risk areas. However, it would be better to increase the action from low to moderate 

(or intensive) to prevent displacements of both crime types and geographical locations.

In the areas with low intensity action, it seemed either that some burglaries were 

displaced to nearby neighbourhood areas or that burglars switched to other property 

crime. Furthermore (according to the surveys), people were more worried than before if 

they were aware but it was low level action. When action was moderate (or intensive), 

not only did the adjacent areas benefit from reduction in both burglary and other crime, 

but also that people’s perceptions of their quality of community life improved especially 

where action was most intensive.

At a 10% incidence level of risk (equivalent to the average prevalence risk in the survey) 

the mere presence o f Safer Cities burglary action seemed to reduce the risk o f burglary 

by about seven percent. On the marginal impact, given the presence o f action at the 

average intensity (£3.57 per household), for an additional £1 o f action the risk o f  

burglary fell by a further 0.8%. Step and marginal-intensity effects combined showed an 

overall reduction o f some ten- percent at the average action intensity. (For further 

information, see Ekblom et alt 1996a.)
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2.8 Issues of Spatial Accuracy in the Safer Cities Programme Evaluation

Although the results of the Evaluation shows that the Safer Cities Programme has an 

effect upon crime reduction such as burglary risk, the complexity of the data 

manipulation involving GIS operations in the evaluation process raised several data 

quality issues.

First, the data collection of such large-scale research was problematic. There were 

missing data in some of the Safer Cities and data input was not an error-free process for 

such a large amount of data sets.

Second, in order to produce beat-level data for the analysis from the Census and the Index 

of Local Conditions, the beat boundaries were digitised from beat maps, then overlaid with 

the smaller EDs using ARC/INFO. However police beats usually bore no relationship to 

other administrative territories such as wards or EDs. The boundaries of beats and their 

constituent EDs do not always match to form a one to many relationship (Figure 2.7).
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Figure 2. 7: An example of Beat-ED overlay operation in one of the Safer Cities 
(Coventry, West of the city centre, beat boundary -  purple, map scale: 1 cm = 0.3 km)

Third (and similar to the second) the actions and survey interviews were linked relationally via 

ED-ID using GIS. However, the survey originally used 1981 EDs as a spatial unit (because the 

Before Survey was carried out prior to the 1991 Census), while the rest of the data used the 

1991 EDs. It is well known phenomenon that Census boundaries change. This required 

transformation of the 1981 ED-IDs to 1991 ED-EDs. Initially this was achieved by a look-up 

table between the two supplied by OPCS, but we found the cut-off points between their 

overlays insufficiently accurate for our purposes, and the feet that the relationship between 

1981 and 1991 EDs was often not ‘one-to-one’ but ‘many-to-many’ raised the question of 

spatial accuracy of these data transformations.
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Fourth, the police beat boundaries changed over time (for example, Bristol). Fortunately 

the change tended to be the amalgamation of smaller beats into a larger beat (the so-called 

super-beat for the purpose of spatial database management). The beats varied widely in 

size and population, with averages of 230 hectares and over 2,200 households. ‘True’ 

beats averaged 180 hectares and 1,700 households; superbeats 600 hectares and 6,300 

households. The fact that beat boundaries change might seem a simple administrative task 

and to have required no more than keeping the spatial database up-to-date. However this 

did raise the question of the basic unit of analyses for crime statistics. It is related to a well- 

know problem - called the Modifiable Areal Unit Problem (MAUP).

The MAUP is well documented by Openshaw (1984), and Openshaw and Taylor (1979). 

It is composed of two problems: 1) scale problem 2) aggregation problem (Openshaw, 

1984). The scale problem is the variation in results when data from one unit (so called 

zone) are aggregated into fewer and larger units (so called regions) for analysis, for 

examples, when EDs are aggregated into Wards, Districts, and Counties, or in our case, 

EDs into Beats. The aggregation problem is the variation in results due to the possible 

alternative combinations of areal units of analysis at equal or similar scales (for example, 

when the number of units is constant).

A further problem is that of areal interpolation since the ability to define alternative 

aggregations of the same area means that statistical measures need to be interpolated from 

one aggregation to another (Openshaw and Taylor, 1979; Goodchild and Lam, 1980; 

Lam, 1983; Openshaw, 1984; Fotheringham, 1989; Flowerdew and Openshaw, 1987; 

Goodchild et al, 1993). Thus, MAUP may be called MAUS - the Modifiable Areal Unit 

Syndrome since it consists of more than one problem as well as their related implications 

such as ecological fallacy problem (Law and Fisher, 1995). An ecological fallacy occurs 

when conclusions based on aggregate zonal (or grouped) data is applied to the individuals 

within that zone assuming they are homogeneous when they are not. The ecological 

fallacy due to the MAUP known as ‘aggregation bias’ is also well reported in the field of 

criminology (Langbein and Lichtman, 1978).
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The MAUP also highlights a basic spatial representational issue. It raises the question as 

to how many zones a given region should represent in order to present a meaningful map. 

For example, Monmonier and Schnell (1984) show how different maps could be 

presented from the same sets of data by adjusting different selections of choropleth class 

intervals. While there may be no GIS error involved, there is the question of 

interpretation errors.

Thus if users were not aware of all of the above issues, the problems of the spatial 

accuracy might remain hidden. These might cast doubts upon the validity and reliability 

of the conclusion of the Evaluation. These issues call for further research in the spatial 

accuracy of the data processed for the analyses of the Evaluation which this study 

addresses. These issues will be further explored in a more specific way and form the 

scope of the research presented in the thesis (Chapter 4). First, more general issues on 

spatial accuracy will be examined in the next chapter.

2.9 Chapter summary

This Chapter has described a £30 million Programme called Safer Cities between 1988 

and 1995, and its evaluation by the Home Office RDS. The evaluation strategy involving 

so-called scoping and scoring principles, and the use of GIS, have also been described. 

Domestic burglary on dwellings was chosen for the impact evaluation. The evaluation 

has showed that the Safer Cities Programme reduced burglary and was cost-effective. 

Simply implementing action in a police beat reduced local risks by nearly 10%. In total, 

this represents an estimated saving of £31 million with 56,000 burglaries prevented. 

However, the complexity of the data manipulation involving GIS operations in the 

evaluation process raised several data quality issues which may affect the certainty of the 

conclusion of the evaluation. These issues will be explored further in the rest of this 

thesis.
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Chapter Three 

Issues and classification of spatial errors

Before a comprehensive account of the errors can be quantified for the evaluation of the 

Safer Cities Programme, it is necessary to examine all the possible sources of error in the 

GIS processing in general. To develop a system for the complete classification of spatial 

data quality is beyond any single research study. This chapter examines the sources of 

error and uncertainty in the geographic information. In doing so an attempt has been 

made to create a classification system for error. This is intended to provide a framework 

for the case study and leads to a standardised way to specify the quality of spatial data in 

the future. There are several reasons why there is particular value in producing a common 

classification of error. First, it would be helpful in promoting research on error links 

between disciplines. As the GIS community grows (as described in Chapter 1), 

researchers and practitioners from different disciplines may use the same terms to mean 

different things. Agreeing on a common terminology would have a unifying force across 

the GIS community as well as assisting understanding between different disciplines such 

as Geography, Statistics and Social Sciences. Secondly, an agreed classification would 

focus more attention on error issues, encouraging the design of GIS and administrative 

spatial data sources which minimise errors and enable them to be measured. Third, the 

classification would encourage GIS users to monitor errors over time.

The ideal goal of the classification is to promote a common framework throughout the 

GIS community. This in turn will promote a common language on error issues and 

enhance understanding of this area between different research applications to be more 

readily appreciated, and encourage research from each to be more widely applied. 

However within the scope of this case study, what is necessary is to outline different 

usage of error processes and define a framework to enable similarities in methodologies 

(Chapter 6). The general issues on error and policy within the context of the U.K. 

government are examined in Section 3.2. A general classification framework (which is 

applicable to the specific context of this case study) is developed by examining the
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relevant literature review (section 3.3 - 3.4). Seven spatial data quality components and a 

software engineering model are critically evaluated for the purpose of this research in 

Sections 3.5 and 3.6. Finally, a general classification system for errors is proposed in 

Section 3.7. First, however, to clarify the concept of error, the definition of a few key 

terms in error description is required (Section 3.1).

3.1 Definitions

Definition is the necessary first step before any measurements, analyses and 

visualisations of spatial data quality can be made (Taylor, 1995). It is helpful to start 

with the concept of total quality and establish a clear statement of definitions of errors. 

This is not to equate ‘quality’ with ‘error’, but to explore their interrelationship.

Although high quality data need not be error-free, erroneous data would imply poor 

quality of the data. In general, Quality is defined as “the totality of features and 

characteristics of a product or service that bear on its ability to satisfy stated or implied 

needs” (ISO 8402, 1986). It relates to the terms: Fitness for use (Grady, 1993;

Moellering, 1984a) or fitness for purpose (Ralphs, 1993). In particular, data quality is 

defined as: ‘The totality of features and characteristics of a data set that bear on its ability 

to satisfy a stated set of requirements” (ISO 8402). According to Brassel et al (1995) 

Fitness for use of a data set and for an application can be defined as: “The totality of 

features and characteristics of a data set that bear on its ability to satisfy a set of 

requirements deemed to be appropriate to an application.” [Italic added.] Data quality 

information is usually provided by the producer of a data set. It should be constantly 

updated rather than evaluated once in the life time of a data set. Fitness for use as 

evaluated for each application of the data set, from the users’ perspective, is more 

relevant to the scope of this case study. The ideal data set would have a one-to-one 

mapping between the product design’s need and the application’s need. However this is 

usually not the case in practice. For instance, the mapping between the available digital 

ED boundaries (commercial product) and its use for overlaying with Police beat boundary 

for the Safer Cities Programme Evaluation is not 100%. This gives rise to the research 

problem this PhD attempts to address.
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Although data quality has received a considerable amount of attention in the recent GIS 

literature, its terminology is still not clearly defined. Terms such as accuracy, error and 

uncertainty are often used interchangeably and confusingly (Petrick, 1980). Different 

researchers have used the terms loosely in different contexts. For instance, the terms 

scale, resolution, accuracy and precision are often mistakenly used interchangeably with 

regard to spatial data (Goodchild, 1993). Strictly speaking, digital databases do not have 

a ‘scale’. They indirectly represent the scale of the source data (e.g. maps). The digital 

scale thus does not reflect the accuracy of the data set (Fisher, 1991c). Here I would like 

to clarify this confusion in terminology, and to define the terms used for the case study. 

First, one needs to differentiate between accuracy, precision and uncertainty. All three 

terms are related to data quality issues.

Accuracy can be defined as a measure of the extent to which an estimated value 

approaches the ‘true’ value (Burrough, 1986). However, the ‘true’ value is usually not 

known. Thus it has to be estimated by means of the best available method. Accuracy is 

a useful concept for defining the data quality, reflecting the difference between the 

estimated value, and the ‘true’ value being estimated (Drummond, 1995). The estimate 

of the ‘true’ value may even be quantified using statistical techniques. Such an estimate 

represents the accuracy of geographical information and indicates the probabilistic nature 

of the data. In other words, although the concept of accuracy may be qualitative, in 

practice, its quantity can be defined and described by means of statistics. The standard 

deviation of error in statistics can be defined as

(3.1)

where n is the number of observations
z is the estimated value of a variable from observation
z ’ the true value of the variable 
Z is the mean error, the bias.
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If one assumes a normal distribution and that there is no bias in the error estimation, i.e., 

Z = 0, then the normal standard deviation (SD) would be the same as the root mean 

square error (RMSE). The extent of accuracy (or inaccuracy) can be inferred by 

estimating the RMSE:

The discrepancies between the values of an entity used in an application and its ‘true’ 

value (estimated by a more accurate method as discussed earlier) provide an RMSE value 

which can be used as an indication of accuracy of the value used. RMSE is a good error 

indicator as it is regarded as a global error measure covering all sources: field measuring, 

plotting, paper map production, digitising as well as data representation in the computer 

(Shi, 1994). RMSE will be used as a basic error indicator throughout this case study.

Precision is defined as the degree of detail used in reporting a measurement (Goodchild, 

1995). Accuracy and precision are independent of each other. A number could be 

accurate but imprecise or it could be very precise but completely inaccurate. Clarke and 

Clark (1995) refer to precision as the degree of detail in the feature that can be resolved 

or separated into its constituent parts. Repeated measurements provide the input for 

determining the SD of a particular measurement. In this case SD is defined as

RMSE (3.2)

(3.3)

As in (3.1) except Z now is the mean observation.
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If there is no gross or systematic error, both its RMSE and the SD of the repeated 

measurements would have a similar numerical value, Z ’= Z (Drummond, 1995). Both 

RMSE as a measure of accuracy (discussed earlier), and SD, as a measure of precision, 

have been long accepted in the mapping sciences for representing geographical 

information quality.

Like the term quality, the definition of accuracy is relative as it requires identifying a 

source of higher accuracy for comparison (e.g. larger scale; up-to-dated measurement; 

ground truth). Some researchers thus prefer the term ‘uncertainty’ to ‘accuracy’ (for 

example, Goodchild, 1995). Burrough (1986) refers uncertainty to the awareness of the 

inaccuracy of the value, as such it is difficult to measure. However Goodchild (1995) 

defines uncertainty as a measure of the range of values of an attribute which might result 

from repeated measurement; different measurements from alternative methods; or 

interpretation by different observers. This is similar to the definition of precision by 

Clarke and Clark (1995) discussed earlier. One can only infer from these discrepancies of 

definitions that uncertainty can be a cognitive property from the users’ perspective, 

depending on the application, which may be measured in practice by referring uncertainty 

to imprecision. The available measures of uncertainty and accuracy are related to each 

other in a antagonistic manner. Uncertainty relates to both accuracy and precision, but 

accuracy and precision are independent to each other. The precision should reflect the 

accuracy by using the appropriate fineness of a measurement.

3.2 General issues on errors and policy in the context of the U.K. government

As Chapter two shows, the evaluation of the Safer Cities Programme involves techniques 

from multiple disciplines. For example, part of the evaluation consists of a large scale 

survey of respondents’ perception. It would also be relevant to review here the errors and 

uncertainty involved in that survey and to examine the possible interaction between 

survey and GIS application. A Task Force was set up by the U.K. Government Statistical 

Service Committee on Methodology [GSS(M)] in December 1996 to categorise types of
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errors for use within the GSS, and identify high priority topics for future work. The draft 

definition and classification was made in consultation with Government Social Research 

heads of profession and Directors of Statistics in March 1997. The number and detail of 

responses showed a significant level of interest in non-sampling error. The report listed 

54 examples of research into non sampling error carried out by all government 

departments in Britain. Out of which, only one report was on geographical error from 

Scotland (GSS, 1997). This reflects that most statisticians and social researchers are 

spatial blind on data quality issues. Nevertheless, it was agreed that non-sampling error 

work should be given a higher profile; and that priority should be given to processing 

error, respondent error and instrument error.

33  Specific issues: classification of spatial errors

The U.K. GSS(M) Task Force initially agreed to compile a bibliography to assess the 

extent of current research and practice in measuring non-sampling error. Later, they were 

reluctant to engage in bringing existing bibliographies together which were extensive. As 

a result, their review was relatively narrow both in range and scope. The classification 

proposed was noticeably based on Groves (1989) which was not necessarily a reliable 

source on the statistics and error issues. For instance many researchers would not accept 

Groves’ (1989) definitions of accuracy as the inverse of RMSE and the precision as the 

inverse of the standard deviation (as in practice the true values and the inverse functions 

are usually not known).

Groves (1989) classified errors into two groups: Error o f non-observation (which include 

Coverage, Sampling, and Non-response) and Observational or measurement error 

(Interviewer, Respondent, Instrument, Mode). However it did not include processing 

errors which is extremely important in GIS applications. Furthermore, GSS(M) 

classification viewed systems errors as a non-measurable entity. On the contrary, as this 

research will show, errors, including systems error, are quantifiable. From Groves’ 

classification, GSS(M) Task Force added Processing error which includes systems, and 

data handling. This corresponds to the classification developed by Eurostat (GSS, 1997)
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which consists of four types of errors: frame; non-response; measurement and processing. 

In practice, many types of error interact, and it is not always possible to distinguish them 

separately for classification purposes. Although originating from work on social 

research, many categories of GSS(M) classification also apply to spatial data. Within the 

GIS tradition, spatial errors are classified broadly into positional error and thematic error 

(Chrisman, 1989). However, the grain of such broad base classification is not fine 

enough to understand the processes of GIS errors. The types of error have usually 

resulted in a complex interaction between the GIS processes and the data types of the 

geographical information. For instance, Cressie (1993) classified spatial data into three 

classes: geostatistical data; lattice data; and point pattern data. Geostatistics describe 

spatial processes indexed over continuous space. Lattice data describe spatial processes 

indexed over lattices in space. Point data describe spatial point processes. These three 

classes of data can be grouped into two types: vector and raster data. Vector data are 

represented by geometrical objects: points, lines and areas (Ehlers et al, 1989; Goodchild, 

1989; and Goodchild et al, 1992). The basic geographical features of the vector data can 

be represented by means of line segments which form the basis of digitisation (Mark, 

1989). These line features can be classified into two types (Shi, 1994). Type I lines 

represent specific points constructed in the real world (for example, cadastral and political 

boundaries). Type 13 lines which represent natural features such as soil and forest have 

no specific points in the real world. Different types of spatial data tend to associate with 

different groups of errors.

Although a considerable amount of the GIS literature addresses the error issues, it is still 

a small proportion of the GIS literature as a whole and it is arguable that all the GIS 

literature should address error. With a few exceptions which are described in this section, 

those that addressed the error issue have tended to concentrate on a particular kind of 

error without giving attention to the classification of the error types.

Burrough (1986) provides an overview of spatial information processing errors and 

groups 14 basic types of error into three main groups of factors. Group I includes the
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obvious errors due to factors such as age of data, incomplete areal coverage, map scale, 

density of observation, relevance, format, accessibility and cost. Group II errors are due 

to variations which include positional accuracy, accuracy of content, sources of variation 

in data due to data entry or output faults, observer bias, and natural variation. Group m  is 

the processing error which includes numerical errors in the computer, faults arising 

through topological analyses, problems associated with map overlay, classification and 

generalisation problems, methodology, class interval definition, and interpolation. There 

are also ‘unseen errors’ and ‘natural spatial variation’ (Bunough 1986 pl32). In practice, 

these natural sources of variation are augmented by considerable amounts of artificially 

generated uncertainties added to the data by the GIS process itself.

While Burrough’s treatment of error issues are detailed and relatively thorough, it is not a 

very helpful way of classifying errors. For example the obvious sources of errors are 

neither obvious (to the novice GIS user) nor helpful. It does not provide a better 

understanding about the nature of the error. Burrough’s text is mostly based on land 

resources assessment. Some points might not be applicable to the socio-economic 

context. For example, bias in soil survey and laboratory errors were unlikely to be 

applicable to the Safer Cities Programme Evaluation. Most of the above data errors are 

either trivial or not applicable to some applications. The most important types of errors 

are problems associated with classification, map overlay and interpolation which are the 

focus for this case study.

Brunsdon and Openshaw (1993) simplified the number of classes of error (14) down into 

4: data capture; ageing of data; representation (generalisation and simplification 

processes); and GIS operations. Group I errors are due to a mix of measurement error 

and sampling error. Group III errors result from the effect of categorisation and 

aggregation. Furthermore, many GIS operators add their own errors to data that already 

contain errors (Group IV errors). This classification scheme is simple, but does not cover 

all types of errors. Moreover, the mixing between types and groups of error classes does 

not provide clarity to help understand the error processing.
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Other classification approaches can be described in terms of methods rather than data.

For example, Kennedy-Smith (1986) has classified methods of assessing accuracy in 

terms of internal and external testing. The internal testing, usually used in quality 

control, is a precision assessment based on several independent repeated measurements 

using the average as the estimate of the ‘truth’. External testing assesses the accuracy 

using external sources, usually with higher standard, as the ‘truth’ for comparison (Hord 

& Brooner, 1976). However, internal testing can be considered as no more than 

measuring the standard deviation (SD) as discussed earlier. Most methods are external 

testing.' Such classification is too broad to be useful. It has left the classification of data 

accuracy unresolved.

The earliest and most influential effort to identify and standardise different aspects of 

spatial data quality is the Society of Data Transfer Standards (SDTS) which, in turn, has 

influenced the National Committee on Digital Cartographic Data Standards (NCDCDS) 

in the United States. According to the revised NCDCD report, there were five 

components to be considered as spatial data quality indicators in the standard for digital 

cartographic data (NCDCDS, 1988). Since then, two additional elements (semantic and 

temporal) have been added by the ICA Commission, making in total seven elements of 

the spatial data quality (Guptill and Morrison, 1995):

1. Lineage
2. Positional accuracy
3. Attribute accuracy
4. Completeness
5. Logical consistency
6. Semantic accuracy
7. Temporal information

Guptill and Morrison (1995) have compiled papers from different authors to define and 

explore the issues of the above seven elements of spatial data quality. It is unfortunate 

that the interwoven nature of the elements has been presented as separate components in a 

disjointed fashion. It has been written mainly for data providers rather than from the 

users’ perspectives. Many examples illustrated have been based on the US
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documentation with direct quotes in many cases (for instance from NASA). There is a 

danger that the standard might be inappropriate, if applied uncritically to the UK context. 

Nevertheless the review represents a promising step forward. It provides substantive 

concepts from which a framework for classification and evaluation may be derived (as 

exemplified by Veregin and Hargitai, 1995). It is therefore worthwhile to critically 

review each of the spatial data quality elements in the next section.

3.4 Review of the spatial data quality components

This section re-examines the seven spatial data quality components mentioned above. 

From the review, a suitable classification framework will be developed for the case study.

1. Lineage. The lineage of a data set is the documentation of its history. It describes 

different data processing stages from the sources, through data acquisition, compilation 

methods, conversions, and transformations, to the final products used in an analysis as 

well as the assumptions and criteria applied at each stage of its use (Clarke and Clark, 

1995). Lineage is usually used by the data producers for internal records to ensure that 

the organisation’s standards are being maintained. It provides an estimate of the errors at 

each stage of the ‘production line’. Lineage can thus be used by the data user as a direct 

assessment of quality.

It can help users assess data quality using their own criteria before they initiate further 

processing of the data, and decide whether or not the data set is ‘fit for use’ (also see 

completeness, Brassel et al. 1995). As such, the lineage information should be provided 

by the supplier as part of the data quality report (though this is not always the case in 

practice). For efficiency, it is useful to use templates for lineage provision. The one 

suggested by Clarke and Clark (1995) does not match the list of elements described and is 

better re-structured as shown in Table 3.1.
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Table 3.1: A lineage framework
Contents
1 Source
1.2 Origin
1.3 Reference fields
1.4 Spatial data characteristics
1.5 Co-ordinate systems
1.6 Map projections
1.7 Corrections and calibrations
2 Pre-Drocessina or InDut
2.1 Acquisition (Data collection stage)
2.2 Compilation
2.2.1 Scientific parameter generation stage
2.2.2 Data conversion stage
2.2.2.1 equipment used
2.2.2.2 operator policy
2.2.2.3 digitisation policy
2.2.2.4 source material
2.3 Derivation (Product stage)
3 Transformation and analvses of data TProcessl
3.1 Co-ordinate transformation
3.2 Interpolation

Although lineage is an important prerequisite for the users to assess data quality, it is not 

always provided by the data suppliers (Drummond, 1995). There are disagreements on 

whether it should be included as part of a data quality model or as metadata (data about 

data). One of the problems of using lineage for error modelling (say, for this case study) 

is that it does not provide an index of data quality, but an index of metadata quality 

(Veregin and Hargitai, 1995). Unlike metadata, lineage is documentation which as a norm 

(usually in a text format), would not be subjected to further processing (Clarke and Clark, 

1995). However, with advanced computer technology such as object oriented 

programming languages (see Brunsdon, 1995; Khorev et al, 1996; Maguire, 1994; 

Tiemey, 1990), there is no reason why a lineage entry facility cannot be ‘programmed-in’ 

as part of the GIS environment like meta-data using the template described earlier (e.g. 

IDRISI). However, this is still not useful enough as it does not provide indices. As a 

data user, for a one-off application of the data sets, lineage does not form part of the 

major concern for this case study. It is sufficient to describe the lineage of the data sets 

used as an example (Appendix 3).
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2. Positional accuracy. Positional accuracy is defined as the nearness of the values 

describing the position of an entity in a real world in an appropriate co-ordinate system to 

its ‘true’ position in that system (Drummond, 1995). (Note the definition is similar to the 

general definition of accuracy described in Section 2.1 except that a special reference has 

been made to the term ‘position’.) Positional accuracy is one of the concerns of this case 

study and will be discussed further together with other issues such as attribute accuracy 

and error propagation.

3. Attribute accuracy. Attribute accuracy can be defined similarly to positional accuracy 

except that the accuracy values in this case are scalars only (while positional accuracy 

values are both vectors and scalars). It relates to the attribute rather than the co-ordinate 

system. It follows that its assessment for measures on a continuous scale can also be 

performed using procedures similar to those used for positional accuracy (NIST, 1994, p. 

22). Goodchild’s (1995) discussion of attribute accuracy focuses only on well-defined 

features for which the processes responsible for positional uncertainty are different from 

those responsible for the uncertainty in attributes. In practice, the positional accuracy and 

attribute accuracy are not always clearly separable. There is often a link between 

positional and attribute accuracy such as lengths, areas and the population (within the 

area). Since the spatial interpolation of incompatible zones would have significant 

impacts upon the subsequent attribute values, attribute accuracy is one of the major 

concerns of this case study and will be explored further in later Chapters.

4. Completeness. There are a number of definitions of completeness. NCDCDS digital 

cartographic data standard defines completeness as an attribute describing “the 

relationship between the objects represented in a data set and the abstract universe of all 

objects” (Morrison, 1988 p 135). Brassel et al (1995) describe completeness as whether 

“the entity objects within a data set represent all entity instances o f the abstract universe” 

as absent or present and to what extent. [Italic added.] Here the term entity instance 

represents the name of a real world phenomenon of a given entity type (SDTS, Barnett 

and Carlis, 1993); and entity object is the digital representation of a real world
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phenomenon (SDTS definition). The abstract universe is specified through the data 

capturing rules and usually described within the meta data. The definition does not 

specify which abstract universe the entity instances belong to. The issue of completeness 

assessment relates to more general issues of data quality and fitness for use. Both data 

quality and fitness for use have been discussed earlier in Section 3.1. Completeness can 

be classified into two kinds: data completeness and model completeness. Data 

completeness (an error of omission and a measurable data quality component) relates to 

data quality, model completeness to fitness of use. Brassel et a/’s model is confusing as 

on the one hand they equate model completeness with the fitness of use assessment while 

on the other they separate the fitness of use from model completeness. The fitness of use 

is assessed by comparing the abstract universe as specified by the data set to the abstract 

universe defined by the requirements of the application. However, the final fitness of use 

statement should result from the combination of both data completeness and model 

completeness.

Users are interested in determining fitness of use; and under what conditions and with 

which consequences they can use a data set for a specific application. Although data 

completeness is application independent, it generally provides only some information in 

support for users’ decision on the fitness of use. Assessing model completeness is 

application dependent and involves assessing semantic accuracy (see Salge, 1995). 

Despite the importance of model completeness, Brassel et al. (1995) only focus on data 

completeness. Data completeness can be further classified into formal completeness and 

entity object completeness.

Formal completeness specifies whether all information formally required is present; and 

to what degree the formal structure of a data set is complete. This includes: mandatory 

meta-information; standard data format; and correct syntax. Formal completeness should 

be assessed when the data set is assembled.
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Entity Object (EO) Completeness specifies to what degree all entity instances implicitly 

or explicitly defined by the data description are present in the data set. The idea of the 

EO completeness is based on an entity-based conceptual data model (SDTS, 1992 part 2) 

which has been applied to the GIS context (Shepherd, 1991). An entity has instances (or 

entity instances as Brassel et al, 1995, called them) which are represented digitally as 

objects (entity objects or features); and attributes (as its properties). An entity instance 

represents the real world phenomenon. An entity object is a digital representation of the 

instances. The completeness for object and attributes means to check for the missing 

entries. Attribute completeness expresses degree of omission of information. The global 

attribute completeness specifies attributes which are missing for each object of that data 

set.

Theoretically, EO completeness is assessed by comparing the data to the data description 

of an abstract universe (reference frame). This may need expert knowledge for implicit 

data descriptions (interpretation). In practice, the comparison is reduced to the simple 

comparison between the data values and the meta-data. Attribute completeness is 

assessed with an EO x AT (attribute types) table by checking whether the relevant 

attribute types are specified in the meta data or not. If not, they are totally absent. If they 

are present, check for the zero values. Similarly, the completeness of entity objects (EO) 

and attribute types (AT) in combination can be assessed by compiling an EO x AT table 

with ticks and crosses for the present and missing values respectively. The selection of 

object entities (of the two cities) for this case study is similar to such completeness 

assessment (see Chapter 4).

Incomplete attributes may have an impact on attribute accuracy, positional accuracy and 

logical consistency. Partially complete attribute values (e.g. a missing arc) often lead to 

problem of logical consistency. The relationship between completeness and other data 

quality components is interwoven; and is best facilitated by linking all quality 

components in a comprehensive systems. Veregin and Hargitai (1995) attempt to 

develop such a system. This will be further explored later in this chapter.
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5. Logical consistency. Logical consistency of a data set can be defined as the internal 

consistency of its structure and attributes defined by a set of logical rules. Kainz (1995) 

describes various ways to represent spatial data as objects and their relationships using an 

object oriented approach. Logical consistency tests have been developed as part of data 

integrity using formal logic: mathematical theories of algebra, graph, topology, and 

ordered sets (Corbett, 1979; Date, 1985; Meixler and Saalfeld, 1987; White, 1984). These 

are usually implemented as part of an automatic procedure within a commercial GIS to 

show spatial errors during the data capturing process (digitisation). The program should 

identify any topological inconsistencies such as duplicate lines; slivers; undershoots; 

overshoots; missing centroids; missing nodes; and pseudo nodes. The errors would then 

be corrected by the human operator using GIS routines such as an on-line editor. Logical 

consistency is therefore not a significant part of this case study.

6. Semantic accuracy. Semantic accuracy refers to the accuracy in the linguistic 

meaning of a description. In practice semantic accuracy is assessed by comparing the 

description of a data set with that of the ‘selected model’ (Salge, 1995). The selected 

model is merely an abstraction of the real world. It represents the users’ and system 

designer’s ‘perceived reality’. As such, one aspect of evaluating the models performance 

is its ‘ability for abstraction’. The system specification forms an important element of the 

‘fitness for use’ evaluation from both the producer’s and user’s point of view though each 

with different emphases in terms of what the system does and its required performance. 

The implementation of the systems specification consists of a set of conceptual schema 

for data specification. This can be used to set the quality parameters for assessing the 

systems performance. ‘Truth in labelling’ philosophy in specification is part of semantic 

accuracy. Semantic accuracy also relates to the assessment of completeness in terms of 

identifying the attribute accuracy. Defining and designing a GIS for accuracy assessment 

to warn users of the consequence of semantic error has so far been poorly developed, and 

is still a subject for further research (Salg6,1995). This is partly because of the lack of 

incentive from the producers’ point of view to incur extra cost for the users’ benefits. It 

is also partly due to the difficulty in modelling the cognitive aspects of the users’

47



Chapter 3: Issues and classification of spatial error

‘perceived reality’ in the specification phase. This issue has been addressed elsewhere 

such as cognitive systems functions specification (see Macleod and Law, 1998). Like 

completeness assessment, semantic accuracy forms an important integral part of the 

application development, but it does not fall within the scope of this case study (as here I 

am concerned with assessing the eiror processes retrospectively, that is, after the 

completion of an application).

7. Temporal information. The problem of handling time in GIS can be viewed as adding 

a temporal dimension to the general feature-based (object-oriented) spatial data models 

(see Egenhofer and Frank, 1992; Guptill, 1990; 1994; 1995; Guptill and Stonebraker, 

1992; Worboys, 1994a). This requires maintaining and processing a transaction log to 

keep a database current, that is, maintaining the logical consistency of a database over 

time using database time stamps (Guptill, 1990; 1994; 1995). This approach is a classic 

transaction management used in the real-time relational databases. As such the technical 

aspects of its implementation are well understood. For designing a GIS application, care 

should be taken to consider the temporal aspects. The information need to be known in 

advance, that is, before the transaction time so that the database model can be designed to 

accommodate the values. Otherwise, the change such as inserting an attribute into the 

existing database can be difficult. Temporal information is part of the data set used in the 

Safer Cities Programme Evaluation and this case study, rather than part of the objectives 

of the research. This will be discussed where it is appropriate as part of the data 

description for this case study.

3.5 Evaluation of the spatial data quality components

There is still a long way to go in developing a general model of data quality for 

geographical data as the models proposed suffer from a number of limitations:
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• There is an absence of long term empirical assessment, and the performance of such 

data quality standards/models is only speculative.

• Some dimensions of data quality (such as consistency and completeness) are 

undifferentiated over space, time and theme.

• The temporal dimension has significant implications for spatial and thematic data 

quality. The meaning of location in space is always bound up with location in time 

(Parkes and Thrift, 1980).

• Resolution is an important component of fitness for use, and yet it has not been 

explicitly included.

• The model defines data quality as a static attribute of a database. However, data 

quality characteristics can change as data are transformed in GIS.

• There is a disagreement about whether lineage should be regarded as a component of 

the data quality model or should it be more accurately regarded as meta-data (Clarke and 

Clark, 1995; Veregin and Hargitai, 1995).

In view of some of the issues discussed above, Veregin and Hargitai (1995) offer an 

alternative view of data quality components and attempt to establish a general model of 

data quality. The seven components have been reduced into three by:

• taking the temporal component out and treating it as a separate dimension

• grouping the three components of accuracy into one dimension: accuracy

• not regarding lineage as a data quality component but a metadata set which act as 

references.

An extra component - resolution - is added to the components of data quality (Veregin 

and Hargitai, 1995). The four components are placed against three dimensions: space, 

time and theme described as probability distribution (from the general model of data 

quality, Giordano et al, 1994). This creates two dimensional arrays of an evaluation 

matrix. However accuracy is more appropriately conceived as a three-dimensional array, 

if one considers not only the geographical data dimension (space, time, theme); but also 

the reference source (such as the lineage) used for the assessment (Figure 3.1).
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Reference
Sources

y /  Space ThemeTime
Accuracy

Resolution
Completeness

Consistency

Figure 3.1: An evaluation matrix, modified from Veregin and Hargitai (1995)

There is a trade off between a comprehensive classification with detailed definitions 

which might appear too complicated and a more general classification which might not 

cover all possible sources of errors. The classification should be both comprehensive and 

flexible enough to be readily applied to other contexts as well as this case study. The 

classification is a tool to be used for establishing a further framework for error 

measurement and management (see later Chapters). As this case study concerns the 

group of errors that can occur in GIS processing, the classification should reflect both the 

nature of the data types and the processes of the GIS operation. With this framework in 

mind, the error groups can be classified by first considering the GIS processes, and 

second, combining the processes with the different natures of error according to the types 

of data used.

Out of the seven data quality elements, four are directly relevant to the accuracy issue: 

positional, thematic logical and semantic accuracy. Logical inconsistency may be due to 

positional and thematic error (Shi, 1994). For example the location of a house at the edge 

of the city boundary may be wrongly excluded in the digitisation process or misclassified 

in remote sensing images. Thus the basic error groups can be classified into two: 

positional and thematic errors according to their data types (This is consistent with 

Chrisman, 1989). Since the temporal dimension has been described as part of the data 

sets, the time dimension can be taken out and replaced by the GIS processes which are 

the concern of this research. By taking positional accuracy as the spatial dimension,
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thematic (attribute) accuracy as theme, the above error matrix can further be simplified as 

follows (Figure 3.2):

Reference
Source iz:

Theme
Positional
Accuracy

Attribute
Accuracy /

/
Figure 3.2: Model of accuracy

The next section examines the GIS processes to further evaluate the model of accuracy 

within the software engineering context.

3.6 GIS processes and error classification

Figure 3.3 shows the GIS processes which consist of the following logical groups based 

on the Software Engineering paradigm: input-process-output (Law and Ekblom, 1996). A 

similar software engineering frame-work applied to GIS error modelling has also been 

proposed by Shi (1994).

2. Processing error

3. Output error

0. Error o f data collection

1. Input error
Error
propagation

Figure 3.3: Classification of GIS processing errors
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However the above process model was based on the waterfall model derived for systems 

that could be physically engineered and one would argue that it is no longer adequate 

(Macleod and Law, 1998). It glosses over the recursive nature of the advanced 

computer applications where the output from one application very often becomes an input 

of another application. Further analyses may be carried out within the same application 

using different software / hardware systems. For example in the case of the Safer Cities 

Programme Evaluation, the output of the GIS became the input of the multi-level 

modelling using ML3 software. It follows that the input and output errors should be 

more appropriately described as transfer errors, and the process of error propagation 

iterates along different applications or systems as shown in Figure 3.4. The receivers of 

the output may either be another computer system or human operator. The transfer and 

process errors include human perceptual and interpretation / cognitive errors respectively. 

The model is more robust and consistent with the user model of GIS and computer 

systems (Medyckyj-Scott and Heamshaw, 1993).

Process errorTransfer error

Transfer error Process error

Error
propagation

Figure 3.4: Transfer / Process model

Starting with the initial transfer error (Step 0), the above process can recur indefinitely, 

say, 1 to n cycles, depending on the application and use of the data sets. This case study 

is primarily concerned with the GIS process error and the secondary impact upon its 

further analyses within the application of the Safer Cities Programme Evaluation.
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3.7 Proposed classification

Different types of spatial data would produce different kinds of error at each stage of GIS 

processing. To combine the GIS processes described in the previous section with the 

nature of the data types discussed in Section 3.2, a complete error classification can be 

summarised by the following table:

Table 3.2 Classification of GIS errors

^Propagation 

Data TypeN.

1. Transfer 2. Process

A. Positional 1A 2A

B. Attribute IB 2B

As shown in the above table, the transfer and process stages consist of both positional and 

attribute errors (Group A and Group B errors) as the results of the interaction in GIS 

processing and data analyses. The coding simply refers to the combinations in the table. 

For instance, the interpolation of the choropleth maps (Beats and EDs) would introduce 

both Group 2A and Group 2B errors in addition to Group 1A and Group IB errors.
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3.8 Chapter Summary

This chapter has examined the general sources of error and uncertainty in geographic 

information by reviewing the previous effort in defining quality for digital data sets. 

Taking both the users’ and developers’ perspectives, the review began with a description 

of the general Quality issue and its relationship to Fitness of use, and focused specifically 

on the data quality issue. Some key terms such as accuracy; precision; and uncertainty 

have been defined. The error indicators including root mean square error (RMSE) and 

standard deviation (SD) have been formulated. General issues on errors and policy have 

been discussed first with in the context of the U.K. government; and second within the 

broader framework of spatial data quality classification from the literature review. The 

former includes Error o f non-observation; Observational or measurement error; and 

Processing error. Processing error has been regarded as most important for the 

investigation of GIS error as it includes systems, and data handling. Seven spatial data 

quality components have been critically evaluated for the purpose of the scoping study 

for this research. These include: lineage; positional accuracy; attribute accuracy; 

completeness; logical consistency; semantic accuracy; temporal information. As the 

result of the review, a general classification system for errors has been formulated which 

places emphases on positional and thematic errors and their relationship to different 

stages of GIS processes: transfer and process errors. This will provide a framework for 

this case study. The next chapter will apply this framework to the specific context of the 

Safer Cities Programme Evaluation.
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Chapter Four 

Research aim, objectives and scope

This chapter describes the aim, objectives and scope of my research by mapping the 

general frame-work developed in the previous Chapter upon the specific context of the 

case study (described in Chapter Two). First a number of research questions were raised 

in Section 4.1. On the basis of the theoretical importance and relevance to the Safer 

Cities Programme Evaluation, the aim and objectives of the research are formulated in 

Section 4.2. Possible scopes of the study were framed by re-examining the steps of the 

data processing used in the Evaluation. Finally, the process for selecting two cities as a 

case study for further research is described in Section 4.4.

4.1. Research questions

As shown in Chapters Two and Three have shown, spatial errors are inherent in most GIS 

applications especially for the complex spatial data processing such as the Safer Cities 

Programme Evaluation. This raises a number of research questions:

1. Do the errors involved in GIS processing affect the results of the Safer Cities 

Programme evaluation?

2. If so, by how much? In other words, can these errors be quantified?

3. Do the errors involved affect the conclusion of the evaluation?

4. How good is the evaluation?

Question three is actually different from questions one and two, though they appear to be 

similar (Law, 1998). The amount of error may affect the results of the evaluation 

quantitatively but it may not affect its conclusion (that is, the quality of the Safer Cities 

Programme). In other words, does error matter (in this application)?
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To answer questions two and three, one needs to examine the margins of error of the 

quantitative estimates of the impact of the Safer Cities Programme. Statistically, question 

four asks to what extent has the Evaluation managed to minimise both Type I and II 

errors (failure to accept and reject the null hypothesis respectively i.e. wrongly to 

conclude that there is a Safer Cities Programme effect or not).

The answers to the above questions also depend, among other things, on how good the 

data quality is, and how well-founded are the geographical assumptions behind the 

collection of different data sets and their manipulation (for example, the definition of 

neighbourhood, assumption of no migrants, and the accuracy of beats and 1991 EDs 

interpolation). Experience of working on the evaluation over the course of the evaluation 

programme has revealed many ways in which the collection and manipulation of the data 

are problematic (for example, collection of the crime statistics, and the fact that police 

beats change over time). As a result, a number of quite severe trade-offs have had to be 

confronted (for example, greater continuity of measures over time, or better spatial 

resolution?). Thus an assessment of the nature and magnitude of accuracy in the 

evaluation, and of ways to present this uncertainty to end-users (i.e. researchers, 

administrators, and policy makers), is extremely important not only in retrospect but also 

to guide the design and conduct of future evaluations. From another perspective - that of 

GIS as a discipline (if it were)- the measurement accuracy in the data manipulated by GIS 

is also of fundamental importance (Goodchild and Gopal, 1989).

4.2. Aim and objectives

Judging from the theoretical importance of the spatial accuracy issues and their practical 

implications upon policy decision making as exemplified by the Safer Cities Programme 

Evaluation, the primary aim of this research is to explore the data accuracy issues in GIS 

processing.
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The objectives of this case study are to:

1. assess the impact of the spatial uncertainty upon the Safer Cities Programme 

Evaluation.

2. provide a comprehensive quantitative account for the possible errors in the GIS 

operation for the evaluation.

3. determine whether the errors were significant or not.

In achieving the above aim and objectives, it is necessary to explore the validity of the 

geographical assumptions made; and to simulate the process of analysis through the error 

propagation so that more precise error statements can be made about the effect of the 

Safer Cities Programme. The research will have important implications both to the 

conclusion of the evaluation as knowledge for policy making within the specific context 

of the Safer Cities Programme; and for the use of GIS in general.

4 3 . Possible Scope of spatial accuracy within the Evaluation of the Safer Cities 

Programme

As described in Chapter two, the Safer Cities Programme Evaluation involved internal 

and external comparisons of the recorded crime statistics and survey data sets collected 

from a number of cities. So the possible scope of the study should be based on the 

processes of these different data transformations.

Evaluation using recorded crime statistics

The processing of the crime data can be summarised as involving the following steps:

1. Collect monthly crime statistics: number of incidences for each crime type per 

beat between 1987-1992.

2. Transform them into attribute entities and store them in the database (INFO 

format).
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3. Digitise the police beat boundary maps to generate spatial object entities for 

beats (named ‘BEATGS’ in ARC).

4. Join the spatial object entities with attribute entities using beat-ID as an 

identifier (to form a new BEATGS).

5. Input census data sets from OPCS.

6. Overlay the boundaries of the enumeration districts (ED) with beats to form a 

new spatial object entities (‘EDBEATGS’) using the ARC/INFO overlay 

method.

7. Process the data sets according to the scoping principle (discussed in Chapter 

two).

8. Compute the action intensity scores based on the scoring principle (2.1).

9. Output the action scores for multi-level modelling.

The above is a classic GIS process and thus could be an ideal context in which to study 

and explore the spatial accuracy issues. It is also most likely to have an impact, if any, 

upon the outcome of the Safer Cities Programme Evaluation.

Evaluation using the survey

The steps taken to process the survey data can be briefly described as follows:

1. Conduct the survey before the implementation of the Safer Cities Programme (the so- 

called BEFORE SURVEY, i.e. before the end of 1989 and hence sampling had to be 

based on 1981 census).

2. Transform data collected in Step 1 into attribute entities and store them in the database 

(INFO format).

3. Repeat Step 1 and 2 after the completion of the Safer Cities Programme (AFTER 

SURVEY, i.e. in 1992 and hence sampling was based on 1991 census).

4. Transform the 1981 ED base BEFORE SURVEY data into 1991 ED base so that both 

BEFORE and AFTER SURVEY data-sets can be linked with the 1991 ED as a 

common spatial identifier. (This step was carried out by NWNNL.)

5. Process the data sets according to the scoping principle as before
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6. Compute the action intensity scores based on the scoring principle (2.1).

7. Output the action scores for multi-level modelling.

(See Ekblom et al, 1996a for details.)

The spatial operations in survey data processing have been far less than those involved 

with the crime statistics. Step 4 is the only spatial transformation involving spatial 

uncertainty. Furthermore since there was obviously no action before the initiation of the 

Safer Cities Programme, the action scores in a BEFORE SURVEY would be zero, and so 

any spatial errors would have no effect upon the survey action scores. The only effect of 

the spatial uncertainty upon the survey analysis would be the sampling as the BEFORE 

and AFTER SURVEY respondents were sampled on the bases of two different 

geographical units (1981 and 1991 ED). However, survey sampling in social sciences 

would be beyond the scope of the spatial accuracy in GIS. It was therefore decided to 

exclude the survey analysis from this case study. Furthermore, since the external 

comparison was analysed at city level, spatial data were not collected for the external 

comparison cities. External comparison was therefore excluded from this case study 

since there is no GIS operation required.

To model the spatial error processing would probably involve first identifying the steps 

contributing to the accuracy of the spatial object in the GIS; then determining the 

accuracy of error introduced by each step; and thereafter determining the cumulative 

effect of these errors. Ideally, it would have been desirable to select all sixteen cities for 

error modelling. However, considering the cost of the time and effort required, it would 

not be feasible to do so in practice. While a single case analysis might be most 

economical, there was a danger that the selected city might have some idiosyncratic 

properties such that the results might not be generalised. Two cities were therefore 

chosen. To sum up. this research focuses on the internal comparison of the recorded 

crime statistics for two Safer Cities as a case study for in depth analyses.
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4.4. Selection of two cities for the case study

The selection criteria were based on the data availability and their representativeness of 

the cities involved in the evaluation. Although the data were eventually collected for all 

the 14 cities evaluated, it was important that all the data sets were available at the start for 

the cities selected for this case study. For crime statistics analyses, six years of police 

recorded crime data were collected (1987-1992). Table 4.1 shows the status of the crime 

data collection for all the 16 cities and boroughs (Safer Cities) at the beginning of this 

research. Y indicates a complete data set, and N incomplete. Just on this basis, 

Birmingham, Islington, Lewisham, Sunderland, Tower Hamlets, Wandsworth, and 

Wolverhampton would have failed the selection criteria. Birmingham was also 

considered to be too large to be a typical city for this case study.

Table 4.1: The status of crime data available for the 16 cities and borough in 1993

Cites SuperED ChangelD 1987 1988 1989 1990 1991 1992 CNTRE
Birmingham 16 Y N N N Y Y Y Y
Bradford 15 Y Y Y Y Y Y Y Y
Bristol 25 Y Y Y Y Y Y Y Y
Coventry N N Y Y Y Y Y Y Y
Hartlepool N N Y Y Y Y Y Y Y
Hull N N Y Y Y Y Y Y Y
Islington N N NA
Lewisham Y
Nottingham 5 Y Y Y Y Y Y Y Y
Rochdale 6 Y Y Y Y Y Y Y Y
Salford 15 Y Y Y Y Y Y Y Y*NB
Sunderland 5 Y Y
Tower Hamlets N N N
Wandsworth N N NA
Wirral 1 Y Y Y Y Y Y Y
Wolverhampton 3 Y ? Y Y Y Y 9 Y

SuperED - Superbeat; ChangelD - beat change, CNTRE - city centre 
Y-complete; N-incomplete; NA - not applicable; NB - see text.
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Other issues included the existence of the city centre, and the problems of the beat 

change. Some areas such as the boroughs did not have city centres. Salford appeared to 

have more than one city centre. Police beat boundaries changed over time. This problem 

was resolved by looking back through past maps to uncover ‘beat pedigrees', and identify 

‘superbeats' - groups of adjacent beats whose common outer boundary remained about 

the same despite changes within. With this, we arrived at a ‘standard beat map' for each 

city which covered the whole time period. In this way, a full geographical coverage was 

achieved in 13 of the Safer Cities for which crime data was available, and partial 

coverage in Birmingham. It was decided that one city selected should have super-beats, 

while the other one should not.

Based on the representativeness and data availability at the start of the study from the 

examination of Table 4.1 above, Bristol and Coventry were selected for further 

investigation on spatial accuracy within the GIS processing. The geographical 

characteristics of the two cities are shown in Table 4.2.

Table 4.2: Summary areal statistics of the two Safer Cities of England used in the case study
Cities Km2 Min. area Qf Min. area of Max. area of Max. area Mean area Mean are;

EDS beats EDS of beats of EDS of beats
Bristol .07 0.1 10 9 0.1 1.7
Coventry .08 0.4 6 11 0.16 2
Cities No. of EDS No. of beats Total. Area

Km?
mean (ED) 
population

Tptal
population

Bristol 824 58 110 451.91 371020
Coventry 601 46 96 487.76 293141
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4.5. Chapter Summary

This chapter has described the aim, objectives and scope of my research. The aim is to 

explore the data accuracy issues in GIS processing. The objectives are to assess the 

impact of the spatial uncertainty upon the Safer Cities Programme Evaluation, to provide 

a comprehensive quantitative account for the possible errors in the GIS operation for the 

evaluation and thereby determine whether the errors were significant or not. On the basis 

of the theoretical importance and relevance to the Safer Cities Programme Evaluation, 

this research focuses on the internal comparison of the recorded crime statistics only by 

selecting two Safer Cities as a case study. Bristol and Coventry were selected for in 

depth analyses based on their initial data availability and their representativeness of the 

cities.
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Chapter Five 

Methodology

The aim of this chapter is to derive a procedure to model the spatio-thematic errors in the 

GIS processing. This is achieved by first examining the existing methods from the 

literature review, identifying the appropriate methodology and then applying it, with 

modification if necessary, to the spatial uncertainty problems in the Safer Cities 

Programme Evaluation. Initially, it was intended to structure the literature review around 

the classification framework developed in Chapter three. However, most methods 

reviewed in the literature tend to be piece-meal approaches and focus on the particular 

types of errors introduced by various data transformations.

In general, there is no accepted paradigm for modelling error propagation that explicitly 

recognises the interdependence between spatial and thematic errors and formal methods 

of error propagation in a large complex system. Simply, those error models proposed 

have often been either too general or too simple to be applicable to our context. As 

Lanter and Veregin (1992) have pointed out, the utility of different dimensions of error is 

a function of context defined by the requirements of the uses and the classes of 

geographical data under consideration. However the function is usually non-computable. 

More basic research on the mechanisms of error propagation is needed. The resultant 

error model that is useful in practice is context dependent, and is usually tailor-made, and 

labour-intensive.

Following the above discussion, it is clear that the literature review needs to be organised 

within a more general and robust approach that can readily be adopted to the context of 

the Safer Cities Programme Evaluation. Veregin (1989) proposed 5 steps for modelling 

error in GIS operations and arranged them hierarchically with reference to Maslow’s 

(1954) model of human needs. There is no apparent psychological relationship between 

Veregin’s error modelling and Maslow’s hierarchical concept, though it seems sensible to 

manage error in terms of the following logical sequence. These are: error identification,
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error detection and measurement, error propagation modelling, and strategies for error 

reduction. However no appropriate methodology has been suggested for each step as it is 

likely application specific. Later, Lanter and Veregin (1992) suggested a layer-based 

error propagation paradigm, within which, geographical features are organised according 

to a spatial, thematic or temporal scheme (also see Chrisman and Niemann, 1985; Kjeme 

and Dueker, 1986; Aronson, 1987; Bracken and Webster, 1989). A fundamental 

characteristic of the framework presented by Lanter and Veregin (1992) is that different 

error propagation functions can be employed for any particular combination of GIS 

function and error index. Each error propagation function is determined by the specific 

error index to be propagated, the GIS transformation function to be employed, and a set 

of assumptions about the nature of errors in spatial data and their propagation 

mechanisms. The propagated indices can be evaluated in terms of their utility forjudging 

the quality of GIS derived data products and their appropriateness in decision-making 

contexts.

The model seems promising to provide a general framework for this research and thus 

form the structure of this chapter. The proposed model involves the following steps:

1. Identify error indices (Section 5.1).

2. Develop error propagation Junctions (Section 5.2).

3. Test the utility of Step 2 by assessing spatial, thematic, and/or temporal accuracy 

according to the derived geographical data (Section 5.3).

These steps are further expanded in terms of applying them to the context of the Safer 

Cities Programme Evaluation in each section, drawing upon the classification framework 

(from Chapter 3) and further literature review of other specific methods where necessary.
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5.1 Identifying error Indices

An error index is a unit measurement of accuracy (Lanter and Veregin, 1992). The choice 

of error indices depends on the types of data, the nature of errors (as indicated in the 

classification framework in Chapter 3) and the error modelling methods employed. In 

enor modelling of the Safer Cities Programme Evaluation, we need to consider the errors 

introduced by transferring data (from one system to another as discussed in Chapter 3), 

and the uncertainty involved when combining different types of data sets as part of the 

process modelling. The input error of cartographic data is primarily positional though it 

may involve thematic error as a result of subsequent processing, unlike the uncertainty of 

classified remote sensing data which is mostly thematic in nature.

The first step of the transfer of the spatial data into a GIS is from a source. In this case 

study, it is assumed that all input to GIS was carefully checked so that there were no gross 

error blunders in the input data. However it is unrealistic to assume the input error due to 

measurement as entirely random in nature. This kind of random input error has been well 

investigated in surveying science (Mikhail and Ackerman, 1976). The positional error 

will be examined first.

5.1.1 Group 1A: positional-transfer error

Vector data sets are usually captured by digitising paper maps manually, so are the beat 

maps for the Safer Cities Programme Evaluation. Errors in digitising are dependent on 

the mode of operation (stream vs point mode), operators and equipment used. Positional 

enor is inherent in the resolution of the system which indicates the smallest measurement 

possible by that system. The spatial precision of digitising varies as a result of both the 

instruments (in this case, a digitizer) with its inherent resolution, and the operators with 

various pointing skills.
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Results of digitising trials have been reported by Maffini et al (1989); Boslstad et al 

(1990) and Walsby (1995). While the study by Maffini et al (1989) is very limited using 

only one subject in the experimental trials. Walsby’s study is an improvement as she 

used 12 subjects (9 professional cartographers and 3 CAD experienced users using point 

mode digitising). The study shows that there is a wide variation in line-following 

accuracy, techniques and operators’ skill. The digitising error is also related to the right 

handiness of the operators. The digitising task has a characteristic pointing precision. A 

‘typical’ digitizer resolution is 0.02 mm. Operators have an average precision of about 

0.1 mm at map scale during manual digitising (Goel, 1992); and about 0.05 mm at photo­

scale during stereo-plotting (American Society of Photogrammetry, 1980, p 610-611). 

This is comparable to Bolstad et a/’s (1990) finding: mean deviation 0.054 mm and 

maximum 0.261 mm (also see Maffini et al, 1989; Keefer et al, 1991).

A co-ordinate Standard Deviation (SD) can thus be estimated to be 0.1 mm at map scale 

for the digitising step for data derived from a tablet digitizer of stated resolution 0.02 mm 

when used by a typical operator. However the estimation of SD does not take into 

account the quality of the information on the map which is affected by the earlier steps of 

the data collection process. The SD estimate would also change as the data are further 

processed in the subsequent stages. It does not allow for dynamic modelling in the error. 

Furthermore, a fixed SD ± 0.12 mm would be unrealistically small to account for the 

spatial error occurring in the Safer Cities Programme Evaluation, and the unit of 

measurement (in mm) is not used in the evaluation process.

Methods for more dynamic modelling of positional transfer errors are basically deductive 

approaches as they tend to focus on individual features. Areal objects are decomposed to 

three basic elements:

• points,

• lines, and

• areas.
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Point features

Point features are the simplest spatial objects. The models of handling the positional 

uncertainty of points have been most well developed in particular in surveying science. 

Goodchild (1991) describes a circular normal model of error in point locations which 

measures the likelihood of the true location of a point by referring to the height of the 

surface of the bell over that point. Shi (1994) defines a number of error indicators based 

on the normal distribution model for both circular and linear features. Blakemore (1984) 

describes a point at the boundary as: definitely in, definitely out, possibly in, possibly out, 

or ambiguous. The usefulness of such descriptions is not very clear as one still does not 

know by how much a point is possibly in or out.

There are several problems with point models:

• Variance-covariance matrix is not usually developed for points.

• More measurements of error quality for each point are still required.

•  In practice, especially in the context of crime prevention such as the Safer Cities 

Programme, data sets are not always collected in points.

Line segments

A line segment is a line defined by two end points. The distributions of line segments 

have been simulated by numerous researchers (Dutton, 1992; Zhang and Tulip, 1990; 

Caspary and Scheuring, 1992). Models include:

• the epsilon band model, and

• the error band model.

The epsilon band model

The epsilon band is defined as a buffer of constant distance from either side of the line 

and from its two end points. Chrisman (1982) describes it as the area occupied by rolling 

a ball along the line (Figure 5.1). The concept of an epsilon band enveloping a line can 

be traced to Perkal (Perkal, 1956,1966) and further investigated by Chrisman (1982) and 

Blakemore (1984).
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The digitised line The true line The epsilon band

Figure 5.1: An example of the epsilon Band

The epsilon band is based on cartographic generalisation and probabilities of ground 

location within and near the defined region (Honeycutt, 1986). As the epsilon band 

model assumes that the error effects of the digitised lines are random in nature and are 

independent from the GIS processes. Monte Carlo simulation may be used to perturb the 

true line to obtain the observed line through the area of the epsilon band. The epsilon 

band model is not a useful concept for describing errors in the complex GIS processing 

with a large amount of uncertain data. It has the following set of problematic 

assumptions:

• The errors are independent from the GIS processes.

• The true line lies within the band.

• Probabilistically, the band is comparable to a standard deviation from the true 

line if the band width is based on a SD measure but it does not have to be.

• The epsilons on both sides of the true line are equal distance, and thus form a 

uniform rectangular shape.
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A large scale GIS application such as the evaluation of the Safer Cities Programme, 

would have occasions that the true lines may lie entirely outside the epsilon band. Even if 

the true line lies within the epsilon band, it is difficult to decide where the upper and 

lower limits of the band should be. For example, the digitised line may produce a bi- 

modal distribution around the true line (Honeycutt, 1986). In other words, there should 

be no upper or lower limit imposed upon the band. However, if there is no upper or 

lower limit, constructing an epsilon band becomes impossible and meaningless. Even if 

one can arbitrarily impose the limits of the band boundaries, the model offers no 

distribution of errors within the epsilon band.

The error band model

The error band model has been offered as an alternative to the epsilon band by Zhang and 

Tulip (1990), Dutton (1992), Caspary and Scheuring (1992), and Shi (1994). The error 

band is derived from the random error of a point on a line segment (Caspary and 

Scheuring, 1992). According to this model, the error at the two end points of a line 

segment would be largest, and the error at the midpoint smallest. However this may 

depend on the mode of operation. The error band still has the same problems of the 

epsilon band described earlier. Furthermore, its assumptions - that co-ordinate errors of 

end points are independent and have the same variance and covariance - are also 

erroneous. For instance, the point errors are not independent for lines which are digitised 

in stream mode. Even for those lines digitised in point mode, there may still consist of 

large systematic errors. For example, a mis-registration of the digitised points on a map 

would result in a uniform shift in the location for each point. The relation between the 

true line and the digitised line should not be modelled as a series of independent position 

errors at points (Goodchild, 1991). The combination of both systematic and random 

errors should also be modelled.
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Methods fo r  area Objects

The epsilon model can be applied to the ‘point-in-polygon’ problem by describing the 

uncertainty of an area object enclosed by the polygon (Blakemore, 1984). However, the 

model is limited to describing five discrete levels: definitely in, definitely out, possibly in, 

possibly out, and ambiguous. These have no quantitative indicators. The problem of 

providing quantitative measures between the ‘possibly in/out’ region still remains. This 

can be solved by combining the vector polygon with grid cells (Blakemore, 1984). 

Nevertheless the model is still limited to describing discrete levels of uncertainty rather 

than the continuous changes in the probability. We (the users) are more interested in the 

quantitative statement about the resultant errors, and how it might affect the conclusion of 

our analyses than in further dividing errors into different finer levels such as ‘attributes of 

points, lines, areas, or cells’.

5.1.2 Group IB: attribute-transfer error handling methods

Attribute values are attached to points, lines or areas in a spatial database. There are two 

types of attribute (also known as thematic) data: categorical and continuous. Since the 

data sets used in the Evaluation of the Safer Cities Programme are categorical, only those 

methods that handle categorical data are examined.

Categorical data are descriptors of geographical entities (Stutheit, 1990; Rodcay, 1990). 

The assessment of the uncertainty of categorical data is the domain of classification 

uncertainty assessment and has been well covered by the remote sensing literature. 

Although the Safer Cities Programme Evaluation did not make use of the satellite images, 

the classified images may be regarded as a better standard and used to compare with the 

GIS processed data sets in the Evaluation. This is to be explored further at a later stage in 

this study.
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At the transfer stage in remote sensing (say, from satellite), one of major sources of 

attribute error is image classification. There are various sources of classification error:

• uncertainty in the definition of classes and identification;

• measurement error;

• decision making (that a pixel o belongs to a class A: o e  A) in interpretation or 

automatic classification; and

• further data manipulation.

The confidence of the decision (o e  A) varies within the area of a polygon with the 

highest at the centre of a polygon and lowest at the edge with a transition zone in between 

(Burrough and Heuvelink, 1992). Broadly speaking, the accuracy of the image 

classification can be assessed by experimental (sampling-based test) or probabilistic 

(Bayes’ theorem) approaches.

Sample-based test method

An experimental approach known as a sampling-based test method assess the classified 

satellite image by selecting a sample of locations, and then comparing the class assigned 

to each location to some source of higher accuracy, usually ground truth obtained by 

direct observation in the field (Congalton and Mead, 1983; Congalton et al., 1983; Story 

and Congalton, 1986; Rosenfield and Fitzpatrick-Lins, 1986; Congalton, 1991). The 

results are then expressed in a tabulated form as shown in Table 5.1 known as error or 

confusion matrix.
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Table 5.1: framework for an error matrix

A B C  .... Classified features A/Total (Ca.)

A Caa Consumer’s accuracy

B (Caa /  Ca.)

C

Grounc

truth

Total Producer’s accuracy (Caa /  C.a)

(C.a)

The diagonal elements of the matrix indicate correct classification. Users can compute 

their own quality parameters for each class required, such as the percentage correctly 

measured per class (Chrisman, 1986, Rosenfield, 1986; Greenland et al., 1985; 

Rosenfield and Fitxpatrick-Lins, 1986) or by means of the same measure but with 

confidence level (Aronoff, 1985; Hord and Brooner, 1976). A common accuracy 

standard is 85% (Goodchild, 1995).

However, to express the index of accuracy as the total percentage of correct classification 

is misleading since a certain number of correct classifications would occur by chance. A 

better index is the Kappa statistics (K) which accounts for correct classification that 

occurs by chance alone (with value ranging between 1 and 0). Given i row, j column, Cy 

entries,
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The Kappa coefficient can be used as an error index and applied to the entire data sets 

(Chrisman, 1984; Rosenfield et al., 1986). Alternatively, referring to Table 5.1, within 

each class the users and producers’ accuracy can be used (e.g. Ginevan, 1979; Aronoff, 

1982; Story and Congalton, 1986; Hudson and Ramm, 1987).

Producer’s accuracy (PA) is defined as the probability of a feature (A) being correctly 

classified.

Consumer’s accuracy (CA) is defined as the probability of the classified feature (A) 

correctly classified.

One of the criticisms of using the error matrix as an error indicator (say, 0.85 Kappa 

coefficient or 85% confidence that o e  A) is that it does not provide spatial distribution of 

uncertainty. (See Aronoff, 1989; for more technical details on remote sensing, see 

Colwell, 1983; and Chrisman, 1984; Rosenfield et al., 1986; Campbell, 1987; and Ehlers 

et al, 1989, for issues on the raster / vector integration).

Bayes * theorem

Bayes’ theorem (Rao, 1965) is based on the classic probability theory. Given sets: E, A 

and B (Figure 5.2):

(5.2)

(5.3)

E

Figure 5. 2: Venn diagram of sets: E, A and B
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A measure (there may be many) M on E, is a function, valued on the real numbers or

integers, of the subsets of E, such that

if A , B c E  
then M(A) > 0 

M({}) = 0

M(A u B ) = M(A) + M(B) - M(A n  B) (5.4)

The probability, using measure M, o f A, given B can be defined as:

PM (A|B) = M(A n  B) / M(B)

Thus Pm (A|B) depends on:
• M - the measure, there may be more than one
• B - the “conditioning” set
• A - the set whose probability we are calculating.
• and, indirectly, E as A, B c  E while M is only defined on E.

As a shorthand, we write Pm (A|E) as Pm (A) or P(A). This represents the probability of 

A = P(A). So E, M must be given by the context. It is usual to call Pm (A|B) = P(A n  

B)/P(B), the ‘conditional’ probability of A given B, usually written P(A|B). According 

to the Bayes’ theorem:

P(A|B) = P(A n  B) / P(B) and P(B|A) = P(A n  B) / P(A)

So the ‘conditional’ probability of B given A is:

P(B|A)P(A) = P(A|B) P(B)

=> P(B|A) = P(A|B) P(B) / P(A) (5.5)

Bayes’ theorem has been used to handle spatial uncertainty (Shi, 1994); and applied in 

crime pattern analyses (Brunsdon, 1989). In satellite image classification, Hi may be the 

hypothesis that a given pixel belongs to class h. X is the vector of the density value of the 

pixel in spectral space. The uncertainty is reflected by the conditional probability 

P(Hh|X), which indicates the degree to which the class to be correctly assigned. The 

conditional probability P(Hh|X) is determined by Bayes’ theorem:

P(Hh|X) = P(X| Hh) P(Hh) / P(X) (5.6)
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Bayes’ model assumes that a priori probability {P(Hh)} can be assigned correctly, which 

is often not true in practice. While the theory can accommodate quite complex joint 

probability, a very large number of probability measures would be required. Furthermore, 

the model provides neither measure of the quality of the probabilities, nor mechanism for 

weighting the assigned probabilities as a function of their reliability (Shi, 1994). Given a 

series of Hypotheses Hi and some evidence E, we can generalise the probability of the 

hypotheses:

Experiments can be carried out to determine E. If we have the frequency for which H 

will be true in such experiments, P(H|E) can be calculated. However hypothesis testing 

using Bayes’ theorem is only appropriate if there is a theory to support the hypothesis 

(Figure 5.3 Grove, 1998).

Proportion of p *ue = M(H) / M(E)

Figure 5.3: Relationship between theory, hypothesis and evidence in Bayes’ theorem

based on Grove (1998)

Furthermore, very often P(H) cannot be computed. If there is no chance set up then 

P(H|E) is not defined, we would have to make use of P(E|H) to infer. The likelihood of 

Hypothesis H given the evidence E can be defined as:

P(Hi|E) oc P(E|Hj)P(Hi)

Theory

P(H|E) = P(E|H) P(H) / P(E)

What Ts P(H)? Constant

L(H|E) = P(E|H) (5. 7)
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The likelihood of a hypothesis is not a probability. Note the difference:

P(E|H)
H fixed 
E variable, E,,
a n d £  P(Ei |H) = l

/

L(E|H)
E fixed, H variable, H,, Hj,....
X  L(Hi | E) = X  P(E | Hi) = anything

i i

Given P(H|E) does not exist but P(E|H) does, then we can use L(H|E) to choose between 

{H}. The problem is that L(H|E) does not prove theories (Grove, 1998).

In general, we usually choose the Hypothesis with the Maximum Likelihood. In 

the maximum likelihood classification, the maximum of {L(Hh|X), for h = 0,1} can be 

used to produce a binary representation of household and non-household pixels. In other 

words, a pixel is classified (L(Hh|X)>L(Ho|X); for all 09th. (L(Hh|X)} is very often 

mistaken as the probability vector {P(Hh|X)} in maximum likelihood classified satellite 

image (for example, Shi, 1994).

5.1.3 Group 2A and B: positional-process error and attribute-process error

For attribute data, the variables of interest would be their attribute values within the 

spatial location rather than the vector values of the co-ordinates. Although spatial in 

nature, attribute errors do not necessarily connect to positional errors in data (Drummond, 

1995). These attribute variables are different from the positional variables. The two tend 

to interrelate to each other. An obvious example is the uncertainty of area estimate which 

can be computed from the positional uncertainty of the boundary (Chrisman and Yandell, 

1988). For example, the estimated error of representing an area on a map, say on a USGS 

GIRAS digital land cover series map, was found to be 1% (Chrisman, 1982). However, 

for different classes of variables, their attribute uncertainty may not be reduced at the 

same rate as the area. It depends on the proportion of inclusions or exclusion of that class
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within the same area (such as the scoping process in this case study). In this case, 

knowledge of suitable parameters such as mean inclusion size may help (Goodchild, Sun 

and Yang, 1992).

Methods of handling error propagation for continuous thematic data are similar to those 

methods for positional data. These methods are discussed together under the same 

section. Generally speaking there are two methods for handling attribute- and positional- 

process errors: 1) Variance propagation, and 2) Monte Carlo method (Drummond, 1995).

Variance propagation

This approach estimates the associated contributing SD identified in each processing step, 

and applies variance propagation techniques (Mikhail and Ackerman, 1976). The error 

process can be modelled using the principle of the propagation of a distribution (Mikhail 

and Ackermann, 1976). The propagation of a distribution can be simplified to the 

propagation of the mean, variances and covariances (Mikhail and Ackermann, 1976; Shi,

1994). Variance propagation techniques can be used when the process consists of a 

limited number of steps. When the process is complex involving many steps, the analysis 

of variance propagation become time consuming and difficult; and may even introduce 

further errors. Given a functional relationship, the variance analysis can be simplified 

when the partial derivatives are one (‘rule of thumb’ estimate).

The variance propagation approach may be suitable for certain applications such as land 

survey when the mathematical operations performed are relatively standardised, the 

partial derivatives and the SD can easily be determined (a simple example of the 

positional accuracy of the telephone pole was given by Drummond, 1995). The 

mathematical model used to determine the positional accuracy of an area is sufficiently 

straightforward to ensure that variance propagation can easily be performed (Drummond,

1995).
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There are several limitations to using the variance propagation approach:

• It neither considers the relative importance of each measurement in the process nor 

does it consider the mathematical relationship between the measurements.

• It assumes the unique inverse function exists which it may not.

• It is limited to linear functions. To apply the law of error propagation, a non­

linear function has to be ‘linearized’, for example, using the Taylor expansion 

(Heuvelink et al, 1989). Such linearization would introduce an approximation 

error. If the function is highly non-linear, the approximation may become 

unacceptably large (Kuczera, 1988).

• It is usually difficult to define the set of functions describing the transformation 

in GIS.

• The method requires the density function to be continuously differentiable but 

it may not be in practice.

• It assumes that the sources of uncertainty in each measurement are independent 

which is usually not true (for example spatial correlation).

• It is possible only for simple algebraic relationships between input data and 

calculated results.

In many GIS applications the analysis performed on the data is sufficiently complex to 

make this analytic approach impossible. In these cases uncertainty would have to be 

propagated by simulation such as by the Monte Carlo method.

Monte Carlo method

The Monte Carlo technique is a general approach that is not specific to the spatial 

accuracy issues but can be applied with any method. It can generate distribution of any 

random variable at an arbitrary level of accuracy. It is easy to implement. The Monte 

Carlo method is best used when there is insufficient knowledge of the processes operating 

in a particular situation or it is impossible to develop a process to predict the entire 

outcomes. Given that some sets of outcomes are known, it is possible to use the
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statistical summary of those outcomes to determine (at random) new values that conform 

to the distribution of observed values.

As with the analytic approach, Monte Carlo simulation requires an error model, for 

example the normal distribution. Rather than work with the parameters of distribution, 

such as the SD, Monte Carlo simulation uses the error model to generate a sample of 

possible measurements. While only one measurement may have been taken, the 

simulated measurements can be interpreted as equally possible but fictitious outcomes of 

the measurement process. The samples are described as realisations of the error model.

Mathematically, the Monte Carlo computation may be regarded as estimating the value of 

a multiple integral R(Ei, E2,..., En) of the sequence of random numbers Ei, E2,... 

(Hammersley and Handscomb, 1964). This is an unbiased estimate of the following:

We shall refer to f as the crude Monte Carlo estimator of J. In practice, we probably 

would not know the value of J, so it has to be estimated. If large enough samples are 

generated from the Gaussian or normal error model, their relative frequencies will form 

the bell curve. In the Monte Carlo approach, each estimated measurement is then 

analysed, producing a range of results. These are then analysed to determine the 

uncertainty in the result, by calculating the standard deviation using the formula (3.2 with 

mean z = 0). The factor of n in the denominator of standard error implies that in order to 

halve the error we must take 4 times as many observations, and so on, so that, in our 

example, in order to achieve 2 significant figures of accuracy (with a standard error less 

than 0.005) we should need to make about 3000 observations of values of f. For SD (a) =

(5.8)

For simplicity, take the one-dimensional integral

(5.9)
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0.05 as acceptable standard practice, 300 observations would be required. So we take n 

(= 300) random numbers and evaluate the function. With 300 samples of each input 

measurement, analysis would produce 300 results. We should then announce the result as 

j = f ± a  meaning that f is an observation from a distribution whose mean is j and 

whose standard deviation we estimate at s. Since by Central Limit Theorem we expect 

that the distribution of f is approximately normal (if we have sampled from the normal 

distribution), we may say with 95% confidence that we are within two standard deviations 

of the mean. The phrase ‘x% confidence’ signifies that with the procedure repeatedly 

applied in the Monte Carlo experiments, x% of results would be correct in the long run. 

Unless we know the value of the estimated J (in which case there would be no point in 

carrying out the Monte Carlo work, except for explanatory or calibration purposes 

discussed later), we cannot say with 100% certainty that whether any particular result is 

correct or not.

Monte Carlo simulation is a more general and robust technique for propagating 

uncertainty than mathematical analysis. It can be applied to any kind of propagation 

problem, no matter how complex, and to any error model (provided only that there exists 

a method of generating realisation).

According to the literature reviewed, there is a long history of using Monte Carlo 

methods within the discipline of geography. These are chronologically listed below as 

examples only and are by no means exhaustive:

• Hagerstrand’s (1965) diffusion is based on Monte Carlo simulation.

• Hope (1968) studied migration routes.

• Besag and Diggle (1977) simulated point patterns.

• Openshaw and Taylor (1979), Openshaw (1984), Fotheringham (1989), studied the 

modifiable area unit problem and the effects of aggregation on area-based 

demographic statistics.
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• Openshaw et al (1987) developed the geographical analysis machine in identifying 

clusters of Leukaemia victims.

• Openshaw et al (1991) examined the sensitivity of route selection for nuclear waste 

transport.

• Fotheringham and Wong (1991) proposed a solution to handle the modifiable area unit 

problem.

• Fisher (1991a) estimated the effects of soil map errors on land valuation for taxation.

• Fisher (1991b, 1992) established the effects of elevation error on the viewshed for 

which no process-based formula exists (used the root means squared error reported for 

a digital elevation model (DEM) to create alternative realisations of the elevation 

model, and to derive alternative realisations of the viewshed that may be determined 

mathematically from the DEM).

• Lee et al (1992) examined the errors incurred in extracting flood plains.

• Sechrist (1992) implemented Hagerstrand’s (1965) diffusion model.

• Caspary and Scheuring (1992) simulated of the probability distribution of a line 

segment.

• Goodchild, Sun, and Yang (1992) propagated the simulated error into products 

obtained from the soil map data.

• Englund (1993) investigated the spatial structure of data errors.

• Fisher and Langford (1995) incorporated Monte Carlo technique with Openshaw’s 

(1977) algorithm to generate random zonations of the neighbouring ED in order to 

evaluate different spatial interpolation methods (more detailed discussion later).

• Brunsdon et al (1998) used Monte Carlo significance test for modelling spatial non- 

stationarity in the geographically weighted regression.

One of the major criticisms of the Monte Carlo method is that it requires a large amount

of modelling effort and computing time. In the past improving the efficiency of Monte

Carlo methods were of the utmost priority. The relative efficiency (Gain) of two Monte

Carlo methods for ni, n2 units of computing time with variance a 2! and a 22 respectively

can be defined as the product of the labour ratio nj/n2 and the variance ratio a V a 22
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(5.10). The later depends on the problem and the Monte Carlo methods; the former 

depends partly on the Monte Carlo method and partly on the computing machinery 

available.

n ia 2i /n 2a 22 (5.10)

The performance of several Monte Carlo techniques are summarised in the following 

table based on a standard example f(x) = ex- 1 / e - l  (Hammersley and Handscomb, 

1964):

Table 5.2: Efficiency Ratio

Methods Variance x Labour = Gain
Hit-or-miss .34 1/1 0.34
Stratified sampling with 4 equal strata 13 1/1.3 10
Importance sampling g(x) = x 29.9 1/3 10
Control variate 60.4 1/3 30
Antithetic (max.) 2.95 x 106 1/6 460000
Orthonormal 7.2 x 105 1/3 240000

However with the advance of fast super-computer (more than 21000 times faster than the 

computers in the 1970s), the efficiency is no longer an issue. Many applications 

described earlier have used the ‘hit-or-miss’ Monte Carlo method for its simplicity.

Another criticism of the Monte Carlo method is that as it cannot yield an analytical form 

of the distribution for the variable, a set of new simulation runs has to be performed for 

each different case (Shi, 1994). However, when spatial errors are difficult to be modelled 

and their nature depends on different applications, it is argued that the requirement of 

Monte Carlo method make it more adaptable to different context than the other methods.
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5.1.4 The cumulative effect of the Group 1 and Group 2 errors with Group A x 

Group B interaction

While each approach reviewed above can arguably be used to analyse a specific aspect of 

uncertainty, the question is which one is the most appropriate solution to the problem of 

GIS processing in the Safer Cities Programme Evaluation. This consists of all Group 1,

2, A and B errors; their interaction as well as their cumulative effect (error propagation). 

Methods for a specific group of errors would be of limited use for our context. For 

instance, the modelling of thematic uncertainty was limited to the classified remote 

sensing data. In particular, the interpolation of the choropleth maps (Beats and ED) 

would introduce both positional and thematic errors. The spatial interpolation error is 

most important in GIS applications as it is most widely used in GIS applications and is 

much larger than the input error due to measurement (Tempfli, 1980).

Within the context of the Safer Cities Programme, positional accuracy of a polygon (say a 

Beat in this case) would have an effect upon its attribute value (such as crime rate), and 

the thematic content of the categorical coverage plays a much larger role than the spatial 

attribute in determining the final conclusion of the Evaluation. The spatial and thematic 

errors tend to interact with each other in practice, and it is not meaningful to examine 

them independently. However, there is a lack of methodology for specifying the 

interaction among the various error types and models of error propagation with a few 

exceptions such as the work by Lanter and Veregin (1992) and Shi (1994).

However, methods proposed from the literature that handle both spatial and thematic 

errors are usually based on simple demonstrative applications and erroneous assumptions. 

For example, the statistical method based on normal distribution around the error bands 

developed by Shi (1994) also has similar weaknesses described in other error band 

models. While theoretically interesting, it is not applicable in practice for at least three 

reasons. First, the errors are not independently introduced in the GIS processing. In 

practice, the errors introduced at each stage may not contribute equally to the total enor.
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They are often wrongly assumed to be equally weighted due to the difficulty in weighing 

the contributing factors. The error rate may change in each stage in a unpredictable 

fashion. Second, the true location of the line segment may not be within the buffer zone 

around the measured line segment. Although assuming that there is no gross error, what 

if the line is still completely wrong which could happen in spatial interpolation as 

exemplified in this case study. Third, even if the true location of a line segment is 

covered by the pre-defined error zone, the error distribution of the line segment need not 

be normal.

Other strategies include simple methods to estimate the minimum and maximum possible 

errors, so as to bound the range of error possible in a given application (Veregin, 1989). 

For example, Me Alpine and Cook (1971) have proposed a simple equation to estimate 

the number of polygons on the composite map:

mc -  [ 1-i X m1/ 2 f  (5.11)

where
mc is the number of polygons on the composite map 
m, the number of polygons on the individual maps 
n the number of data layers.

Thus the possible range of errors can be estimated by comparing the number of polygons 

in the resultant maps (say, using the overlay method) with the number estimated from the 

equation (5.4). While the method provides a single statement for the overall error of the 

composite map, it does not indicate the error in individual polygon. So it could not 

employ error propagation functions to proceed further in GIS processing. The simple 

methods such as the equation proposed by Mc Alpine and Cook (1971) are more 

appropriate to be used for providing the ‘first impression’ about the extent of the errors in 

an application. This may still be useful for analysts to make decisions on whether the 

extent of errors involved is large enough to warrant further investigation. The framework 

discussed earlier can thus be revised as follows:
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1. Identify the error index (RMSE in this case).

2. Perform a quick evaluation of the range of errors using simple methods to check 

whether further assessment is required (if so, proceed to Step 3; else stop).

3. Develop error propagation functions within the data transformation processes using 

Monte Carlo dasymetric method (to be discussed next).

4. Test the utility of Step 3 by assessing spatio-thematic accuracy in the Evaluation 

(discussed in Section 5.3).

For categorical data, either a classification error matrix in terms of the proportion of 

points correctly classified (PCC) or the kappa statistics and users’ and producers’ 

accuracy can be employed as the error index (as discussed earlier in Section 5.1.2). 

However, the PCC index of classification accuracy is a single valued index derived from 

the classification error matrix. Moreover, the error indices proposed above are usually 

limited to the raster data type such as land cover, soil, or vegetation; and are inappropriate 

for numerous data sets used in the Safer Cities Programme. Its value does not permit 

thematic differentiation of error, i.e. it does not describe how error levels may vary from 

class to class (Lanter and Veregin, 1992). From the above literature review, using Monte 

Carlo simulation to generate the root mean squared error as index seems most appropriate 

for the evaluation of the Safer Cities Programme. (Note that there is no categorical data 

set used within the scope of this case study.)

5.2 Developing error propagation functions

An error propagation function may simply be defined as any unambiguous representation 

of the mechanisms whereby errors presented in data sources are modified by a particular 

data transformation function (Lanter and Veregin, 1992). The choice of error propagation 

function depends on the GIS data transformation function applied and the index used to 

measure error in data input to the transformation function. This assumes a priori 

knowledge of input data quality and error propagation mechanisms. There is more than
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one error propagation function possible. Each represents a different set of assumptions 

about error propagation.

Appropriate error propagation involves matching the GIS data transformation function 

with the error measurement index (as discussed earlier). The GIS transformation and 

error index serve as keys for identifying and selecting the appropriate error propagation 

function. Each error propagation function is specifically designed to propagate a specific 

error index through a particular GIS function based on a set of assumptions about error 

propagation (Lanter and Veregin, 1992). Each of the GIS data transformation functions 

used in the GIS processing (e.g. UNION, INTERSECT, and RESELECT) induces 

changes in the spatio-thematic accuracy. Propagation of error indices parallels the 

propagation of data. The implementation of the paradigm may involve drawing a 

network of input and output relations between spatial data layers which is similar to a 

data flow diagram proposed by Martin and McClure (1985), and can be regarded as an 

application of a ‘cartographic model’ (Tomlin and Berry, 1979; and Berry, 1987).

Applying Lanter and Veregin’s (1992) framework to the context of the Safer Cities 

Programme Evaluation, the process can be represented by means of the following data 

flow diagram (Figure 5.4):

UNION

EDGSBEATGS

EDBEATGS

Figure 5. 4: Layer-based error propagation
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Household density, Burglary risk and action intensity in the Safer Cities Programme 

Evaluation are implicit in the registered source layers (EDGS and BEATGS). Data 

transformations applied in this application link each input to an output map layer 

(EDBEATGS). The result is a network linking the application’s source maps (EDGS and 

BEATGS) to its products (EDBEATGS). If source errors can be propagated through data 

transformation functions (UNION), the ‘utility’ of the GIS processing for the Safer Cities 

Programme Evaluation would theoretically be assessed.

5.2.1 Data transformation function, map overlay and areal interpolation

While the paradigm proposed by Lanter and Veregins (1992) focuses on the source errors 

of the data types, one must remember that the data transformation function itself 

introduces error where none existed before which would require error modelling (also the 

subject of this research). Different data sets collected are usually based on different 

spatial units, the so-called zones. For example, crime data are collected based on beats, 

while census data are based on EDs. Getting the information from one data set, say, 

census, that covers the same geographical area of another data set, say, beats, can be 

achieved by overlaying the two maps (beats and EDs) - a simple GIS UNION operation. 

However, the geographical boundaries used in the census are incompatible with beat 

boundaries. This is the well-known ‘areal interpolation’ problem (Flowerdew and 

Openshaw, 1987; Goodchild and Lam, 1980; Lam, 1983; and Goodchild et al, 1993). 

‘Areal interpolation’ is the process of obtaining the information for one zonation of an 

area (known as ‘target zone’) by retrieving that information from another zonation of the 

same area, the so-called ‘source zone’ (Goodchild and Lam, 1980). The two zonations are 

very often incompatible. Areal interpolation has thus been regarded as one of the 

pressing needs in spatial analysis (Fotheringham and Rogerson, 1993).

There are a large number of areal interpolation methods (Goodchild et al, 1993; 

Flowerdew and Green, 1989; 1991; Flowerdew et al, 1991; Goodchild and Lam, 1980; 

Lam, 1983; Langford et al, 1991; Tobler, 1979). Under the classification scheme derived
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in Chapter three, areal interpolation is a GIS process, but would contain both spatial and 

attribute errors in the resultant map (Group 2 A B). Since the true attribute values in the 

resultant maps are not known, the errors have to be estimated by comparing the outputs 

from the ‘overlay’ method used in the Evaluation with those from a ‘better’ areal 

interpolation method. However, no method is truly satisfactory, in the sense that it is 

impossible to derive perfect results, and thus some error is inevitably introduced. The 

methods of areal interpolation need to be critically reviewed in the search of the ‘better’ 

method. These can be broadly grouped into three: cartographic, regression and surface 

methods (Fisher and Langford, 1995). Cartographic methods include areal weighting and 

the dasymetric method.

Areal weighted method

Areal weighted method is perhaps the simplest method of spatial interpolation. It is easy 

to implement and thus one of the most common methods. The method has been applied 

widely in various applications (for example, Goodchild and Lam, 1980; Goodchild et al, 

1993) as well as being a standard function in some GIS packages such as Maplnfo.

The value of a variable within the target zone (Z*) can be calculated according to the 

following simple equation:

Zt =  X s Z s A st /  A s (5.12)

where
Zs is the value of the variable within the source zone (s)
Ast is the area of interaction zone (st)
As the area of the source zone (s)

The problem of the areal weighting method is that it wrongly assumes that the density of 

population within the source zone is uniform. It may only be used to quickly assess the 

impact of the possible errors so that a decision can be made upon further investigation 

using more accurate, but labour-intensive methods.
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Dasymetric method

The assumption of an even distribution can be refined by using knowledge of the locality 

to identify smaller areas within zones that have different population densities. Maps 

providing such knowledge are called dasymetric maps (hence the dasymetric method) and 

have been used in cartography since Wright (1936). For instance, the areas of residential 

areas in classified satellite (Landsat) imagery can be identified and used to provide a more 

realistic mapping of population density (Monmonier and Schnell, 1984 applied the 

method in Pennsylvania). However it is not until recently that the dasymetric method has 

been applied to solve the areal interpolation problem (Fisher and Langford, 1995).

Regression method

The regression method computes the population of the target zone as a function of a 

number of control variables from another zone (and hence known as the control zone). 

Mathematically, this can be represented as the following general form:

Pt = f(xi,x2 xn) (5.13)

where xi, x2, x n are control variables related to zone t.

Langford et al (1991) have examined the appropriateness of the areas of different land- 

cover types as the control variables. The ‘shotgun’ model uses the areas of different land- 

cover classes as independent variables to predict the population. The ‘focused’ model 

uses only the areas of high-density and low-density residential land use within the source 

units. The ‘simple’ regression model uses all residential land as one category.

The appropriate regression model for the areal interpolation may not be linear. It may be 

a Poisson distribution (Flowerdew, 1988; Flowerdew and Green, 1989; 1991; Flowerdew 

et al, 1991). However for the simple regression model, Langford et al (1991) have found 

little difference to the results between Poisson and linear regression models. Other
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control variables, such as demographic variables, may also be used. For example 

Flowerdew et al (1991) have used voting outcome, number of voters, car per household, 

and ethnicity as indicators to predict the population of parliamentary constituencies in 

Lancashire (as the target zone). Surprisingly, they have found that simple models 

perform better than complex models, and that the proportion of people living in a 

situation with more than one person per room provided the best basis for estimation.

Generally speaking control zones can be used to improve the estimates in areal 

interpolation (Goodchild et al, 1993). This is theoretically similar to the dasymetric 

approach. The power of control zones in improving the areal interpolation would 

obviously depend on the fineness of the control zones themselves. For example a simple 

two way split of the control zone (say above or below 400 foot contour in Lancashire by 

Flowerdew et al, 1991) would provide no improvement over the regression method.

Surface methods

The surface methods compute population density of a target zone by integrating the 

volume under that surface (Tobler, 1979; Bracken, 1994; Bracken and Martin, 1989; 

Martin, 1989). The problem with the surface methods is that although they provide a 

dramatic visualisation of the population density distribution, they do not provide a precise 

statement about the properties of the surface generated (Fisher and Langford, 1995). 

Although there are numerous studies of areal interpolation, very few authors have 

evaluated the merit of different methods. Studies are mostly based on a limited number 

of methods (typically one) and thus are not useful in terms of making a decision on 

selecting an appropriate method for a particular application (for example, Flowerdew, 

1988; Flowerdew and Green, 1989; 1991; Flowerdew et al, 1991; Goodchild et al, 1993; 

Langford et al, 1991). An exception is the study by Fisher and Langford (1995). They 

have creatively taken the modifiable area unit (as an opportunity rather than a problem) to 

provide a baseline for comparison between five different methods (areal weighting, 

shotgun, focused, simple, and dasymetric) with ED as elemental zone and aggregated unit 

as target zone covering three districts of Leicestershire. They have also used classified
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satellite imagery to construct both regression and dasymetric models by incorporating 

Monte Carlo simulation with Openshaw’s (1977) algorithm to generate random zonations 

of the neighbouring ED. They have found that the method based on dasymetric mapping 

consistently gave the highest accuracy of those tested, whereas the areal weighting 

method gave the lowest.

However, Fisher and Langford’s study is not without its own limitations. There is a need 

to examine the effects of this accuracy on the estimation process, and to explore the 

potential of other data sources. The study has only covered a limited area. There is a 

need to broaden the area of analysis so that valid estimates of the error can be made over 

larger areas. The evaluation of the Safer Cities Programme has provided an opportunity 

for testing the potential of the methods reported by applying them in a real-world, 

complex situation.

5.2.2 Developing error modelling in areal interpolation for the case study

From the above critical review of the literature, I conclude that to assess the spatio- 

thematic accuracy of the Safer Cities Programme Evaluation, it is necessary to develop 

one’s own unique approach based on the best practice.

Developing error propagation functions is based on the Monte Carlo simulation with 

dasymetric method as described by Fisher and Langford (1995). Their procedure would 

need to be modified in order to be applicable to the context of the Safer Cities Programme 

Evaluation. For instance, since all beats in the selected cities would be subject to error 

modelling, it would not be necessary to use Openshaw’s (1977) algorithm to generate 

random zonations of the neighbouring ED.

Since data of the household density at ED level were derived from the 1991 Census data, 

the household density at beat level had to be derived by means of the spatial interpolation 

using EDs as the source zone (S) and beats as the target zone (T). Unlike Fisher and 

Langford’s method, both the source zones and the target zones in the Safer Cities
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Programme were pre-defined, and thus could not be simulated freely. So for ED-beat 

areal interpolation in our case study, the elementary zones E can be defined as EDs which 

are aggregated into any Zone A; and the target zones T as beats. The source zones S are 

the aggregated EDs, i.e. S=A. Using land-use maps of classified satellite (such as 

Landsat) imagery as a dasymetric map to provide the control zones C, which can be 

superimposed with T to form a binary representation of populated and unpopulated 

pixels. Since the population of E is known, the populations of S and T are also known 

(Figure 5.5).

S = A
Aggregate

E_>S
 ► ------------------------

Calibrate 
H Mc = ?1

Overlay 
S-> T 
Ae = ?

Estimate
Ht =?

Aggregate
E->T

C

Figure 5. 5 Monte Carlo simulation and dasymetric mapping with satellite imagery to estimate 
population (based on 1991 census data). E: elementary zones (ED); A aggregated zones; T: target 
zones (beats); and C control zones (satellite imagery)

The triangle EAT (or SET) effectively defines the spatial interpolation problem of this 

research; and the triangle CAT (or SCT) offers the solution to that problem. The latter 

(SCT) can be alternatively viewed in terms of the common map overlay (layer-based 

representation, Lanter and Veregin, 1992, Shi, 1994) as shown in Figure 5.6.
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S = A

C

Estimate 
Ht  = ?

T

Figure 5. 6: Layer-based representation of the Monte Carlo dasymetric method

The variable of interest Ae is the error of the spatial interpolation using the overlay 

method. This can be computed as follows:

Ae = Hmc ~  Hov (5.14)

where Ae is the error of spatial interpolation from S to T
Hmc household count by means of Monte Carlo estimation 
Hov household count by means of the overlay method

and

Hmc — Hov ±  Ae (5.15)

The solution requires the following steps:

1. Get the satellite imagery.

2. Calibrate the satellite image using EDs (census) as source zones to estimate household 

counts.

3. Estimate household density in beats using the calibrated satellite image as a 

dasymetric map and Monte Carlo simulation.
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Step 2 is necessary since the use of remote sensing data such as a Landsat image for error 

modelling itself also introduces an extra layer of error which needs to be corrected or 

‘calibrated’. For example, ‘calibrating’ the accuracy of positional information for 

specific classes of entity whose positions are derived from digital satellite imagery (see 

Hord and Brooner, 1976).

Assuming a non-biased Monte Carlo estimator, the RMSE error due to the simulation 

after the calibration with ED references would be approximately equal to the standard 

deviation a of the simulation. The true household count Ht can be estimated by means of 

the household counts obtained from the Monte Carlo simulation:

H t = Hmc i  G (5. 16)

or in terms of the household counts by means of the overlay method (Hov), and its error 

estimation (Ae) and standard deviation by means of the Monte Carlo method (a):

Ht = Hov ± Ae ± a (5.17)

The above equation is consistent with the error model associated with the spatial variation 

proposed by Burgess and Webster (1980 a, b), Burrough (1986), Davis (1986), Heuvelink 

et al, 1989, Journal and Huijbregts (1978), Lodwick et al (1990) and Webster (1985). 

Comparing to their regionalized variable theory, the first term in the right hand side of the 

equation is equivalent to a function describing the structural component of the spatial 

(thematic in this case) variable, the second term is a spatial-correlated random component 

denoting the stochastic, locally-varying spatially-dependent residuals from the first, and 

the third term is a residual error (white noise) that is spatially uncorrelated having a mean 

zero.

By defining different zonal areas using Monte Carlo techniques, a precise statement about 

areal interpolation error can be made. Thus a whole range of error distribution can be 

worked out in terms of RMSE not only by comparing the population of A and C; but also 

C and T.
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5.3 Testing the methodology

To test the utility of the layer-based paradigm, Lanter and Veregin (1992) have 

implemented the model using the GEOLENEUS lineage meta-database system to 

automatically propagate error indices through GIS spatial data transformation functions as 

an example. However, the hypothetical vector described error indices for a layer is no 

more than a snap shot of the values in the three data quality dimensions (spatial, thematic, 

and synoptic / temporal errors). In their detailed application example, Bayes’ Theorem 

has been chosen as the model and the proportion of points correctly classified (PCC) as 

the error index. The former requires users’ supplied error estimates, while the latter is 

inappropriate to the context of the Safer Cities Programme Evaluation as discussed 

earlier. The transformation of the PCC index through the application is based on the 

assumption that errors are uncorrelated across data-layers and are distributed uniformly 

across classes of the thematic attributes. The assumptions are obviously not true.

To sum up, Lanter and Veregin’s (1992) paradigm provides a framework to propagate 

error through GIS functions, but its implementation says very little about the resultant 

error and its effect upon the object of users’ interest. It does not define what level of error 

is acceptable in a given situation. Such policy decision is context specific and should be 

based on a consideration of the significance of the resultant error within a particular 

decision-making context, in this case, Safer Cities Programme Evaluation. This requires 

the examination of the effects of imposed perturbations (variation) on the inputs of a 

geographical analysis on the outputs of that analysis, a process sometime known as 

geographical sensitivity analysis (Lodwick et al, 1990). Other methods such as the 

geographically weighted regression can be used in the sensitivity analysis (Brunsdon et 

al, 1998). However, since the conclusion of the Safer Cities Programme Evaluation has 

been derived from the multi-level modelling, which would also be required to be 

incorporated in the sensitivity analysis of the methodology. This is to be discussed next.
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5.3.1 Developing method for testing the methodology: multilevel modelling of 

geographical data

Multilevel models are usually concerned with the structure of the hierarchical data in the 

population and thus should be an appropriate tool for modelling of geographical 

properties such as population density. Statistical theory and examples of multilevel 

modelling are described by Goldstein (1995); Jones (1992); and Bryk and Raudenbusch 

(1992). Multi-level modelling techniques have been used to address various statistical 

problems in criminology such as contextual analyses (Bryk and Raudenbush, 1992; 

Roundtree et al, 1994 ). It has been applied to a large-scale survey for education 

(Mortimore et al., 1988; Nuttall et al., 1989). A typical multilevel model in this case 

would assign individuals (e.g. pupils) to level 1, class to level 2, schools to level 3 and 

geographical area (authorities) to level 4. Units at one level are recognised as being 

nested within units at the next higher level. For example, in a household survey, the 

level-1 units are individual respondents, the level-2 units are households and the level-3 

units ED. This hierarchy is described in terms of clusters of level-1 units within each 

level-2 unit (<clustered population). Clustering generally causes standard errors of 

regression coefficients to be underestimated in statistical analyses. If standard errors were 

underestimated in the evaluation of the Safer Cities Programme, it might be inferred that 

there was a real impact of preventive action upon the burglary risk when in fact that effect 

could be ascribed to chance. Correct standard errors would be estimated only if variation 

at ED and beat level were allowed for in the analysis.

Multilevel modelling provides an efficient way of modelling the influence of socio- 

economical and geographical characteristics on the outcome of the Safer Cities action.

The advantages of multilevel modelling can be summarised as follows (Woodhouse et al, 

1992):
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• Coefficients in a linear model of a process occurring at one level are functions of 

characteristics of units at another level of a hierarchical system. These coefficients 

and their variances and covariances can be viewed as variables of interest.

• Coefficients of within-unit relations among variables are generally estimated better 

than they would be if a single level analysis was conducted for each group.

• The more appropriate model specification resolves the problem of mis-estimated 

precision inherent in single level analyses of hierarchically structured data.

• Longitudinal data have a nested structure-measurements within individuals.

Multilevel analysis permits individuals to have their own ‘growth curves’ (temporal 

dimension).

A ordinary linear model assumes entities are completely independent, while in fact, 

individuals within naturally occurring groups (say, geographical areas) share common 

features (first law of geography). A multilevel model provides more realistic portrayal of 

the effects of grouping. This makes it useful for geographical studies (such as spatial 

correlation). The fidelity is apparent in the estimation of the standard errors of the (fixed) 

coefficients which are larger than the corresponding values from an ordinary least square 

analysis as the intra-class correlation among the measurements is taken into account. 

When there is a considerable between-area variation (say, 25%) it is essential to use 

multilevel analysis (Woodhouse et al, 1992).

Formulating a basic Multilevel model

The basic multi-level model is linear, based on the well-known ‘ordinary least square’ 

model. It illustrates on one level, the variation for a single geographical unit, the 

relationship between different burglary risk and action intensity scores. In the Safer 

Cities Programme Evaluation, we were interested in the variation between all beats of the 

city over time in order to make inference about the variation in the underlying burglary 

risk.
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The evaluation is concerned with the relationship between the burglary risk in the 

individual beat-year y* and its Safer Cities action intensity scores xj. For each beat-year i, 

a linear relationship between these variables can be written as the standard algebraic 

equation:

y i= P o  +  P i* i+ e i (5.18)

where subscript i takes values from 1 to n, one for each case (beat-year) in the city. For 

the ith beat-year, x* is the action intensity score and y* the burglary risk respectively. The 

regression line, regarded as a prediction of y from x, can be expressed as:

Y i=  Po +  PiXj (5.19)

where Y* is the burglary risk predicted for the ith beat-year by this particular summary 

relationship for the beat area. (Note y* = Yj+ e*)

ei is the residual as it is that part of the burglary risk yi which is not predicted by the 

regression relationship. With only one level, the beat-year variation is simply the variance

ei.

A simple two-level model (between-unit / within-unit version) consists of a random part 

and fixed part. The random part may either refer to the intercept (Variance components 

model) or the slope (Random slopes regression) of a linear model.

Variance components model

For the multilevel case, where variation between beats are included, the relationships can 

be expressed as:

Y ij= Poj Pi^ij +  Uj (5.20)
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where Y is a linear function of x for i beat-year cases as before, but now they are nested 

in each of the j areas (or beats). (Subscript ij now refers to cases-beat.) pi is the regression 

slope (the impact of x on y) which is assumed to be constant across all beat areas and 

beat-years. poj is the intercept which varies across beats but has the same value for the 

beat-years within a beat.

The random variable Uj = poj - Po is a level-2 residual, representing the departure of the jth 

beat’s actual intercept from the value of Po predicted for all beats. (Note Uj is specific to 

beat j, but is the same for all years in that beat.) The variance in Y is a function of both 

individual differences in beat-years i and differences among geographical areas j.

Since y^ = Yy+ ey, substituting the value of yy into equation (5.20), the full model can be 

expressed as

The above is known as a variance components model, that is, a multilevel model of a 

simple type where the only random parameters are the intercept variance at each level.

Random slopes regression

Since both Poj and Pij in general can vary across beats, these coefficients are treated as 

random variables at level 2. The model allows slopes to vary from beat to beat.

yij =  Ppj +  PlXij +  Uj +  ey (5.21)

where
ysj represents the burglary risk 
Xjj action score
Ppj intercept
Pj coefficients of the action score (tot) (fixed)
u; and e . are the random variables.

y.j =  Poj +  P ijX ,j+  ej, (5.22)

Poj are the intercepts and pij slopes which differ across j areas.
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Let poj = Po + Pij = Pi + vj, equation (5.22) becomes:

yy = Po + (Pi + vj)Xij + uj+ eij (5.23)

Re-arranged, we have

yy = Po + Pi xy + (vjXij + uj+ ejj) (5.24)

The terms e  ̂ ,Uj and Vj are random variables [error variances] (assumed to have a mean of 

zero) which represent the sum of all other influences on yy (i.e. except those of the fitted 

explanatory variables). Random variables Uj and Vj represent influences on the poj and Pij 

not accountable for by x respectively.

The fixed part in equation (5.24) contains two explanatory variables (including the 

arbitrary variable CONS = 1 for the intercept, which will be explained later). Their p 

coefficients are referred to as fixed coefficients which will be output from an analysis 

together with estimates of their standard errors. The ratio of a fixed coefficient estimate 

to its standard error can be referred against the Gaussian or normal distribution.

The set of random terms (VjXy + Uj+ ey ) is referred to as a random part of the model. This 

involves two explanatory variables: the arbitrary variable constant (CONS) attached to u, 

e and the variable x (action score). The random terms can be expressed as Random 

parameter indicator matrices:

The covariance matrix for level 2

£2(2) = Xo (cj o 

X i (<7oi

Xo
r_ 2

X i

)

where Xo is CONS = 1 and Xi = x
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The covariance matrix for level 1

Xo
&(i) = Xo (cr2e 

X, (0

X,
)

0 )

Multi-level modelling was developed by Goldstein (1995) and Woodhouse et al (1992) 

into a software called ML3 used in the Safer Cities Programme Evaluation. This allows 

the analysis of three levels. A new version Mlwin is now available on Microsoft Window 

which allows analysis of n levels (Goldstein et al, 1998). Since ML3 was used in the 

Safer Cities Programme Evaluation, ML3 is also used for this case study.

In ML3, the model yy = Poj + PiXy + Uj + ey can be expressed as

ML3 associates every parameter with an explanatory variable. For constants, put CO N S

= 1. Poj C O N S +  Pi xy are the fixed part; UjCONS +  eyC O N S random part of the model.

Like other ordinary regression models, a typical distribution of the multilevel model has

the following assumptions:

•  x y  is a fixed, known variable.

• The ey in group j is independently distributed with an expected mean value of 0 and 

variance of c 2e.

• The level two random terms Uj and vj have a joint distribution with mean 0 and 

covariance matrix £2(2).

• The level one random term ey is distributed independently from each of the level two 

random terms.

• Multivariate normality is assumed for the random terms at each level.

yy =  Poj C O N S +  Pi Xy +  UjCONS +  eyC ONS (5. 25)
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The multilevel analysis allows the Safer Cities Programme evaluation to account for the 

burglary risk variation yy in terms of one or more features (which in reality co-exist with 

the burglary preventive action, for example, merely presence of other Safer Cities action 

or factors associate with burglary risk such as percentage of household with no car as a 

measure of socio-economic deprived area). Between-unit models for poj and Pij in terms 

of such an extra variable z can be written as follows:

Poj = Yoo + YoiZj+ u0j (5.26)

Pij = Yio + Yi izj+ uij (5* 27)

For random slopes model, substitute the values of poj and Pij equations (5.26), (5.27) into 

(5.22), we have:

yy = (Yoo + YoiZj+ Uoj) + (Yio + Yi izj+ uij)xy+ ey (5.28)

(For variance components model, use equation 5.21 instead of 5.22.)

Re-arranged, this produces a single equation version of the model:

y y  =  Yoo+ YoiZj + YioXy + Y n Z jX y  +  (U 0J+ u ijx ij +  e ij)  (5 - 29)

where
yy = burglary risk 
Yoo = intercept
(Yio +uij) = coefficients of the action score (fixed + random) 
xy = action score
Yoi = coefficient of other explanatory variable e.g. presence of action 
Zj = other explanatory variable e.g. action presence [1 or 0]
Yi lZjXy = cov = covariates (e.g. census x action scores x action presence)
(upj+ eij) = residuals of levels 2 and 1 respectively.

The product ZjXiy variable is a between-level interaction. The fixed part in equation 

(5.29) contains three explanatory variables. Their coefficients ys are referred to as fixed 

coefficients. Among the outputs of an analysis will be the fixed coefficient estimates 

Yoo;Yoi; Yio and Yu together with estimates of their standard errors. (uoj+ uijXy + ey) is the 

random part. (The equation would be similar for variance components except the term 

would be UijXy missing.)
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5.4 Chapter Summary

This Chapter has provided a broad literature review and critically evaluated some of the 

more relevant literature in search of a methodology that can be applied to the context of 

the Safer Cities Programme Evaluation. Determination of spatio-thematic accuracy 

involves several processing steps. Errors are inherent within each processing step. The 

error can be converted to a SD value or RMSE as an error index. A rough estimate of the 

accuracy can be made using a simple arithmetic ‘rule of thumb’. Each processing step 

may contribute its inherent error in a different way. Variance propagation can be used to 

determine a ‘weight’, which affects each of the contributing SD differently. However 

variance propagation computations are complex even if computer assisted. For the more 

complex GIS applications, a Monte Carlo approach to error estimation remains to be the 

most robust method. Based on Lanter and Veregin’s (1992) paradigm and Fisher and 

Langford’s (1995) assessment of areal interpolation methods, an innovative methodology 

has been developed to handle the spatio-thematic accuracy issues in the evaluation of the 

Safer Cities Programme. The following step by step procedures have been formulated to 

implement the methodology (in the next chapter):

1. Identify the error index (RMSE in this case).

2. Perform a quick evaluation of the range of errors using simple methods (such as area 

weighting) to check whether further assessment is required (if so, proceed to Step 3; 

else stop).

3. Develop error propagation functions within the data transformation processes using 

Monte Carlo dasymetric method.

4. Test the utility of Step 3 by assessing spatio-thematic accuracy in the Evaluation using 

the multilevel modelling technique.

Step 3 requires following sub-steps:

1. Get the satellite imagery

2. Calibrate the satellite image using EDs (census) as source zones to estimate household 

counts.

3. Estimate household density in beats using the calibrated satellite image as a 

dasymetric map and Monte Carlo simulation.
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Chapter Six

Preliminary estimation of possible sources of errors

The aim of this Chapter is to provide a quick evaluation of the range of errors as the next 

step of error handling described in the previous chapter. The methods include an 

arithmetic ‘rule of thumb’ formula proposed by McAlpine and Cook (1971), and the areal 

weighted method (Goodchild and Lam, 1980; Goodchild et al, 1993). These methods 

allow checking of whether further assessment is required. First Section 6.1 reviews the 

possible sources of error in the evaluation based on the classification proposed in Chapter

3. McAlpine and Cook’s formula is implemented following this review process as 

appropriate (Section 6.2). Section 6.3 describes the implementation and the results of the 

area weighted method, and Section 6.4 is a summary of this chapter.

6.1 Review of the possible sources of errors in GIS processing steps

This section attempts to identify the possible sources of errors (based on the classification 

proposed in Chapter 3) involved in the process used in the evaluation through a number 

of transformation function. This also shows how different groups of errors interact in 

different stages of GIS processing. The GIS transformations are based on ARC/INFO 

terminology but they can be applied in a broader, more conceptual sense. Getting the 

spatial data ready for scoping and scoring involves the following steps:

Step 1. Identify the area affected by the Safer Cities schemes, the so-called zone of 

influence (ZI).

The Safer Cities Co-ordinators were supplied with 1:10,000 OS maps and asked to 

identify the geographical location where action took place using 91 EDs as the spatial 

unit. The information was stored in INFO in terms of the following logical schema: 

Action_locations (schemeTD, beat-ID. 91ED-ID).
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Some identification error (Group 1) in this process was likely as the co-ordinators were 

forced to represent their implicit spatial knowledge of the preventive action explicitly in 

the form of a map. Some schemes (such as, a city wide mobile bus to give out leaflets on 

burglary prevention) were difficult to locate spatially.

Step 2. Measure outcome variables using the so-called zone o f detection (ZOD).

For crime data analysis, a ZD is simply a beat. To start, the spatial coding of ZI and ZD 

required digitising both 91EDs (supplied by OPCS as a part of the census data) and beats 

(mostly digitised by GDC and some in-house). This contained digitising error (Group 1A 

errors). Even though if one assumed that all input to GIS was carefully checked so that 

there were no gross errors in the input data, some error caused by operators may still exist 

as discussed in Chapter 5.

For the surveys, this involved longitudinal random sampling of 7679 residents in the high 

crime area before and after the implementation of the Safer Cities Programme. The 

residents were clustered in 406 ED sampling points, each of which contributed to a ZD 

for scoping purposes. The respondents were aggregated according to their ED locations 

as the ZD for the scoping purpose. Some of the ZD did overlap with schemes ZI. These 

were compared with outcome measures in ZDs including those that did not overlap with 

ZI. The Survey analysis has not been included within the scope of this study, but issues 

related to it will be discussed in Chapter 12.

Step 3. Detect the zone of overlap (ZO) between ZI and ZD

Scoping and scoring also involved overlap in time as well as in space. This should not 

have caused many errors, as the units of both ZI and ZD are consistent. This should be 

simply a matter of database management.

The spatial overlay of beats required areal interpolation by overlaying beat maps upon 

ED boundaries. For this operation, we took a pragmatic approach. The beat coverage 

was overlaid upon ED coverage to create a new coverage called EDBEATGS using
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ARC/INFO. This resulted in a many-to-many relationship between beats and EDs, in 

other words, one beat may contribute to multiple polygons in the derived coverage with 

the same ED-ID, and vice versa. For the Safer Cities Programme Evaluation data 

preparation required a one to many relationship between beats and EDs so that each beat 

‘contained’ a number of unique ED-IDs. Those polygons with ED-IDs occurring more 

than once were identified using the ARC/INFO FREQUENCY command to count the 

occurrences of ED-ED in the polygon attribute tables (.PAT files). The sliver polygons 

with an area less than 10,000 sq. m were ELIMINATEd. Table 6.1 shows a continuous 

reduction in ED polygons in Bristol and Coventry as a result of the operation. The 

remaining polygons with a shared ED-ID were forced to merge using the ARC/INFO 

DISSOLVE command.
Table 6.1: Reduction in ED polygons in GIS processing

Cities Number of Number of Number of Number of Polygons >
Polygons 
with IDs*

beats EDS derived polygons 10000 sq. m

Bristol 58 824 1367 1010 996
Coventry 46 601 1243 724 711

* Some polygons were slivers outside the city so that they either lacked beat numbers or IDs.

The above operation may be efficient for our GIS processing purpose, but is hardly 

satisfactory error handling and is the subject of this research.

6.2 A ‘rule of thumb’ formula

A quick check can be implemented using the model proposed by McAlpine and Cook 

(1971) to estimate the number of polygons on the composite map:

mc = f  (6. 1)

where
mc is the number of polygons on the composite map 
mi the number of polygons on the individual maps 
n the number of data layers.
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The following table shows the comparison between the estimated and the final overlaid 

polygons in Bristol and Coventry:

Table 6. 2: The estimated and the final overlaid polygons

m, m, mc. m c mc - m .c c

Bristol 58 824 883 996 113
Coventry 46 601 648 711 63

m, number of beats
mj number of EDs
mc. estimate of derived polygons using Formulus (6.1)
mc number of derived polygons using the overlay method.

If the model gives a correct estimate, this implies that some 113 (12.8%) and 63 (9.72%) 

polygons are wrongly assigned to the beats in Bristol and Coventry respectively. This 

represents 12% overall errors in practice. The errors of individual areas could be higher.

63  Applying areal weighted method

Since at this stage, we are only interested in the change in the surface areas as an 

indicator of the size of the error due to the overlay method, the equation (5.12) can be 

simplified (Goodchild and Lam, 1980; Goodchild et al, 1993). The weighted factor w 

can be computed as a simple ratio between the original area (Area 0) and the new area 

(Area 1) as a result of the overlay operation:

A

where A0 is original area
and Aj new area due to overlay operation
The error rate R can be computed using the following formula:

_ A -  A)R = —------ (6.3)
A)
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The results of the areal weighted methods for Coventry and Bristol are shown in Tables

6.3 and 6.4 respectively. Figures 6.1 and 6.2 provide a summary of the spatial error in 

percent for Coventry and Bristol respectively.

Error %
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Figure 6.1: Spatial error of overlay method estimated by area weighted method (Coventry)
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Figure 6. 2: Spatial error of overlay method estimated by area weighted method (Bristol)
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Table 6.3: Results of areal weighted method in Coventry (area in mz)
Beat-ID Area 0 Area 1 Weight Error %

2 6049201.5 6618963.60 0.91391974 9.42
3 5764331 13353504.95 0.43167176 131.66
4 10937334 6943106.18 1.57527967 -36.52
5 6183165.5 9314484.13 0.66382265 50.64
6 2337842.3 2147220.38 1.08877613 -8.15
7 1709568 3050761.15 0.56037425 78.45
8 2069306.6 1919241.76 1.07818965 -7.25
9 1875274.3 2190702.41 0.85601508 16.82

10 2976786.3 2776673.35 1.07206932 -6.72
11 1720179.6 1793955.50 0.95887529 4.29
14 1091660 884599.97 1.23407193 -18.97
15 2646371.3 2614629.22 1.01214018 -1.20
16 1432208.3 1525675.08 0.93873743 6.53
17 1708036.4 1856093.32 0.92023196 8.67
18 1704855.4 1614207.52 1.05615627 -5.32
19 622681.81 665837.74 0.93518552 6.93
20 3216325 3347783.49 0.96073268 4.09
21 915899.69 921586.67 0.99382914 0.62
22 1044172.4 847722.35 1.23173867 -18.81
23 673103.81 320968.43 2.09710286 -52.32
24 425497.5 442968.96 0.96055828 4.11
25 541950.06 739124.83 0.73323212 36.38
26 3633323.8 4091189.55 0.88808493 12.60
27 3670629.8 3270820.00 1.12223534 -10.89
28 1447777.4 1486036.59 0.97425420 2.64
29 487856.22 906596.33 0.53811846 85.83
30 463154.59 312251.15 1.48327587 -32.58
31 432136.31 283975.60 1.52173748 -34.29
32 458229.44 533212.48 0.85937494 16.36
33 420140.66 1020449.25 0.41172127 142.88
34 611316.19 722304.30 0.84634162 18.16
35 684040.13 596203.41 1.14732677 -12.84
36 1193729 1313282.86 0.90896564 10.02
37 1034072.4 942599.06 1.09704374 -8.85
38 1098485.8 1190473.42 0.92273022 8.37
39 1289765.8 855176.94 1.50818590 -33.70
40 1457717.8 1414682.62 1.03042037 -2.95
41 2425538.8 1748214.38 1.38743785 -27.92
42 3228783 5159424.47 0.62580294 59.79
43 1270580.5 1979672.65 0.64181343 55.81
44 1747692.4 2145299.52 0.81466126 22.75
45 2242299 2291623.33 0.97847625 2.20
46 1300727.8 1078821.41 1.20569335 -17.06
47 3191789.5 3729601.56 0.85579906 16.85

100 3550448.3 3140518.01 1.13052951 -11.55
101 1512473.5 1897692.28 0.79700672 25.47

Mean 2097792.59 2347824.61 0.89350481 10.66
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Table 6.4: Results of area weighted method in Bristol
Beat-1 D Area 0 Area 1 Weight Error %

1 8087891 4831558.24 1.67397154 -40.26
2 5308205.5 4541126.48 1.16891822 -14.45
3 605837.19 359081.04 1.68718793 -40.73
4 1877857.3 2842237.10 0.66069692 51.36
5 2443735.5 2879946.44 0.84853505 17.85
6 2485665.5 2206208.46 1.12666846 -11.24
7 2036322 2528645.25 0.80530157 24.18
8 5728531 6307044.06 0.90827509 10.10
9 1229332.3 1639125.23 0.74999291 33.33

10 1847501.6 1455934.70 1.26894537 -21.19
11 1528600.1 1521464.96 1.00468965 -0.47
12 1168529.6 1136782.84 1.02792684 -2.72
13 1865524.1 1760116.79 1.05988654 -5.65
14 875925.31 922645.40 0.94936289 5.33
15 768416.94 760720.71 1.01011703 -1.00
16 456065 482409.28 0.94539019 5.78
17 548592.13 562405.75 0.97543834 2.52
18 341469.34 314202.42 1.08678139 -7.99
19 461924.53 494639.55 0.93386089 7.08
20 500596.19 518080.97 0.96625087 3.49
21 456888.56 237654.00 1.92249468 -47.98
22 682793.56 470139.36 1.45232164 -31.14
23 363850.59 356535.06 1.02051840 -2.01
24 319404 410056.03 0.77892771 28.38
25 686003.81 463002.78 1.48164080 -32.51
26 788534.06 669428.93 1.17792050 -15.10
27 593502.13 631551.42 0.93975267 6.41
28 342000.25 342000.25 1 0
29 283934.38 441073.04 0.64373551 55.34
30 642681.06 584790.92 1.09899288 -9.01
31 1055302.1 1917042.21 0.55048454 81.66
32 148533.41 131153.95 1.13251192 -11.70
33 161494.53 32395.61 4.98507418 -79.94
34 121194.41 121194.41 1 0
35 216433.41 216433.41 1 0
36 644246.81 515971.25 1.24860991 -19.91
37 767213.5 1255723.84 0.61097311 63.67
38 841444.06 1021426.80 0.82379282 21.39
39 998221.44 875261.65 1.14048347 -12.32
40 1710821.3 1256144.04 1.36196268 -26.58
41 3496348.5 3679895.29 0.95012174 5.25
42 1108890.1 805348.09 1.37690785 -27.37
43 9226930 9283245.12 0.99393368 0.61
44 881648.13 777748.27 1.13359060 -11.78
45 1116816.3 1116816.30 1 0
46 2673409.3 2673409.30 1.00000000 0.00
47 1933120.3 1988596.40 0.97210289 2.87
48 2010686.5 1933451.55 1.03994667 -3.84
49 1721084 1380850.13 1.24639450 -19.77
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50 2907408 2521937.25 1.15284708 -13.26
51 2118766.8 2710590.58 0.78166242 27.93
52 1249670.9 1408983.69 0.88693070 12.75
53 571684.31 589616.69 0.96958637 3.14
54 1221406.8 1186777.64 1.02917915 -2.84
55 2352271.3 2528624.21 0.93025737 7.50
56 1030637.8 1008390.26 1.02206243 -2.16
57 3950992.8 5231379.62 0.75524873 32.41
58 3262265 3539893.12 0.92157161 8.51
60 1905337.4 1872587.00 1.01748939 -1.72
61 3626344 4684174.56 0.77416927 29.17
62 4779629 6361296.40 0.75136084 33.09
63 1764573 1065105.79 1.65671148 -39.64

Mean 1724208.705 1558539.25 1.10629790 -9.61

From the above results, the areal errors due to the overlay operation range from -80 to 

+81% with mean 10% for Bristol. For Coventry, the range is as large as from -52% to 

+143% with mean error =11% approximately. The average results are comparable to 

12% cartographic errors described earlier. The consistency of the error rates is probably 

due to the same assumption of homogeneity of spatial distribution used by both methods. 

There is a large variation within each city. The overall errors could be higher or lower 

depending on the scoping and scoring processes. The beats that did not have any action 

would have no error at all in their action scores.

The Root Mean Squared Errors (RMSE) as defined in Chapter 3 can also be computed for 

the city as a whole. In this case:

2

IXZtm i-
RMSE = \ —--------------------------------------------  (6.4)

I m

where m is the number of target zones in a data layer
Ztmi *s estimated values of the target zone based on the area weighted method 
Zsmi the estimated value of the target zone without weighting

The RMSE of the beat areas are 0.36 and 0.37 for Bristol and Coventry respectively. 

However the use of a single RMSE value is rather limited as it can only be applied to the 

whole city rather than individual beats.
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Statistically, it is a common practice to attribute 5% error as due to the chance factor and 

hence traditionally regarded as ‘insignificant’. For an error margin of 10 percent or 

above, it may have a ‘significant’ effect upon the data analyses of the Safer Cities 

Programme Evaluation. This warrants further investigation of:

• improved estimation of the error rates

• RMSE for each beat

• how the above may affect the conclusion of the Safer Cities Programme Evaluation.

These points are the major concern of this research. Furthermore, the use of the areal 

weighted method cannot be accepted without further investigation due to its erroneous 

assumption that the population is evenly distributed across the area. Previous research 

shows that the dasymetric mapping method is a much more accurate method for cross 

area estimation than the areal weighted method (Fisher and Langford 1995). The 

modified methodology (as described in the previous chapter) will be implemented next. 

Nevertheless, establishing the worse case is still worthwhile to set a baseline of errors for 

future comparison.

6.4 Chapter Summary

This Chapter has rapidly evaluated the range of errors:

• Using an arithmetic ‘rule of thumb’ formula for overlaying of the categorical data 

(MeAlpine and Cook, 1971), the error due to the overlay operation has been estimated 

to be 12%.

• Using the areal weighted method, the errors range from -80 to +81% for Bristol, and 

from -52% to +143% for Coventry. The average errors of 10-11% are comparable to 

the cartographic errors estimated using Me Alpine and Cook’s formula (10-13%).

Based on these results, it was decided that further assessment was required which forms 

the rest of this thesis. The next Chapter describes how a more accurate method for the 

error estimation can be implemented.
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Chapter Seven 

Implementation of error modelling

This chapter describes the implementation of the Monte Carlo dasymetric method 

developed in Chapter 5. This (as described in the earlier chapter) involves the 

following steps:

1. Get the satellite imagery.

2. Calibrate the satellite image using EDs (census) as source zones to estimate 

household counts.

3. Estimate household density in beats using the calibrated satellite image as a 

dasymetric map and Monte Carlo simulation.

The accuracy of the classified Landsat imagery and the Monte Carlo simulation can 

be assessed and calibrated by comparing the results based on the more accurate ED 

maps and the household pixel counts respectively. Step 2 Calibrating Landsat TM 

imagery involves the following sub-steps:

2.1 Rasterize ED boundaries.

2.2 Overlay the rasterized ED with the classified Landsat TM imagery.

2.3 Estimate the household density per ED using the classified imagery.

2.4 Calibrate the Landsat imagery by comparing its pixel counts with ED census 

counts and estimating the average number of households per pixel (h/p) for each 

beat.

To estimate the household density for each beat requires the following steps:

3.1 Rasterize beat maps.

3.2 Overlay rasterized beat map with the classified Landsat imagery.

3.3 Perform Monte Carlo simulation to estimate the household counts per beat using 

h/p obtained from Step 2 as a parameter.
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Steps 2.1 - 2.2 and 3.1 - 3.2 are virtually identical. (The only difference is the 

rasterized maps being either ED or beat.) These steps can be implemented using a 

raster-based GIS called IDRISI. This is described in Section 7.2. Section 7.3 

describes how Steps 2.3 - 2.4 and 3.3 can be implemented together within the 

programming procedures using Lisp-Stat. The rationale of choosing Lisp-Stat for 

Monte Carlo and GIS applications is described in Section 7.3.1. Section 7.3.2 

describes the testing of the random number generator. The next section describes the 

process of acquiring the Landsat imagery and transforming it into a usable form for 

this case study.

7.1 Getting the satellite imagery Landsat Thematic Mapper

Five satellites (named Landsat) were first launched between 1972 (Landsat 1) and 

1982. The Thematic Mapper (TM) was carried on Landsat 4 and 5, being a Multi- 

Spectral Scanner system with spectral, radiometric and geometric improvement. It 

scanned each line from west to east while the satellite was moving its orbit. The TM 

had seven bands in total, their sensitivity and resolution are shown in Table 7.1 below 

(MIDAS CSS, 1995).

Table 7.1: Sensitivity and resolution used on the Landsat-4 and -5 Missions
Band Sensitivity (urn) Nominal spectral location Spatial resolution
1 0.45-.52 Blue 30
2 0.52-.6 Green 30
3 0.6-.69 Red 30
4 0.76-.9 Neat-IR 30
5 1.55-1.75 Mid-IR 30
6 10.4-12.5 Thermal-IR 120
7 2.08-2.35 Mid-IR 30

These Bands can be used to detect land covers such as coastal waters, soil and 

vegetation, different coniferous and deciduous species (Campbell, 1987; MIDAS 

1995).

Importing the imagery data

Each scene was identified by its path and row numbers, corresponding to its longitude 

and latitude respectively. For example, Bristol was in scene 203/24; and Coventry in 

203/23. The size of a scene was about 180 x 160 km2. This covered a larger area than
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a city. So the selected cities had to be ‘cut out’ from the scenes. The ‘cut-out’ image 

files were then converted into IDRISI format for further processing. Getting the 

satellite imagery into a useable form involves a number of logical processing steps:

1. Pre-process.

2. Reduce spectral information.

3. Classify (supervised / unsupervised classification).

3.1. Select training data.

4. Post-process.

The above sequence is based on Campbell (1987, p 245, Figure 9.1) with some 

modification. The scheme described by Campbell is an idealised sequence, which 

would be different in practice (depending on the type of GIS used). For instance no 

particular order is required for Step 1 and 2. Selecting training data is more 

appropriate to be regarded as a sub-step within image Classification.

7.1.1 Pre-processing

Satellite imagery is prone to inaccuracy due to 1) the radiometric, and 2) geometric 

errors (Campbell, 1987). Radiometric errors are caused by atmospheric scatter, 

mechanical deficiencies in the scanning device and data transcription. The geometric 

distortion is due to the inherent difference between the imagery and the earth surfaces 

as both are moving when the imagery is acquired and the projection of the earth 

curvature to a flat surface in the subsequent mapping. Pre-processing was required to 

correct those errors (radiometric and geometric pre-processing respectively).

7.1.1.1 radiometric pre-processing

Since physical models of scattering at the level of individual particles and molecules 

were too complex to apply, a simple radiometric correction was carried out (with 

destriping if necessary). This was done by examining the reflectance from features of 

known brightness within the image (e.g. the sea and a larger water body in Bristol). It 

was assumed that reflection from water was low.
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Image enhancement using linear stretch. Normally image enhancement is used for 

images that are to be interpreted manually for their visual effect and is not essential 

for further digital analysis. However, since IDRISI only contains pixel values ranging 

from 0 to 255, a linear stretch may be required for certain bands to convert the 

original digital values to the new minimum and maximum values.

7.1.1.2 Geometric correction by resampling

Geometric correction is a process known as image registration. It determines the co­

ordinates of each pixel. Applying an analytical approach to determine geometry and 

motion of the sensor is difficult and can only correct some of the geometric errors. 

Instead, a simpler approach known as resampling was used.

Resampling takes two steps:

1. Record the coordinates of some pixels that can be identified with precision on the 

ground (known as ground control points) in both the image and the target 

coordinate system (national grid in this instance)

2. Transform the rest of the pixels with reference to the ground control points.

In general, resampling tends to reduce class means of the training data and increase 

variances of the original data (Kovalick, 1983).

Identifying ground control points

Selection of ground control points is a matter of balance between high precision of the 

pixel (with high confidence) and large dispersion over the image. The number of 

good ground control points required is usually small (about 16, Bernstein, 1983). The 

ground control points for each city were collected by identifying their known features 

(for example: distinct water bodies and stream junctions, intersection of major 

highway), and referring their co-ordinates with the 1:10000 OS map. Some 20 ground 

control points were selected and placed throughout the image, avoiding gaps and 

clusters.
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Transforming the rest of the pixels

By reference to the ground control points, a number of techniques can be employed 

for transforming the rest of the pixels:

• nearest neighbour;

• bilinear interpolation; and

• Cubic convolution.

The nearest neighbour method estimates each value from the nearest point on the 

reference grid. The method is simple, computational efficient (Kovalick, 1983) and 

preserves the original value but creates positional errors.

The bilinear interpolation method estimates each value in the output image by 

calculating a weighed average of the four neighbours in the reference image. Each 

value in the reference image is weighed in proportion to its closeness to the point in 

the out image. Bilinear interpolation is a more accurate method and has a natural look 

but original values are lost and variance in the spectral information reduced.

The cubic convolution estimates each value in the output matrix by assessing values 

of a neighbourhood of 16 - 25 pixels in the reference grid. This method is similar to 

the bilinear interpolation with even more accurate and natural look, but the agitation 

of the original values is even more drastic. Nevertheless, attempt is made to preserve 

spectral variance.

For the purpose of this case study, the cubic convolution resampling was used because 

accuracy is more important than the computational efficiency. Preserving the original 

values of the pixels was not required for the post-processing. A small amount of 

positional error at the beat boundaries could be calibrated (discussed later). Three 

bands of the Landsat imagery of each city were combined using IDRISI to create the 

rectified image (which was used as the corresponding file for image classification at 

the later stage).
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7.1.2 Spectral information reduction

Spectral information reduction is used to reduce the number of spectral bands, while 

simultaneously retaining the required information. In order to reduce the cost of 

analysis, contributions of noise and error, only the more potent bands are selected.

The effectiveness of this procedure can be evaluated by computing the optimum 

coefficients of combinations of the selected set of bands. The transformed value of 

pixels after the combination (A) can be assumed to be a linear combination of the 

following form (Campbell, 1987):

A = ]TC,X, (7.1)
1

where Xi = X,, X j,...., Xn are pixel values in n bands respectively
Ci = C,, C2, ...., Cn coefficients (components) of the original values in the respective
bands.

The optimal coefficients can be computed by means of principal components analysis 

(Davis, 1986; Gould, 1967). Band 6 (thermal infrared) was excluded in the principal 

components analysis as it conveys very little information of interest and has a much 

larger spatial resolution. The rectified bands were converted into six components.

The principal component images were written as integer binary files to account for 

negative values that might result from the axis rotation. These were converted back to 

byte binary. Table 7.2 summarised the results of the principal components analysis. 

(Appendix 7.1 shows the variance and co-variance matrix of the components.)

Table 7.2; summary of the principal components analysis results.

Bristol 1 2 3 4 5 6
% VAR 79.040 15.240 3.500 1.870 0.029 0.070
Eigenval 1334.040 257.180 59.020 31.540 4.940 1.170
Eigvec.l -0.027 0.357 0.601 0.029 -0.678 -0.221

2 0.012 -0.217 0.332 -0.060 0.110 0.909
3 0.200 -0.427 0.421 -0.135 0.706 -0.350
4 0.562 0.658 0.490 0.438 0.079 -0.037
5 0.801 -0.409 -0.327 -0.262 -0.121 0.008
6 0.199 -0.206 -0.050 0.952 0.091 0.018
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Coventry 1 2 3 4 5 6
Var% 90.860 7.540 1.340 0.120 0.090 0.040

Eigenval 5387.500 447.310 79.700 6.840 5.570 2.580
Eigvec.l 0.493 0.323 -0.534 -0.142 -0.423 -0.410

2 0.221 0.145 0.240 -0.064 -0.423 0.912
3 0.212 0.287 0.003 -0.098 -0.190 0.000
4 0.631 -0.746 0.003 0.181 0.879 0.000
5 0.477 0.307 0.732 -0.379 -0.110 0.000
6 0.193 0.376 0.177 0.889 -0.009 0.000

Eigen values (eigenval) are pixel values in the six components respectively; and the 
eigen vectors (eignvec) represent the coefficients of the components in relation to the 
respective transformed channels.

The above data summary shows that component 1 provides maximum information for 

the single band (which accounts for 91% of the variance) while Component 6 

accounts for less than .05% of the variation in the data. From the above analysis, just 

selecting Components 1, 2 and 3 would have covered more than 95% of the variance. 

However, it was desirable to use Component 4 to delineate water bodies, and 

Component 5 to differentiate vegetation from residential areas. Only Component 6 

was subsequently discarded. Components 1, 2, 3,4 and 5 were selected for further 

image processing. All together they account for more than 99.5% of the total 

variance.

7.1.3 Classifying Landsat imagery

Having selected an appropriate number of bands and formed a rectified image, each 

pixel of that image needs to be assigned to a particular class of interest (information 

class) - a process known as image classification. This is done by examining the 

Landsat image and grouping together those pixels that have similar spectral values 

(spectral classes), then assigning them to the known information classes. For this 

case study only residential areas (value 1) and non-residential areas (0) are required, 

though many more classes are present in the image (such as water and park areas).

The later are regarded as spectral subclasses within the information class of non- 

residential areas.
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A simple type of classifier known as a point classifier operates upon each pixel 

independently according to its spectral value. It is easy to program (and thus provided 

by numerous image analysis packages) but it does not provide ‘image texture’ by 

considering the neighbourhood relationship {intra-class variation) between pixels, 

which usually requires human interpretation. This classification approach requiring 

human supervision is referred to as supervised classification, as oppose to the 

complete automated process (unsupervised classification).

Unsupervised classification classifies the natural groups from their reflectance 

patterns within multi-spectral data. A typical unsupervised classification uses cluster 

analysis to distinguish differences in reflectance values across a set of bands (for 

example using simple point classifier or AMOEBA classifier with a contiguity 

constraint, see Bryant, 1979). Since this is mostly an automatic process, no human 

error would occur and no users’ prior knowledge of the area would be required during 

the classification process (until a later stage for interpretation). However, measures of 

accuracy based on the unsupervised classification can be misleading as there is a lack 

of agreement between overall results of discrimination for different discriminators 

(Kershaw, 1987). Furthermore, as there is usually no one-to-one relationship between 

spectral classes and the corresponding information classes, the mapping between the 

two, which is the primary object of image classification, would remain unresolved.

Supervised classification classifies pixels (of unknown identity) in the image by 

referring to a sample of pixels (which are of known ground cover designated by the 

users). These user-defined areas of sampled pixels are called training sites. Although 

selecting representative samples of training sites requires detailed knowledge of the 

area and is relatively time consuming, supervised classification is used for this 

research as control of the information classes is maintained. The information classes 

are a simple binary classification in this case study.

Campbell (1987) describes the idealised sequence for conducting supervised 

classification as follows:
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1. Prepare the list of information classes.

2. Select and define training data.

3. Reiterate the above with modifications as necessary to ensure homogeneous 

training data.

4. Conduct classification.

5. Evaluate the performance of classification.

The last step of the above was covered by calibrating the Landsat image for further 

processing. Step one was defined as simple residential and non-residential areas as 

discussed earlier. Steps 2 -4  were implemented using IDRISI, which took the 

following steps (see IDRISI User’s Guide):

1. Create training sites.

2. Create signature files.

3. Apply a classification procedure to the image bands using the signature created 

from the training sites.

4. Characterise categories across all the bands to create a signature or spectral 

response pattern for each information class.

5. Use the signature for each informational class to classify the full image by 

determining the most likely class for each individual pixel in the image.

Steps 1 and 2 are equivalent to selecting training data. Steps 3 to 5 are to conduct 

classification using the IDRISI program.

Selecting training data

Selecting the training sites has a far more significant effect upon the classification 

accuracy than the choice of different classification algorithm (Kershaw and Fuller, 

1992; Scholz et al., 1979). For accuracy of creating training sites, shape is not an 

important factor while size, location, placement and especially uniformity 

(homogeneity) are important (Campbell, 1987). As a rule of thumb, according to the 

IDRISI User’s Guide, the minimal number of pixels = 10 x number of bands for each 

information class which is somewhat smaller than the 100 pixels recommended by 

Campbell (1987). Each information class may contain a number of training sites. So
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a training site could be small. Specific areas of training sites with known features 

were identified by examining the satellite image and referring to the 1:10000 OS map 

if necessary. Using IDRISI, each training site was specified by on-screen digitising 

the known feature as a polygon.

Once signature files have been made from the training sites, several algorithms can be 

employed to conduct classification (see Campbell, 1987 for various classification 

techniques). Maximum likelihood is a powerful algorithm and was selected for 

classifying the Landsat image of the two cities. (Other techniques such as minimum 

distance and parallelepiped classification were tried with less satisfactory results.)

The basic principle of the maximum likelihood classification has been discussed in 

Chapter 5. It uses a prior knowledge of the probability that any pixel belongs to a 

given class is expected to occupy over the entire study region. When such conditional 

probability is absent, equal likelihood is assumed. The classified images for Bristol 

and Coventry are shown in Figures 7.1 and 7.2 respectively.
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Figure 7.1:Landsat TM images using Maximum Likelihood Classification (Coventry). 
Light - residential areas. Dark - non-residential areas.
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Figure 7.2: Landsat TM images using Maximum Likelihood Classification (Bristol). 
Light - residential areas. Dark - non-residential areas.
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7.2 Rasterizing ED and beat boundaries, and overlaying with Landsat images

The pre-processing step described in the previous sections would have also introduced 

errors. The accuracy of the classified Landsat imagery needs to be assessed and 

calibrated by referring to the more accurate ED maps. To do this, the ED maps (as 

well as the beat maps, which are the final spatial object of interest for this case study) 

need to be rasterised and overlayed with the classified Landsat TM images.

The ED and beat boundaries of the two cities were exported from ARC/INFO (export 

files), and imported into IDRISI as vector files (.vec). The vector files were then 

rasterized using IDRISI to produce image files (.img). Since the pixel brightness of 

the rasterized image was represented by numerical values and thus they could be 

manipulated mathematically (using simple operators such as add, subtract, divide and 

multiply). The resultant values of the non-residential areas would remain as zero 

while the residential areas would take on the ID values of ED or beats after the 

overlay process using the multiply operator:

ED x 0 = 0;

ID x 1 = ID.

As an example, Figure 7.3 shows a zoom-in section of the resultant overlay Landsat x 

ED map of Coventry.
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Figure 7. 3: A section of the resultant overlay map of Coventry (near city centre). 
Dark pixel = non-residential area. Colour value = ED-ID

Note the screen colour may not truly represent that actual value due to the limited 
colour palette.

The above arrangement made the re-assignment for calibration and Monte Carlo 

simulation simple using the following conditional rule (see List-Stat implementation 

next):

If a pixel = 0, ignore

else increment the count by 1 for that ID zone.
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7.3 Implementing Monte Carlo simulation using Lisp-stat

Before the Monte Carlo simulation is carried out, one needs to:

1. Select a suitable programming language for implementation.

2. Test the pseudo-random number generator using the selected programming 

language for the specific hardware used.

7.3.1 Programming and programming languages

Theoretically, there is a debate about which programming language should be used for 

a particular application, for instance, procedural, declarative, or object oriented 

approach. In practice, apart from efficiency (which is no longer an important 

consideration due to the development of fast super-computers), the choice of language 

is a matter of personal taste, and depends on the programmer’s experience.

For this case study, Lisp-Stat is used for implementing Monte Carlo simulation for its 

robustness and object oriented functionality. List-Stat is based on McCarthy’s (1960, 

1963) programming language List Processing (Lisp) with improved efficiency and 

extra functionality to handle statistical data which makes it an ideal candidate for GIS 

processing (for advantages of using an object oriented approach such as Lisp and 

Lisp-Stat, see Brunsdon, 1995; 1998; Steele et al, 1984; Tiemey, 1990; Winston and 

Horn, 1984). Lisp (or Lisp-Stat) is a pure functional language and consists of the 

following standard form:

(function argument)

In Lisp, the basic element within a list is called an atom. An atom may be a number 

or any symbol. An argument may consist of an atom, a list of atoms, or a list of lists. 

An empty list () is NIL. Functions can be nested. (See Steele et al, 1984; Tiemey, 

1990; Winston and Horn, 1984 for further technical details.) For example, functions 

for propagating an index of data error have been incorporated in GEOLINEUS, a 

lineage information program for GIS (Lanter, 1991), implemented in Lisp and 

integrated with ARC/INFO.
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7.3.2 Generating random numbers using Lisp-Stat

Random number generation is a basic requirement for any Monte Carlo simulation.

To generate random numbers with computers, it is necessary for the programmer to 

write the specialised code modules and insert them directly into the simulation model. 

The random numbers generated using computers are called pseudorandom numbers 

as they are not truly random. Psuedorandom numbers are desirable as they usually 

serve the purpose of estimating the results of an application, and make experiments 

repeatable so that the reliability of the results can be tested.

Generating pseudorandom numbers using Lisp-Stat functions is simple. A number of 

distributions are available: uniform; gamma; beta; t; chisq (%2); f; binomial; Poisson; 

and normal. The density, cumulative distribution function, and quartile function of 

the distribution can also be evaluated (refer to Tiemey, 1990). For example, 

(uniform-rand 100) generates a list of 100 independent random numbers distributed 

uniformly between 0 and 1. (Random n) accepts a positive integer or floating-point 

number n and returns a number of the same kind between 0 (inclusive) and n 

(exclusive) from an approximately uniform distribution. Furthermore the function 

‘sample’ enables the programmer to select a random sample from a list. For example:

(sample (iseq 1 100) 10)

returns a list of a random sample of size 10 drawn without replacement from the 

integers 1,2,...100. This is very useful for Monte Carlo simulation and testing of the 

random number generator as described later.

The random number generators for these distributions are implemented using the 

Common Lisp random number generator (Steele et al, 1984). The Common Lisp 

random number interface is portable across a variety of systems. The seed of the 

generator can be saved and restored, and a new seed generated, using the system clock 

(which is machine dependent). The current value of the random state is held in the 

global variable *random-state* Within Lisp-Stat environment, simply type *random- 

state*, the system would return the current value of the random state as a side effect.

> *random-state*
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#$(1 #(2147483562 833502228 1548262346 714760118))

This can be set and saved for the replication of the random numbers. For the purpose 

of this application, functions ‘random’, ‘sample’, and ‘uniform-rand’ are used to 

generate uniform random numbers.

7.3.3 Testing pseudo-random number generators using Lisp-Stat

The quality of the random numbers generated is often machine dependent. So it is 

necessary to test the random number generator before it is used for Monte Carlo 

simulation. There are many tests developed to determine if a random number 

sequence {Yn}, (Vn = 1, N) has the desired probabilistic properties (Atkinson, 1980; 

Dagpunar, 1988; Jennings and Mohan, 1991; Knuth, 1969; MacLaren and Marsaglia, 

1965; Sowey, 1972,1978,1986; Tauussky and Todd, 1956). For example, Jennings 

and Mohan (1991) describe twenty different diagnostic tests (in a system called 

Randalize) to interrogate random number generators. Nevertheless, the tests are not 

exhaustive, noticeably lattice structure and spectral tests are omitted. It is not 

necessary to go into details of all the possible tests here. For the purpose of this case 

study, it is sufficient to determine if the proposed random number generator is 

appropriate for error modelling according to the following three criteria:

• Visualisation; [See Fisher et al (1993), for example, and Knuth’s (1969) 3-D

view to prevent “mainly in the plane” problem.]

• Period test; and

• Chi-square (%2) test.

These are discussed in detail in Appendix 7.2. The random number generator was 

tested using Lisp-Stat function to generate random numbers on a Digital DECpc Lpx 

466d2 microcomputer. If one adopts a criterion such as 1 - p > 0.05 => ‘pass’ (i.e. the 

probability that the generator is unbiased > 0.95), then the generator passed the test. 

Indeed it was found that the value of x2lies between 5% and 95% level (2.17 < 5.92 < 

14.07) at d.f.=7 with p(x2ct \\i) ~ 0.5. For the 10,000 random numbers generated, the 

sequence did not repeat itself. Visually, the numbers appear to be randomly and 

uniformly distributed.
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7.3.4 Calibrating Landsat TM imagery

Since the classified Landsat image contains inaccuracy, we do not know the exact 

spatial relation between each classified pixel and number of households it represents. 

The number of households per pixel can be determined (or ‘calibrated’) by comparing 

the number of pixels assigned to the residential area with the number of households in 

the source zone (ED) according to the 1991 Census. This consists of the following 

steps:

1. Assign pixels to residential / non residential areas within each ED.
2. Define the ED as the source zone from the ED-beat overlayed coverage from 

ARC/INFO.
3. Get the geographical outcome base (GOB) from the source zone.
4. Compare the results from Step 1 and 3 and work out the ratio of households per 

pixel for each target zone (beat).

The algorithm of assigning the pixels is as follows (Function proed_go):

1. Define ED_ED list (initially nil).
2. Create an empty list with the data structure of a list of value and index lists 

(Function createJistO).
3. Loop.
4. read in a pixel from the image file.
5. Assign the pixel (Function assignh).
6. Back to Step 4 till the end of the list.

Assignh applies the following production rule to a list of pixels:

IF CONDITION: p = 0 THEN do nothing
ELSE increment the counter by 1

It means that if a pixel is not a household area (p = 0); then do not count, else count 

the pixel by incrementing the value of the appropriate ED list by 1. This was done by 

matching the pixel value (which happened to be its ED-ID) and ED-ID in the ED-ID 

list (Function match Jill) and incrementing the counter in that list. The above 

procedures are listed in PROBED.LSP (Appendix 7. 3).

To run the above program in Lisp-stat, first open the image file, say, Bristol 

(wbrixedl.img)
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(setf f (open "wbrixedl.img"))
#<Input-Stream 6: "c:\users\law\gis\ho\wbrixedl .img">

then type

(proed_go f 825 190920)

The function takes the image file (f) a number of EDs (825) and the number of pixels 

(190920 in the image file) as input arguments, and returns the ED-ID list of the pixel 

counts as its output. The output ED-ID list was named as bed_plist and saved as 

BEDPLIST.LSP, that is, a list of ED and pixels pairs.

The ED-beat overlayed coverage from ARC/INFO was defined as the source zone, 

(def source_zones (read-data-columns “bedbeat.out” 13))

Variables of interest such as ED-ID, Beat-ID, households and etc were retrieved from 

the geographical outcome base (GOB) of the source zone (Function get_gob). Note 

that the source zone might now have a different number of EDs (compare with 

Edbeatgs coverage) due to the overlay operation.

The algorithm for getting the attributes for the source zone is listed as follows 

(Function pre_beat_go for Coventry and for pro_beat_go Bristol):

1. Initialise all the variable list as nil (Function init_pre_beat_go).
2. Define source_zone.
3. Get attributes from the source zone.
4. Get the attribute value for each beat from the many to one relation ship between 

beats and ED {getjnanyJrom_one beatgs-id edgs-id beat-id).
5. Get demographic attributes from GOB (get_gob).
6. The above step is carried out using many to many relationship matching 

(getjnany_Jrom_many).

A look up table (LUT) of ID was created for household counts within each beat with 

a one-to-many relationship from the EDs {create Jut). The LUT (listi = b_hh) has 

the following data structure:

((IDjhj) (ID2h2) ....(IDnhn))
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It is a list of lists. Each list within the list has a pair of value: beat-ID and household 

counts from the census data. A similar LUT can be created for population counts 

(listi = bbt_r).

Residents (r), household counts (hh), household density (r/hh), pixel (p), households 

per pixel (hh/p), residents per pixel (r/p) for each zone were listed by comparing the 

values of attributes (such as household counts) and number of pixels for each beat 

within the source zone (using bed_plist and bbt_r as data source, Functions 

make_pair_list and make_list3)

Function make_pair_list creates a beat and ED-ID look-up list for each ED. Function 

make_list3 takes lists bed_plist and bbt_r as its data source, and creates the third list 

bbt_ped for Bristol (or cbt_ped for Coventry) using a Function called match_cons. 

Match_cons constructs a new list by matching the beat- and ED-IDs. Function 

makeJListv creates a list of beats and the number of pixels (bbt_plist). The desired 

list can be printed using my_print and printjratio functions.

7.3.5 Carry out Monte Carlo simulation

To perform Monte Carlo simulation, first, the classified Landsat TM image was 

retrieved as a file. The classified Landsat image was defined as the target zone (beat, 

e.g. bbt for Bristol, and cbt for Coventry).

(def bbt (read-data-file "wbbtxOl.img"))

The image file was then broken up into a number of files (Function listjbatch in 

FPRO.LSP) for a stratified random sampling later. Stratified random sampling 

scheme was selected for this application not only for the technical limitation of Lisp- 

Stat (maximum 4030 atoms were allowed in a list for random sampling), but also for 

the theoretical reason such as spatial auto-correlation (see Van Grenderen and Lock, 

1977; Rosenfield, 1982; Congalton, 1988; Fukunaga and Hayes, 1989).
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Next, run Monte Carlo simulation using Function Monte._go. This takes the following 

parameters as its arguments:

1. A number of simulation runs (n = 300 in this case).

2. A list of files called pn_list (each file contains a list of pixels).

3. A scaling factor (k = 10 in this case).

k represents a constant scaling factor for the sampling size. From a series of test 

results, a normal distribution was obtained after 300 runs and the optimal value of k 

was found to be 10 when the RMSE was minimised and yet maintaining a normal 

distribution of the results (see Appendix 7.4).

So to run the simulation 300 times with scaling factor 10, type:

(monte_go 300 pn_list 10)

The procedure of Monte_go consists of the following steps:

1. Iterate: do the following steps for n simulations.

2. Define a list of household count and beat-ID pairs with zero count for each beat.

3. Print message “Please wait... Processing Monte Carlo simulation run”.

4. Initialise (initJill).

5. Run Monte Carlo simulation for a list of files (Monte_file_batch).

6. Construct a new list to store the results of the simulation.

The list of household count and beat-ID pairs _hid initially was defined as

(def _hID ‘((0 1) (0 2) (0 3 ) ......(0 b)))

where b is the last number of beat-ID

The first atom of each list pair represents the number of household counts. It would be 

filled with zero values at the beginning of the simulation run (Function init Jill).

MonteJileJbatch simply runs Monte Carlo simulation using another function 

run_monte for each file within the list. In turn, runjnonte first initialises the size of 

random sampling (r) according to the scaling factor k (init_monte) and then runs the 

Monte Carlo function (monte) for a list of pixels.
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Monte function first uses the standard Lisp-Stat function sample to perform random 

sampling on a list of pixels, and then assigns the pixel to household count using the 

same assignh function as described earlier in calibrating Landsat image (except this 

time the ED is beat in stead of ED). The experiment can be repeated by initialising the 

*random-state* in Lisp-Stat.

(setq *random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))

The output of the simulation is a list of lists called NEW_LIST. Each list with 

NEW_LIST contains a number of results of the Monte Carlo simulation and the 

beat-ID as the last atom in the list. So NEW_LIST has the following data structure:

((h, h j h j , , , ,  IDn)

( h , A .....

( h A  *1300r o ^ ) -

(h, hj h»o **->,))

The results of the simulation (new_list) were saved in the file called bbthid.lsp. 

> (savevar ’new_list "bbthid")

Histograms can be plotted using Lisp-Stat function histogram (Figure 7.4): 
(histogram (car new_list))
#<Object: 228004122, prototype = fflSTOGRAM-PROTO>
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30 40 50 60 70 80

Figure 7. 4: A histogram of 300 runs

Experimentally, it was found that a normal distribution was obtained after 300 runs 

(Appendix 7.4). This is consistent with the theoretical discussion in Chapter 5. A 

whole list of histograms can be computed for further analysis (see 040397.Log in 

Appendix 7.5 and Chapter 8). Appendix 7.3 lists all programs used in the case study 

and Appendix 7.5 shows the complete log for processing Bristol as an example; with 

comments after semicolons.

7.3.5 Assessing the accuracy of Monte Carlo simulation

The accuracy of the Monte Carlo simulation itself can be assessed by computing the 

RMSE using equation (3.2). Here the actual number of pixels (z’) was determined 

by assigning the whole image at one go. The value obtained from the overall 

assignment for each beat was then compared with those from the simulation (z) (see 

121296.log in Appendix 7.5). The results show that the RMSE are almost identical 

to the SD of the Monte Carlo simulation. The mean RMSE for Bristol is 0% (and 

for Coventry 1%) indicating that the estimator used is indeed a non-biased estimator. 

The results can be printed (using print_tm_mc_results and POSTBBT.LSP) and 

read by spreadsheet (such as Excel) for further analysis (next Chapter).

135



Chapter 7: Implementation of error modelling

7.4 Chapter Summary

This Chapter has described the processes of implementing the dasymetric method for 

error modelling using IDRISI for processing Landsat imagery and Lisp-stat for Monte 

Carlo simulation. As a result, the procedures outlined in the methodology of Chapter 

5 can be further expanded and summarised as follows (Table 7.3):

SteDS
Table 7.3: Procedures of error modelling 

Procedures
1 Get the satellite imagery
1.1 Pre-process
1.1.1 Resampling
1.2 Extract features
1.3 Classify imagery
1.3.1 Prepare the-menu of information classes
1.3.2 Select and define training data
1.3.3 Reiterate Step 1.3.1 and 1.3.2 with modification as necessary to

1.3.4
ensure homogeneous training data 

Conduct classification
2 Calibrate the satellite image with ED using Monte Carlo simulation
2.1 Rasterize ED boundaries
2.2 Overlay the rasterized ED with the classified Landsat TM imagery
2.3 Estimate the household density per ED
2.4 Calibrate the Landsat imagery
2.4.1 Assign pixels within each ED
2.4.2 Define ED as the source zone from the ED-beat overlayed coverage
2.4.3 Get the geographical outcome base (GOB) from the source zone
2.4.4 Compare the results from Step 1 and 3 and estimate the average

3
number of households per pixel (h/p) for each target zone (beat) 
Perform Monte Carlo simulation to estimate household density in

3.1
beats using the calibrated satellite image as a dasymetric map 
Rasterize beat maps

3.2 Overlay rasterized beat map with the Landsat imagery
3.3 Perform Monte Carlo simulation to estimate the household count for

3.3.1
each beat using h/p obtained from Step 2 

Iterate: do the following steps for n runs
3.3.2 Initialise necessary variables
3.3.3 Run Monte Carlo simulation
3.3.4 Print and store the results of the simulation

The results generated from the above procedures are the subject of further analyses in 

the next few chapters.
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Chapter Eight 

Analyses of Results - processing error (I): 

the impact on household population estimates

This chapter provides a statistical summary of the results from the Monte Carlo 

simulation (Tables 8.1 and 8.3). The results are analysed quantitatively from their 

numerical values and qualitatively from their distribution pattern. The object of the 

analyses is to examine the interrelationship between the geographical factors (such as size 

and location of an area), spatial statistics (such as household counts in this case) and their 

error distribution as a result of the spatial interpolation. The results can also be analysed 

visually by plotting the statistical values onto a series of maps in terms of their spatial 

distribution. Since each city is different, the results are analysed city by city - first 

Coventry (Section 8.1) and then Bristol (Section 8.2). Bristol is more complicated not 

only because it consists of more beats than Coventry, but also geographically it consists 

of a lot of open spaces such as parks. Furthermore, as discussed in Chapter 3, Bristol 

consists of super-beats, though this does not affect the analyses at this stage.

8.1 Coventry

The results of the simulation for Coventry are summarised in Table 8.1. It shows the 

household counts (estimated by means of the overlay method and the Monte Carlo 

dasymetric method), the standard deviation (SD) of the Monte Carlo Dasymetric method, 

the error rate (in percentage) of the overlay method as compared with the Monte Carlo 

dasymetric method and the SD of the percentage error of the Monte Carlo simulation.

Table 8.1: Household Count and error rate in Coventry
Beat Overlay MC (h) SD Error % SD-err %

2 2144 3738 213 -43 0
3 4844 4606 305 5 2
4 3053 2683 193 14 0
5 1933 1769 144 9 0
6 4409 3085 184 43 1
7 1794 2282 188 -21 0
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8 5194 4097 264 27 2
9 4320 3837 248 13 0

10 2950 2832 216 4 1
11 3042 2730 203 11 1
14 2505 2224 284 13 3
15 4543 4512 309 1 1
16 1753 1905 197 -8 2
17 2513 2201 282 14 1
18 4241 4065 281 4 1
19 1029 841 179 22 1
20 5819 5578 344 4 0
21 2451 1253 186 96 1
22 2354 1386 154 70 3
23 1707 912 150 87 1
24 829 950 184 -13 1
25 911 1069 158 -15
26 2283 3463 238 -34 1
27 2706 2822 205 -4 1
28 3245 2546 156 27 0
29 143 257 84 -44 13
30 402 302 121 33 0
31 1967 1218 269 61 6
32 1229 1421 340 -13 2
33 349 457 130 -24 3
34 1742 1672 278 4 1
35 2020 1427 235 42 1
36 2397 2638 237 -9 0
37 1299 1530 190 -15 1
38 1147 1399 180 -18 0
39 1812 1649 191 10 2
40 2111 1992 157 6 1
41 4548 3618 172 26 0
42 3129 2685 217 17 0
43 1426 1327 114 8 1
44 2923 2569 217 14 1
45 1867 2191 198 -15 1
46 2989 2896 254 3 2
47 3828 3486 217 10 0

100 3396 3949 304 -14 1
101 3297 3016 265 9 2

116593 109085 9835
2535 2371 214 6.88 1

Out of a total of 46 beats, the total number of households estimated by the overlay 

method was 116593. Using the Monte Carlo dasymetric method, the estimated number 

of households was 109085 ± 9835. This represents error of 7% ± 1% as a whole. The 

error ranged from a minimum -1% error (excluding 0 counts) to the maximum error of 

96%!
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The spatial pattern can be visualised on a series of thematic maps. Figure 8.1 shows the 

household distribution per beat using the overlay method described in Chapter 6. The 

city centre can be readily identified by the least populated area (Beat 29, 30, and 33). 

Naturally, the larger the area, the greater the number of households (Beat 3, and 20) 

though this is not always the case (Beat 2,4, 5). Some of the beats consist of a large 

number of households, and yet their areas are relatively small (Beat 6, 8,31,35,41,101). 

These represent the areas of dense household counts - residential areas. The exceptions 

are near the city centre (Beat 31).

The Monte Carlo dasymetric estimation produces a different spatial pattern (Figure 8.2). 

The largest areas and the least populated areas such as the city centre can be identified 

and they are the same areas as identified by the overlay method. There are small changes 

in the spatial pattern. These changes appear to occur at the medium ranges. The Monte 

Carlo method seems to have a ‘smoothing’ effect such that the spatial pattern of the beats 

become more coherent with their neighbourhood beats (for example, group: Beat 26, 2, 

47,41, group Beat 32, 34, 33, 37, 38, 39,43).
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14.000 to 5,000 (6)
13.000 to 4,000 (7)
12.000 to 3.000 (13)
11.000 to 2.000 (13)

Figure 8. 1: Number of households per beat using overlay method (Coventry)
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14.000 to 5,000 (4)
13.000 to 4,000 (8)
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11.000 to 2,000 (14)
| 1 to 1,000 (6)

Figure 8. 2: Number of households per beat using Monte Carlo dasymetric method (Coventry)
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Figure 8.3: The standard deviation of the Monte Carlo distribution (Coventry)

With a few exceptions, the standard deviation of the household distribution due to random 

sampling of the Monte Carlo simulation is related to the household counts (r = 0.65). This 

means that the higher the household counts, the higher the standard deviation of the 

sample (See scatter plot in Figure 8.3).

The m a p  of the overlay error distribution estimated by the Monte Carlo dasymetric 

method is shown in Figure 8.4. It indicates that Beat 21 consists of the highest error and 

Beat 23 the second highest. Beats 29, 31, 35 and 6 consist of a relatively high error rate 

compared to the rest of the beats. The beats that have high household density and 

relatively near to the city centre tend to have a large error. A few exceptions are beats 6, 

14,17,29 and 100. Although Beat 6 has a relatively high household density, it is near the 

city boundary. This implies that the error effect in this case may be due to the edge effect 

of the boundary. This edge effect does not necessarily apply to all boundary beats. It 

depends on whether the boundary shift includes or excludes a high household density area.
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For instance, if the boundary shift only happens to the park areas, the change in household 

counts would be very small (and hence small error).

Beat 29 is a city centre beat. The high Monte Carlo error rate occurring in the sparely 

populated area would have caused the exceptionally high sampling error during the Monte 

Carlo runs. This also explains why it has an exceptionally low variance.

For comparison the error rate estimated by the area weighted method (described in 

Chapter 6) is also mapped (Figure 8.5). The pattern bears no resemblance to the map 

generated by the Monte Carlo dasymetric method. In general the area weighted method 

seems to overestimate the error for most beats.

■  90 to 100
■  80 to 90
■  60 to 70
□  40 to 50
□  30to 40
□  20 to 30
□  10 to 20
□  Oto 10

Figure 8. 4: Error rate of overlay method estimated by the Monte Carlo simulation
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Figure 8. 5: Error rate of overlay method estimated by the area weighted method (Coventry)

■  17.72010 19.340 
1 16.100 to 17.720
■ 14.48010 10.100
■ 12.800 to 14.480 
1 11.24010 12.800 
J 0.020IO 11.240
□  8.000 to 9.820
□  8.380to 8.000 
J  4.700to 0.380

Figure 8. 6: Compactness ratio (Coventry)
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The size of enor (estimated by the Monte Carlo dasymetric method) tends to be related to 

the compactness ratio (perimeter : area) of the geographical object (Cockings et al, 1997). 

Figure 8.6 shows the compactness ratio of Coventry which has a similar pattern to Figure

8.4 especially the centre beats (Beats 21, 23, and 31) which have high compactness ratios. 

Exceptions to this trend are Beats 2 and 47. This is confirmed by the scatter-plot of the 

error rate vs the compact ratio shown in Figure 8.7. However the correlation coefficient 

is rather weak (r = 0.324). This implies that other factors are also contributing the error 

rate.

em>»%
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0.002 0.004 0.006 0.008 0.01

compact ratio

Figure 8. 7: scatter-plot of the error rates vs the compactness ratio (Coventry)

Household density and error rate - household density can be represented better by 

household counts per unit area. Table 8.2 shows the area size, and the household density 

per unit area using Arc/INFO and the Monte Carlo dasymetric method in Coventry. This 

produces different spatial patterns (Figures 8.8 & 8.9).
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Table 8. 2: the household density per unit area in Coventry
Beat-ID Area sq . Km OvHH/Area MCHH/Area

2 6.05 354.43 618
3 5.76 840.34 799
4 10.94 279.14 245
5 6.18 312.62 286
6 2.34 1885.93 1319
7 1.71 1049.39 1335
8 2.07 2510.02 1980
9 1.88 2303.66 2046

10 2.98 991 951
11 1.72 1768.42 1587
14 1.09 2294.67 2037
15 2.65 1716.69 1705
16 1.43 1223.98 1330
17 1.71 1471.28 1288
18 1.7 2487.6 2384
19 0.62 1652.53 1350
20 3.22 1809.21 1734
21 0.92 2676.06 1368
22 1.04 2254.42 1327
23 0.67 2536.01 1355
24 0.43 1948.31 2232
25 0.54 1680.97 1973
26 3.63 628.35 953
27 3.67 737.2 769
28 1.45 2241.37 1759
29 0.49 293.12 527
30 0.46 867.96 651
31 0.43 4551.8 2819
32 0.46 2682.06 3100
33 0.42 830.67 1089
34 0.61 2849.59 2734
35 0.68 2953.04 2086
36 1.19 2007.99 2210
37 1.03 1256.2 1480
38 1.1 1044.16 1274
39 1.29 1404.91 1279
40 1.46 1448.15 1367
41 2.43 1875.05 1491
42 3.23 969.1 832
43 1.27 1122.32 1044
44 1.75 1672.49 1470
45 2.24 832.63 977
46 1.3 2297.94 2226
47 3.19 1199.33 1092

100 3.55 956.5 1112
101 1.51 2179.87 1994

Total 96.49 74948.48 67584
Mean 2.0976 1629.315 1469.217
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W <500 to 5.000 (1)
□  2.500 to 3.000 (6)
□  2.000 to 2.500 (8)
□  1.500 to 2.000 (9)
□  1.000 to 1.500 (9) 

Z 500 to 1.000 (9)
□  Oto 500 (4)

Figure 8. 8: Household density (counts per sq. Km) using the overlay method (Coventry)

Figure 8. 9: Household density (counts per sq. Km) using the Monte Carlo dasymetric method
(Coventry)
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As one may expect, the large areas with large household counts are actually not as 

densely populated as they might at first appear (Beats 2, 3, 4, 5). The more densely 

populated areas are highlighted which are indeed the areas near to the city centre (Beats 

21, 23 and most densely populated areas are Beats 31, 32). These areas also have a 

higher error rate. This is consistent with the discussion earlier that the denser the 

household counts, the higher the error rate. However there are exceptions (apart from the 

city centre and some city boundary beats), Beats 15, 34, 18, 36, 46, and 101 are all 

densely populated areas and yet they enjoy relatively low error rates. One may argue that 

the further away from the city centre an area is, the more stable the household counts 

count of that area, and thus it has a lower error rate. Beat 34 is clearly an exception to 

that trend. It is embedded between two beats with a relatively high error rate, and so 

might also be expected to have a similar value. Yet it has a very low error rate. 

Geographically, they are near to the city centre with relatively high household density.

So why is it that the error rate of Beat 34 is more than 10 times lower than that of beat 31 

and 35!? It seems that the geometrical shape may be one of the factors. Beat 34 has a 

relatively regular shape while the shape of Beats 31 and 35 is very irregular (high 

compactness ratio). So it seems that when a geographical area is densely populated, near 

the city centre and has an irregular geographical boundary, it is likely to have a high error 

rate.

%2 Bristol

The results and analyses of the simulation for Bristol are presented in the same manner as 

for Coventry. Table 8.3. shows the result summary.

Table 8.3: Household <Count and error rate in Bristol

BeaMD Overlay MC (h) SD error % SD-err %
1 870 563 125 54 0
2 5,830 5,363 148 9 0
3 635 462 46 37 1
4 2,077 2,744 108 -24 0
5 2,288 2,350 123 -3 0
6 2,654 2,333 120 14 1
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3,680 2,657 126 39 0
3,508 4,000 177 -12 -1
1,910 2,030 98 -6 0
3,297 2,716 100 21 0
2,108 2,156 110 -2 -1
2,866 2,777 92 3 0
2,674 3,963 139 -33 0
2,173 2,250 89 -3 1
1,772 1,812 88 -2 -1
1,438 1,521 70 -5 0
1,078 1,159 71 -7 -1
1,290 1,145 60 13 1
1,439 1,732 71 -17 -2
1,538 1,517 52 1 1
1,877 1,820 65 3 -1
2,519 2,124 88 19 -1
1,684 1,622 67 4 1

851 1,118 63 -24 -1
2,173 2,008 80 8 -1
1,478 1,463 71 1 -2
2,207 2,169 72 2 2

0 0 31 0 -1
271 463 40 -41 -2

2,352 1,233 61 91 0
727 996 49 -27 1

0 0 13 0 10
164 49 21 233 5

0 0 12 0 -5
0 0 12 0 -7

1,545 1,236 55 25 0
923 1,328 34 -31 -1

3,014 3,230 75 -7 0
1,881 2,933 77 -36 0
4,541 3,711 121 22 0
6,295 6,655 142 -5 0
3,594 2,838 94 27 0

10,183 10,568 202 -4 0
154 190 48 -19 2

3,782 2,646 67 43 -1
4,269 5,029 136 -15 -1
4,447 4,563 125 -3 0
3,980 4,267 142 -7 0
2,890 2,441 110 18 1
3,215 2,889 139 11 0
2,615 3,214 120 -19 0
3,813 3,934 92 -3 0
1,779 1,880 54 -5 0
1,997 1,882 84 6 0
1,865 1,994 102 -6 1
2,616 2,623 101 0 0
2,794 3,288 128 -15 0
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58 4,014 4,669 129 -14 0
59 261 0 0 0 0
60 3,683 3,817 96 -4 -1
61 4,216 4,754 94 -11 -1
62 6,269 10,600 133 -41 0
63 3,359 2,357 104 43 -1

155,422 159,851 5,562
2,467 2,537 88 -2.77 0

Out of the total of 63 beats, the total number of households estimated by the overlay 

method was 155,422. Using the Monte Carlo dasymetric method, the alternative estimate 

was 159,851 ± 5,562. As a whole, this represents the eiTor of -3%. The pattern of the 

error variation is similar to Coventry, but with a wider range: from a minimum 0% error 

(excluding those areas with 0 counts) to the maximum error of 233% (Beat 33)! This may 

be due to the larger household counts in Bristol than Coventry. Notice the extremely 

large error rate at the city centre beat (33). This does not really matter very much as the 

actual number of households is very small (164 vs 49).

Similar to Coventry, the spatial pattern of the household and the error distribution can be 

analysed by examining a series of thematic maps. From Figures 8.10 and 8.11 one can 

see that Beats 28, 29, 32, and 33 are in the city centre as they consist of relatively few 

households as well as being at the ‘central’ part of the city. In contrast to Coventry, the 

larger areas do not necessarily have the greater number of households (except Beat 1). 

This is because Bristol consists of a larger number of park areas, and beats in these areas 

would have relatively fewer households.
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Figure 8. 10: Number of households per beat using overlay method (Bristol)
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Figure 8. 11: Number of households per beat using Monte Carlo method (Bristol)

150



Chapter 8: Analyses of Results - processing error (I)

As in Coventry, some of the beats consist of a large number of households, and yet their 

areas are relatively small (Beats 22, 27, 38 and especially Beat 23). These represent the 

areas of dense household counts - residential areas. These beats are only just outside the 

city centre (see discussion later). Beats 2, 43, and 62 are the most populated but they all 

have very large areas and are at the city boundary.

1*153 to 202 
164 to 183

□  145 to 164
□  126 to 145
□  107 to 126
□  88 to 107 
^  69 to 88
□  50 to 69 

31 to 50
□  12 to 31

Figure 8. 12: The standard deviation of the Monte Carlo distribution (Bristol)

The Monte Carlo dasymetric estimation produces a similar spatial pattern to the overlay 

method except in the extreme case in Beat 62 (compare Figures 8.10 and 8.11). There are 

more minor changes in Beats 38, 39, 42, 51, 57, and 63. As expected, the standard 

deviation has a positive correlation (r = 0.78) with the household counts (Figures 8.12 and 

8.13).
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Figure 8.13: The standard deviation of the Monte Carlo distribution (Bristol)

Figure 8.13 shows the error distribution of the overlay method as estimated by the Monte 

Carlo dasymetric method. The distribution is similar to those of Coventry in relationship 

to the household density and geographical characteristics. The exceptionally high error is 

Beat 33 which is the city centre and has a very small household count and yet has a very 

high percentage error (Figure 8.14). This is an example of the small number problem as 

described by Kennedy (1989) where there is a large percentage representation even 

though the actual value is very small. Beat 30 has the second highest error. It consists of 

moderate population density and compactness ratio. The only unique geographical 

feature of this beat is that it is both near the city centre and yet at the city boundary.

Some beats are also near or at the city centre, but have no household at all and thus have 

no error. The unexpected relatively high error of Beat 1 is due to the artificial cut-off 

boundary of the paper map. Again, for the purpose of comparison, the errors of the 

overlay method estimated by the area weighted method is shown in Figure 8.15. Except 

beat 43, the map patterns in Figure 8.15 shows some similarity to Figure 8.14. In general 

the errors estimated by the area weighted method are higher than those estimated by the 

Monte Carlo dasymetric method as discussed before.
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■  * )  to 100 (1)
■  50 to 60 (1)
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□  30 to 40 (5)
□  20 to 30 (7)
□  10 to 20 (13)
□  1 to 10 (25)
□  Oto 0 (5)
■  ail others (1)

Figure 8. 14: Error rate of overlay method estimated by the Monte Carlo simulation (Bristol)
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Figure 8. 15: Error rate of overlay method estimated by area weighted method (Bristol)
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Figure 8. 16: Compact ratio (Bristol)

The compactness ratio of Bristol is mapped in Figure 8.16 and its scatter plot in Figure 

8.17. Unlike Coventry, it does not seem to bear any positive association with error rate (r 

= 0.18). This is partly due to the fact that some city centre beats have no households. It 

also implies that there are other geographical factors that may influence the error rate.

Just outside the city centre, the beats are characterised by very dense household counts. 

The areas outside these areas consist of a lot of open spaces such as parks with less dense 

household counts. The effect can be examined in terms of the household density (next).
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Figure 8.17: Scatter-plot of the error rates vs the compactness ratio (Bristol) 

Household density and error rate. Table 8.4 shows the area size, and the household 

density per unit area using the overlay and the Monte Carlo dasymetric methods in 

Bristol. This produces a different spatial pattern (compare Figures 8.18 and 8.19 with 

8.10 and 8.11). The effect is similar to Coventry. The beats with high household density 

have shifted to the areas around and just outside the city centre rather than at the edge of 

the city (Beat 18, 21, 22, 23, 25, 30, 38, 42, 45, 52, 53). The effect of the near-city-centre 

area with high household density and irregular geographical boundary can be observed as 

clearly as in Coventry.

Table 8.4: The household density per unit area in Bristol 

Beat-ID Area sq. Km AIHH/Area MCHH/Area
1 8.09 107.57 69.66
2 5.31 1098.3 1010.3
3 0.61 1048.14 762.88
4 1.88 1106.05 1461.01
5 2.44 936.27 961.78
6 2.49 1067.72 938.75
7 2.04 1807.18 1304.66
8 5.73 612.37 698.29
9 1.23 1553.69 1651.68

10 1.85 1784.57 1470.32
11 1.53 1379.04 1410.42
12 1.17 2452.65 2376.86
13 1.87 1433.38 2124.53
14 0.88 2480.81 2568.69

155



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Chapter 8: Analyses of Results - processing error (I)

0.77 2306.04 2357.87
0.46 3153.06 3334.83
0.55 1965.03 2113.03
0.34 3777.79 3352.22
0.46 3115.23 3748.82

0.5 3072.34 3030.05
0.46 4108.22 3984.36
0.68 3689.26 3110.52
0.36 4628.27 4456.66
0.32 2664.34 3499.2
0.69 3167.62 2927.33
0.79 1874.36 1854.87
0.59 3718.61 3654.81
0.34 0 0
0.28 954.45 1630.2
0.64 3659.67 1919.09
1.06 688.9 943.87
0.15 0 0
0.16 1015.51 305.15
0.12 0 0
0.22 0 0
0.64 2398.15 1918.75
0.77 1203.05 1731.23
0.84 3581.94 3838.65

1 1884.35 2938.58
1.71 2654.28 2169.19
3.5 1800.45 1903.46

1.11 3241.08 2559.48
9.23 1103.62 1145.33
0.88 174.67 215.69
1.12 3386.41 2369.04
2.67 1596.84 1881.11
1.93 2300.43 2360.66
2.01 1979.42 2122.02
1.72 1679.17 1418.27
2.91 1105.8 993.53
2.12 1234.21 1516.75
1.25 3051.2 3147.73
0.57 3111.86 3288.83
1.22 1635 1541.04
2.35 792.85 847.67
1.03 2538.23 2544.82
3.95 707.16 832.29
3.26 1230.43 1431.33

0 0 0
1.91 1932.99 2003.57
3.63 1162.6 1311.07
4.78 1311.61 2217.67
1.76 1903.58 1335.48

106.9 117127.82 116615.92
1.7 1859.17 1851.05
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47

a  4 .5 0 0  to 5 .0 0 0  (1)
□  4.000 to 4.500 (1)
□  3.500 to 4,000 (5)
□  3.000 to 3.500 (8)
□  2.500 to 3.000 (3)
□  2,000 to 2.500 (5)
□  1.500 to 2.000 (13)
□  1.000 to 1,500 (14)
□  500 to 1,000 (6)
□  1 to 500 (2)

0 to 0 (4)

43

Figure 8. 18: Household density using overlay method (Bristol)

□  4 .0 0 0  to 4 .5 0 0  (1)
□  3.500 to 4,000 (4)
□  3.000 to 3.500 (7)
□  2.500 to 3.000 (5)
□  2.000 to 2.500 (10)
□  1.500 to 2,000 (10)
□  1,000 to 1,500 (10)
□  500 to 1,000 (8)
□  1 to 500 (3) 
r ; oto  o (4)

Figure 8. 19: Household density using Monte Carlo Dasymetric method (Bristol)
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83  Analyses of frequency distribution

Another useful way to examine the errors visually is by plotting the frequency distribution 

in a form of histogram. For both Coventry and Bristol, the histograms of households over 

beats (excluding the zero values) show that the patterns of the frequency distribution 

between the overlay and Monte Carlo methods are similar (Figure 8.20 - 8.23). The only 

difference is in magnitude and that is small.

14  - ■ 

12 - -  

10

930 1850 2789 3719 4648 5578

Figure 8. 20 Coventry (overlay) Figure 8. 21 Coventry (Monte Carlo)

\ '  V* fc' A y <&' 

Figure 8.22: Bristol (overlay)

0<b an <£> jp

Figure 8. 23: Bristol (Monte Carlo)

The patterns of the SD frequency distribution of households in Coventry and Bristol show 

a ‘mirror’ relationship to the above (Figure 8.24 and Figure 8.25). The shift in the 

distribution pattern may be due to some beats with small household density which might 

contain larger deviation. The SD distributions are also related to error rates as discussed 

in the previous sections. Figures 26 and 27 show the error rate (in percentage) of 

Coventry and Bristol respectively.
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58 115 173

Figure 8. 24: SD (Coventry) Figure 8. 25: SD (Bristol)

Note that the error distribution for Bristol appears very different in Figure 8.27. This is 

because the scale has been distorted by one exceptionally high value (Beat 33: 233%!).

Figure 8. 26: Error distribution in Coventry Figure 8. 27: Error distribution in Bristol

The mean error appears to be relatively small: 7% for Coventry and -3% for Bristol. This 

is due to the fact that some of the positive and negative values cancel out each other. 

However the actual error for individual beats may be much higher. This effect can be 

shown by plotting the histograms using the absolute values (ignoring the signs) as shown 

in Figure 8.28 and 8.29.
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30

25

1 16.83 32.67 48.5 64.33 80.17 96 33 67 100 133 166 200 233

Figure 8. 28: Absolute error rate (Coventry) Figure 8. 29: Absolute error rate (Bristol)

The above histograms show a lot of the beats could have the absolute error rate as high as 

16% for Coventry and 33% for Bristol! It follows that whether the errors are significant 

or not depends on the beats that are involved in the particular process of data analysis - a 

topic of further error propagation which will be discussed in greater detail in the next 

chapter.

8.4 Chapter Summary

Using the Monte Carlo Dasymetric method, more accurate household counts were found 

for the two cities. These show that the original estimates were an over-estimation of 

household counts by 7% for Coventry and under-estimation of household counts by -3% 

for Bristol. Spatial analyses of the error distribution show that a geographical area 

would have a higher error if it:

• has dense population;
• is near the city centre; or
• has an irregular geographical boundary.

Whether or not these errors would significantly affect the Safer Cities Programme 

evaluation is the subject for further analyses (see next Chapter).
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Chapter Nine

Analyses of processing error (II): the impact on Safer Cities Action

This chapter continues with the error analyses in the next phase of the GIS processing. 

Owing to the erroneous result of spatial interpolation, the output of GIS would also 

contain errors which are discussed in the previous chapter. How this error affects the 

further processing of the spatial data as part of error propagation is the subject of this 

chapter. A tabulation of the results of the spatial data involved in both the transfer 

and processing errors is provided in Section 9.2. The geographical analyses are 

shown in Section 9.3 by mapping the results of the overlay and Monte Carlo 

dasymetric methods for the two cities. The confidence level of error propagation at 

the initial stage of the data analyses of the Safer Cities Programme Evaluation is 

discussed in Section 9.4. First however the results of the Safer Cities action will be 

described which will provide the context for the analyses of the spatial error 

propagation (next).

9.1.1 Safer Cities action against burglary

This section describes the amount of action present in the Safer Cities Programme 

evaluation on domestic burglary. As described in Chapter four, domestic burglary 

was chosen for detailed analyses for Phase 1 reporting because the Safer Cities 

Programme was most likely to have a measurable impact on burglary (Ekblom et al., 

1996a). It follows that to study the propagation of Group 2 errors, I should focus on 

their impact upon the results of the Safer Cities Programme evaluation on domestic 

burglary.

The whole evaluation

The local Safer Cities schemes targeted on domestic burglary were identified when 

they were in scope with our outcome measures (see Chapter 2 for scoping principle). 

This covered 240 out of a total of 300 schemes. In the final year o f measurement, 

1992, there were 325 action beats. The average action score (intensity) from Safer 

Cities funds was £3 per household. 82 of these beats also had levered funds, an 

average score of nearly £5.50 per household. The total score was nearly £4.50. On 

the basis of the total action present in the final year, there were four sets of beats.
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Those which

1 never had action;

2 ended up in 1992 with under £5-worth of action per household (average just under 

50p);

3 had between £5-£13 worth of action (average nearly £8); and

4 had over £13 action (average £34).

The action in each set starts to appear between 1989-90, and reaches the highest level 

in 1992. Because our scoring calculation system had been set to assume that action, 

once started, continued to exert its effects for two years, the 1992 scores were in effect 

cumulative for virtually all action, since the bulk of it started from 1990. There was 

an association between levered funds and high amounts of Safer Cities action. The 82 

action beats with levered funds had an average of just over £7.50 Safer Cities 

burglary action per household in 1992; the 243 without leverage, just over £1.50. Of 

the 33 beats in the high (total) action set, 22 had leverage.

The average amount of action across the burglary schemes as a whole was £8,700 

(Safer Cities funding). This was above the average Safer Cities fund spent (which 

was £7,300). The amount varies according to whether there were additional ‘levered- 

in funds' raised from local agencies and institutions, and from other national 

programmes. According to the data recorded on the Management Information System 

(see Chapter two), two-thirds of the burglary schemes had no leverage.

For the remaining third of schemes with levered-in funds, the average Safer Cities 

spend was £11,300 and the average levered supplement £17,800. In other words, the 

Safer Cites action was actually less than the other non-Safer Cities action. (Safer 

Cities funds were not used to substitute for funds from other sources. Otherwise, the 

Safer Cities spending would have been more when levered funds were unavailable.)

On average, the levered schemes were geographically smaller than the rest by 53% (19 

versus 29 enumeration districts). See Ekblom et al (1996a) for further details on the 

evaluation as a whole.
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The two cities

Table 9.1 shows the summary of the total burglary preventive action scores for each of 

the two cities selected for this case study over the period of the Safer Cities 

Programme (taking their related errors into account).

Table 9.1: Total burglary preventive action score (adjusted) per year

The trends of the spending were very similar across the two cities. It is interesting to 

observe that although Coventry is a smaller city than Bristol in terms of both 

geographical size and population, the burglary action scores are higher than for Bristol 

(particularly in 1991).

9.2 Error propagation in the Safer Cities Action data

To analyse the error propagation and its impact upon the Safer Cities Action scores, 

one can focus only on those beats that had burglary action and compare their action 

scores obtained from overlay method and Monte Carlo dasymetric method (or Monte 

Carlo for short). The action scores (S), can be computed from Equation (2.1) which, 

for beat-based analysis, can be simplified as follows (see Ekblom et al, 1994; 1996a 

for detail).

where S is the action score
number of household counts in the zone of overlap, zone of influence, and 

zone of detection respectively

For Police Crime data, ZI, ZO, and ZD are all beat-based, after scoping has been 
completed, the formulas can further be simplified as:

Year
Bristol
Coventry

1990 1991 1992 Total
4.14 27.43 4136 72.93
435 37.42 42.07 83.84

S = A x Nzo/N zj/N zd (9.1)

S = A x B/B/B which simplifies to 
S = A/B (9.2)

where B is the beat household count.
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For corrected scores with corrected beat household counts B’ from Monte Carlo 
simulation, we have

S’ = A/B’ 
or S’B’ = SB

S’ = SB/B’ (93)

Since we know error rate e:

e = (B - B’)/B’
= B/B’ -B ’/B’
= B/B’ - 1

or B/B’ = l+ e  (9.4)

Substitute the value of B/B’ in terms of e into equation (9.3), S' corrected action score
can be computed:

S’ = S + eS (93)

Using the above formula, a new set of action scores for each beat that has action can 

be calculated.

First those beats that have action are obtained from the scoping process. These are the 

beats included in Tables 9.2 and 9.3 for Coventry and Bristol respectively, together 

with the household counts calculated by the overlay method, Monte Carlo dasymetric 

method (MC), the standard deviation (SD) of the household counts due to the Monte 

Carlo method (and SD %), and the error (in percentage) due to the overlay method as 

estimated by the Monte Carlo dasymetric method. For a non-biased estimator, the SD 

is the same as the RMSE of the household estimation by the Monte Carlo simulation 

(established at the implementation in Chapter 7). The data shown in Tables 9.2 and

9.3 are effectively subsets of the data shown in Tables 8.1 and 8.3. As a result of 

scoping, smaller sets of beats are left for further processing.
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Table 9. 2: Population calculated by overlay and its error in % and standard deviation as 
estimated by Monte Carlo simulation for those beats that have burglary action in Coventry. 
(Beats which had no burglary preventive actions have been excluded)

Beat-ID Overlay MC SD SD % error %
8 5194 4096.54 263.63 1.54 26.79
9 4320 3837.19 247.79 0.15 12.58

10 2950 2831.76 216.46 1.09 4.18
15 4543 4512.05 308.71 1.38 0.69
17 2513 2200.6 282.32 1.4 14.2
19 1029 840.77 179.46 0.5 22.39
23 1707 912.12 149.92 0.5 87.15
24 829 949.63 184.12 0.78 -12.7
25 911 1069.21 157.95 3.56 -14.8
26 2283 3462.74 237.62 0.5 -34.07
30 402 301.59 120.92 0.41 33.29
31 1967 1218.1 269.23 5.79 61.48
32 1229 1420.57 340.04 2.04 -13.49
33 349 457.39 129.93 3.45 -23.7
34 1742 1671.63 278.27 0.64 4.21

100 3396 3948.78 303.738 1.18 -14
101 3297 3016.28 265.37 1.7 9.31

Total 38661 36746.95 3935.478 1.565294 5.21
Mean 2274.176 2161.585 231.4987 1.57 5.21

Table 9.3: Population calculated by overlay and its error in % and standard deviation as 
estimated by Monte Carlo simulation for those beats that have burglary action in Bristol.

BeaMD Super-ID overlay MC SD SD % error %
36 209 1,545 1,236 39.11 3.16 24.98
53 210 1,779 1,880 38.44 2.04 -5.38
45 218 3,782 2,646 47.17 1.78 42.94
20 219 1,538 1,517 37.13 2.45 1.4
19 220 1,439 1,732 50.37 2.91 -16.9
54 221 1,997 1,882 59.45 3.16 6.1
52 223 3,813 3,934 65.19 1.66 -3.07
41 224 6,295 6,655 100.17 1.51 -5.41
63 225 3,359 2,357 73.8 3.13 42.54
58 227 4,014 4,669 90.9 1.95 -14.04
40 228 4,541 3,711 85.59 2.31 22.36
48 233 3,980 4,267 100.51 2.36 -6.72
47 234 4,447 4,563 88.2 1.93 -2.55

Total 42,529 41,049 876.03 2.13 3.61
Mean 3,271 3,158 67 2.13 3.61
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The exclusion of some beats has reduced the total error from 7% to 5% for Coventry. 

This represents the reduction of the total household count from 109,084 ± 9622 to 

36,747 ± 3935 in the scoring process (as a result of the scoping). In other words, just 

under 34% of the households are included in the final analysis.

For Bristol, the total number of households are reduced from 159,853 ± 5,560 to 

42,529 ± 41,049. In other words, just over 25% of the households are included in the 

action score calculation. No superbeat is involved in the burglary preventive actions. 

In contrast to Coventry, the change in error (%) is small in magnitude (-3% vs 

+3.61%) but the sign is changed from negative to positive.

Since the action scores represent the amount of money spent per household, the over- 

estimation of the household density would actually under-estimate the amount of 

action scores. The results show that this is indeed the case (Tables 9.4 & 9.5).

Table 9. 4: The effect of the error propagation in scoring the cost of preventing burglary on 
dwellings (BD) in Coventry’.

Beat error % BD90 Adjusted BD91 Adjusted BD92 Adjusted
8 26.79 0 0 0.01 0.01 0.01 0.01
9 12.58 0 0 0.03 0.03 0.03 0.03

10 4.18 0.19 0.2 0.39 0.41 0.53 0.55
15 0.69 0.31 0.31 3.28 3.3 4.81 4.84
17 14.2 0 0 0.1 0.11 1.03 1.18
19 22.39 0 0 0.22 0.27 2.4 2.94
23 87.15 0 0 0.05 0.09 0.05 0.09
24 -12.7 0 0 0.16 0.14 0.16 0.14
25 -14.8 0 0 0.03 0.03 0.03 0.03
26 -34.07 0 0 0 0 0.23 0.15
30 33.29 0 0 0.08 0.11 0.08 0.11
31 61.48 0 0 0.57 0.92 6.27 10.12
32 -13.49 0 0 0.57 0.49 6.27 5.42
33 -23.7 0 0 0.2 0.15 2.25 1.72
34 4.21 0 0 0.11 0.11 1.22 1.27

100 -14 0.88 0.76 1.83 1.57 2.52 2.17
101 9.31 2.59 2.83 26.51 28.98 10.49 11.47

Total 3.97 4.35 34.14 37.42 38.38 42.07
Error % 5.21 -8.74 -8.77 -8.77
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Table 9. 5: The effect of the error propagation in scoring the cost of preventing burglary on 
dwellings (BD) in BristoL

Beat-ID error % BD90 Adjusted BD91 Adjusted BD92 Adjusted
36 25 0 0 2.09 2.61 3.28 4.1
53 -5 0 0 10.29 9.74 16.09 15.22
45 43 0 0 0.88 1.26 1.38 1.97
20 1 0 0 0.13 0.13 0.29 0.29
19 *17 0 0 0.09 0.07 0.21 0.17
54 6 0 0 0.64 0.68 1.01 1.07
52 -3 0 0 8.61 8.35 13.53 13.11
41 *5 2.95 2.79 2.95 2.79 2.95 2.79
63 43 0.95 1.35 0.95 1.35 0.95 1.35
58 -14 0 0 0 0 0.61 0.52
40 22 0 0 0 0 0.14 0.17
48 -7 0 0 0.24 0.22 0.24 0.22
47 -3 0 0 0.23 0.22 0.35 0.34

Total 3.9 4.14 27.1 27.43 41.03 41.36
Error % 3.61 -5.8 -1.2 -0.8

For Coventry, over-estimating the household density by 5% (Table 9.2) resulted in the 

under-estimation of the mean action scores by -9% (Table 9.4). The amount was 

relatively constant through out the period of the Safer Cities Programme. On the other 

hand, over-estimating the household density by 3.6% (Table 9.2) resulted in the 

under-estimation of the mean action scores by only -0.8% (Table 9.4) in Bristol (a 

very small amount).

9 3  Geographical analyses of error propagation

The thematic maps with appropriate constraints (scoping, scoring and Monte Carlo 

simulation in this case) can be used as a visualisation tool to explore the implication 

of the results similar to the error analyses described in the previous chapter. Appendix

9.1 shows the whole range of beat maps of the action scores for burglary prevention 

for each year of the Safer Cities Programme.

Taking the estimated errors by the Monte Carlo method into account, the more 

accurate ‘estimated’ maps of the action scores can be plotted which can be visually 

compared with the maps generated by the overlay method. Since there are relative 

small amounts of difference in the spatial pattern shown in the two sets of the maps 

especially during the first year when there are not much burglary preventive action.
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The analysis is focused on the final year when the action scores accumulate to their 

maximum amounts. For the convenience of cross-referencing, the maps in year 1992 

(Appendix 9.1) are included here as shown in Figures 9.1 - 9.4.

Beat 26 in Coventry (near the south-west of the city boundary) has a small amount of 

action. The amount of the action scores had also been increased for some beats (Beat 

19, 31-34 in Coventry: Figure 9.1). The spatial patterns between the two methods are 

broadly similar. Exceptions are Beat 31 in Coventry and Beat 45 in Bristol (Figures

9.2 and 9.4).

With the Monte Carlo method, Beat 31 in Coventry becomes one class higher, while 

Beat 45 in Bristol is one class lower though it is less noticeable because the amount of 

the action intensity is very low (< £1.5). However, both cases indicate that they have 

a higher error rate. Both beats are near the city centre and have a high compactness 

ratio (as described in the previous chapter). This shows that such geographical 

characteristics have an effect upon the error propagation when its attribute values (in 

this case, action scores) are included in the process (scoping).
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Figure 9. 1: Coventry 1992 Action score distribution (the overlay method)
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Figure 9. 2: Coventry 1992 Action score distribution (the Monte Carlo method)
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Figure 9. 3: Bristol 1992 Action score distribution (the overlay method)
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Figure 9. 4: Bristol 1992 Action score distribution (the Monte Carlo method)
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9.4 Results of error propagation in scoping: impact on Safer Cities Action

Although as a whole the change in the spatial pattern was very small for the two cities, 

this does not imply that we should ignore the temporal aspect of the error propagation 

process. As Figure 9.5 shows, there were noticeable changes in the percentage of the 

scoping errors over time in Coventry.

i

year 2 year 3
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Figure 9. 5: Error propagation in GIS processing (Coventry).
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Figure 9. 6: Error propagation in GIS processing (Bristol).
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It seems by chance that the irregular nature of the error in household density has been 

cancelled out by the amount of money spent in Coventry (which was also irregular). 

However this is not the case for Bristol (Figure 9.6). Despite the irregular action 

scores, there is a strong negative correlation between scoping and scoring errors for 

both cities as they were determined by a set of mathematical relationships (r = -0.9165 

for Coventry & r = -0.9997 for Bristol). This implies that even though there is a close 

relationship between spatial and computational processing (scoping and scoring), the 

outcome is still unpredictable. This is due to the complex nature of spatial variation 

and its interaction with the computation.

Having precisely quantified the spatial error of scoping and the propagation error of 

scoring, the next key question to be answered is: are these errors significant? The 

meaning of significance depends on a particular statistical context. The degree of 

significance is analysed at two levels: 1) GIS process error; and 2) transfer error for 

further statistical analyses. First, in terms of the scoping in GIS processes, one can 

examine whether the quantity of the household density is significantly deviated from 

the mean of the household counts. Based on our classification of the pixels used in 

the simulation, we have independent maximum likelihood values for p and Ax (Ax is 

the error process in x). To interpret the quantity of the household counts x with its 

RMSE Ax (thus the estimated value = x±Ax), one can consider a normal distribution 

mean p, and variance Ax2 (Figure 9.7).

Ax

Figure 9.7: a normal distribution
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When Ax = SD, then particular properties follow. Statistically, it is known that 67% 

of the results would be within p.±SD; 95% of the results within p±2SD; and 99% of 

the results within p+3SD. Since we are looking for an effect of the error process (e) 

on scoping and scoring, it follows that e = |p-y| where y is the value estimated by the 

overlay method. Conservatively, if e > Ax, it can be concluded that the effect of error 

is significant. Conversely, if e < Ax, it can be concluded that the results were not 

significant enough to determine the error effect on the action scores of size < 2Ax, and 

that one can assume the error is not important and accept the Null hypothesis (e = 0).

For Coventry

Most of the beats in scope are well within one standard deviation of error, that is 67% 

(for example, figure 9.8). The complete range of the frequency distribution of the 

Monte Carlo sampling for Coventry in the form of a histogram for the beats in scope 

is shown in Appendix 9.2. The only exception is Beat 23 (Figure 9.9). This beat is 

just near the city centre which explains the high error rate as discussed in the previous 

chapter. Moreover, the action score for this beat is very small (total 18 pence per 

household over three years). It is unlikely that this would have a significant impact 

upon the overall conclusion of the evaluation.

-9%

500 600 700 800 900 1 e+03
Figure 9. 8: Overlay error deviated from the mean (Coventry Beat 101)
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-  87% -

190 156 200 250 300 350
Figure 9. 9: Overlay error deviated from the mean (Coventry Beat 23)

The form of the distribution also deviates from the normal distribution in this case. It 

looks more like a bimodal distribution. This is associated with a high error rate. For 

example, Beat 31 is at the borderline of one standard deviation which has a similar 

bimodal distribution (Figure 9.10). This implies that a number of different household 

distributions within these beats may exist.

—  61%  —

50 100 156 200 250
Figure 9.10: Overlay error deviated from the mean (Coventry Beat 31)

For Bristol

With the exception of Beat 26, all the beats in scope have the error distribution well 

within one standard deviation (Figure 9.11). The complete range of the frequency 

distribution of the Monte Carlo sampling for the Bristol beats in scope is shown in 

Appendix 9.2. Beat 36 (a city centre beat) is excluded from the analyses within this 

context as the sample household count was not large enough to show the normal 

distribution. This would not affect our analyses as both the household density and the 

action scores were very small.
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—  19c

9

10 20 30 40 50
Figure 9.11 overlay error deviated from the mean (Bristol Beat 19)

The above analyses suggest that most errors in scoping are not significantly different 

from the estimated values generated from the Monte Carlo experiments. However the 

statistical results should be used in a theoretical context. Here the importance is the 

decision criteria. So at the second level of analyses, the word ‘significance’ is taken 

to mean: Does the error affect the conclusion of the evaluation? To answer this 

question, one needs to re-examine the statistical analytical process of the evaluation 

which, as suggested in Chapter two, is complex, and thus it deserves a separate 

treatment (Chapter 11).

Programme Evaluation

This also relates to the outcome measures of the Safer Cities 

which also required detailed analyses (next chapter).



Chapter 9: Analyses of processing error (II)

9.5 Chapter Summary

This chapter has focused on the error propagation of the process error (the so-called 

scoping process) resulting from the spatial interpolation (described in the previous 

chapter) and examines its the impact upon the Safer Cities action through those beats 

that had Safer Cities burglary action. The action scores in each beat-year were re­

calibrated taking into account the error rate for each beat (the scoring process). Since 

the action scores represent the amount of money spent per household, the over­

estimation of the household density would actually under estimate the amount of the 

action scores. The results show that this is indeed the case. The over-estimation of 

household density (5% for Coventry and 3.6% for Bristol) has resulted in the under­

estimation of the cost of the Safer Cities action by -9% and -0.8% for Coventry and 

Bristol respectively. The amount of the resultant error of each individual beat 

depends not only on the initial errors from the GIS spatial interpolation, but also on 

whether the beat is involved in the further processing (scoping in this case) and the 

value of the attribute (action score). The analyses so far suggest that the GIS process 

error has not yet had a significant impact upon the Safer Cities action intensity. 

Whether the enror has a significant impact upon the outcome and the conclusion of the 

Safer Cities Programme Evaluation requires further analyses.
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Chapter Ten 
Analyses of processing error (III): the impact on burglary

This chapter examines the impact of spatio-thematic error upon the outcome measures 

of the Safer Cities Programme Evaluation. Section 10.1 defines the burglary risk as 

the incidence rate and describes the units of analyses by referring back to the context 

of the Safer Cities Programme Evaluation. Section 10.2 provides a summary 

description of the results of error propagation on the burglary risk of the two cities. 

Section 10.3 discusses the implication of the results upon the crime pattern analysis. 

Finally, Section 10.4 provides a brief summary of this chapter.

10.1 Outcome data and Units of analyses

As described in Chapter two, the recorded crime data for twelve major offence 

categories were collected from 14 of the 16 Safer Cities evaluated from 1987 to 1992. 

Although data for some cities such as Coventry were available in 1993, only data up 

to 1992 were used for the Evaluation for completeness. The outcome measure is 

defined as the risk of victimization, which within the scope of this study, is the 

burglary risk. This converts the burglary count into an incidence rate, which is 

defined as the number o f domestic burglaries per 100 households in each beat, in 

each year (Ekblom et al, 1996a).

Super-beats in Bristol

Some beat boundaries were changed in Bristol during the period of the Safer Cities 

Programme. The change tended to involve the aggregation of smaller beats adjacent 

to each other into larger beats, and hence so-called super-beats. The super-beat 

problem was managed by looking back through past maps to uncover ‘beat 

pedigrees’. A ‘standard beat map’ was used which covered the whole period of the 

Safer Cities Programme. Super-beat-BDs were used to identify these larger beats.

Data were aggregated for the super-beats and processed for data analyses as usual.
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For Bristol, the super-beats are Beats 9 and 10 (grouped into Super-beat 211); 15, 16, 

and 24 (Super-beat 212); 25-30 (Super-beat 222); 38, 39, 42, and 57 (Super-beat 226); 

58 and 60 (Super-beat 227); 40, 43, 61, 62 (Super-beat 228); 8 and 14 (Super-beat 

229); 11 and 12 (Super-beat 231); 7 and 13 (Super-beat 232); 48-50, and 55 (Super­

beat 233); 47 and 51 (Super-beat 234); 22, 23, 28, and 29 (Super-beat 235). The 

super-beat-IDs are included in Appendices 10.1-10.2 for reference.

10.2 Error propagation in burglary risk

Since most beats had burglary incidence at some point of the Safer Cities Programme, 

they would all have been affected by the spatial interpolation error. According to the 

definition, for each beat year, the burglary risk (R):

R = (C/B) 100 (10.1)

where C is the burglary count per beat-year 

B is the beat household count.

Similarly given a new household count (B’) estimated by the Monte Carlo dasymetric 

method, the new burglary risk R':

R’ = (C/B’)100 (10.2)

R’ can be computed in terms of R by Dividing (10.2) with (10.2),

R’/R = C /B ’ /  C /B  =  B /B ’ (103)

From equation (9.4), the ratio between the beat household count by the overlay 

method and the estimated beat household count by the Monte Carlo dasymetric 

method (B/B’) = 1 + e. Substitute the value of B/B’ into equation (10.3), the 

‘corrected’ burglary risk can be calculated:

R ’ =  R +  eR  (10.4)

A new set of burglary risk can be computed using the error rate estimated by the 

Monte Carlo dasymetric method according to the above formula (in the same way as 

the action scores described in the previous chapter). Table 10.1 shows the summary 

of the mean burglary risk per beat for Bristol and Coventry. For a complete listing of 

the burglary risk computed by the overlay method and the Monte Carlo dasymetric 

method for Bristol and Coventry, see Appendices 10.1 - 10.4.
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Table 10.1: Mean burglary risk per beat

1987 1988 1989 1990 1991 1992 m ean 
average

Bristol overlay 0.032957 0.04402 0.032433 0.044084 0.06668 0.045343 0.04425
Monte Carlo 0.035486 0.047929 0.036003 0.048015 0.069561 0.047819 0.04747
mean error % -7.13 -8.16 -9.92 -8.19 -4.14 -5.18 -6.77

Coventry overlay 0.043823 0.056841 0.051481 0.058354 0.06463 0.081386 0.05942
Monte Carlo 0.045676 0.059559 0.055223 0.061053 0.067543 0.085546 0.06243
mean error % -4.06 -4.56 -6.78 -4.42 -4.31 -4.86 -4.83

On average, the above results represent an under-estimation of the burglary risk by - 

7% for Bristol and -5% for Coventry. Since police recorded crime data are subject to 

under-reporting (compare with the British Crime Survey, Mayhew et al, 1993), a 

further under-estimation of the burglary risk may have an important impact upon the 

Evaluation of the Safer Cities Programme. Figures 10.1 and 10.2 show the average 

burglary risks per beat as they change over time for Bristol and Coventry respectively. 

In both cases, the Monte Carlo dasymetric method presents the same burglary trends 

as the overlay method. In contrast to the national crime rate at the time, the burglary 

risk continued to rise after 1990, and only fell after the completion of the Safer Cities 

Programme in 1992 for Bristol (and in 1993 for Coventry when the data were 

included). These patterns show some prima facie evidence of a Safer Cities effect. 

However, the confirmation of such an effect requires statistical modelling to link 

action with the outcome measures. How the estimated errors affect the conclusion of 

the Safer Cities Programme Evaluation using multilevel modelling method is the 

subject of next chapter.
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103 Geographical analysis of burglary risk - crime pattern analysis

The spatial pattern of the burglary risk for each year can be visualised on a series of 

thematic maps similar to the error analyses described in the last two chapters. The 

process of such inspection is also known as crime pattern analysis - an increasing 

important task in crime prevention as a result of the impact of using GIS (as discussed 

in Chapter 1). The full sets of the beat maps showing the burglary risk from 1987- 

1992 for Bristol are shown in Appendices 10.5 and 10.6 (overlay and Monte Carlo 

methods respectively), and for Coventry in Appendices 10.7 and 10.8 from 1987- 

1993. Emerging crime patterns can be identified by inspecting these maps over the 

six year period for the two cities.

For Bristol, Beats 19, 20, and 63 consistently had the highest burglary risk over the 

six year period. Beat 19 and 20 were densely populated areas just outside the city 

centre (North East). Beats 32, 34, and 35 had no domestic burglary at all because they 

were city centre beats and had zero household count. Beats 6, 8, 18, 32, 43, 46, 57,

58,60,61 and 62 consistently enjoyed relatively low burglary risk. Most of these 

beats were country side and park areas and had low population density. Beats 3 and 

17 changed from no burglary to relatively high burglary risk over time. This was 

probably due to a new development of residential housing in these areas.

The thematic maps from the Monte Carlo dasymetric method follow a similar pattern. 

An exception is beat 33, which is shown up as a hot spot on the Monte Carlo 

thematic map but not on the overlay map. This is a small beat just next to the city 

centre (West of Beat 35) and has the highest estimated error (see Chapter 8). An 

important implication of such an observation is that a less accurate map may miss a 

potential crime hot spot. This may have a further implication in resource allocation for 

crime prevention. For easy reference the maps showing the burglary risk in 1989 as 

estimated by both methods are shown in Figures 10.3 and 10.4.
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Figure 10. 3: Burglary risk in Bristol 1989 (overlay method)
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Figure 10. 4: Burglary risk in Bristol 1989 (Monte Carlo dasymetric method)
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For Coventry, the areas with the highest burglary risk were Beats 29 (just below Beat 

30 at the city centre), 33, 43, and 101 between 1987-92, and their burglary risk fell in 

1993. With a few exceptions, most of the rest of the beats (in particular West of the 

city) had relatively low burglary risk. Beats 31, 37 and 38 changed into high-risk 

areas in 1990-1992 (during the period of the Safer Cities Programme). Beats 37 and 

38 received no Safer Cities action. There is no evidence of geographical displacement 

for these two beats as they are not the neighbourhood of the action beats. Beat 31 

received high action intensity and was relatively near to the high-risk area (Beat 33).

It is next to the city centre beat and is one of the densely populated areas (Chapter 8).

Again, the Monte Carlo dasymetric maps show a similar pattern except Beats 21 and 

22. These two beats constitute one of the burglary hot spots and yet it has completely 

been missed out on the overlay maps throughout the period. As an example, see 

Figure 10.5 and 10.6. The implication is clear as discussed earlier in Bristol. The 

mis-identification of the hot spots might cause inappropriate allocation of resources 

such as the Safer Cities Programme fund. The beats that are not perceived as high 

crime areas would attract less preventive action than the amount that they actually 

deserve.

One would have expected that the action areas would match the areas with the highest 

burglary risk (for instance Beat 101 in Coventry). Comparing the above maps with 

those in Chapter 9 (Figures 9.1 - 9.4) shows that this is not always the case. For 

instance, Beat 29 in Coventry was consistently one of the highest risk areas and 

received no action at all. On the contrary, the city centre Beat 30 (just above Beat 29) 

received some action but had minimal burglary. (The action may simply be raising 

public awareness at the city centre.) The areas which received the highest action 

intensity are those beats with relatively moderate burglary risk (Beat 52 and 53 in 

Bristol, and Beat 31 and 32 in Coventry) just next to the highest crime areas. These 

reflect the complexity of crime preventive activities. For instance, the Safer Cities co­

ordinator might target the areas which they thought would provide them with the best 

chance to succeed and ignore the areas that did not have a ‘hope in hell’ for crime 

reduction. (For further discussion on the process of the Safer Cities Programme see 

Sutton, 1996).
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Figure 10. 5: Burglary risk in Coventry 1992 (overlay method)

Figure 10. 6: Burglary risk in Coventry 1992 (Monte Carlo dasymetric method)
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In general, the patterns of burglary risk in the two cities are consistent with the finding 

by Shaw and McKay (1972) that distance from the city centre tends to have a small 

negative relationship with the burglary risk. High population density is one of the 

obvious important factors (Braithwaite, 1979). Most high risk areas are relatively 

near to the city centre which, together with their accessibility, form the ‘awareness 

space’ of the potential motivated offenders (Beavon et al, 1994; Brantingham and 

Brantingham, 1984). This can also be interpreted in terms of the routine activity 

theory (Cohen and Felson, 1979; Clark, 1983) and proximal circumstances (Ekblom, 

1994). Other criminological theories in terms of demographic variables such as 

ethnicity, low income and single parent families as indicators for social cohesion may 

be further explored (Evan, 1989, Field, 1989; Hirschfield, et al, 1995 a and b; Kurtz et 

al, 1995; Taylor et al, 1995; Walker and Walker, 1989; and Wilson, 1987). However 

the spatial correlation and the nature of disadvantaged areas are complex issues, most 

likely multi-dimensional (Hirschfield, 1994), and are outside the scope of this study.

10.4 Chapter Summary

The results of the Monte Carlo dasymetric method suggest a mean under-estimation 

of the burglary risk by -7% for Bristol and -5% for Coventry. Crime pattern analysis 

shows that potential hot spots might have been missed as a result of such under­

estimation. This has an important implication in crime prevention for decision and 

policy makers.

The simple plot of burglary risk over time has provided an indication of a Safer Cities 

effect. However, to confirm such an effect requires statistical modelling to link action 

with the outcome measures. How the estimated errors affect the conclusion of the 

Safer Cities Programme Evaluation is the subject of next chapter.
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Chapter Eleven

Process Error (IV): Impact upon the Safer Cities Programme Evaluation

As described in the previous chapters, to decide whether the spatial error has had any 

significant effect upon the data analyses and the subsequent conclusion of the Safer Cities 

Programme Evaluation, would require re-examining the process of data analyses in the 

Evaluation using multi-level modelling. This chapter maps the spatial errors upon the 

further data processing using multi-level modelling in the Evaluation of the Safer Cities 

Programme. This begins with examining the statistical model used in the Safer Cities 

Programme Evaluation for explaining variation in risk of burglary incidence as a function 

of Safer Cities action (Section 11.1). From this general multi-level model, a cut down 

version of the model is adopted for this case study to examine the impact of the spatial 

error upon the burglary risk-action intensity relationship (Section 11.2). Section 11.3 

describes the initial results of the multi-level modelling. Section 11.4 further assesses 

how the spatial error influences the Evaluation when the burglary risk data sets were 

mathematically transformed to fit the statistical assumption of the multi-level modelling. 

Section 11.5 relates the results back to the context of the Safer Cities Programme 

Evaluation; and finally, the impact of the action intensity upon burglary risk is re­

assessed in the light of this case study by means of significance testing.

11.1 The statistical model used in the Safer Cities Programme Evaluation for 

explaining variation in risk of burglary incidence

Multilevel models as explained in Chapter 5 (methodology) were used in the analysis of 

the recorded crime data and the Safer Cities effect. The aim of the data analyses for the 

Safer Cities Programme evaluation was to explore the link between the intensity (and 

presence) of Safer Cities action in any one beat in any one year, and the associated 

domestic burglary incidence risk. The objective of the multi-level modelling for the 

Evaluation was to measure special effects on burglary risk of the presence of the Safer 

Cities action, and its intensity whilst taking account of any background trends and 

differences in area context. The multi-levels consist of: beat-years (Level 1); beats (Level
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2); and originally cities (Level 3). See Table 11.1. This was a ‘repeated measures’ model 

as there were up to six beat-year observations within each beat. Had the multi-level 

modelling not been used, the inter-connected spatial temporal relationships of the 

observations would have caused under-estimation of standard errors in ordinary least 

squares regression.

Table 11.1: Recorded crime model parameter 

Dependent variable: burglary incidence per household

Hierarchy Safer Cities Case Study representation
Level_______ Unit of analysis_____ Number______Number_____ %
3 City 14 2 14
2 Beat/S uperbeat 701 91 13
J___________ Beat-vear (6 vrs) 3277________ 581_________ 18

Two cities represent 13-14% of the total number of cities or beats for the evaluation.

Note that the representation increases to 18% in the number of beat-years, and overall this 

indicates a good representation of the data from the case study. This is due to the nature 

of the two cities selected for this research (as described in Chapter 4). Not all beats were 

available for all years. For instance, although Coventry had a complete set of recorded 

crime data up to 1993, Bristol had some data missing in 1993.

A general multi-level model for the evaluation of the Safer Cities Programme can be 

expressed according to the Variance components model version of 

the equation (5.29) with the random term u ,^  missing. (Also see Chapter 5 for detailed 

methodology). In the original Safer Cities Programme Evaluation, city level was 

subsequently omitted from the model due to reduction (to zero) in the unexplained 

between-cities variance of the intercept when all contextual variables from 1991 census 

and index of local condition were included. The model was therefore simplified to two 

levels (beat-year and beat only). This made very little difference to the fixed coefficients 

or their significance in the original evaluation of the Safer Cities Programme. As a result, 

only the simple variance components model was used. (Random slope regression would 

have been required to see the variation across cities.) It follows that city level has also 

been excluded from the model in this case study. Two cities would be too small a
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number to constitute a level in this case study anyway. Equation (5.29) can thus be 

simplified as follows:

yg=Y«+ Yoizj + + Yuzjxg + (u,,+ eg) (11. l)

where
y , is the burglary risk
Yoo intercept
Yio coefficients of the action score (fixed)
\ action score
Yo, coefficient of other explanatory variable e.g. presence of action
z) other explanatory variable e.g. action presence [1 or 0]
Y..z; \ covariates (e.g. census x action scores x action presence)
(u0,+ e„) residuals of levels 2 and 1 respectively.

11.2 The statistical model used in the case study for explaining variation in risk of 

burglary incidence and action intensity

The aim of the analysis here is to assess the extent of the impact of the spatial error has 

upon the conclusion of the Safer Cities Programme Evaluation. To include all the census 

variables used in the Evaluation for the multi-level analyses is beyond the scope of this 

case study, though it is feasible to do so. Since a beat consists of a number of 

Enumeration Districts (ED), the error due to the spatial interpolation would have had very 

little impact upon the presence of any Safer Cities action (including other actions) in a 

beat. So the explanatory variables: action presence and all the census variables are 

removed from the multi-level model. The analysis starts with the simplest version of the 

variance components model in a form of y(j= (3̂  + P,x  ̂+ u; + e0 as described in (5.21).

Explanatory variables 

fixed components

A positive coefficient estimate for a fixed component indicates that the variable is 

associated with an increased risk of burglary victimisation; a negative estimate with a 

reduced risk.
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Random components

The level two random component of the constant is the residual variation (i.e. that which 

is unexplained by the fixed effects) between beats in the burglary incidence risk. The 

residual variation for each beat is the average unexplained risk common to all beat-years 

for that beat. By definition, it does not change over the six-year period of measurement.

The level one random component of the constant is the residual unexplained variance of 

risk between beat-years, having taken account of the variation between beats.

ML3 associates every parameter with an explanatory variable, the model (5.25) thus 

represents

RISK = p„ CONS + P, ACTION + UjCONS + eyCONS <11.2)

(where CONS = 1.)

CONS + P, ACTION are the fixed part; UjCONS + efjCONS the random part of the 

model.

So far the spatial error has been analysed on a city by city basis. However, since the 

multi-level modelling includes all cities in a single model, it is appropriate to combine the 

data of the two cities in this case study for multi-level modelling in order to compare the 

results with the Safer Cities Programme as a whole. Following the procedure of the 

Evaluation to generate estimates of the impact of Safer Cities action, we need to produce 

a model 1) with action score = 0 [a base line]; and 2) compare with action score = average 

action intensity.

When the explanatory variable ACTION is excluded in the multi-level model (or action 

score = 0), equation (5.4) becomes:

y.^Po, + u, + e ,1 (U-3>
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i.e. (in ML3 terms)

RISK = P0 CONS + CONS + eg CONS (11.4)

Specifying the multi-level model according to equations (11.2) & (11.4), a whole range of 

the results of the burglary risk using the results of the overlay method (RISKov) and of 

the Monte Carlo Dasymetric method (RISKmc) can be computed for each of the three 

cases: Coventry; Bristol; and the two cities combined. (See Appendix 11.1 for the 

detailed log of ML3 implementation.)

113 Initial results of multi-level modelling

When the explanatory variable ACTION is excluded in the multi-level model:

For Coventry
RISKov =0.05659 ±0.00532
RISKmc =0.05913 ±0.00504
Estimated error = RISKov -  RISKmc

When two cities combined
RISKov = 0.05067 ± 0.00402 
RISKmc = 0.05201 ± 0.00447 
Estimated error = -0.00135 (2.60%)

In all cases so far, the estimated errors due to the overlay method in all cases are well 

within the range of the standard errors.

When ACTION ((3, x0) is included in the multi-level model, the equation 11.2 can be 

worked out from the fixed part of the model, and the residuals and the standard errors 

from the random part.

= -0.00255 (4.31%)

For Bristol
RISKov 
RISKmc 
Estimated error

= 0.04435 ± 0.00592 
= 0.04179 ±0.00629 
= 0.00256 (6.13%)
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For Coventry

RISKov = -0.00064 ( ± 0.00135) ACTION + 0.05679 ± 0.00537 

RISKmc = -0.00074 ( ± 0.00120) ACTION + 0.05940 ± 0.00512

Since the cut-down model has not taken into account the time trend, external comparison 

crime series, and all the census variables, one would expect the risk-action relationship 

would be very small. If any, it might even be a positive correlation, as the preventive 

Programme tended to take place in the high crime areas. So it is surprising to see a 

negative coefficient from the ACTION variable in Coventry. Figure 11.1 plots the above 

equations for both overlay and Monte Carlo methods.
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Figure 11.1: Burglary Risk vs Action Intensity (Coventry)

L: error bars from the overlay method R: error bar from the Monte Carlo method

The above Figure also illustrates that the equation generated from Monte Carlo data sets 

falls within the standard errors of the overlay data sets and vice versa.

For Bristol

RISKov = 0.00211 ( ± 0.00107) ACTION + 0.04364 ± 0.00587 

RISKmc = 0.00221 ( ± 0.00113) ACTION + 0.04104 ± 0.00623
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The above equations show a positive correlation between burglary risk and the preventive 

action. This is as expected and explained earlier, that is, the prevalence of crime and all 

the census variables have not been accounted for. The important observation is that the 

outcome from the Monte Carlo data sets is well within the standard error range of the 

equation from the overlay method. Figure 11.2 shows the above relationship between 

RISK and ACTION in Bristol.
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Figure 11. 2: Burglary Risk vs Action Intensity (Bristol)

L: error bars from the overlay method R: error bar from the Monte Carlo method

When the two cities are combined in the multi-level modelling 

RISKov = 0.00108 (± 0.00084) ACTION + 0.05031 ± 0.0040 

RISKmc = 0.00063 (± 0.00088) ACTION + 0.05180 ± 0.00446

The coefficient of the ACTION shows a very small value in comparison with the overall 

standard error. This indicates that the effect of the action in relationship to risk is very 

small. The positive and negative effects of the action in Bristol and Coventry seem to 

have cancelled each other out when put together. Figure 11.3 derived from the above 

equations shows this effect. The graph indicates that there is a small interaction between 

the two methods.
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Figure 11. 3: Burglary Risk vs Action Intensity (Two cities combined)

L: error bars from the overlay method R: error bar from the Monte Carlo method

The exact values for the burglary risk can be computed by substituting the values of the 

action scores into the above equations for each case. The most meaningful values would 

be when action scores are equal to 0, 1, mean, and maximum. This covers the whole 

range of values and enables one to examine the impact of the estimated error upon the 

multi-level model in each case.

When action score = 0
For Coventry 

RISKov 
RISKmc 
Estimated error

For Bristol
RISKov 
RISKmc 
Estimated error

When two cities combined 
RISKov 
RISKmc 
Estimated error

0.05679 ± 0.00537 
0.05396 ±0.00512 
-0.00260

0.04364 ± 0.00587 
0.04104 ±0.00623 
0.00260

= 0.05031 ±0.0040 
= 0.05180 ± 0.00446 
=-0.00149
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The above results are more or less the same as when the variable ACTION was excluded

from the model as one would have expected when ACTION is equal to zero.

When action score = 1 
For Coventry 

RISKov 
RISKmc 
Estimated error 

For Bristol
RISKov 
RISKmc 
Estimated error 

When two cities combined 
RISKov 
RISKmc 
Estimated error

= 0.05615 ±0.00672 
= 0.05866 ±0.00632 
= -0.00251

= 0.04575 ± 0.00694 
= 0.04325 ± 0.00736 
= 0.00250

= 0.05139 ±0.00483 
= 0.05243 ± 0.00533 
= -0.00104

When action score = Mean
For Coventry, the mean action score = 2.48

RISKov = 0.05520 ± 0.00872
RISKmc = 0.05756 ± 0.00810
Estimated error = -0.00237

For Bristol, the mean action score = 3.18,
RISKov = 0.05035 ± 0.00928
RISKmc = 0.04807 ± 0.00981
Estimated error = 0.00228

When two cities combined, the mean action score = 2.79 
RISKov = 0.05333 ± 0.00633
RISKmc = 0.05355 ± 0.00690
Estimated error = -0.00023

When action score = Maximum 
For Coventry, the maximum action score = 11.47 

RISKov = 0.04940 ± 0.02086
RISKmc = 0.05090 ± 0.01890
Estimated error = -0.00150

For Bristol, the maximum action score = 15.22
RISKov =0.07575 ±0.02220
RISKmc =0.07469 ±0.02338
Estimated error =0.00106

When two cities combined, the maximum action score = 15.22 
RISKov = 0.06675 ± 0.01676
RISKmc = 0.061350872 ± 0.01779
Estimated error = 0.00540
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The above results show that in all cases, the estimated errors from the Monte Carlo 

method are well within the range of the standard error of the model generated by the 

overlay method. The results are summarised in Table 11.2 and their numerical 

expressions can be described as follows:

Coventry
Zero: 0.00537 > -0.00260 > -0.00537
One: 0.00672 > -0.00251 > -0.00672
Mean: 0.00872 > -0.00237 > -0.00872
Maximum: 0.02086 > -0.00150 > -0.02086

Bristol
zero: 0.00587 > 0.00260 > -0.00587
One: 0.00694 > 0.00250 > -0.00694
Mean: 0.00928 > 0.00228 > - 0.00928
Maximum: 0.02220 > 0.00106 >-0.02220

Two cities
Zero: 0.0040 > -0.00149 > -0.0040
One: 0.00483 > -0.00104 > -0.00483
Mean: 0.00633 > -0.00023 > -0.00633
Maximum: 0.01676 > -0.00540 > -0.01676

Table 11.2: Summary of values of Risk at different Action scores (MC - Monte Carlo; OV - Overlay; 
S • Standard; E - Estimated)

City Action Risk(OV) Risk(MC) S.ERR(OV) S.ERR(MC) E. Error E. Error %
Coventry - 0.05659 0.05913 0.00532 0.00504 -0.00255 -4.31

0 0.05679 0.05396 0.00537 -0.00537 -0.0026 -4.82
1 0.05615 0.05866 0.00672 -0.00632 -0.00251 -4.28

2.48 0.0552 0.05756 0.00872 -0.0081 -0.00237 -4.12
11.47 0.04941 0.0509 0.02086 0.0189 -0.0015 -2.95

Bristol 0.04435 0.04179 0.00592 0.00629 0.00255 6.10
0 0.04364 0.04104 0.00587 0.00623 0.0026 6.34
1 0.04575 0.04325 0.00694 0.00736 0.0025 5.78

3.18 0.05035 0.04807 0.00928 0.00981 0.00228 4.74
15.22 0.07575 0.07469 0.0222 0.02338 0.00106 1.42

Two Cities - 0.05066 0.05201 0.00402 0.00447 -0.00135 -2.60
0 0.05031 0.0518 0.00399 0.00446 -0.00149 -2.88
1 0.05139 0.05243 0.00483 0.00533 -0.00103 -1.96

2.79 0.05333 0.05355 0.00633 0.0069 -0.00022 -0.41
15.22 0.06675 0.06135 0.01676 0.01779 0.0054 8.80
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This represents the estimated errors (at the mean action scores): -4% for Coventry, 4% 

for Bristol and 0.4% when the two cities combined. However as action scores increases to 

the maximum, the estimated error increase to the maximum 8.8% when the two cities 

combined while the estimated error decreases to -3% and 1.4% for Coventry and Bristol 

respectively. This indicates that the errors of the two cities tend to interact in the 

combined model and change in an unpredictable way.

11.4 The transformed risk of burglary incidence used in the Safer Cities Programme 

Evaluation

In the original Safer Cities Programme Evaluation, the burglary risk (the so-called 

outcome measure or dependent variable in the multi-level equation) had to be 

transformed in order to remove negative skew in the frequency distribution. Examination 

of the histograms of the burglary risk data from the two cities show that this indeed was 

the case (see Figures 11.4 & 11.5).

100

80

I  60
g  40 
it

20

0

I h

m o> co n  *- to
* -  ■*- CM CM

Risk

100

80

| 60 

g  40
U.

20

0

1 | i

- t 1 1 mUUI
to o> c o  r ''-  ■»—

»— *— CM

Risk

lO
CM

Figure 11. 4: Burglary Risk (two cities) Figure 11. 5: Transformed Burglary Risk (two cities)

In such cases, burglary incidence risk tends to be skewed so that errors associated with 

the lower risk tend to be larger than the errors associated with the higher risk. So the 

burglary risks by the overlay method and the Monte Carlo Dasymetric estimation were 

transformed in the same way as those in the original Safer Cities Programme Evaluation, 

that is, the coefficient estimate for a fixed component adjusts the predicted transformed
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risk: {Arcsine [(burglary recorded incidence risk per household)1M]}. (Note normal 

distribution is a necessary requirement of the data sets used in the multi-level modelling 

due to its statistical assumptions as outlined in Chapter 5.)

The multi-level model y(j= (3̂  + P,xtJ + Uj + e(j remains the same as before except now 

represents the transformed burglary risk: [Arcsine ((Burglary rate/Household)1'4)].

The whole range of the multi-level modelling results for the transformed risk (RISK’) can 

be computed following the exact procedures as before.

When ACTION is excluded in the multi-level model.

For Coventry
RISK’ov 
RISK’me 
Estimated error

For Bristol,
RISK’ov 
RISK’me 
Estimated error 

When two cities combined 
RISK’ov 
RISK’mc 
Estimated error

0.49199 ±0.01320 
0.49905 ±0.01314 
-0.00706

0.42061 ±0.03872 
0.40999 ± 0.04017 
0.01062

0.45953 ±0.02061 
0.45989 ±0.02198 
-0.00036

When action is included in the multilevel model 

For Coventry

RISK’ov = -0.00368 (± 0.00318) ACTION + 0.49319 ± 0.01349 

RISK’mc = -0.00365 (± 0.00282) ACTION + 0.50049 ± 0.01348

The transformed results are very similar to the raw data of the burglary risk except the 

values appear to be accentuated by about eight fold. Figure 11.6 shows that the risk- 

action relationship has a similar trend as before.

196



Chapter 11. Process Error (IV): Impact upon the Safer Cities Programme Evaluation

0 5 2 0.52

0 5 <► 0 5

J* 0 48
"  0.48 O/erlay

0 4 6
0 4 6

0 4 4

C 0 44 Carlo (T)l0.42 i
0 4 20 4

0.38 0 4

Action Intensity Action intensity

Figure 11. 6: Transformed Burglary Risk vs Action Intensity (Coventry)

L: error bars from the overlay method R: error bar from the Monte Carlo method

Bristol

RISK’ov = 0.00444 ( ± 0.00267) ACTION + 0.41879 ± 0.03850 

RISK’mc = 0.00471 ( ± 0.00271) ACTION + 0.40803 ± 0.03992

The trend is the same as before except the slope is much ‘gentler’ in comparison with the 

above. This is due to the large scale of the residuals (Figure 11.7).
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Figure 11. 7: Transformed Burglary Risk vs Action Intensity (Bristol)

L: error bars from the overlay method R: error bar from the Monte Carlo method
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When two cities are combined in the model
RISK’ov = 0.00091 (± 0.00204) ACTION + 0.45916 ± 0.02059
RISK’mc = -0.00066 (± 0.00217) ACTION + 0.46014 ± 0.02202

Figure 11.8 shows the most interesting contrast between the coefficients of the overlay 

action and the Monte Carlo action scores. They appear to be in an exact opposite trend 

though still within the standard error of the overlay method. The graph represents the tail 

end of the interaction (as indicated before), and here the difference between the two 

methods has been accentuated by the transformation to such an extent that their 

coefficients have gone in opposite directions. This implies the coefficients are extremely 

unstable and the relationship is unlikely to be significant (see significance testing later).
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Figure 11. 8: Transformed Burglary Risk vs Action Intensity (Two cities combined)

L: error bars from the overlay method R: error bar from the Monte Carlo method

As in Section 11.2, a whole range of values for the transformed burglary risk can be 

computed by substituting the values of the action score into the above equations when 

action scores are equal to 0, 1, mean, and maximum.

When action score = 0 
For Coventry

RISK’ov 
RISK’mc 
Estimated error

= 0.49319 ±0.01349 
= 0.50049 ± 0.01348 
= -0.00730
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For Bristol
RISK’ov 
RISK’mc 
Estimated error 

When two cities combined 
RISKov 
RISKmc 
Estimated error

0.41879 ±0.03850 
0.40803 ± 0.03992 
0.01076

0.45916 ±0.02059 
0.46014 ±0.02202 
-0.00098

When action score = 1 
For Coventry

RISK’ov 
RISK’mc 
Estimated error 

For Bristol
RISKov 
RISKmc 
Estimated error 

When two cities combined 
RISK’ov 
RISK’mc 
Estimated error

0.48950 ±0.01666 
0.49684 ±0.0163 
-0.00733

0.42323 ±0.04117 
0.41274 ±0.04262 
0.01049

0.46007 ± 0.02263 
0.45949 ±0.02419 
0.00058

When action score = Mean
For Coventry. The mean action score = 2.48

RISK’ov = 0.48405 ± 0.02137
RISK’mc = 0.49143 ± 0.02047
Estimated error = -0.00738

For Bristol, the mean action score = 3.18
RISK’ov = 0.43291 ± 0.04699
RISK’mc = 0.4230 ± 0.04852
Estimated error =0.00991

When two cities combined, the mean action score = 2.79 
RISK’ ov = 0.46169 ± 0.02629
RISK’mc = 0.45831 ± 0.02807
Estimated error = 0.00338

When action score = Maximum 
For Coventry. The maximum action score = 11.47 

RISK’ov = 0.45095 ± 0.04994
RISK’mc = 0.45862 ± 0.04579
Estimated error = 0.00767
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For Bristol, the maximum action score = 15.22
RISK’ov = 0.48635 ± 0.07911
RISK’mc = 0.47967 ± 0.08109
Estimated error = 0.00668

When two cities combined, the maximum action score = 15.22 
RISK’ov = 0.47294 ± 0.05170
RISK’mc = 0.45017 ± 0.05503
Estimated error = 0.02278

The above results show that in all cases, as before the RISK has been transformed, the 

estimated errors from the Monte Carlo method are within the range of the standard errors 

generated by the overlay method. Again, the summary of the relationship between the 

estimated errors and the standard errors can be expressed as follows:

Coventry
Zero: 0.01349 > -0.00730 > -0.01349
One: 0.01666 > -0.00733 > -0.01666
Mean: 0.02137 > -0.00738 > -0.02137
Maximum: 0.04993 > -0.00767 > -0.04993

Bristol
Zero: 0.03850 > 0.01076 > -0.03850
One: 0.04117 > 0.01049 > -0.04117
Mean: 0.04699 > 0.00991 > -0.04699
Maximum: 0.07911 > 0.00668 > -0.07911

Two cities
Zero: 0.02059 > 0.00098 > -0.02059
One: 0.02263 > 0.00058 > -0.02263
Mean: 0.02629 > 0.00338 > -0.02629
Maximum: 0.05170 > 0.02278 > -0.05170

The summary of the transformed risk is shown in Table 11.3.
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Table 11.3: Summary of values of the transformed Risk at different Action scores (MC - Monte 
Carlo; OV - Overlay; S - Standard; E - Estimated)

City Action R isk’(OV) Risk’(MC) S.ERR(OV) S.ERR(MC) E. Error E. Error %
Coventry - 0.49199 0.49905 0.0132 0.13141 -0.00706 -1.41

0 0.49319 0.50049 0.01349 0.01348 -0.0073 -1.46
1 0.48950 0.49684 0.01666 0.0163 -0.00733 -1.48

2.48 0.48406 0.49143 0.02137 0.02047 -0.00738 -1.50
11.47 0.45096 0.45862 0.04993 0.04579 -0.00767 -1.67

Bristol 0.42060 0.40999 0.03872 0.04017 0.01062 2.59
0 0.41879 0.40803 0.0385 0.03992 0.01076 2.64
1 0.42323 0.41274 0.04117 0.04262 0.01049 2.54

3.18 0.43291 0.423 0.04699 0.04852 0.00991 2.34
15.22 0.48635 0.47967 0.07911 0.08109 0.00668 1.39

Two cities * 0.45953 0.45989 0.02061 0.02198 -0.00036 -0.08
0 0.45916 0.46014 0.02059 0.02202 -0.00098 -0.21
1 0.46007 0.45949 0.02263 0.02419 0.00058 0.13

2.79 0.46169 0.45831 0.02629 0.02807 0.00338 0.74
15.22 0.47294 0.45017 0.0517 0.05503 0.02278 5.06

This represents the estimated errors (at the mean action scores): -1.5%, 2.3% and 0.7% 

for Coventry, Bristol, and the two cities combined respectively. For the two cities 

combined, the overall effect of the underestimation of the action intensity and burglary 

risk seemed to cancel each other out. However its estimated error increases to the 

maximum 5% when action scores increase to the maximum.

11.5 Relating the results to the scale of the Safer Cities Programme Evaluation

Unlike the model used in the Safer Cities Programme evaluation, the multi-level model 

used in this case study has merely attempted to explain the variation in burglary risk in 

the two Safer Cities beats alone, without using the other indicators as additional 

explanatory factors. The original model used in the Evaluation included other factors:

At the beat level:

• Geographical factors such as the size of the beat, the household density, whether it 

had a city-centre location (since domestic burglary rates are likely to differ in areas 

comprising mostly shops, offices, transport and entertainment facilities)
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• Social factors derived directly from the 1991 Census, such as the proportion of the 

population aged 16-24, the proportion aged 60 and over, and the proportion of 

households lacking a car. Other factors from the Index of Urban Conditions were also 

included, such as the overall Index itself, and subsidiary indicators including 

overcrowding, and children in unacceptable accommodation

• Measurement factors which could have introduced bias - whether or not a ‘beat’ was a 

superbeat; and whether or not we had obtained burglary data in the beat for all six 

years (‘incomplete’ beats may have been areas with special problems or unusual 

patterns of policing)

At the beat-year level:

• The year (to indicate the overall trend in burglary)

• Comparison indicators for burglary trend, both global and based on city Census- 

family

• The amount o f other Safer Cities action, not targeted on burglary, that was present 

(Ekblom et al 1996, p 49, italic added).

The analysis of the results so far has found very little impact of the estimated error upon 

the results of the overlay methods used in the evaluation of the Safer Programme. The 

next question is: How do the results relate to the results of the Safer Cities Programme 

Evaluation as a whole? To answer such a question, we need to compare the results of the 

case study with those of the Safer Cities Programme. Table 11.4 provides such a 

comparison.

202



Chapter 11. Process Error (IV): Impact upon the Safer Cities Programme Evaluation

Table 11. 4: comparison of the estimates and standard errors (S.ERROR) between the Evaluation 
and this case study.

Fixed components (CONS) ESTIMATE S.ERROR
Coventry (Overlay) 0.4839 0.01187
Coventry (Monte Carlo) 0.4911 0.01185
Bristol (Overlay) 0.3759 0.02976
Bristol (Monte Carlo) 0.3628 0.03066
Two Cities (Overlay) 0.4310 0.01665
Two cities (Monte Carlo) 0.4284 0.01759
All Safer Cities -5.5680 1.04500

Fixed components (ACTION) ESTIMATE S.ERROR
Coventry (Overlay) -0.00368 0.00318
Coventry (Monte Carlo) -0.00365 0.00282
Bristol (Overlay) 0.00444 0.00267
Bristol (Monte Carlo) 0.00471 0.00271
Two Cities (Overlay) 0.00091 0.00204
Two cities (Monte Carlo) -0.00066 0.00217
All Safer Cities -0.01298 0.00689

Random component Level 2 ESTIMATE S.ERROR
Coventry (Overlay) 0.00596 0.00133
Coventry (Monte Carlo) 0.00592 0.00134
Bristol (Overlay) 0.03902 0.00837
Bristol (Monte Carlo) 0.04150 0.00890
Two Cities (Overlay) 0.02455 0.00371
Two cities (Monte Carlo) 0.02734 0.00415
AD Safer Cities 0.00486 0.00030

Random component Level 1 ESTIMATE S.ERROR
Coventry (Overlay) 0.00332 0.00028
Coventry (Monte Carlo) 0.00347 0.00030
Bristol (Overlay) 0.00387 0.00037
Bristol (Monte Carlo) 0.00373 0.00036
Two Cities (Overlay) 0.00361 0.00023
Two cities (Monte Carlo) 0.00440 0.00028
All Safer Cities 0.00338 0.00009

The comparison shows that the intercept of the risk-action equation and its standard error 

in the Evaluation, is far larger than those in the case study (more than ten times, see 

Figures 11.9 & 11.10 with both overlay and Monte Carlo methods included respectively 

for the two cities). The value of the intercept in the Safer Cities Programme Evaluation 

has a negative value in contrast to the case study. This is because other contextual factors 

especially the time trend and crime comparison indicators have been taken into account in 

the Evaluation as explained earlier.
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Figure 11.9: Estimates of the intercept Figure 11.10: Standard Error of the intercept

In contrast, the coefficients of the action intensity in the case study are comparable to the 

coefficient of the Safer Cities action intensity. In particular Coventry has the same trend 

as the Safer Cities Programme as a whole. Bristol appears to have an opposite trend to 

Coventry. As a result, the effects of the two seem to cancel each other when combined. 

The values of the coefficient and the standard error of the Safer Cities Programme are 

larger (but only about twice to three times) than those in the case study. This is expected 

as the Programme as a whole consists of more cities, more cases and hence has a larger 

coefficient and a larger standard error (Figures 11.11 & 11.12).

Action coeff. Action coeff. S.E

0.01 0.008

-0.015

Figure 11.11: Coefficients of ACTION Figure 11.12: Standard Errors of ACTION

204



Chapter 11. Process Error (IV): Impact upon the Safer Cities Programme Evaluation

In striking contrast to the fixed components, the level two random components of the 

Safer Cities Programme consist of a much smaller estimate and standard error than the 

case study. This indicates that the model used in the Evaluation as a whole is a more 

‘powerful’ test than the model used in the case study as the former left a relatively small 

amount of unexplained residuals (between beats) and hence, has a smaller standard error 

(Figures 11.13 & 11.14).

Level 2 ETnMATE Level 2 S.E

Figure 11.13: Level 2 estimates Figure 11.14: Standard Errors of level 2

Level one estimates of the Safer Cities Programme Evaluation are comparable to those of 

the case study (Figure 11.15). Nevertheless the standard error of the evaluation as a 

whole is still consistently smaller than those of the case study (Figure 11.16).
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Figure 11.16: Standard Errors of Level 1
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To conclude, the above implies that the impact of the estimated error upon the Safer cities 

Programme Evaluation is very small. To start, the Evaluation consists of a large negative 

intercept. To relate the results of the case study to the scale of the evaluation, the multi­

level equations of the case study can be scaled up by taking the relative values of the 

intercepts of the evaluation. This produces Figure 11.17 which shows that the results of 

the case study are all within the range of the standard error of the evaluation. This is 

because the evaluation, as a whole, consists of a large standard error in its fixed part of 

the model, that is, the inferred relationship between the action intensity and burglary risk 

reduction.

 Ooventry(MC)

! - Bristol(MC)

;--------Two Cities(MC)

 Safer Cities j

Figure 11.17: Comparison between the overall Safer Cities effect with the Two Cities effect

Error bars are from the Safer Cities

11.6 Significance testing: Re-examining Safer Cities Programme impact on burglary

The final question to be answered in this research is: how statistically significant are the 

results of this case study in relation to the evaluation of the Safer Programme Evaluation? 

We need to examine the significance testing used in the Safer Cities Programme 

Evaluation. The goodness of fit statistic, or likelihood, in multi-level modelling measures 

the model that predicts the observed values of burglary risk over all explanatory 

variables. In the Safer Cities Programme Evaluation model, the mere presence of the
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action (the so called step effect) on a particular beat-year accounts for one third of the 

reduction in risk (p = 0.027). Other Safer Cities action which was included in the main 

statistical model, also had a role to play in the burglary risk reduction, but has not been 

included in this case study.

As described in the previous Chapter, the trend of the burglary risk is somewhat different 

from the national trend, apart from a small drop in burglary rate in 1988-1989, the 

burglary rate continued to rise steeply and a deep fall followed shortly after the 

implementation of Safer Cities Programme (1992-1993). While this trend shows some 

prima facie evidence of a Safer Cities effect, relating the action intensity to the burglary 

risk for the whole six year period would have masked most of the Safer Cities effect.

Action tended to be located in beats with a higher risk of burglary, so one would expect a 

positive correlation between burglary risk and action intensity if the time trend and other 

contextual variables were not taken into account. The effect of the action intensity upon 

the risk reduction, if any, is expected to be moderately small and to vary from city to city. 

The effect of the action intensity (given the step effect) found in the Safer Cities 

Programme as a whole was actually very weak (p = 0.108). The evaluation team decided 

to reject the null hypothesis as a ‘borderline’ case only on the basis of other related 

factors, in particular, the significant step effect found in the mere presence of the action (p 

= 0.027). The step and marginal-intensity effects together were found to be jointly 

significant at p = 0.01. Had there been no other contextual evidence, the null hypothesis 

would have been accepted in the normal academic practice.

Table 11.5 shows the comparison of the results of the significance testing in from this 

case study in comparison with the Safer Cities Programme Evaluation for all cities.

These are calculated by first calculating the likelihood of each model (for example, 

Coventry, -792.508 with Monte Carlo dasymetric method and -790.895 when the 

explanatory variable ACTION is removed from the model). Under the null hypothesis of 

zero parameter values (variance), the difference of likelihoods (1.613) follows a chi- 

square distribution with degree of freedom equal to the number of parameters removed, in
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this case 1. The fit statistics are calculated as -2[log (likelihood ratio)], (see Appendix

11.2 for the full significance testing).

Table 11. 5: Significance testing

Significant testing P df
Coventry (Overlay) 0.25440 1
Coventry (Monte Carlo) 0.20407 1
Bristol (Overlay) 0.09701 1
Bristol (Monte Carlo) 0.08270 1
Two Cities (Overlay) 0.66292 1
Two cities (Monte Carlo) 0.76418 1
All Safer Cities 0.10800 1

The causal relationship between risk and action intensity found in the case study can be 

concluded to be insignificant in every case, though the values for the individual city are 

comparable to the conclusion of the Safer Cities Programme evaluation.

11.5 Conclusion of the Chapter

This case study has found that the errors due to the spatial interpolation estimated by the 

Monte Carlo method are well within the standard errors generated by the overlay method 

in the multi-level modelling (mean: 0.02136536 > -0.00738 > -0.02136536 for Coventry; 

0.04698854 > 0.009906 > -0.04698854 Bristol; 0.02629 > 0.00338 > -0.02629 when two 

cities combined. This represents the estimated errors (at the mean action scores): -1.5%, 

2.3% and 0.7% for Coventry, Bristol, and the two cities combined respectively. Multi­

level modelling has shown that the risk-action relationship between the overlay and 

Monte Carlo Dasymetric methods tend to interact in the multi-level modelling such that 

the overall effect of the underestimation of the action intensity and burglary risk seemed 

to cancel each other out. However as action scores increases to the maximum, the 

estimated error increase to the maximum 5% when the two cities combined. Taking the 

spatial error into account (i.e. using Monte Carlo Dasymetric method) the difference 

between the two method (if any) tended to enhance the action intensity effect, though 

such an effect was too small to be significant (p = 0.2 for Coventry; 0.08 for Bristol; and

0.76 when two cities combined; c.f. p = 0.108 for all Safer Cities; with d.f. = 1 in all
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cases). It is concluded that no significant impact due to spatial error upon the 

conclusion of the Safer Cities Programme Evaluation has been found.

The analyses also show that the Safer Cities effect varies across different cities as 

exemplified by Bristol and Coventry. While it is justified for the Evaluation to combine 

all the cities in the multi-level model to assess the impact of the Safer Cities Programme 

as a whole (as required by the Treasury), analysing the effect city by city would have 

enabled the policy makers to assess the effectiveness of the Programme in certain cities. 

This would also help researchers to unpack the mechanism of the preventive processes 

and raise further research questions such as: why is it that some cities are more successful 

in implementing crime prevention initiatives than others?
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Chapter Twelve 

Conclusion and Discussion

This chapter provides an overall summary of this research and examines the 

implications of the results and discusses the recommendation for the future research 

and development. This research has explored the spatio-thematic accuracy issues 

involved in the evaluation of the £30 million Safer Cities Programme carried out by 

the Home Office RDS between 1988 and 1995. Domestic burglary on dwellings was 

chosen for the impact evaluation. Two cities (Bristol and Coventry) were selected for 

in depth analyses. Based on a broad literature review and in particular, Lanter and 

Veregin’s (1992) paradigm and Fisher and Langford’s (1995) assessment of areal 

interpolation methods, an innovative methodology has been implemented to handle 

the spatio-thematic accuracy issues. The results have a number of important 

implications to:

• The evaluation of the Safer Cities Programme (Section 12.1).

• The crime pattern analyses and the evaluation of the future crime preventive 

action (Section 12.2).

• Spatial data quality assessment (Section 12.3).

Finally, recommendations for future research and development are discussed in 

Section 12.4 (which are summarised in Section 12.5).

12.1 Implications to the evaluation of the Safer Cities Programme

The initial estimation using the areal weighted method has suggested that the average 

errors of the overlay method is in the range 10-11% for the two cities which are 

comparable to the cartographic errors estimated using Me Alpine and Cook’s formula. 

The results of using the more accurate Monte Carlo dasymetric method show that the 

overlay method used in the evaluation, after the scoping process, has over-estimated 

the household counts by 3.6% and 5% for Bristol and Coventry respectively, much 

less than those estimated by the areal weighted method. As a result, the Safer Cities
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Programme evaluation has underestimated the action intensity by -0.8 and -9% and 

the burglary risk by -7% and -5% (for Bristol and Coventry respectively). Multi­

level modelling has shown that the mean errors due to the spatial interpolation 

estimated by the Monte Carlo dasymetric method are -1.5%, 2.3% and 0.7% for 

Coventry, Bristol, and the two cities combined respectively. However as action scores 

increase to the maximum, the estimated error increases to the maximum (5% when the 

two cities are combined). In all cases, these are well within the standard error 

generated by the overlay method. This supports the general practice in statistics that 

when the error is less than 5%, the impact is unlikely to be significant.

Taking the spatial and thematic errors into account (i.e. using Monte Carlo dasymetric 

method) the difference between the two methods is too small to have a significant 

impact upon the conclusion of the Safer Cities Programme evaluation (p = 0.2 for 

Coventry; 0.08 for Bristol; and 0.76 when the two cities are combined; c.f. p = 0.108 

for all Safer Cities; with d.f. = 1 in all cases). It is concluded that no significant 

impact due to spatial and thematic errors upon the conclusion of the Safer Cities 

Programme evaluation has been found.

This conclusion is encouraging to both the evaluation team and the policy makers.

The research finding suggests that the methodology used by the Safer Cities 

Programme evaluation is robust enough to cope with the spatio-thematic error. From 

now on, we can use the evaluation strategy developed from the Safer Cities 

Programme with confidence, and apply it to the future evaluation of crime prevention 

initiatives and GIS application. If necessary, the methodology developed in this 

research can be used to test the validity of the future application as an extra-quality 

assurance.

There are at least three reasons why no significant impact are detected in the 

evaluation as a whole (at the ‘global’ aggregated scale) while the estimated error 

varies widely across different beats (at the ‘local’ disaggregated scale). First, as the 

number of data sets used in a GIS analysis increases, the accuracy of the result 

decreases due to the aggregation effects (see Veregin, 1989). This finding confirms 

this general conjecture. Second, the multi-level modelling shows that the risk-action
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relationship between the overlay and Monte Carlo dasymetric methods tend to interact 

in the multi-level modelling and that the overall effect of the underestimation of the 

action intensity and burglary risk seemed to cancel each other out when the two cities 

are combined.

Third, because this research has only focused on the spatio-thematic error in GIS 

processing, any other types of errors would have been excluded from the scope of this 

case study. For example, as said in Chapter 5 (5.1), it is assumed that there are no 

gross error blunders in all the input data. However, such an assumption may be. 

unrealistic for this application with a very large amount of data sets. Some errors 

might have occurred in the early stages of data capture such as data collection and 

input. For instance, on a closer re-examination of Figure 2.7 (top left hand comer of 

the map), it seems likely that there might be some gross error such as mis-registration 

in the digitizing stage. This may account for the large error margin within the 

evaluation of the Safer Cities Programme. So we must not be too optimistic about the 

scale of error within the evaluation just because this case study shows that the aspects 

of GIS processing (spatial interpolation in particular) have not affected the conclusion 

significantly.

122  Implications to crime pattern analyses and the evaluation of the future 

crime preventive action

The crime pattern analysis in this case study shows that potential hot spots might have 

been missed as a result of such under-estimation. This has an important implication 

for decision and policy makers in terms of crime prevention and resource allocation.

If more accurate high-risk areas were identified, decision-makers would be able to 

target those areas with more appropriate resources and crime preventive strategies.

The observation also implies that a spatial unit as large as a beat with aggregated data 

is susceptible to the spatio-thematic error and therefore is not appropriate for crime 

pattern analysis. Alternative approaches with smaller spatial units such as postcodes 

and enumeration districts would give a more accurate spatial pattern (for example, 

Brunsdon 1989; Ratcliffe and McCullagh, 1998; Bowers and Hirschfield, 1999).
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The analyses also show that the Safer Cities effect varies across different cities as 

exemplified by Bristol and Coventry. Coventry appears to have a greater action effect 

upon the burglary risk reduction than Bristol. It may be generalised that the Safer 

Cities schemes of some Safer Cities may be more ‘successful’ than the others. 

Combining the data sets from all the Safer Cities in the analysis tend to dilute the 

effect of the more ‘successful’ Safer Cities schemes. With such hindsight, it would 

have been better to analyse each city individually as exemplified by this case study. 

This would have enabled the evaluation team to ‘comb’ the more ‘successful’ Safer 

Cities schemes and investigate further the mechanism behind the success (as well as 

the failure) of Safer Cities schemes (rather than the Programme as a whole). While it 

is justified for the evaluation to combine all the cities in the multi-level model to 

assess the impact of the Safer Cities Programme as a whole (as required by the 

Treasury), analysing the effect city by city would have enabled the policy makers to 

assess the effectiveness of the Programme in certain cities. This would also help 

researchers to unpack the mechanism of the preventive processes and raise further 

research questions such as: why is it that some cities are more successful in 

implementing crime prevention initiatives than others?

123 Implications to the data quality assessment in GIS processing

Spatial analyses of the error distribution show that a geographical area would have a 

higher error when it has:

• dense population;

• nearness to the city centre; or

• an irregular geographical boundary.

Further techniques need to be developed to assess the spatial structure of errors in 

practical applications.
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Development o f spatial data accuracy assessment procedures 

Since there are no formal agreed methods for individual applications as it depends on 

the context, there is a need to develop a standard of best practice as exemplified by 

this research. The following step by step procedures have been formulated to assess 

the spatio-thematic accuracy of the spatial interpolation:

1. Identify the error index.

2. Perform a quick evaluation of the range of errors using simple methods (such as 

area weighting) to check whether further assessment is required (if so, proceed to 

Step 3; else stop).

3. Develop error propagation functions within the data transformation processes 

using Monte Carlo dasymetric method.

3.1. Get the satellite imagery.

3.2. Calibrate the satellite image using the source zones to estimate the attribute 

values of interests.

3.3. Estimate the attribute values in the target zones using the calibrated satellite 

image as a dasymetric map and Monte Carlo simulation.

4. Test the utility of Step 2 by assessing spatio-thematic accuracy in the GIS 

application.

12.4 Recommendations for future research and development

Within the scope o f this research, the case study has left no stone unturned. It has 

followed every important step of the GIS processes thoroughly right until the end of 

the conclusion. The scope has excluded the ‘survey’ sampling which is within the 

domain of social sciences. The findings of this case study can be generalised to be 

applied to those in the survey in the evaluation of the Safer Cities Programme as the 

results of the evaluation using official crime data are consistent with victimisation 

data from survey. Previous research has also provided a similar consistency between 

official records and survey data (Blumstein et al, 1991; McDowall and Laffin, 1992). 

Nevertheless, if GIS is to have a wider impact, it should have a functionality to handle 

spatial sampling. While sampling approaches have been well developed in both 

geography and social sciences, how to use GIS to facilitate sampling is still under 

developed. Future research should address how to handle small number sampling 

over different geographical and temporal units.
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Within the discipline of quantitative criminology, it is not yet standard practice to use 

GIS as a research tool. There is no agreed ‘ecologically valid’ measure of the 

geographical context of potential crime victimisation. Methods and research 

strategies of measuring crime are still being carried out without the benefits of 

incorporating GIS (for example, see Holzman and Piper, 1998 on measuring crime in 

public housing). Maltz (1988) discusses the utility of graphical methods in 

visualising crime data such as homicide, again, without reference to the use of GIS. If 

GIS is to have a significant contribution to the field and other disciplines, it would 

have to be incorporated as an integral part of the methodological framework. Future 

development should continue to try to integrate GIS with other systems, in particular, 

visualisation, simulation and statistical tools. While such tools exist, they create a 

system of loose coupling at present (for example, ARC/INFO S-plus, Maplnfo/SAS). 

This still requires a tremendous amount of work from the users to ‘connect’ up the 

system as a whole for a particular kind of application.

While much is known of the motivation of crime such as burglaries (Bennett and 

Wright, 1984, Field, 1990), relatively little is known about the validity of the 

criminological theories within the geographical context such as social cohesion (Kurtz 

et al, 1995, Hirschfield, et al, 1995, and Taylor et al, 1995) routine activity theories, 

(Cohen and Felson, 1979; Clark, 1983), proximal circumstances (Ekblom 1994) and 

evolutionary struggles (Ekblom, 1999). Further research using GIS is required to 

explore the ecological validity of these theories.

Within the discipline o f GIS, the experience from this research suggests that there is 

still a long way to the ideal of pressing a single button to show the error quality of any 

application (Openshaw, 1989). It would help the users if the function to assess data 

accuracy is integrated as part of the standard GIS. With a few exceptions, GIS 

developers are reluctant to add error-handling functions to their products. IDRISI 

includes tools for describing uncertainty in metadata, and propagating its effects in 

GIS operations such as overlay. GRASS provides access to tools for Monte Carlo 

simulation, and the spatial structure of uncertainty. As assessing the geographical 

data quality is context specific, each application has to be assessed according to an 

acceptable set of procedures as exemplified by this case study. At best we can only
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provide guidelines and standards of best practice. Recommendation to “give the 

customer no more, and no less, quality that what he [or she] needs” (ISO-9000) is not 

helpful as it does not specify the exact quantity of the required quality. The 

information should include accuracy in a form of user report or meta-data stored in the 

GIS. In UK, meta-data will be available on 2001 Census definition, concepts, output 

classifications, geography, data quality and coverage (ONS, 1999). The information 

about the data quality in the input data sets would serve as a starting point for the data 

accuracy assessment. Further data processing in an application may then be assessed 

using the procedures outlined in Section 12.3 or some other appropriate procedures.

A few important areas are discussed in greater detail in the following sub-sections. 

Other recommendations are included in the summary in Section 12.5.

Spatial structure. As indicated in Section 12.3, spatial structure of error is very 

important as it has a direct impact on the outcome of GIS applications. As Goodchild 

(1995) pointed out, very little is known about the spatial structure of errors and it 

receives little attention in implemented or proposed standards. Many spatial data 

standards are limited to requirements for positional accuracy alone (e.g. Federal 

Information Processing Standard 173, Morrison, 1992). Estimates of the final 

attribute values (such as the action intensity in this case study) depend not only on the 

original values of the attributes, but also on the spatial structure of inclusions in 

polygons (in this case beats included in the scoping process). Although some insight 

has been gained from this research about the spatial structures of uncertainty in 

geographic data, more research is needed to investigate how these structures govern 

the outcome of an application in a finer geographical unit.

Units o f analyses. The phenomena of the Modifiable Units implies that only spatial 

analysis methods that exhibit invariance of conclusions under alternative spatial 

partitioning should be used (Tobler, 1989). It would be useful to find the optimal 

units of analyses if they do exist.

Paradigm shift. A great improvement is being made in the Census 2001 by adopting 

some of the recommendations made by Openshaw and Rao (1994; 1995) and by 

separating the output geography from the collection geography using postcodes as
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building bricks (Martin, 1998; ONS, 1999). However this process is not free of 

accuracy issues. First, certain inaccurate placements of address points would result in 

inaccurate output area boundaries, and hence inaccurate counts in those areas.

Second, some postcodes are split into two or more separate parts, adding the cost of 

creating output areas. Even if we could find the optimal units of analyses, the 

Modifiable Units Problem would still exist (Openshaw and Taylor, 1979). For the 

problems of the Modifiable Units and the spatial interpolation completely disappear, 

one may argue that we have to abandon the concept of an areal unit (a zone) all 

together. This calls for a paradigm shift. For instance, one can use raster data rather 

than vector data for GIS application. A key question is how to develop a probability 

surface for geographical data.

In the past vector data were sometimes regarded (somewhat wrongly) as intelligent 

data because many methods for vector data handling had been well developed (as the 

literature review of this research shows) in comparison to those employed in raster 

data. However, since the early attempt as exemplified by Tobler’s (1979) work on the 

smooth pycnophylactic surfaces, recent research has been developed to close this gap. 

For example, Arbia et al (1998) analyse how both spatial and thematic errors interact 

with the source map geography through propagation in raster GIS as a result of 

overlay operations (though in a much smaller scale than this research and using 

different methodology and error index). Brunsdon (1995) has developed an adaptive 

kernel algorithm to estimate the probability for point data. This can be readily applied 

to our context of crime prevention, say, to estimate a “risk surface” of household 

burglaries in various parts of the study area (Brunsdon, 1995). Other geographical 

phenomena can be modelled in a similar way in terms of their relative likelihoods.

The approach is consistent with the recent attempts within the discipline of statistics 

to develop a unified approach for nonparametric smoothing (for example, the optimal 

bandwidth selection and confidence interval construction in local likelihood 

estimation by Fan et al, 1998). Statistical techniques using surface models for 

handling spatial data are now well developed (Cressie, 1993). More research and 

practical examples of this kind of application in the future would enable closer linkage 

between statistical analysis and the use of GIS.
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12.5 Summary of recommendations

While many spatial interpolation methods and their accuracy assessment have been 

developed, more work is needed on the integration of statistical methods for spatial 

data quality measurement. To summarise, the recommendations for the future 

research and development are listed as follows (in no particular order):

• Develop system functions to help users to assess data accuracy as part of the GIS 

standard.

• Develop meta-database include data quality as part of its attribute.

• Develop spatial sampling strategy for other disciplines such as social research.

• Integrate GIS with other systems such as statistical analytical system.

• Use GIS as a tool for testing criminological theories standardised error reporting.

• Provide a range of evaluation methods as part of the GIS functionality.

• Develop further techniques to assess the spatial structure of errors in practical 

applications.

• Investigate the optimal unit of analyses.

• Investigate alternative approaches for spatial representation such as probability 

surfaces.

• Implement standard of best practice.

If the above research and development flourish, more accurate information on data 

quality is made available to the GIS users, and more accurate conclusion of GIS 

applications can be made. This would also help GIS to be accepted by the users 

within other disciplines such as statistics and social sciences. This calls for a multi­

disciplinary research using GIS as a tool and based on geography as a common 

ground, and translating the standard of best practice into policy. Some development 

on this field is already under way. For example, on completion of writing up this 

thesis, I have written the recommendations for the adoption of Geographical 

Information Charter Standard Statement by the Home Office to the Permanent Under 

Secretary of State via the Director of the RDS (see Appendix 12.1). Other 

development in UK includes National Geo-Data Format. Policy formulation of the 

spatial data quality standards may lead to the implementation of the best practice for 

providing geographical information. Hopefully this would reduce the burden on a 

user’s part for quality assessment in the future.
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Home Office’s statement of purpose

Following the General Election in 1997, the Home Secretary agreed a new statement of 

purpose and aims for the Home Office. These are set out below (Home Office Annual 

Report 1998, p 4)

Statement of Purpose

To build a safe, just and tolerant society in which the rights and responsibilities of 

individuals, families and communities are properly balanced and the protection and 

security of the public are maintained.

AIMS

1. Reduction in crime, particularly youth crime, and in the fear of crime; and the 

maintenance of public safety and good order.

2. Delivery of justice through effective and efficient investigation, prosecution, trial 

and sentencing, and through support for victims.

3. Prevention of terrorism, reduction in other organised and international crime and 

protection against threats to national security.

4. Effective execution of the sentences of the courts so as to reduce re-offending and 

protect the public.

5. Helping to build, under a modernised constitution, a fair and prosperous society, 

in which everyone has a stake, and in which the rights and responsibilities of 

individuals, families and communities are properly balanced.

6. Regulation of entry to and settlement in the UK in the interests of social stability 

and economic growth and facilitation of travel by UK citizens.

7. Reduction in the incidence of fire and related death, injury and damage and 

ensuring the safety of the public through civil protection.

(Also available at http://intranet/intranet/intemet/howeb/webwork/ho_funct.htm)
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Entity-Attribute Tables in the INFO database

This documentation provides a complete listing of all the entities used in the Evaluation 

of the Safer Cities Programme, and represents the storage schema in the relational

database (Everest, 1986). Broadly speaking, these can be grouped into three types:

1. Spatial (Section A2.1);

2. Thematic (Section A2.2); and

3. Relational (Section A2.3).

Relational data sets are the geographical linkages to provide a common key to all 

entities. The spatial data sets consist of geographical entities used in the Evaluation. 

These are described in the ARC/INFO format. They consist of AAT, BND, PAT and 

TIC tables. These are listed in Section A2.1.

The thematic data sets consist of:

1. Action data -  MIS.DAT (Section A2.2.1)

2. Outcome data -  Crime statistics (Section A2.2.2)

3. Demographic (Section A2.2.3)

All the above entities (spatial, thematic, and relational) are stored in separate directories 

(city by city) in the INFO database using ARC/INFO. The first three letters of the 

entities identify City name (for example ‘bri’ for Bristol and ‘cov’ for Coventry). The 

description is in standard INFO format: attribute name (ITEM), input width (WDTH), 

output width (OPUT), data type (TYP), number of decimal (N.DEC), and 

ALTERNATE NAME if any. Comments are added in each section wherever necessary 

to explain the semantic meaning of the attributes. The following listing shows the data 

sets within ARC/INFO on a VAXstation 4000.60 named Yeats:

Yeats> arc
Copyright (C) 1994 Environmental Systems Research Institute, Inc.

All Rights Reserved Worldwide.
ARC Version 6.1.3 (April 15,1994)

This software is provided with RESTRICTED AND LIMITED RIGHTS. Use, 
duplication, or disclosure by the Government is subject to the 
restrictions as set forth in FAR 52.227-14 (JUN 1987) Alternate III
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(g)(3) (JUN 1987), FAR 52.227-19 (JUN 1987), or DFARS 552.227-7013 
(c)(l)(ii) (OCT 1988), as applicable. Contractor/Manufacturer is 
Environmental Systems Research Institute, Inc. (ESRI) 380 New York St.
Redlands, CA 92373.

Arc: w D$YEATS2:[HO.CITIES2.BRI]
Arc: info
INFO CALL EXCHANGE
26-APR-1999 13:11
INFO 9.23D 1/4/91 52.74-63*
COPYRIGHT 1983 HENCO SOFTWARE, INC.
PROPRIETARY TO HENCO SOFTWARE, INC.
ENTER USER NAME>arc

ENTER COMMAND xiir
TYPE NAME INTERNAL NAME NO. RECS LENGTH EXTERNL
DF BEATGS.TIC ARC000DAT 4 12 XX
DF BEATGS.BND ARC001DAT 1 16 XX
DF BEATGS.PAT ARC002DAT 63 50 XX
DF BEATGS.AAT ARC003DAT 219 28 XX
DF BRI-GOB.DAT ARC007DAT 822 467
DF BRI-MIS.DAT ARC010DAT 298 726
DF BRI-LOC.DAT ARC011DAT 2645 35
DF SUPER-CRIMES.DAT ARC013DAT 2652 87
DF CRIMES.DAT ARC023DAT 4631 67
DF BRI-EDBEATGS .TIC ARC031DAT 4 12 XX
DF BRI-EDBEATGS.BND ARC033DAT 1 16 XX
DF BRI-EDBEATGS.PAT ARC034DAT 850 60 XX
DF EDGS.PAT ARC042DAT 825 42 XX
DF SUPERBTS 1 .DAT ARC054DAT 135 62

A2.1 Spatial data sets

BEATGS and EDGS are the boundaries of beats and ED respectively. The two 

combined using ARC/INFO UNION command to form a new entity called BRI- 

EDBEATGS. The superbeat entity (SUPERBTS1 .DAT) is used to keep a record of 

the dates of change in beat boundaries (START-DATE, LAST-DATE).

ENTER COMMAND >select BEATGS.TIC 
4 RECORD(S) SELECTED

ENTER COMMAND >item
DATAFILE NAME: BEATGS.TIC 4/26/1999

3 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 IDTIC 4 5 B 0
5 XTIC 4 12 F 3
9 YTIC 4 12 F 3

ENTER COMMAND >list 
SRECNO IDTIC XTIC YTIC

1 1 350,000.000 166,000.000
2 2 365,000.000 166,000.000
3 3 350,000.000 181,000.000
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4 4 365,000.000 181,000.000
ENTER COMMAND >sel BEATGS.BND 

1 RECORD(S) SELECTED

ENTER COMMAND >item
DATAFILE NAME: BEATGS.BND 4/26/1999

4 ITEMS: STARTING IN POSITION 1
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 XMIN 4 12 F 3
5 YMIN 4 12 F 3
9 XMAX 4 12 F 3
13 YMAX 4 12 F 3

ENTER COMMAND >list
SRECNO XMIN YMIN XMAX YMAX 

1 350,344.500 166,642.000 364,671.500 180,001.000

ENTER COMMAND >SEL BEATGS.AAT 
219 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: BEATGS.AAT 5/ 8/1999

7 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME

1 FNODE# 4 5 B 0
5 TNODE# 4 5 B 0
9 LPOLY# 4 5 B 0
13 RPOLY# 4 5 B 0
17 LENGTH 4 12 F 3
21 BEATGS# 4 5 B 0
25 BEATGS-ID 4 5 B 0

ENTER COMMAND >SEL BEATGS.PAT 
63 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: BEATGS.PAT 5/ 8/1999

8 ITEMS: STARTING IN POSITION 1
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 AREA 4 12 F 3
5 PERIMETER 4 12 F 3
9 BEATGS# 4 5 B 0
13 BEATGS-ID 4 5 B 0
17 BEAT-ED 10 10 C -
27 OLD-BEAT-ID 10 10 C -
37 BEAT-NUMBER 4 5 B 0
41 SUPERBEAT 10 10 C -

ENTER COMMAND >SEL EDGS.AAT 
2346 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: EDGS.AAT 5/ 8/1999

8 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME

1 FNODE# 4 5 B 0
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5 TNODE# 4 5 B 0
9 LPOLY# 4 5 B 0
13 RPOLY# 4 5 B 0
17 LENGTH 4 12 F 3
21 EDGS# 4 5 B 0
25 EDGS-ID 4 5 B 0
29 F.CODE 10 10 C

ENTER COMMAND >SEL EDGS.BND 
1 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: EDGS.BND 5/ 8/1999

4 ITEMS: STARTING IN POSITION 1
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 XMIN 4 12 F 3
5 YMIN 4 12 F 3
9 XMAX 4 12 F 3
13 YMAX 4 12 F 3

ENTER COMMAND >LI
SRECNO XMIN YMIN XMAX YMAX 

1 350,396.500 166,642.000 364,674.000 183,044.000

ENTER COMMAND >SEL EDGS.TIC 
4 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: EDGS.TIC 5/ 8/1999

3 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 IDTIC 4 5 B 0
5 XTIC 4 12 F 3
9 YTIC 4 12 F 3

ENTER COMMAND >LI 
SRECNO IDTIC XTIC YTIC

1 1 84,000.000 5,000.000
2 2 656,000.000 5,000.000
3 3 84,000.000 660,000.000
4 4 656,000.000 660,000.000

ENTER COMMAND >SEL EDGS.PAT 
825 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: EDGS.PAT 5/ 8/1999

9 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 AREA 4 12 F 3
5 PERIMETER 4 12 F 3
9 EDGS# 4 5 B 0
13 EDGS-ID 4 5 B 0
17 ED-ID 10 10 C -
27 ED-NUMBER 4 5 B 0
31 ZONE 4 4 1 -
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35 ZA1 4 4 1 -
39 ZA2 4 4 1 -

** REDEFINED ITEMS **
17 WARD 4 4 C -

ENTER COMMAND >SEL BRI-EDBEATGS.TIC 
4 RECORIXS) SELECTED

ENTER COMMAND >LI 
SRECNO IDTIC XTIC YTIC

1 1 84,000.000 5,000.000
2 2 656,000.000 5,000.000
3 3 84,000.000 660,000.000
4 4 656,000.000 660,000.000

5/8/1999  

ALTERNATE NAME

ENTER COMMAND >IT 
DATAFILE NAME: BRI-EDBEATGS.TIC 

3 ITEMS: STARTING IN POSITION 1 
COL ITEM NAME WDTH OPUT TYP N.DEC

1 IDTIC 4 5 B 0
5 XTIC 4 12 F 3
9 YTIC 4 12 F 3

ENTER COMMAND >SEL BRI-EDBEATGS.BND 
1 RECORD(S) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: BRI-EDBEATGS.BND 5/ 8/1999

4 ITEMS: STARTING IN POSITION 1
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 XMIN 4 12 F 3
5 YMIN 4 12 F 3
9 XMAX 4 12 F 3
13 YMAX 4 12 F 3

ENTER COMMAND >LI
SRECNO XMIN YMIN XMAX YMAX 

1 350,344.500 166,642.000 364,674.000 183,044.000

ENTER COMMAND >SEL BRI-EDBEATGS.PAT 
850 RECORIXS) SELECTED

ENTER COMMAND >IT
DATAFILE NAME: BRI-EDBEATGS.PAT 5/ 8/1999

9 ITEMS: STARTING IN POSITION 1
COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 

1 AREA 4 12 F 3
5 PERIMETER 4 12 F 3
9 BRI-EDBEATGS# 4 5 B 0
13 BRI-EDBEATGS-ED 4 5 B 0
17 ED-DD 10 10 C -
27 BEAT-ID 10 10 C -
37 BEAT-NUMBER 4 5 B 0
41 SUPERBEAT 10 10 C -
51 OLD-BEAT-ID 10 10 C -
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DATAFILE NAME: SUPERBTS 1 .DAT 5/15/1995
4 ITEMS: STARTING IN POSITION 1 

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME 
1 SUPER-ED 36 36 C -

37 BEAT-ID 10 10 C -
47 START-DATE 8 10 D -
55 LAST-DATE 8 10 D -

A2.2 Thematic data sets

Both the action (MIS.DAT) and the demographic data sets share some of the Census 

variables called Geographical Outcome Base (GOB). These are described first.

Geographical Outcome Base (GOB)

In the MIS .DAT entity these are demographic totals derived from 1991 Census data for 

the entire scheme coverage. In the GOB .DAT entity they relate solely to the ED in 

question. The names of the attributes (or called items in INFO) are the same and refer to 

the same Census variable for both MIS .DAT and GOB .DAT entities. These are listed 

as follows:

TOTAL RESIDENTS,GOB 1
TOTAL- ADULT, GOB2
TOTAL-FEMALE,GOB3
CHILDREN LESS THAN 10.GOB4
CHILDREN LESS THAN 10 FEMALE,GOB5
CHILDREN LESS THAN 10 BLACK,GOB6
CHILDREN LESS THAN 10 ASIAN, GOB7
CHILDREN LESS THAN 10 FEMALE ASIAN, GOB9
YOUTH11-17,GOB10
YOUTH11-17 FEMALE,GOB11
YOUTH 11-17 BLACK,GOB 12
YOUTH11-17 ASIAN,GOB13
ELDERLY,GOB35
ELDERLY-FEMALE,GOB 36
BLACK,GOB14
BLACK- ADULT.GOB 15
BLACK-ADULT-ELDERLY,GOB 16
BLACK-ADULT-FEMALE,GOB 17
ASIAN,GOB 19
ASIAN-ADULT,GOB20
ASIAN-ADULT-FEMALE,GOB22
CHINESE,GOB23
CHINESE-ADULT,GOB24
CHINESE-ADULT-FEMALE, GOB25
BLACK-ASIAN-CHINESE,GOB 30
BLACK-ASIAN-CHINESE-ADULT,GOB31
BLACK-ASIAN,GOB32
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CHILD-YOUTH,GOB34 
TOTAL-HOUSEHOLDS,GOB50 
BLACK-HEAD OF HOUSEHOLD,GOB51 
ASIAN-HEAD OF HOUSEHOLD,GOB52 
CHILD-YOUTH IN HOUSEHOLD, GOB53 
FEMALE-HEAD OF HOUSEHOLD,GOB56 
ELDERLY-HEAD OF HOUSEHOLD.GOB57 
ELDERLY-BLACK HEAD OF HOUSEHOLD,GOB58 
ELDERLY ASIAN-HEAD OF HOUSEHOLD,GOB59 
ELDERLY-FEMALE-HEAD OF HOUSEHOLD,GOB60 
NO CAR - HOUSEHOLD, GOB6I

A2.2.1 Action data from the Management Information System (MIS)

This entity is formed by combining a number of different data sources. AREA 

represents the scheme coverage in m \ AREA-ED locates the size of the target area: 1 

City centre, 2 Citywide, 3 Local area. A scheme may cover 1 to 3 crime types 

CRIME 1-ED, CRIME2-ID, and CREME3-ED. Each attribute may have one of the 

following values: 1 represents Violence against the person, 2 Sexual offences, 3 

Domestic Violence, 4 Burglary, 5 Robbery, 6 Theft from the person, 7 Theft from 

shops, 8 Theft from vehicles, 9 Theft of motor vehicles, 10 Handling stolen goods, 11 

Criminal Damage, 12 Drug related, 13 Alcohol related, 14 Vandalism, 15 Graffiti & 

Litter, 16 Racially-Motivated Offences & Harassment, 17 Public Disorder / 

Rowdiness, 18 Fear of crime, and 19 Other.

CITY-ID identifies the name of the city: HAC (value 1), SOU (2), HAR (3), MID (4), 

MAN (5), NOR (6), WIG (7), OLD (8), LEE (9), BIR (10), BRI (11), COV (12), HUL 

(13), LEW (14), ROC (15), SAL (16), SUN (17), TOW (18), WAN (19), WIR (20), 

BRA (21), HAR (22), ISL (23), NOT (24), and WOL (25).

BODY-ID identifies the organisation that involved in the Safer Cities Programme: 1 

unknown, 2 Business, 3 Charity, 4 Local Authority, 5 Other, 6 Police, 7 Private Sector, 

8 Probation, 9 Voluntary Organisation.

A scheme may target for more than one objectives of the Safer Cities Programme 

(OBJEC1-ID & OBJEC2-ID): 1 Crime Reduction, 2 Crime Reduction, 3 Improve 

Economic Activity, and 4 Improve Community Life (5 represents a missing value).
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OFFEND 1-ID, OFFEND2-ED, and OFFEND3-ED describe the schemes that target 

offenders and have the following values: 1 represents Whole community, 2 Youth (11- 

17), 3 Victims, 4 Female, 5 Male, 6 Black, 7 White, 8 Asian, 9 Chinese, 10 Drug 

/Alcohol Abusers, 11 Unemployed, 12 Known cautioned / convicted offenders, and 13 

Other.

OUTCOME-ID (the outcome of the scheme operation) has the following values:

• 1 - Abandoned early - Implementation incomplete
• 2 - Abandoned early - Implementation complete but with problems
• 3 - Action ceased at planned time
• 4 - Scheme still operational for at least another
• 5 - Other body takes over funding and /or direct
• 6 - Missing

PHYSICAL 1 describes the physical characteristics of the target area:

• 1 - Car Parks
• 2 - Dwellings
• 3 - Other
• 4 - Shopping Precincts/Centres/Streets
• 5 - Shops/Stores
• 6 - Industrial Estates
• 7 - Public Buildings
• 8 - Other leisure sites
• 9 - Factories/Warehouses
• 10 - Offices
• 11 - Pubs/Bars/Clubs
• 12 - Fast food outlets

PREVENTTV1 & PREVENTTV2 describe the nature of the preventive action:

• 1 - Target hardening - locks
• 2 - Social action
• 3 - Research and evaluation
• 4 -Education and training
• 5 - Publicity and campaigns
• 6 - Conferences and seminars
• 7 - Homewatch and CPO related
• 8 -Graffiti & Litter removal
• 9 -Victim Support
• 10 - Lighting
• 11 - Surveillance
• 12 - CCTV
• 13 - Environmental design
• 14 - Community development
• 15 - Improvement of leisure facilities for youth
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• 16 - Potential offender -oriented
• 17 - Other

STATUS-ID describes the STATUS of the scheme:

• 1 - Planned
• 2 - Current
• 3 - Completed
• 4 - Cancelled
• 5 - Aborted
• 6 - Missing

TIME-ED describes the duration of the scheme:
• 1 - Immediate / very short term
• 2 - Medium term
• 3 - Longer term
• 4 - Very long term
• 5 - Missing

The types of victim supported by the Safer Cities action (VICTIM 1, \TCTIM2, 
VIC11M3) are:

• 1 - Whole community
• 2 -Children (10 & under)
• 3 - Youth (11-17)
• 4 - Elderly
• 5 - Female
• 6 - Black
• 7 - White
• 8 - Asian
• 9 - Chinese
• 10 - Unemployed
• 11 - Residents - Housing problems
• 12 - Single parent
• 13 - Victims of Crime / Fear
• 14 - Other

DATAFILE NAME: BRI-MIS.DAT 4/3(V1999
108 ITEMS: STARTING IN POSITION 1

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME
1 SCHEME-ID 3 3 I
4 PROJECT 3 3 C
7 OBJEC1-ED 1 1 I
8 OBJEC2-ID 1 1 I
9 STATUS-ID 1 1 I
10 AREA-ID 1 1 I
11 NEIGH-SCOPE 2 2 I
13 SCOPE 2 2 I
15 LOCAL 1 1 I
16 OFFEND 1-ID 2 2 I
18 OFFEND2-ID 2 2 I
20 OFFEND3-ED 2 2 I
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22 VICTIM 1-ID 2 2 I -

24 VICTIM2-ID 3 3 I -

27 VICTIM3-ID 3 3 I -

30 CRIME 1-ID 2 2 I -

32 CRIME2-ID 2 2 I -

34 CRIME3-ED 2 2 I -

36 PREVEN1-ID 2 2 I -

38 PREVEN2-ID 2 2 I -

40 PHYS-ID 2 2 I -

42 TIME-ID 1 1 I -

43 OUTCOME-ID 1 1 I -

44 COMPNENT-DD 1 1 I -

45 SOURCE 30 30 C
75 VALUE. 1 9 9 N 2
84 VALUE.2 9 9 N 2
93 SSURV.FILTER 1 1 I -

94 START.DATE 8 10 D -

102 START.CODE 4 4 I -

106 COMPLETION.DATE 8 10 D -

114 COMPLETION.CODE 4 4 I -

118 COST.SC 9 9 N 2
127 AFT-SEPT90 9 9 N 2
136 LAST-12 9 9 N 2
145 OLD_COST_SC 9 9 N 2
154 COST.TOT 9 9 N 2
163 GRANT87-88 9 9 N 2
172 GRANT88-89 9 9 N 2
181 GRANT89-90 9 9 N 2
190 GRANT90-91 9 9 N 2
199 GRANT91-92 9 9 N 2
208 GRANT92-93 9 9 N 2
217 GRANT93-94 9 9 N 2
226 GRANT94-95 9 9 N 2
235 BUDGET87-88 9 9 N 2
244 BUDGET88-89 9 9 N 2
253 BUDGET89-90 9 9 N 2
262 BUDGET90-91 9 9 N 2
271 BUDGET91-92 9 9 N 2
280 BUDGET92-93 9 9 N 2
289 BUDGET93-94 9 9 N 2
298 BUDGET94-95 9 9 N 2
307 BEF-SEP92 9 9 N 2
316 BEF-DEC92 9 9 N 2
325 BEF-JUN92 9 9 N 2
334 LEVERED 9 9 N 2
343 TOTAL.PATD 9 9 N 2
352 ACT.CAPITAL 9 9 N 2
361 ACT^REV 9 9 N 2
370 TILLEY 1 1 I -

371 GOB-ID 2 2 I -

373 OLD-GOB-ID 2 2 I -

375 OLD-AREA-ED 1 1 I -

376 GOBI 9 9 N 2
385 GOB2 9 9 N 2
394 GOB3 9 9 N 2
403 GOB4 9 9 N 2
412 GOB5 9 9 N 2
421 GOB6 9 9 N 2
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430 GOB7 9 9 N 2
439 GOB9 9 9 N 2
448 GOB 10 9 9 N 2
457 GOB 11 9 9 N 2
466 GOB 12 9 9 N 2
475 GOB 13 9 9 N 2
484 GOB 35 9 9 N 2
493 GOB 36 9 9 N 2
502 GOB 14 9 9 N 2
511 GOB 15 9 9 N 2
520 GOB 16 9 9 N 2
529 GOB 17 9 9 N 2
538 GOB 19 9 9 N 2
547 GOB20 9 9 N 2
556 GOB22 9 9 N 2
565 GOB 23 9 9 N 2
574 GOB24 9 9 N 2
583 GOB25 9 9 N 2
592 GOB 30 9 9 N 2
601 GOB 31 9 9 N 2
610 GOB 32 9 9 N 2
619 GOB34 9 9 N 2
628 GOB 50 9 9 N 2
637 GOB51 9 9 N 2
646 GOB52 9 9 N 2
655 GOB53 9 9 N 2
664 GOB56 9 9 N 2
673 GOB57 9 9 N 2
682 GOB58 9 9 N 2
691 GOB59 9 9 N 2
700 GOB60 9 9 N 2
709 GOB61 9 9 N 2
718 AREA 4 12 F 3
722 MECH 1 1 I -

723 REVCAP 1 1 I -

724 BODY-ID 1 1 I -

725 APPROVE.REFUSE 1 1 C -

726 LINK 1 1 I -

The mechanism of methods of crime prevention (MECH) have values: 0 NIL, I 

Offender, 2 Situational. Revenue / Capital split (REVCAP) has values: 4 (No funding)

1 (Revenue only) 2 (Capital only) 3 (Mix). The funding body (BODY-ED) has values: 1 

NOT GIVEN, 2 Business, 3 Charity, 4 Local Authority, 5 Other, 6 Police, 7 Private 

Sector, 8 Probation, 9 Voluntary Organisation. APPROVE_REFUSE has a binary 

value: Either A for approve or W for waiting. LINK implies that the scheme has links 

with others (this variable was not used in Scoping and Scoring).
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A2.2.2 Outcome data

The twelve crime types as described in the main text are stored in CRIMES.DAT. 

This also includes DATE of the offence and SUPERBEAT identifier.

DATAFILE NAME: CRIMES.DAT 5/15/1995
16 ITEMS: STARTING IN POSITION 1 

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME
1 BEAT-ID 10 10  c

11 VIOLENCE 3 3 I -
14 SEXUAL 3 3 I -
17 BURGLARY-D 3 3 I -
20 THEFT-IN-CAR 3 3 I -
23 DAMAGE 3 3 I -
26 OTHER 3 3 I -
29 DATE 8 10 D
37 BURGLARY-0 3 3 I -
40 ROBBERY 3 3 I -
43 THEFT-P 3 3 I -
46 THEFT-S 3 3 I -
49 THEFT-OF-CAR 3 3 I -
52 THEFT-0 3 3 I -
55 FRAUD 3 3 I -
58 SUPERBEAT 10 10 C

SUPER-CRIMES.DAT is the product of frequency operation on the above (ie remove 

duplicates). Crime ratios are derived from this and GOB attributes.

DATAFILE NAME: SUPER-CRIMES.DAT 5/15/1995
19 ITEMS: STARTING IN POSITION 1 

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME
1 CASE# 4 5 B 0
5 FREQUENCY 4 5 B 0
9 SUPERBEAT 10 10 C -

19 DATE 8 10 D -

27 VIOLENCE 4 10 B 0
31 SEXUAL 4 10 B 0
35 BURGLARY-D 4 10 B 0
39 BURGLARY-0 4 10 B 0
43 ROBBERY 4 10 B 0
47 THEFT-IN-CAR 4 10 B 0
51 THEFT-OF-CAR 4 10 B 0
55 THEFT-P 4 10 B 0
59 THEFT-S 4 10 B 0
63 THEFT-0 4 10 B 0
67 DAMAGE 4 10 B 0
71 FRAUD 4 10 B 0
75 OTHER 4 10 B 0
79 BEAT-NUMBER 4 5 B 0
83 BEAT-YEAR 5 5 C -

231



Appendix 2

A2.23 Demographic data

Demographic data sets (derived from the 1991 Census using the C91 software) include 

links to the survey. Although the ED-ID in the INFO database is defined with 10- 

character width, the input values are 6 characters (Indexed). ED-NUMBER is a number 

assigned from the survey with default value = 0. AREA was taken from EDGS.PAT 

area as digitised by GDC in m2. DOMAIN is a geographical area defined by MORI and 

updated using Target Action Area data (Values: 1 - Target action ED; 2 -  Citywide; 3 - 

External comparison, 0 - Not part of survey).

If a city is a Safer City, SC is set to 1. If it is a London borough, PROV is set to 1. 

CENTRE is set to 1 if this ED is at the city centre. TAA is set to 1 if this ED is a Target 

Action Area. ZONE is a group of surveyed EDs. ZA1 and ZA2 are the adjacent zones. 

When the area consists of more than one adjacent zone, the EDs in or around the ZONE 

are identified by the attribute called GROUP.

The deprivation index (INDX) and its related variables were supplied by the Department 

of Environment (now Department of Environment, Transport and the Regions). The 

variables included unemployment (UNEMPL), over-crowding (OV-CROWD), lack of 

amenities (LACKAM), children in unacceptable accommodation (CHUNACC), low 

earning households (LOERNH), and households with no car (NOCAR).

Arc: items bir-gob.dat

1 ED-ID 10 10 C
11 ED-NUMBER 4 5 B
15 AREA 4 12 F 3
19 CITY-ID 2 2 I
21 DOMAIN 3 3 I
24 GOBI 9 9 N 2
33 GOB2 9 9 N 2
42 GOB 3 9 9 N 2
51 GOB4 9 9 N 2
60 GOB5 9 9 N 2
69 GOB6 9 9 N 2
78 GOB7 9 9 N 2
87 GOB9 9 9 N 2
96 GOB 10 9 9 N 2
105 GOB11 9 9 N 2
114 GOB 12 9 9 N 2
123 GOB 13 9 9 N 2
132 GOB 35 9 9 N 2
141 GOB36 9 9 N 2
150 GOB 14 9 9 N 2
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159 GOB 15 9 9 N 2
168 GOB 16 9 9 N 2
177 GOB 17 9 9 N 2
186 GOB 19 9 9 N 2
195 GOB20 9 9 N 2
204 GOB22 9 9 N 2
213 GOB23 9 9 N 2
222 GOB 24 9 9 N 2
231 GOB25 9 9 N 2
240 GOB 30 9 9 N 2
249 GOB31 9 9 N 2
258 GOB 32 9 9 N 2
267 GOB 34 9 9 N 2
276 GOB50 9 9 N 2
285 GOB51 9 9 N 2
294 GOB52 9 9 N 2
303 GOB53 9 9 N 2
312 GOB56 9 9 N 2
321 GOB57 9 9 N 2
330 GOB58 9 9 N 2
339 GOB59 9 9 N 2
348 GOB60 9 9 N 2
357 GOB61 9 9 N 2
366 SC 1 1 I -

367 PROV 1 1 I -

368 CENTRE 1 1 I -

369 TAA 2 2 I -

371 OLD-DOMAIN 1 1 I -

372 ZD [Not used] 3 3 I -

375 SUPERBEAT 10 10 C -

385 BEAT-NUMBER 4 5 B 0
389 ZONE 4 4 I -

393 ZA1 4 4 I -

397 ZA2 4 4 I -

401 GROUP 4 4 I -

405 INDX 9 9 N 2
414 UNEMPL 9 9 N 2
423 OV-CROWD 9 9 N 2
432 LACKAM 9 9 N 2
441 CHUN ACC 9 9 N 2
450 LOERNH 9 9 N 2
459 NOCAR 9 9 N 2

** REDEFINED ITEMS ** 
1 WARD 4 4 C

[Original DOMAIN before updating by use of TAA]

A23 Relational data: Geographical linkage
This entity provides a common key (composite) to link all data sets as described in 
Chapter 2.

Arc: items bir-loc.dat 
1 SCHEME-ID 
4 ED-ID
14 ED-NUMBER from survey 
18 BEAT-NUMBER from crime data via edbeatgs 
22 SUPERBEAT where appropriate
32 ZONE defined visually - groups of surveyed eds in this city 

** REDEFINED ITEMS **
4 WARD
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Appendix 3 
Lineage

An example of lineage of data sets - beats, Enumeration Districts (ED), and their 
combined coverage (EDbeatgs) - used in the Evaluation of the Safer Cities Programme 
based on the modification of Clarke and Clark’s (1995) framework.

Contents 
1. Source

1.2 Origin: Beat maps were digitised by GDC Limited. ED boundaries from 
OPCS

1.3 Reference fields: Beat-ID; ED-ED
1.4 Spatial data characteristics: polygons
1.5 Co-ordinate systems: British Coordinate systems
1.6 Map projections: British Ordinance Survey (OS) Grid
1.7 Corrections and calibrations

2. Pre-processing or Input
2.1 Acquisition (Data collection stage): The 1: 50,000maps were from OS, and 
beat maps from police via the Safer Cities Ordinators. ED boundaries were 
purchased from OPCS
2.2 Compilation

2.2.1 Scientific parameter generation stage
2.2.2 Data conversion stage

2.2.2.1 equipment used: digitizer, VAXstation 4000.60
2.2.2.2 operator policy: GDC, OPCS
2.2.2.3 digitisation policy: minimum 0.5 mm accuracy
2.2.2.4 source material: beat boundaries were drawn on OS maps

2.3 Derivation (Product stage): boundary files (.e00) were generated and 
transferred into ARC/INFO

3. Transformation and analyses of data [Process]
3.1 Co-ordinate transformation: British Coordinate systems
3.2 Interpolation: beat and ED combined to form a single coverage (EDbeatgs)
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Appendix 7.1 

Variance and Co-Variance matrix

Table A7.1 shows the variance and co-variance matrix of the principal components for 

the two cities, converted from the rectified Landsat Image. Band 6 (thermal infrared) was 

excluded from the principal components analysis. So component 6 represents Band 7.

Table A7.1: The variance and co-variance matrix of the principal components
Coventry

VAR/COVAR 1 2 3 4 5 7
1 1394.45 624.99 607.05 1571.76 1284.52 554.54
2 624.99 283.22 276.85 700.53 583.24 254.39
3 607.05 276.85 282.26 610.16 563.75 263.92
4 1571.76 700.53 610.16 2382.7 1524.1 524.83
5 1284.52 583.24 563.75 1524.1 1316.63 552.42
7 554.54 254.39 263.92 524.83 552.42 270.25

COR MATRIX 1 2 3 4 5 7
1 1 0.995 0.968 0.862 0.948 0.903
2 0.995 1 0.979 0.853 0.955 0.920
3 0.968 0.979 1 0.744 0.925 0.956
4 0.862 0.853 0.744 1 0.860 0.654
5 0.948 0.955 0.925 0.860 1 0.926
7 0.903 0.920 0.956

Bristol

0.654 0.926 1

VAR/COVAR 1 2 3 4 5 6
1 57.93 31.49 51.05 -64.69 -3.21 11.03
2 31.49 20.91 33.15 -17.66 29.2 11.62
3 51.05 33.15 60.12 -45.56 58.21 23.31
4 -64.69 -17.66 -45.56 546.22 522.33 114.89
5 -3.21 29.2 58.21 522.33 909.65 227.79
6 11.03 11.62 23.31 114.89 227.79 92.65

COR MATRIX 1 2 3 4 5 6
1 1 0.905 0.862 -0.0364 -0.014 0.151
2 0.905 1 0.932 -0.165 0.212 0.264
3 0.862 0.93 1 -0.25 0.248 0.311
4 -0.364 -0.165 0.25 1 0.741 0.511
5 -0.014 0.212 0.248 0.741 1 0.785
6 0.15 0.264 0.311 0.511 0.785 1
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Appendix 7.2 

Testing random numbers

There are many tests developed to determine if a random number sequence {Yn}, (Vn =

1, N) has the desired probabilistic properties (Atkinson, 1980; Dagpunar, 1988; Jennings 

& Mohan, 1991; Knuth, 1969; MacLaren & Marsaglia, 1965; Sowey, 1972, 1978, 1986; 

Tauussky and Todd, 1956). For the purpose of this case study, the following three criteria 

are used.

A7.2.1 Visualisation

The simplest way to see if {Yn}, (Vn = 1,N) is distributed randomly is to examine the 

sequence visually using 2-D and 3-D scatterplots (Fisher et al, 1993). A 2-D scatterplot is 

easily implemented using Lisp-Stat ‘plot-points’ function (Figure A7.2.1 & A7.2.2).

ForN= 100
> (plot-points (uniform-rand 100) (uniform-rand 100))
#<Object: 527391322, prototype = SCATTERPLOT-PROTO>

CD

0 0.2 0 .4 0 .60.8 1
Figure A7.2.1: scatterplot of 100 uniform random numbers
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For N=1000

> (plot-points (uniform-rand 1000) (uniform-rand 1000)) 
#<Object: 463452266, prototype = SCATTERPLOT-PROTO>
>

0 0.2 0.4 0.0 OJ 1

Figure A7.2.2: scatterplot of 1000 uniform random numbers

To prevent the possibility that the random numbers may stay “mainly in the plane”, a 3-D 

view is necessary (Knuth, 1969). For a 3-D scatterplot, we can only observe a 2-D 

projection of the plot on a computer screen. One way to recover some of the 3-D depth 

perception is to rotate the points around the same axis. This is achieved using Lisp-Stat 

'spin-plot' function to construct a rotatable 3-D plot (Figure A7.2.3 & A7.2.4).

For N= 1000

(spin-plot (list (uniform-rand 1000) (uniform-rand 1000) (uniform-rand 1000))) 
#<Object: 475524522, prototype = SPIN-PROTO>
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A7.2.2 Period test

The Period test is a predicate designed to test if the sequence of numbers begins to repeat 

(Jennings and Mohan, 1991). This is determined by matching the first 7 numbers in the 

repeating sequence.

Yi = Ynp+i; Vi = 1,7

The test matches more than one number because there is a small probability that any one 

number may repeat randomly within a sequence. The probability that 10 random

numbers [0,9] will appear in order in any one sequence is (0.1 )K where k is the number 

of the repeating numbers in the sequence. There is, however, essentially no chance

[(0.1 )k -> 0] that a sequence of 7 numbers will randomly repeat.

In terms of Lisp-Stat implementation, a set of variables first was initialised: Count7 as a 

loop counter to hold the number of the first 7 iteration; first7 as a list of the first seven 

numbers; Next7 a list Next 7 numbers (see Function in it).

We then define the function period_test with argument of number of iterations (cycle) 

defined by the user. When the function period_test is run, it will try to match the first 7 

numbers of the sequence. If they match, the function will print the 

‘cyclic_property_occurs’ message, else it return nil (see Function period_test Appendix 

7.2.5). For example, when cycle = 10000:

> (period_test 10000)
NIL
>
; This took about 20s for 10000 numbers
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A7.23 Chi-square (x^) test
Chi-square (x ) analysis, first introduced by Karl Pearson, is a more generalised 

procedure (Cochran, 1954). x2 is originally intended to test if observed outcomes are

sufficiently random to imply that they come from unbiased samples. If {Yn) is a

sequence of random variables, with mean :, following the Gaussian PDF such that
- 1/2 2

Z(x) = 211 exp(-x 12) (A7.1)

then the Chi-square (x^) PDF can be defined as

X 1 = — ------------------- (A 7.2)A,
with

n/2 -1 2(n/2-l) 2
PDF =[2  r(n/2)] x exp(-x 12) (A73)

where n is the number of degrees of freedom;
T( ) the Gamma function.

The above definition can easily be defined as a Lisp-Stat function (see Function 

chijsquare). This definition of x gives a positive, semi-infinite random variable x 

6 [0,oo] that can only take on its lower bound when Yi = 0, Vi =l,n

The x2 variate has

• a mean p = n;
• a standard deviation of 2p;
• a central tendency of x2c t »[p(X2ct IP) = 0.5]; and
• is usually skewed to the right.
• In general, x2ct ^ut X2ct *> P  as n -> °°.

For any sequence of numbers, one can compute the probability 1 - p of the resulting x2 

value falling at least the observed distance away from the mean. As 1 - p becomes small, 

it implies that the observed sequence Yi is likely to represent a biased set of random 

outcomes. The test can also be repeated to determine the probability that a sequence of 

random numbers is unbiased and sufficiently random, and the generator can be selected or 

rejected on this basis.
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For Lisp-Stat implementation to run the test, a function ‘run_test’ taking a list of numbers 

n as its argument, is defined in Function run_test (Appendix 7.2.5). This represents the 

following steps:

1. Initialise variables (init).

2. Create a list of random number r j is t  with n numbers (list_rand n n).

3. Random sample from the list with defined constraint (my_sample r_list).

4. Set r_list = sample_list (setq r_list sample_list).

5. Run x 2 d.f. = length of list - 1 (chisq_test (- (length r jis t)  1))

The above steps consists of the following sub-functions:

Init: Initially, r j is t  and samplejist are nil, and x2 (x_sq)= 0.

List_rand; and

Chisq_test: Compute x2» print out the values of %2 at 5%, the level of sample, 95%, and 

the x2 probability respectively.

For all tests, n must be large enough to yield stable results. The minimum value of n 

should be at least 5 as suggested by Knuth (1969). For this application, first, 10,000 

random numbers are generated by the function ‘list_rand\ the numbers Yj are then

sampled which satisfy

n/j - 1 < Zi < n/j (j = 1,2,—, 1000)

This gives a set of 8 numbers in the run-test (which still satisfies the requirement of n > 5 

but makes the %2 test feasible and reduces the run time enormously). The function then 

proceeds to compute the statistic for the sample on the assumption that the Zi’s are 

independently and uniformly distributed. Since the only automatically satisfied condition 

is the total entries of 10,000, the %2 distribution for 7 degree of freedom is computed to 

find bounds between which %2 should lie. Ideally the value of x2 should lie between 5% 

and 95% level with p(X2ct ll1) ~ 0-5* Indeed, these results were found from the test.
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A7.2.4 Conclusion of the random number testing

The random number generator was tested using Lisp-Stat function to generate random 

numbers on a Digital DECpc Lpx 466d2 microcomputer. If one adopts a criterion such as 

1 - p > 0.05 => ‘pass’ (i.e. the probability that the generator is unbiased > 0.95), then the 

generator passed the test. Indeed it was found that the value of %2 lies between 5% and 

95% level (2.17 < 5.92 < 14.07) at d.f.=7 with p(X2« |l0 ~ 0.5. For the 10,000 random 

numbers generated, the sequence did not repeat itself. Visually, the numbers appear to be 

randomly and uniformly distributed.

A7.2.5 Implementation of the testing procedure in XLISP-STAT

The specification of Lisp-Stat is implemented using a system called XLISP-STAT based 

on the XLISP (dialect of Lisp) with the window system (Tierney, 1990). The following 

test functions are listed within the XLISP-STAT environment.

XLISP-PLUS version 2. lg
Portions Copyright (c) 1988, by David Betz.
Modified by Thomas Almy and others.
XLISP-STAT 2.1 Release 3.45 (Beta).
Copyright (c) 1989-1994, by Luke Tierney.
Initialization may take a moment.

; Comments are after a semicolon.
; *>’ is the XLISP-STAT prompt.
; The output from LISP-STAT is in block capital.

; First initialize the variables
; count7 is the count of the first seven numbers called first7 
; next7 is the next seven numbers.

> (defun init ()
(setq count7 1)

(setq first7 nil)
(setq next7 first7)
(print count7)

(print first7)
(print next7))
INIT

> (defun period_test (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
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(setq *random-state* #$(1 #(2147483562 1342567740 491571990 1296487812))) 
(setq z (random cycle))

(cond ((< count 7) (setq first7 (cons z first7)) (setq next7 first7))
((< count7 8) (setq next7 (cons z (butlast next7))) (setq count7 (+ count7 1)))  
(TT))

(cond ((> count7 7) (setq count7 1))
(T T ))

(cond ((< count 7) nil)
((equal next7 first7) (print ’cyclic_property_occurs))

(T T))))
PERIOD_TEST

> (defun chi_square (list_no)
(do ((x list_no (cdr x)))

((null x))
(setq x_sq (+ x_sq (/ (sq (- (car x) (mean list_no))) (mean list_no)))))) 

CHI_SQUARE

; where sq (square) can be defined as:

> (defim sq (x)
<* x x))

SQ
> (defun run_test (n)

(init)
(list_rand n n)
(my_sample r_list)
(setq r_list sample_list)
(chisq_test (- (length r_list) 1)))

RUN_TEST

> (defun init ()
(setq sample_list nil)
(setq r_list nil)
(setq x_sq 0))

INIT
>
> (defim list_rand (range cycle)

(let ((r j is t  NIL)))
(dotimes (count cycle)

(setq *random-state* #$(1 #(2147483562 1955864722 1011176338 1202795178))) 
(setq r j is t  (cons (random range) r j i s t ) ) ))
LIST.RAND
> (defim my_sample (m yjist)

(do ((x m y jist (cdr x)))
((null x ) )

(cond ((< (car x) 10) (setq sam plejist (cons (car x) sampleJist)))
(T nil))))

MY_S AMPLE
> (defim chisq j e s t  (df)

(print (chisq-quant .05 df))
(print (chi_square r jis t))
(print (chisq-quant .95 df))

(chisq-cdf x_sq df))
CfflSQ_TEST
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>
> (run_test 10000)

2.1673499091965045
5.923076923076923
14.06714044970325
0.45124048214395046
>

; Random Numbers 

; recursion
; A recursion to generate random numbers [ranged to the number of cycles; initial count 0].

> (defun generate_rand (count cycle)
(cond ((equal count cycle) nil)

(T (setq z (random cycle)) (print z) (generate_rand (+ count 1) cycle)))) 
GENERATE_RAND
> (generate_rand 0 10)

8
5
2
7
9
9
4
1
2
2
NIL
>

> (generate_rand 0 74)
NIL
> (generate_rand 0 75) 
error: system stack overflow
>

(generate_rand 0 10)
NIL
> (generate_rand 1 75)
NIL

; limit to 75 cycles

;To initialise the random state

(setq rst (make-random-state T))
#$(1 #(2147483562 0 12285 31861))

; which changes each time as a side effect from RANDOM.

> (random 5)
4
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> (random 5) 
0

(print rst)

#$(1 #(2147483562 1342567740 491571990 1296487812))
#$(1 #(2147483562 1342567740 491571990 1296487812))

> (setq Random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
#$(1 #(2147483562 1342567740 491571990 1296487812))

> (defun generate_rand (count cycle)
(cond ((equal count cycle) nil)

(T (setq Random-state* #$(1 #(2147483562 1342567740 491571990 1296487812))) (setq z 
(random cycle)) (print z) (generate_rand (+ count 1) cycle))))
GENERATE.RAND

; Need to be defined again each time to ensure the same random number - i.e. to start with the same seed.

> (defun generate_rand (count cycle)
(cond ((equal count cycle) nil)

(T (setq Random-state* #$(1 #(2147483562 1342567740 491571990 1296487812))) (setq z 
(random cycle)) (print z) (generate_rand (+ count 1) cycle))))
GENERATE.RAND
> (generate_rand 0 5)

3 
0 
2 
0
4
NIL
> (defun generate_rand (count cycle)

(cond ((equal count cycle) nil)
(T (setq Random-state* #$(1 #(2147483562 1342567740 491571990 1296487812))) (setq z 

(random cycle)) (print z) (generate_rand (+ count 1) cycle))))
GENERATE.RAND
> (generate_rand 0 5)

3 
0 
2 
0
4
NIL
>

; Iteration

> (defim generate_rand (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq Random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
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(setq z (random cycle))
(print z)))
GENERATE.RAND

> (generate_rand 5)

3 
0 
2 
0
4
NIL
> (defim generate_rand (cycle)

(do ((count 0 (+ count 1)))
((equal count cycle) nil)

(setq *random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
(setq z (random cycle))
(print z)))
GENERATE_RAND
> (generate_rand 5)

3 
0 
2 
0
4
NIL
>

;No problem with the stack overflow limit, note the PRINT is removed for obvious reason.

> (generate_rand 77)
NIL
> (generate_rand 77)
NIL
> (generate_rand 777)
NIL
> (generate_rand 10000)
NIL
>

; Test cycliability

> (defun generate_rand (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
(setq z (random cycle))
(print z)))
GENERATE_RAND

> (defun init ()
(setq count7 1)
(setq first7 nil)
(setq next7 first7)
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(print count7)
(print first7)
(print next7))
INIT

> (defim test7 (z cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(cond ((< count 7) (setq first7 (cons z first7))(print Tirst7) (print first7))

((< count7 8) (setq next7 (cons z next7)) (setq count7 (+ count7 1)) (print ^6X17) (print next7)) 
((> count7 7) (setq count7 1) (setq next7 nil))
(TT))

(cond ((equal next7 first7) (print ’cyclic_property_occurs))
(TT))))

TEST7
> (init)

0
NIL
NIL
NIL
> (test7 1 23)

FIRST7
(1)
FERST7 
(1 1)
FIRST7 
(1 1 1)
FIRST7
( 1 1 1 1 )
FIRST7
( 1 1 1 1 1 )
FIRST7
( 1 1 1 1 1 1 )
FIRST7
(1111111)
NEXT7
(1)
NEXT7 
(1 1)
NEXT 7 
( 111)
NEXT7
( 1 1 1 1 )
NEXT7
( 1 1 1 1 1 )
NEXT7
( 1 1 1 1 1 1 )
NEXT7
(1111111)
CYCLIC_PROPERTY_OCCURS
NEXT7
(1 1 1 1 1 1 1 1 )
NEXT7
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(1)
NEXT7 
(1 1)
NEXT7 
(1 1 1)
NEXT7
( 1 1 1 1 )
NEXT7
( 1 1 1 1 1 )
NEXT7
( 1 1 1 1 1 1 )
NEXT7
( 1 1 1 1 1 1 1 )
CYCLIC_PROPERTY_OCCURS
NIL
>

> (defun generate_rand (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
(setq z (random cycle))

(cond ((< count 7) (setq first7 (cons z first7)) (setq next7 first7))
((< count7 8) (setq next7 (cons z (butlast next7))) (setq count7 (+ count7 1)))
(TT))

(cond ((> count7 7) (setq count7 1))
(TT))

(cond ((< count 7) nil)
((equal next7 first7) (print ’cyclic_property_occurs))

(T T))))
GENERATE.RAND

> (generate_rand 26)
NIL
> (init)

1
NIL
NIL
NIL
> (generate_rand 10000)
NIL
>
;Took about 20s for 10000 numbers 
;testing the first 28 random numbers.

> (defun generate_rand (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 1342567740 491571990 1296487812)))
(setq z (random cycle))

(print z)
(cond ((< count 7) (setq first7 (cons z first7)) (setq next7 first7) (print Yirst7) (print first7))

((< count7 8) (setq next7 (cons z (butlast next7))) (setq count7 (+ count7 l))(print ’next7) (print 
next7))
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(TT))
(cond ((> count7 7) (setq count7 1))

(TT))
(cond ((< count 7) nil)

((equal next7 first7) (print ’cyclic_property_occurs))
(TT))))

GENERATE.RAND

; need to re-‘defun’ generaye_rand containing the *random-state* to re-run the function.

> (init)
1
NIL
NIL
NIL
> (generate_rand 26)

18
FIRST7
(18)
2
FIRST7
(218)
14
FIRST7 
(14 2 18)
1
FIRST7 
(1 14 2 18)
21
FIRST7 
(21 1 14 2 18)
25
FIRST7
(25 21 1 14 2 18)
7
FIRST7
(7 25 21 1 14 2 18)
15
NEXT7
(15 7 25 21 1 14 2)
25
NEXT7
(25 15 7 25 21 1 14)
10
NEXT7
(1025 15 7 25 21 1)
0
NEXT7
(0 10 25 15 7 25 21)
20
NEXT7
(20010 25 15 7 25)
23
NEXT7
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(23 20 0 10 25 15 7)
3
NEXT7
(3 23 20 0 10 25 15)
20
NEXT7
(20 3 23 20 0 10 25)
17
NEXT7
(17 20 3 23 20 0 10)
4
NEXT7
(4 17 20 3 23 20 0)
6
NEXT7
(6 4 17 20 3 23 20)
5
NEXT7
(5 6 4  17 2 0 3 2 3 )
10
NEXT7
(1 0 5 6 4  1720 3)
18
NEXT7
(18 105 6 4 17 20)
14
NEXT7
(14 18 10 5 6 4  17)
1
NEXT7
(1 14 18 105 6 4 )
4
NEXT7
(4 1 14 18 10 5 6)
6
NEXT7
(64 1 14 18 105)
5
NEXT7
(5 6 4  1 14 18 10)
NIL
>
; Similarly, for uniform random number, replace random with rand-uniform

(defun generate_rand_uniform (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 685461157 730303945 44842788))) 
(setq z (uniform-rand 1))
(print z)))
GENERATE_RAND_UNIFORM 
> (generate_rand_uniform 5)

(0.020437848631456576)
(0.9623325209866916)
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(0.899333927969133)
(0.32823186502131513)
(0.9508440423670703)
NIL
> (defim generate_rand_uniform (cycle)

(do ((count 0 (+ count 1)))
((equal count cycle) nil)

(setq ♦random-state* #$(1 #(2147483562 685461157 730303945 44842788))) 
(setq z (uniform-rand 1))
(print z)))
GENERATE JIAND.UNIFORM
> (generatejrand_uniform 5)

(0.020437848631456576)
(0.9623325209866916)
(0.899333927969133)
(0.32823186502131513)
(0.9508440423670703)
NIL
>

(defim generate_rand_uniform (cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 685461157 730303945 44842788))) 
(setq z (car (uniform-rand 1)))
(print z)))
GENERATE JL\ND_UNIFORM
> (generate_rand_uniform 18)

0.020437848631456576
0.9623325209866916
0.899333927969133
0.32823186502131513
0.9508440423670703
0.2604499287564407
6.512096409337872E-4
0.02305424537446125
0.5281240473818933
0.9383118980176751
0.8346784901397056
0.3661913937473534
0.6783505047816244
0.28081100846503465
0.602064884337613
0.8777487159573908
0.5707873709000508
0.9317943179808009
NIL
>

> (defim generate_rand_uniform (cycle)
(do ((count 1 (+ count 1)))

((equal count cycle) nil)
(setq *random-state* #$(1 #(2147483562 685461157 730303945 44842788)))
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(setq z (car( uniform-rand 1)))
(print z)
(cond ((< count 8) (setq first7 (cons z first7)) (setq next7 first7) (print Tirst7) (print first7))

((< count7 8) (setq next7 (cons z (butlast next7))) (setq count7 (+ count7 l))(print toext7) (print 
next7))

(TT))
(cond ((> count7 7) (setq count7 1))

(TT))
(cond ((< count 8) nil)

((equal next7 first7) (print ’cyclic_property_occurs))
(TT))))

GENERATE_RAND_UNIFORM
> (init)

1
NIL
NIL
NIL
> (generate_rand_uniform 18)

0.020437848631456576
FIRST7
(0.020437848631456576)
0.9623325209866916
FERST7
(0.9623325209866916 0.020437848631456576)
0.899333927969133
FIRST7
(0.899333927969133 0.9623325209866916 0.020437848631456576)
0.32823186502131513
FIRST7
(0.32823186502131513 0.899333927969133 0.9623325209866916 0.020437848631456576)
0.9508440423670703
FIRST7
(0.9508440423670703 0.32823186502131513 0.899333927969133 0.9623325209866916 
0.020437848631456576)
0.2604499287564407
FERST7
(0.2604499287564407 0.9508440423670703 0.32823186502131513 0.899333927969133 
0.9623325209866916 0.020437848631456576)
6.512096409337872E-4 
FIRST7
(6.512096409337872E-4 0.2604499287564407 0.9508440423670703 0.32823186502131513 
0.899333927969133 0.9623325209866916 0.020437848631456576)
0.02305424537446125
NEXT7
(0.02305424537446125 6.512096409337872E-4 0.2604499287564407 0.9508440423670703 
0.32823186502131513 0.899333927969133 0.9623325209866916)
0.5281240473818933
NEXT7
(0.5281240473818933 0.02305424537446125 6.512096409337872E-4 0.2604499287564407 
0.9508440423670703 0.32823186502131513 0.899333927969133)
0.9383118980176751
NEXT7
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(0.9383118980176751 0.5281240473818933 0.02305424537446125 6.512096409337872E-4 
0.2604499287564407 0.9508440423670703 0.32823186502131513)
0.8346784901397056
NEXT7
(0.8346784901397056 0.9383118980176751 0.5281240473818933 0.02305424537446125 
6.512096409337872E-4 0.2604499287564407 0.9508440423670703)
0.3661913937473534
NEXT7
(0.3661913937473534 0.8346784901397056 0.9383118980176751 0.5281240473818933 
0.02305424537446125 6.512096409337872E-4 0.2604499287564407)
0.6783505047816244
NEXT7
(0.6783505047816244 0.3661913937473534 0.8346784901397056 0.9383118980176751 
0.5281240473818933 0.02305424537446125 6.512096409337872E-4) 
0.28081100846503465 
NEXT7
(0.28081100846503465 0.6783505047816244 0.3661913937473534 0.8346784901397056 
0.9383118980176751 0.5281240473818933 0.02305424537446125)
0.602064884337613
NEXT7
(0.602064884337613 0.28081100846503465 0.6783505047816244 0.3661913937473534 
0.8346784901397056 0.9383118980176751 0.5281240473818933)
0.8777487159573908
NEXT7
(0.8777487159573908 0.602064884337613 0.28081100846503465 0.6783505047816244 
0.3661913937473534 0.8346784901397056 0.9383118980176751)
0.5707873709000508
NEXT7
(0.5707873709000508 0.8777487159573908 0.602064884337613 0.28081100846503465 
0.6783505047816244 0.3661913937473534 0.8346784901397056)
NIL
>
> (defun generate_rand_umform (cycle)

(do ((count 1 (+ count 1)))
((equal count cycle) nil)

(setq *random-state* #$(1 #(2147483562 685461157 730303945 44842788)))
(setq z (car(uniform-rand 1)))

(cond ((< count 8) (setq first7 (cons z first7)) (setq next7 first7))
((< count7 8) (setq next7 (cons z (butlast next7))) (setq count7 (+ count7 1)))
(TT))

(cond ((> count7 7) (setq count7 1))
(T T ))

(cond ((< count 8) nil)
((equal next7 first7) (print ’cyclic_propcrty_occurs))

(TT))))
GENERATE_RAND_UNIFORM
> (init)

1
NIL
NIL
NIL
> (generate_rand_uniform 10000)
NIL
; took about 20s.
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(defun test7 (z cycle)
(do ((count 0 (+ count 1)))

((equal count cycle) nil)
(cond ((< count 7) (setq first7 (cons z first7))(print Tirst7) (print first7))

((< count7 8) (setq next7 (cons z next7)) (setq count7 (+ count7 1)) (print hext7) (print next7))
((> count7 7) (setq count7 1) (setq next7 nil))
(TT))

(cond ((equal next7 first7) (print ’cyclic_property_occurs))
(T T ))))

; Testing the program
; Just to show the test does work if cyclic property occurs

> (defun init ()
(setq count 0)
(setq count7 1)

(setq first7 nil)
(setq next7 nil)
(print count7)

(print first7)
(print next7))
INIT

> (defun test7 (sys_list)
(do ((z sy sjis t (cdr z)))

((null z ) )
(setq count (+ count 1))
(cond ((< count 8) (setq first7 (cons (car z) first7)) (setq next7 first7)(print Tirst7) (print first7 ))

((< count7 8) (setq next7 (cons (car z) (butlast next7))) (setq count7 (+ count7 1)) (print Yiext7) (print 
next7))

(TT))
(cond ((> count7 7) (setq count7 1))

(TT))
(cond ((< count 8) nil)

((equal next7 first7) (print ’cyclic_property_occurs))
(TT))))

TEST7
> (init)
1
NIL
NIL
NIL
> (test7 (repeat (iseq 10) 2))

FIRST7
(0)
FIRST7
(10)
FIRST7 
(2 1 0 )
FIRST7 
(3 2 10)
FERST7 
(4 3 2  1 0)
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FIRST7 
( 5 4 3 2  1 0)
FIRST7 
(65 4 3  2 1 0)
NEXT7 
( 7 6 5 4 3  2 1)
NEXT7
(8765432)
NEXT7
(9876543)
NEXT7
( 0 9 8 7 6 5 4 )
NEXT7 
(1 0 9 8 7 6 5 )
NEXT7 
(2 1 0 9 8 7 6 )
NEXT7 
( 32  1 0 9 8 7 )
NEXT7 
( 4 3 2  1 0 9 8 )
NEXT7 
( 5 4 3 2  1 0 9 )
NEXT7 
( 6 5 4 3 2  1 0)
C Y CLIC_PROPERT Y_OCCURS
NEXT7
( 7 6 5 4 3 2  1)
NEXT7
( 8 7 6 5 4 3 2 )
NEXT7
(9 8 7 6 5 4 3 )
NIL
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Appendix 7.3 

Program listing

The Lisp-Stat functions are stored in the following files (in bold) and directories (in front 

of the file names):

• C:\USERS\LA W\GIS\HO\DATA\proBED.lsp

• C:\USERS\LAW\GIS\HO\PROBBT.LSP

• C:\HO\PHD\FPRO.LSP

• C:\USERS\LA W\GIS\HO\DATA\MONTEK.LSP

• C:\USERS\LAW\GIS\HO\D ATA\MCBH.lsp

• C:\USERS\LA W\GIS\HO\DATA\POSTBBT.LSP

The files are directly loaded into the XLISP-STAT environment based on the XLISP 

(dialect of Lisp) with the window system (Tierney, 1990). ProBED.lsp contains the 

functions for counting pixels (p) of households in each ED (first index in the idjist).

The number of households per ED is retrieved from the geographical outcome base 

(GOB) using the functions specified in PROBBT.LSP (get_values_from_keys bedgs-id 

bed_pid where a list of pairs: number of households & identifier; and bed_pid is a list of 

pairs: number of pixels & identifier).

Lists of pixels are read into files using functions in FPRO.LSP. Monte Carlo simulation 

is performed using functions in MONTEK.LSP. MCBH.lsp contains file-handling 

functions to process a list of files using the Monte Carlo function developed in 

MONTEK.LSP. The final output functions are specified in POSTBBT.LSP - 

computing the number of households per pixel (r); RMSE; error %; and printing the 

results. Their uses are discussed in the main text (also see comments after the semicolon 

in the listing and Appendix 7.5 which shows the complete log for processing).
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; C:\USERS\LAW\GIS\HO\DAT A\proBED.lsp

; Initially, ed_id list is empty

(def ed_id nil)

(defim init_proed ()
(def ed_id nil)

)

; Create the data structure: a list of (value index) lists.
; Initially, the value of each index is 0.

(defun create JistO (n)
(dotimes (i n)

(def ed_id (cons (list 0 i) ed_id))))

; Function to assign pixel to household.

(defun assignh (p idjist)
(cond ((= p 0) NIL)

(T (match_fill id jist p))))

; If the pixel (p) matches the index (ED-ID) in the list, increment the value (first index) of the zone

(defim matchjfill (id jist p)
(dolist (index id jist)
(cond ((= p (car (last index))) (def (first index) (+ 1 (first index))))

(T NIL))))

; Process ED, here goes the following steps:
; 1. Define an empty ed J d  list 
; 2. Create the data structure 
; 3. Iteratively read in a pixel from the image file and 
; 4. assign it.

(defun proed_go (in_image_file n np)
(def ed J d  nil)
(create JistO (+ 1 n))
(def ed J d  (cdr (reverse ed Jd)))

(dotimes (i np)
(def p (read in jm a g ejile  nil))
(assignh p ed jd )

))
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; C:\USERS\LAW\GIS\HO\PROBBT.LSP

; Initialise all the variable used

(def i 0)
(def found nil)
(def found 1 nil)
(def true_flag nil)
(def found.attributes nil)
(def value nil)
(def found_value nil)

; Function to initialise a list of beats

(defim init_pre_beat_go ()
(def i 0)

(def found nil)
(def found 1 nil)
(def true_flag nil)
(def found.attributes nil)
(def value nil)
(def found_value nil)

)

; Set counter i, start from zero 

(setq i 0)

; Get geographical outcome base (GOB) from the INFO entity.

(defun get_gob (entity)
(do ((m yjist entity (cdr m yjist)))
((null m y jis t ))
(def attribute (car myjist))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def ed-id attribute))
((= i 2) (def edgs-id attribute))
((= i 3) (def beatgs-id attribute))
((= i 4) (def beat-id attribute))
((= i 5) (def superbt-id attribute))
((= i 6) (def ward-id attribute))
((= i 7) (def residents attribute))
((= i 8) (def households attribute))
(T (def attribute (cdr entity))))))

; Get the the values of the attributes from many_entity for one_entity in a many-to-one relation

(defun get_many_from_one (one_entity many_entity key)
(dotimes (i (length one_entity))

(def one.attribute (car one_entity))
(def many_attribute (car many_entity))
(cond ((eq one_attribute key) (def found (cons many_attribute found)))

(T nil))
(def one_entity (cdr one_entity))
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(def many_entity (cdr many_entity))
))

; Function to match the key with the attribute of the relation entity 
; if match, define true_flag True.

(defun match_keys_p (attribute key_entity)
(dolist (key key_entity tme_flag)

(cond ((equal attribute key) (def true_flag T))
(T nil))

))

; Get the the values of the attributes from the entity for the key_entity in a many-to-many relation

(defun get_many_from_many (keys key_entity entity)
(dotimes (i (length entity))

(def key_attribute (car key_entity))
(def attribute (car entity))
(cond ((match_keys_p key_attribute keys) (def found_attributes (cons attribute 

found_attributes)) (def true_flag nil))
(T nil))

(def key_entity (cdr key_entity))
(def entity (cdr entity))

))

(defun get_values_£rom_keys (keys key_entity)
(dolist (value_key key_entity)

(def key (second value_key))
(def value (car value_key))
(cond ((match_keys_p key keys) (def found_value (cons value found_value)) (def 

true_flag nil))
(T nil))

))

; Procedure to get the values of interest from ED zone for beats

(defun pre_beat_go (beat-id)
(init_pre_beat_go)

(def beateds (read-data-columns "cedbeat.dat" 4))
(get_attributes beateds)
(get_many_from_one beatgs-id edgs-id beat-id)
(def bedgs-id found)
(setq found 1 found)
(def i 0)
(def cgobs (read-data-columns "cgob.dat” 8))
(get_gob cgobs)
(get_many_from_many found ed-id residents)
(setq bbt_residents found_attributes)
(def found_attributes nil)
(get_many_from_many found ed-id households)
(setq bbt_hh found_attributes)
(def true_flag nil)
(get_values_from_keys bedgs-id bed_pid))

(defiin pro_beat_go (beat-id)
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(init_pre_beat_go)
(get_many_from_one beatgs-id edgs-id beat-id) 
(def bedgs-id found)
(setq found 1 found)
(get_many_from_many found ed-id residents) 
(setq bbt_residents found_attributes)
(def found.attributes nil)
(get_many_from_many found ed-id households) 
(setq bbt_hh found_attributes)
(def true_flag nil)
(get_values_from_keys bedgs-id bed_pid))

; C:\HO\PHD\FPRO.LSP

; Read in a list of numbers and save it a file

(defim list_batch (file_list my_file list_length) 
(dolist (file_name file_list)

(def p_list nil)
(read_file_into_list my_file list_length) 
(print "Please wait...”)
(Princ "Saving this list into file ")
(prinl file_name)
(save_my_var ^>_list file_name)))

; Read a file of number into a list

(defun read_file_into_list (my_file list_length) 
(dotimes (i listjength)
(def p (read my_file nil))
(setq p_list (cons p pjist))))

; Save my variable as my file

(defun save_my_var (my_var my_file)
(savevar my_var my_file))

; Initially, the list of numbers (pixels) is empty

(def p_list nil)

; C:\USERS\LAW\GIS\HO\DAT AVMONTEK.LSP 

; Initially a list of counts is empty 

(setq c_list nil)

; Get and set the current value of the random state from the global variable ♦random-state* 

(setq *random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))
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; The batch function to initialise the count, the list of counts and the *random-state*

(defun init_monte_TM_batch ()
(setq c 0)
(setq c_list nil)

(setq *random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))
)

; Run Monte Carlo function over a zone list 
; count = count x scaling factor k

(defun run.monte (k zone)
(monte zone)
(def c (* c k)))

; Initiase the Monte Carlo function: the count start from zero, the list of count empty, *random-state* 
; and sample size r = size of zone / scaling factor

(defun init_monte (k zone)
(setq c 0)
(setq c_list nil)

(setq *random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))
(setq r (round (/ (length zone) k))))

; Monte Carlo function gets a random sample from a zone 
; and assign the list of numbers from the random sample

(defun Monte (zone)
(setq zlist (my_sample zone r))
(assign zlist))

; Define the random sample from my list as my sample with n numbers

(defun my_sample (my_list n)
(sample my_list n))

; Assign pixel numbers 
; and increment the counter c if it is not zero

(defun assign (my_list)
(dolist (p my_list)
(cond ((= p 0) NIL)

(T (setq c (+ 1 c»))»

; Compute error_% = (observed -  actual)/ actual x 100%

(defun error_% (observed actual)
(* (/ (- observed actual) actual) 100))

; Function to compute the total squared deviation from the mean

(defun sq_d (list_no mean_x)
(do ((x list_.no (cdr x)))

((null x) d_sq)
(setq d_sq (+ d_sq (A (- (car x) mean_x) 2)))))
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; Compute the RMSE

(defun rmse (observed_list actual)
(sqrt (/ (sq_d observed J ist actual) (length observed. Jist))))

; Print the results of length, mean, error% of the Monte Carlo simulation, RMSE, SD, SD-1 
; and save the list counts into a file called c j is t

(defun print_results (actual save_file)
(print length= ) (prinl (length cjis t))
(print taean= ) (prinl (mean cjist))
(print ’error_MC%= ) (prinl (error_% (mean c_list) actual))
(setq d_sq 0)
(print RMSE= ) (prinl (rmse c j is t  actual))
(setq d_sq 0)
(print S D s ) (prinl (rmse c j is t  (mean cjist)))
(print ’SD-1=) (prinl (standard-deviation cjist))
(savevar ’c j is t  save_file)

)

; Batch processing of the Monte Carlo simulation 
; Run Monte Carlo function over a zone 
; and construct a list of counts cjist.

(defun monte_batch (n zone k)
(dotimes (i n)
(setq c 0)
(run_monte k zone)
(setq c j is t  (cons c cjist))))

; Batch processing of the Monte Carlo function for a list of files 
; with scaling factor k as the passing parameter

(defun Monte_file_batch (fileJist k)
(dolist (file_name file J ist)

(load file_name)
(setq r (round (/ (length p jist) k)))

(monte pjist)))

; Process the wholeTM image file

(defun monte_TM_batch (n zone k)
(dotimes (i n)
(setq c 0)
(print "Please wait...")
(Princ "Processing Monte Carlo simulation run ")
(prinl i)

(monte_file_batch zone k)
(setq c j is t  (cons (* k c) cjist))))

; Define the base-line value from assigning the whole image for comparison

(defun base_value (image)
(def zone (read-data-file image))
(print length_of_zoneJ
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(prinl (length zone))
(setq c 0)
(assign zone)
(setq cO c)
(print cO))

; Monte Carlo processing in a batch of 300 runs with scaling factor 10 over an image with an output file

(defun mc_go_go (image out_file)
(base_value image)
(monte_go 300 zone cO 10 out_file))

; Monte Carlo processing in a batch of n runs with scaling factor k over a zone with an output file

(defim monte_go (n zone actual_c k out_file)
(init_monte k zone)
(monte_batch n zone k)
(print_results actual_c out_file))

; C:\USERS\LAW\GIS\HO\DAT A\MCBH.Isp

; Define the data structure for a list of (count Beat-ID) called _hID 
; initial count has a zero value

(def _hID T(0 1) (0 2) (0 3) (0 4) (0 5) (0 6) (0 7) (0 8) (0 9) (0 10) (0 11) (0 12)
(0 13) (0 14) (0 15) (0 16) (0 17) (0 18) (0 19) (0 20) (0 21) (0 22) (0 23) (0 24) (0 25) (0 26)
(0 27) (0 28) (0 29) (0 30) (0 31) (0 32) (0 33) (0 34) (0 35) (0 36) (0 37) (0 38) (0 39) (0 40)
(0 41) (0 42) (0 43) (0 44) (0 45) (0 46) (0 47) (0 48) (0 49) (0 50) (0 51) (0 52) (0 53) (0 54)
(0 55) (0 56) (0 57) (0 58) (0 59) (0 60) (0 61) (0 62) (0 63)))

; Batch processing of the Monte Carlo function for file handling

(defun monte_go (n file_list k)
(dotimes (i n)

(def J iID  X(0 1) (0 2) (0 3) (0 4) (0 5) (0 6) (0 7) (0 8) (0 9) (0 10) (0 11) (0 12)
(0 13) (0 14) (0 15) (0 16) (0 17) (0 18) (0 19) (0 20) (0 21) (0 22) (0 23) (0 24) (0 25) (0 26)
(0 27) (0 28) (0 29) (0 30) (0 31) (0 32) (0 33) (0 34) (0 35) (0 36) (0 37) (0 38) (0 39) (0 40)
(0 41) (0 42) (0 43) (0 44) (0 45) (0 46) (0 47) (0 48) (0 49) (0 50) (0 51) (0 52) (0 53) (0 54)
(0 55) (0 56) (0 57) (0 58) (0 59) (0 60) (0 61) (0 62) (0 63)))

(print "Please wait...")
(Princ "Processing Monte Carlo simulation run ")
(prinl i)
(init_fill _hid)
(Monte_file_batch file_list _hid k)
(def new_list nil)
(cons_value_into_list _hidl _hid)

(def _hidl newjist)
))

; Run Monte Carlo function n times over a zone with initial vid_list and output listl as a new list

(defun montel_go (n zone vid_list listl)
(dotimes (i n)

(init_fill vid_list)
(Monte zone vid_list)
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(def listl new Jist)
(def new_list nil)
(cons_value_into_list listl vid_list)))

; Initially, fill the index list with zero values

(defiin init_fill (id_list)
(dolist (index idjist)

(def (first index) 0)))

; If an index match ID of listl, construct the new list with its value

(defun match_cons (listl i)
(dolist (v listl)

(cond ((= (car (last i)) (car (last v))) (def new_list (cons (cons (car i) v) new_list))) 
(T NIL))))

; Construct the new list with the index and values from listl and list2 respectively

(defun cons_value_into_list (listl list2)
(dolist (h list2)

(match_cons listl h)))

; Monte Carlo processing in a batch of files with scaling factor k

(defun Monte JileJ>atch (file J ist id jist k)
(dolist (file_name file J ist)

(load file_name)
(run_monte p_list id_list k)))

(defun run_monte (zone id_list k)
(init_monte k zone)
(monte zone idjist))

(defim init_monte (n zone)
(setq r (round (/ (length zone) n))))

(defun Monte (zone idjist)
(setq zlist (sample zone r))
(assignh zlist idjist))

; Assign my list of numbers by matching the ID from id jist

(defun assignh (myJist idjist)
(dolist (p m yjist)
(cond ((= p 0) NIL)

(T (matchJill id jist p)))))

; if the number match with ID, increment the count which is the first index in the list

(defun match J i l l  (id jist p)
(dolist (index idjist)
(cond ((= p (car (last index))) (def (first index) (+ 1 (first index))))

(T NIL))))
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; a list file names

(def p n jist T"bbtlf' "bbt2f "bbt3r "bbt4f’ "bbt5f Mbbt6f' ”bbt7f' ”bbt8f’ *'bbt9f' "bbtlOf’ 
"bbtl If' ”bbtl2f’ Mbbtl3f' Hbbtl4f' "bbtlSf' ''bbtl6r ”bbtl7f' "bbtl8r "bbtl9f' ”bbt20f’ 
”bbt21f’ ”bbt22f' "bbt23f" Hbbt24f’ "bbt25f' "bbt26r "bbt27f Mbbt28f' ”bbt29f "bbt30T 
Mbbt31f* Mbbt32f* "bbt33r "bbt34f ,,bbt35f' "bbt36f* "bbt37f "bbt38f ,,bbt39f’))

(setq Random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))

; Define the data structure for a list of beat-ID

(def J iid l X(l) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)
(27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40)
(41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54)
(55) (56) (57) (58) (59) (60) (61) (62) (63)))

(defun monte_gol ()
(Monte_file_batch pn_list _hid 10)
(def new_list _hid)
(monte_go 1 pnjist 10))

; C:\USERS\LAW\GIS\HO\DAT AXPOSTBBT.LSP

; Get attributes of interest from the entity

(defun get_attributes (entity)
(do ((myJist entity (cdr m yjist)))
((null m y jis t))
(def attribute (car myjist))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def beat-id attribute))
((= i 2) (def residents attribute))
((= i 3) (def households attribute))
((= i 4) (def r/h attribute))
((= i 5) (def pixels attribute))
((= i 6) (def h/p attribute))
((= i 7) (def r/p attribute))

(T (def attribute (cdr entity))))))

; Define the source zone as
; the data file with the attributes of interest, their calibrated values such as households per pixel 

(def source_zones (read-data-columns "bbt_rhp.dat" 7))

(setq i 0)

(get_attributes SOURCE_ZONES)

(defun getJ>mc (entity)
(do ((m yjist entity (cdr m yjist)))
((null m y jis t))
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(def attribute (car my_list))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def beat-id attribute))
((= i 2) (def cO attribute))
((= i 3) (def c l attribute))
((= i 4) (def mc%error attribute))
((= i 5) (def mc_rmsc attribute))
((= i 6) (def sd attribute))
((= i 7) (def sd-1 attribute))
(T (def attribute (cdr entity))))))

(setq i 0)

; Define target zone as 
; the file containing Monte Carlo results

(def target_zone (read-data-columns "bbtmc.dat" 7))

(get_bme target_zone)

, calibrating factor r = households / pixel 
; household count c = pixel count x households / pixel

(defun scale_c (plist rlist)
(dolist (p plist)
(def r (car rlist))
(def c (* p r))
(def clist (cons c clist))
(def rlist (cdr rlist))))

(def clist nil)

(scale_c c l h/p)

(def clist (reverse clist))

(def hlist clist)
(def clist nil)

(scale_c mc%error h/p)
(def clist (reverse clist))
(def mc%errl clist)

(def clist nil)
(scale_c mcjrmsc h/p)
(def clist (reverse clist))
(def mcsdl clist)

(defun print_btmc%err (slist mclist mcsdlist mc%errlist)
(dotimes (i (length mclist))

(print (+ 1 i))
(prinl (car slist))
(prinl " ”)
(prinl (round_2d (car mclist))) (princ " ±") (prinl (round_2d (car mcsdlist)))
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(prinl " ")
(cond ((= 0 (car mclist)) nil)

(T (prinl (round_2d (error_% (car slist) (car mclist))))))
(princ ” ± ”) (prinl (round_2d (car mc%errlist)))
(def slist (cdr slist))
(def mclist (cdr mclist))
(def mcsdlist (cdr mcsdlist))
(def mc%errlist (cdr mc%errlist))))

(printJ>tmc%err households hlist mcsdl mc%errl)

(defun get_bbtdat (entity)
(do ((my_list entity (cdr my_list)))
((null m y jis t ))
(d$f attribute (car m yjist))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def beat-no attribute))
((= i 2) (def beatgs-id attribute))
((= i 3) (def beat-id attribute))
((= i 4) (def residents attribute))
((= i 5) (def households attribute))
(T (def attribute (cdr entity))))))

; Get the counts from the overlay method in ARC/INFO geographical outcome base

(def arcinfoji (read-data-columns "bbthgob.dat” 1))

(def arcinfo_h (car arcinfoji))

; Print the estimated error % of the overlay method from arcinfoji list of counts 
; and a list of households called h J is t  as well as a list of SDs and % errors of the Monte Carlo method

(printJ)tme%err arcinfoji hlist mcsdl mc%errl)

(def target_zone (read-data-columns "bbth2d.lsp" 6))

(defun get_attributes (entity)
(do ((m yjist entity (cdr m yjist)))
((null m y jis t ))
(def attribute (car m yjist))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def record-id attribute))
((= i 3) (def mcbth attribute))
(T (def attribute (cdr entity))))))

(def i 0)

(get_attributes target_zone)

(def target_zone (read-data-columns "bbtmc.dat" 7))

(def i 0)
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(get_bmc target_zone)
(defun round_2d (n) (/ (round (* n 100)) 100))

; Print results

(defun print_mebt (idlist mclist)
(dotimes (i (length mclist))

(print (car idlist)) (princ ",")
(prinl (car mclist))
(def idlist (cdr idlist))
(def mclist (cdr mclist))))

(print_mcbt beat-id mcbth)
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Appendix 7.4 

Test runs for Monte Carlo simulation

This Appendix presents the log (Section A7.4.1) and the results (Section A7.4.2) of the 

test runs of the Monte Carlo experiments. An Enumeration District (ED) is regarded as 

an elementary zone. A list of EDs was randomly selected. A number of EDs adjacent to 

the selected EDs were then aggregated into the target zone using the ARC/INFO Reselect 

Adjacent command. The Monte Carlo simulation was carried out using these randomly 

aggregated target zones. From a series of the experiments, a normal distribution was 

obtained after 300 runs and the optimal value of k was found to be 10 when the RMSE 

was minimised and yet maintaining a normal distribution of the results.

A7.4.1 Random Selection of elementary zone for aggregation of target zone

XLISP-PLUS version 2.1g
Portions Copyright (c) 1988, by David Betz.
Modified by Thomas Almy and others.
XLISP-STAT 2.1 Release 3.45 (Beta).
Copyright (c) 1989-1994, by Luke Tierney.
Initialization may take a moment.

; Comments are after a semicolon.

; Select a list of EDs for random aggregation

; Technical note: Lisp-Stat could only process up to 4912 elements in a list. For example, for Bristol 
Landsat image, there were 201521 pixels containing 371020 population. In IDRISI, this can be stored as a 
single column ASCII file o f integers. We can use Read-data-columns 1 function to define the city as a list.

(setq Bristol (read-data-columns "outbri.img" 1))

> (length bristol)
1
> (length (cdr bristol))
0
> (length (car bristol))
4912

> (def Bristol (read-data-columns "outbri.img" 1))
BRISTOL
> (length (car bristol))
4912
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; Thus the maximum limit for a list 4912. So a file processing function needd to be used...

; To select and aggregate a number of source zones, theoretically the number of source zones should be a 
fair representation of the whole city and approximately equal to the number of target zones (62?). This 
gives approximately 10-12 elementary units for each zone. At first, it was thought that this can be achieved 
by first randomly generate an Edgs-id. A list of its neighbourhood Eds can be built up by generating 
randomly a number with a random range of 13.

> (defun rand_agg (selected)
(cond ((> (length aggjist) mean_n) aggjist)

(T (setq aggjist (cons selected aggjist)) (rand_agg (+ selected (random mean_n)))))) 
RAND.AGG
> (defun init_agg (n)

(setq mean_n 13)
(setq selected (random n))
(setq aggjist nil))

INIT_AGG
> (init_agg 824)
NIL
> selected 
718
> (rand_agg selected)
(795 791 790 780 771 771 770 759 750 738 736 726 722 718)
>

; This gives a list of 13 EDs:
(795 791 790 780 771 770 759 750 738 736 726 722 718)

; However, this did not work because neighbourhood EDs did not necessarily follow the same order as the 
EDgs-ids. So a random number as a starting point to select an ED and then use the selected ED as a basis to 
create an aggregated zone using ARC/INFO Reselect Adjacent command.

; For 824 EDs, a simple random function can generate a number for selection.

> (random 824)
327

> (setq aggjist \404  403 499 325 326 498 327 328 329 330))
(404 403 499 325 326 498 327 328 329 330)

> (sort-data aggjist)
(325 326 327 328 329 330 403 404 498 499)
>

; Note they are not in sequential order.

; A list of ED-IDs as a basis for aggregation can easily be produced (see Rand J is t function)

> (def r J is t nil)
RJUST
> r J ist  
NIL
> (defiin rand J ist (n)
(setq *random-state* #$(1 #(2147483562 833502228 1548262346 714760118)))
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(dotimes (i n)
(setq rJist (cons (random 824) r_list»»

RANDJLIST
> (rand J ist 10)
NIL
> rjist
(20 247 758 517 602 810 17 536 762 790)
>

; An aggregated zone (zonel) can be saved as a variable in Lisp-Stat using Savevar function.

>(savevar ^onel "zonel")
(ZONE1)

A7.4.2 Test results of the Monte Carlo experiment

The following table shows the target zone, household counts (Po) based on ED, 

household pixel counts based on Landsat (TM), household estimation based on the Monte 

Carlo (MC) method, its the error %, RMSE, SD, and SD-1 (for sampling).

Table A7.1 Test results of the Monte Carlo experiment

zoncEds Po (ED) Po (TM)%crror(TM) Po (MC) %error(MC) RMSE SD SD-1
1 10 3341 3919 -17.30 3874.53 -15.97 590.99 254.19 254.44
2 8 3636 3562 2.0 3916.15 -7.70 331.52 177.26 177.44
3 9 4706 4490 4.59 4764.38 -1.24 200.70 192.02 192.22
4 13 5544.0 5482 1.12 5143.52 +7.22 453.30 212.36 212.57
5 8 2856.0 3350 -17.30 3303.76 -15.68 527.06 278.03 278.31
6 6 3186.0 3096 2.82 3389.52 -6.39 268.47 175.08 175.25
7 7 3835.0 3742 2.44 3474.77 9.39 399.26 172.17 172.35
8 11 5338.0 5515 -3.32 5852.06 -9.63 558.32 217.87 218.09
9 10 6297 5302 15.81 4826.04 23.36 1519.46 380.85 381.23
10 14 7814.0 7295 6.63 7033.94 9.98 855.16 350.43 350.78

zoneEds Po (ED) Po (TM)%crror(TM) Po (MC) %error(MC) RMSE SD SP-l
1 10 3341 3919 -17.30 250 2175.79 34.88 1174.25 145.43 145.72

500 2179.41 34.77 1170.29 142.51 142.65
2 8 3636 3562 2.0 250 4647.28 -27.81 1034.59 218.38 218.82

500 4645.99 -27.77 1032.44 214.15 214.36
3 9 4706 4490 4.59 250 6214.49 -32.05 1531.36 263.65 264.18

500 6204.86 -31.85 1523.04 270.33 270.60
4 13 5544.0 5482 1.12 250 4122.61 25.63 1430.85 164.25 164.58

500 4125.61 25.58 1427.81 163.75 163.91
5 8 2856.0 3350 -17.30 250 1485.22 47.99 1376.43 124.68 124.93

500 1494.42 47.67 1367.43 126.46 126.58
6 6 3186.0 3096 2.82 250 3782.01 -18.71 624.17 185.36 185.73

500 3773.18 -18.43 619.39 197.14 197.34
7 7 3835.0 3742 2.44 250 4909.72 -28.02 1093.62 202.41 202.82

500 4895.27 -27.64 1082.58 218.61 218.83
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8 11 5338.0 5515 -3.32 250 6960.63 -30.40 1643.81 263.04 263.57
500 6963.62 -30.45 1646.31 260.21 260.47

9 10 6297 5302 15.81 250 2267.124 64.00 4033.82 178.24 178.60
500 2266.61 64.00 4034.18 174.75 174.93

10 14 7814.0 7295 6.63 250 4761.888 39.06 3060.01 219.78 220.22
250k 4773.98 38.90 4997.46 3966.47 3974.43

(2 x 250)500 4736.74 39.38 3085.71 228.20 228.42
2x250k 4617.52 40.91 4902.32 3716.90 3720.62
500 4765.07 39.02 6192.15 5389.50 5394.90
250 4934.23 36.85 3121.41 1204.22 1206.63

4917.0 37.07 1

Runs
T 822 371490. 373123 -0.44 101 370132.30 0.365 2171.79 1695.09 1703.54

200 370033.03 0.390 2356.17 1851.70 1856.35
254 370061.81 0.385 2333.55 1845.46 1849.10

zone %errorfTM) Po (ED) runs k Po (MC) %errorCMO RMSE SD SD-1

10 6.63 7814.0 500 +500 7033.94 9.98 855.16 350.43 350.78
500 500 7070.48 9.52 8031.32 7996.83 8004.84
250 250 7083.69 9.35 5930.65 5885.52 5897.33
500 250 6851.55 12.32 5598.54 5515.20 5520.72
250 100 7237.67 7.38 3482.62 3434.59 3441.49
500 100 7211.11 7.72 3414.17 3360.52 3363.89
250 50 7163.32 8.33 2730.45 2651.79 2657.10
500 50 7219.05 7.61 2575.30 2505.63 2508.14
100 25 7120.18 8.88 1900.09 1768.88 1777.79
250 25 7321.18 6.31 1853.55 1786.84 1790.42
500 25 7315.21 6.38 1806.50 1736.28 1738.02
250 10 7235.49 7.40 1229.97 1085.42 1087.60
500 10 7213.46 7.68 1249.05 1095.21 1096.31
250 5 7246.13 7.23 870.73 660.06 661.39
500 5 7218.39 7.62 897.38 671.22 671.89
250 2 7269.26 6.97 644.32 344.10 344.79
500 2 7280.39 6.83 638.57 350.78 351.14

9 15.81 6297 500 +500 4826.04 23.36 1519.46 380.85 381.23
500 500 4946.61 21.44 9344.94 9246.85 9256.12
250 500 4392.06 30.25 9015.11 8811.56 8829.23
250 100 5696.30 9.54 4217.45 4174.45 4182.82
500 100 5798.35 7.92 4321.65 4292.79 4297.09
250 50 5518.94 12.35 3011.43 2909.18 2915.02
500 50 5532.25 12.14 3016.26 2917.70 2920.62
250 25 5685.31 9.71 2068.85 1976.36 1980.32
500 25 5436.87 13.66 2174.26 1996.89 1998.89
250 20 5337.91 15.23 1939.53 1685.80 1689.18
500 20 5356.54 14.93 1970.81 1731.95 1733.69
250 10 5330.84 15.34 1552.80 1215.61 1218.05
500 10 5283.386 16.10 1559.30 1184.91 1186.09

50 20 5341.54 15.17 2171.51 1950.01 1969.81
100 20 5394.73 14.33 2019.97 1807.26 1816.37
150 20 5409.50 14.09 1976.68 1766.25 1772.16
200 20 5354.76 14.96 1963.41 1722.55 1726.87
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250 20 5337.91 15.23 1939.53 1685.80 1689.18
300 20 5365.12 14.80 1954.24 1717.75 1720.62
350 20 5363.00 14.83 1951.97 1714.01 1716.46
400 20 5310.41 15.66 1987.48 1725.32 1727.47
450 20 5324.70 15.44 1970.14 1713.51 1715.42
500 20 5356.54 14.93 1970.81 1731.95 1733.69

10 10 5057.5 19.68 1653.77 1094.80 1154.02
20 10 5345.95 15.10 1515.42 1179.84 1210.49
50 10 5496.78 12.70 1583.28 1366.18 1380.05
100 10 5518.93 12.35 1576.47 1371.09 1378.00
200 10 5354.80 14.96 1574.20 1261.09 1264.26
250 10 5330.84 15.34 1552.80 1215.61 1218.05
300 10 5296.38 15.89 1570.25 1210.14 1212.16
400 10 5273.85 16.25 1579.47 1203.28 1204.79
500 10 5283.386 16.10 1559.30 1184.91 1186.09

zone %eiTor(TM) Po (ED) runs k PofMC) %error(MO RMSE SD SD-1
3 4.59 4706 500 +500 4764.38 -1.24 200.70 192.02 192.22

500 500 4566.02 2.97 4297.46 4295.18 4299.48
250 10 4479.30 4.82 680.34 641.46 642.75
300 10 4486.61 4.66 680.80 644.49 645.57
500 10 4478.41 4.84 643.31 601.71 602.32

4 1.12 5544.0 500 +500 5143.52 +7.22 453.30 212.36 212.57
-> 300 10 5555.12 -0.20 72036 72038 721.48

500 10 5531.066 0.23 685.64 685.52 686.20

(Base on the above results, number of runs 300 and scaling factor 10 were selected 
for Monte Carlo simulation.)
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Appendix 7.5 

Processing the Monte Carlo dasymetric method in XLISP-STAT

This Appendix shows the complete log for the implementation of the Monte Carlo 

dasymetric method for Bristol in the XLISP-STAT environment. Coventry was 

processed first, initially, beat by beat until the file-handling algorithm was developed 

(see Appendix 7.3). The processing represents the following steps:

1. Estimate the household density per ED using the classified imagery.

2. Calibrate the Landsat imagery by comparing its pixel counts with ED census 

counts and estimating the average number of households per pixel for each beat 

(h/p).

3. Perform Monte Carlo simulation to estimate the household counts per beat using 

h/p obtained from Step 2 as a parameter.

XLISP-PLUS version 2.1g
Portions Copyright (c) 1988, by David Betz.
Modified by Thomas Almy and others.
XLISP-STAT 2.1 Release 3.45 (Beta).
Copyright (c) 1989-1994, by Luke Tierney.
Initialization may take a moment.

; Comments are after a semicolon.

; Log files of processing error model for Bristol
; for Coventry, change first letter b into c, e.g. bbt becomes cbt

; 270599.log (Redo 071196)
; Assign pixels within each ED

> ; loading "C:\USERS\LAW\GIS\HO\PROBED.LSP"
(setf f (open "wbrixedl.img"))

#<Input-Stream 5: "c:\users\law\gis\ho\wbrixed 1 .img">
> (proed_go f  825 190920)
NIL
> (length ed_id)
825
> (first ed_id)
(1061 1)
> (second ed_id)
(115 2)
> (last ed_id)
(d  825))
> (third ed_id)
(103 3)
> ed_id
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((1061 1) (115 2) (103 3) (93 4) (64 5) (47 6) (39 7) (84 8) (62 9) (78 10) (69 11) (66 12) (65 13) (63 
14) (94 15) (51 16) (57 17) (41 18) (25 19) (34 20) (61 21) (74 22) (38 23) (43 24) (85 25) (79 26) (46
27) (53 28) (56 29) (90 30) (53 31) (64 32) (26 33) (58 34) (47 35) (71 36) (2 37) (3 38) (1 39) (50 40)
(30 41) (17 42) (0 43) (35 44) (52 45) (74 46) (60 47) (26 48) (210 49) (82 50) (95 51) (191 52) (0 53) 
(65 54) (43 55) (45 56) (51 57) (55 58) (53 59) (81 60) (52 61) (129 62) (75 63) (69 64) (27 65) (69 
66) (65 67) (101 68) (34 69) (60 70) (44 71) (63 72) (91 73) (79 74) (71 75) (40 76) (65 77) (76 78)
(54 79) (65 80) (55 81) (18 82) (82 83) (31 84) (24 85) (66 86) (81 87) (20 88) (91 89) (111 90) (35
91) (62 92) (62 93) (16 94) (32 95) (31 96) (55 97) (70 98) (44 99) (53 100) (38 101) (45 102) (40
103) (70 104) (53 105) (34 106) (76 107) (68 108) (64 109) (16 110) (49 111) (37 112) (156 113) (21 
114) (109 115) (82 116) (55 117) (24 118) (29 119) (53 120) (56 121) (61 122) (32 123) (36 124) (43 
125) (36 126) (83 127) (84 128) (40 129) (69 130) (49 131) (26 132) (87 133) (113 134) (51 135) (68 
136) (112 137) (217 138) (43 139) (40 140) (77 141) (130 142) (50 143) (183 144) (132 145) (81 146) 
(26 147) (29 148) (39 149) (48 150) (24 151) (33 152) (98 153) (66 154) (60 155) (83 156) (54 157)
(85 158) (71 159) (83 160) (64 161) (95 162) (62 163) (29 164) (29 165) (36 166) (29 167) (40 168)
(42 169) (57 170) (28 171) (44 172) (43 173) (45 174) (87 175) (59 176) (94 177) (65 178) (45 179)
(51 180) (14 181) (39 182) (47 183) (26 184) (62 185) (48 186) (80 187) (47 188) (25 189) (63 190)
(47 191) (39 192) (19 193) (29 194) (38 195) (50 196) (36 197) (26 198) (118 199) (29 200) (20 201) 
(77 202) (90 203) (24 204) (46 205) (51 206) (45 207) (39 208) (65 209) (58 210) (57 211) (53 212) (4
213) (29 214) (39 215) (42 216) (11 217) (39 218) (29 219) (48 220) (31 221) (78 222) (57 223) (35
224) (15 225) (37 226) (28 227) (67 228) (64 229) (114 230) (53 231) (28 232) (32 233) (101 234) (80 
235) (67 236) (120 237) (79 238) (62 239) (88 240) (83 241) (36 242) (28 243) (90 244) (17 245) (19 
246) (43 247) (33 248) (33 249) (15 250) (37 251) (43 252) (27 253) (18 254) (34 255) (31 256) (30 
257) (49 258) (5 259) (22 260) (22 261) (14 262) (20 263) (67 264) (72 265) (62 266) (83 267) (36 
268) (3 269) (73 270) (41 271) (49 272) (60 273) (34 274) (138 275) (27 276) (161 277) (63 278) (27 
279) (41 280) (10 281) (36 282) (33 283) (74 284) (21 285) (0 286) (0 287) (8 288) (11 289) (3 290) 
(25 291) (29 292) (26 293) (15 294) (4 295) (45 296) (25 297) (24 298) (11 299) (161 300) (45 301) 
(190 302) (14 303) (26 304) (9 305) (34 306) (18 307) (6 308) (27 309) (39 310) (50 311) (30 312) (27 
313) (31 314) (31 315) (16 316) (44 317) (52 318) (22 319) (46 320) (12 321) (45 322) (27 323) (26 
324) (5 325) (11 326) (31 327) (23 328) (43 329) (6 330) (13 331) (10 332) (17 333) (10 334) (19 335) 
(9 336) (7 337) (156 338) (17 339) (39 340) (2 341) (14 342) (7 343) (41 344) (45 345) (20 346) (7
347) (3 1 348) (42 349) (27 350) (4 1 351) (76 352) (93 353) (28 354) (28 355) (42 356) (36 357) (20
358) (32 359) (23 360) (33 361) (19 362) (12 363) (28 364) (10 365) (20 366) (48 367) (29 368) (23
369) (21 370) (15 371) (23 372) (56 373) (45 374) (30 375) (33 376) (28 377) (38 378) (25 379) (14
380) (8 381) (21 382) (27 383) (8 384) (12 385) (62 386) (45 387) (25 388) (27 389) (38 390) (27 391) 
(28 392) (6 393) (9 394) (23 395) (22 396) (33 397) (24 398) (30 399) (21 400) (35 401) (25 402) (56 
403) (32 404) (25 405) (39 406) (41 407) (7 408) (2 409) (4 410) (0 411) (15 412) (79 413) (77 414) 
(56 415) (15 416) (32 417) (48 418) (29 419) (20 420) (30 421) (25 422) (4 423) (14 424) (7 425) (42 
426) (121 427) (100 428) (30 429) (56 430) (74 431) (36 432) (26 433) (55 434) (21 435) (47 436) (25 
437) (37 438) (27 439) (88 440) (66 441) (14 442) (14 443) (21 444) (28 445) (16 446) (8 447) (12 
448) (27 449) (31 450) (34 451) (19 452) (23 453) (39 454) (23 455) (26 456) (8 457) (36 458) (20 
459) (8 460) (26 461) (14 462) (14 463) (22 464) (25 465) (23 466) (29 467) (36 468) (22 469) (39 
470) (41 471) (12 472) (18 473) (15 474) (12 475) (18 476) (21 477) (25 478) (23 479) (22 480) (22
481) (21 482) (18 483) (30 484) (36 485) (40 486) (29 487) (24 488) (24 489) (28 490) (10 491) (25
492) (6 493) (27 494) (22 495) (25 496) (15 497) (4 498) (11 499) (6 500) (21 501) (20 502) (24 503) 
(11 504) (7 505) (35 506) (3 507) (46 508) (52 509) (19 510) (25 511) (34 512) (50 513) (18 514) (22 
515) (14 516) (22 517) (18 518) (26 519) (33 520) (15 521) (11 522) (4 523) (5 524) (41 525) (17 526) 
(21 527) (51 528) (56 529) (3 530) (48 531) (32 532) (23 533) (49 534) (74 535) (19 536) (65 537) (75 
538) (50 539) (72 540) (13 541) (49 542) (17 543) (44 544) (7 545) (5 546) (9 547) (12 548) (11 549) 
(20 550) (74 551) (29 552) (40 553) (44 554) (65 555) (53 556) (51 557) (52 558) (41 559) (54 560) 
(56 561) (32 562) (52 563) (36 564) (1 565) (0 566) (33 567) (6 568) (43 569) (66 570) (61 571) (78 
572) (62 573) (56 574) (62 575) (35 576) (29 577) (34 578) (3 579) (25 580) (15 581) (20 582) (17 
583) (10 584) (26 585) (0 586) (42 587) (34 588) (12 589) (6 590) (11 591) (20 592) (12 593) (23 594) 
(26 595) (37 596) (15 597) (28 598) (12 599) (31 600) (8 601) (7 602) (94 603) (60 604) (29 605) (24 
606) (18 607) (94 608) (24 609) (38 610) (36 611) (16 612) (20 613) (22 614) (13 615) (38 616) (83 
617) (46 618) (75 619) (46 620) (62 621) (15 622) (43 623) (58 624) (9 625) (68 626) (27 627) (42 
628) (27 629) (48 630) (21 631) (55 632) (27 633) (31 634) (97 635) (50 636) (51 637) (57 638) (37 
639) (26 640) (40 641) (31 642) (18 643) (30 644) (19 645) (19 646) (15 647) (11 648) (26 649) (9 
650) (23 651) (15 652) (11 653) (21 654) (32 655) (20 656) (7 657) (18 658) (35 659) (72 660) (55 
661) (54 662) (55 663) (98 664) (60 665) (22 666) (59 667) (48 668) (6 669) (9 670) (42 671) (3 672)
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(12 673) (1 674) (27 675) (27 676) (30 677) (36 678) (36 679) (38 680) (43 681) (76 682) (58 683) (41 
684) (30 685) (35 686) (97 687) (44 688) (67 689) (24 690) (28 691) (17 692) (17 693) (31 694) (31 
695) (54 696) (29 697) (37 698) (34 699) (51 700) (61 701) (37 702) (13 703) (5 704) (62 705) (140 
706) (74 707) (74 708) (107 709) (73 710) (168 711) (39 712) (24 713) (130 714) (35 715) (40 716) 
(61 717) (60 718) (52 719) (42 720) (62 721) (53 722) (66 723) (58 724) (47 725) (23 726) (70 727) 
(94 728) (57 729) (74 730) (50 731) (47 732) (54 733) (49 734) (40 735) (57 736) (40 737) (49 738) 
(57 739) (103 740) (42 741) (45 742) (50 743) (16 744) (52 745) (51 746) (68 747) (37 748) (57 749) 
(51 750) (58 751) (36 752) (77 753) (57 754) (53 755) (55 756) (25 757) (57 758) (48 759) (3 760) (28 
761) (44 762) (24 763) (54 764) (57 765) (8 766) (68 767) (131 768) (42 769) (124 770) (23 771) (25 
772) (12 773) (18 774) (56 775) (30 776) (44 777) (10 778) (51 779) (27 780) (39 781) (26 782) (59 
783) (12 784) (16 785) (8 786) (18 787) (9 788) (110 789) (22 790) (25 791) (22 792) (45 793) (1 794) 
(0 795) (0 796) (0 797) (25 798) (0 799) (0 800) (6 801) (0 802) (0 803) (16 804) (0 805) (56 806) (54 
807) (44 808) (23 809) (2 810) (5 811) (3 812) (45 813) (53 814) (33 815) (40 816) (11 817) (0 818) 
(20 819) (5 820) (0 821) (0 822) (30 823) (9 824) (1 825))
>
; The above was named as bed_plist and saved as BEDPLIST.LSP, that is, a list of 
ED and pixels pairs.

; 261196.log
>; loading "C:\USERS\LAWGIS\HO\BEDPLIST.LSP"
(length bed_plist)
825
> (def source_zones (read-data-columns "bedbeat.out" 13))
SOURCE.ZONES
; there were 13 items from ARC/INFO but only the first 8 are of interest for this case study.
> (defun get_gob (entity)

(do ((m yjist entity (cdr m yjist)))
((null m y j is t ) )
(def attribute (car m yjist))
(def i (+ i 1))
(cond ((null entity) nil)

((= i 1) (def ed-id attribute))
((= i 2) (def edgs-id attribute))
((= i 3) (def beatgs-id attribute))
((= i 4) (def beat-id attribute))
((= i 5) (def superbt-id attribute))
((= i 6) (def ward-id attribute))
((= i 7) (def residents attribute))
((= i 8) (def households attribute))
(T (def attribute (cdr entity))))))

GET.GOB

> (setq i 0)
0
> (get_gob source_zones)
NIL
> (length households)
821
> (length edgs-id)
821
; source zone has 4 EDs missing due to the overlay method.

> ; loading " C:\USERS\LAW\GIS\HO\PROBBT.LSP”
(init_pre_beat_go)

FOUND.VALUE
> FOUNDJV ALUE 
NIL

276



Appendix 7.5

; 081296.log

; Creat LUT of id : household counts with 1 to many relationship

(defun create_lut (listl list2)
(dolist (i listl)

(def lut (cons (list i (car list2)) lut))
(def list2 (cdr list2))»

(def lut nil)
(create_LUT beatgs-id households)

> (defun create_index_list (n)
(def listi nil)
(dotimes (i n)

(def j (+ 1 i))
(def listi (cons (list j 0) listi))))

CREATEJNDEXJLIST
> (create_index_list 63)
NIL
> (length listi)
63
> (first listi)
(63 0)
> (last listi)
((1 0))
>
(defun get_value_ffom_lut (index_list data_list)

(dolist (i indexjist)
(match_fill_value_list i data_list)))

> (defun match_fill_value_list (index_value data_list)
(dolist (record data_list)
(cond ((= (car index_value) (car record)) (def (second index_value) (+ (second index_value) 

(second record))))
(T nil))))

MATCH_FELL_VALUE_LIST
> (first listi)
( 10)
> (last listi)
((63 0))
> (get_value_from_lut listi lut)
NIL
> (first listi)
(1 870.0)
> (last listi)
((63 3359.0))
> (second listi)
(2 5830.0)
> listi
((1 870.0) (2 5830.0) (3 635.0) (4 2077.0) (5 2288.0) (6 2654.0) (7 3680.0) (8 3508.0) (9 1910.0) (10
3297.0) (11 2108.0) (12 2866.0) (13 2674.0) (14 2173.0) (15 1772.0) (16 1438.0) (17 1078.0) (18
1290.0) (19 1439.0) (20 1538.0) (21 1877.0) (22 2519.0) (23 1684.0) (24 851.0) (25 2173.0) (26
1478.0) (27 2207.0) (28 0) (29 271.0) (30 2352.0) (31 727.0) (32 0) (33 164.0) (34 0) (35 0) (36 1545.0) 
(37 923.0) (38 3014.0) (39 1881.0) (40 4541.0) (41 6295.0) (42 3594.0) (43 10183.0) (44 154.0) (45
3782.0) (46 4269.0) (47 4447.0) (48 3980.0) (49 2890.0) (50 3215.0) (51 2615.0) (52 3813.0) (53
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1779.0) (54 1997.0) (55 1865.0) (56 2616.0) (57 2794.0) (58 4014.0) (59 261.0) (60 3683.0) (61
4216.0) (62 6269.0) (63 3359.0))
>
(setq b_hh listi) 

b_hh
((1 870.0) (2 5830.0) (3 635.0) (4 2077.0) (5 2288.0) (6 2654.0) (7 3680.0) (8 3508.0) (9 1910.0) (10
3297.0) (11 2108.0) (12 2866.0) (13 2674.0) (14 2173.0) (15 1772.0) (16 1438.0) (17 1078.0) (18
1290.0) (19 1439.0) (20 1538.0) (21 1877.0) (22 2519.0) (23 1684.0) (24 851.0) (25 2173.0) (26
1478.0) (27 2207.0) (28 0) (29 271.0) (30 2352.0) (31 727.0) (32 0) (33 164.0) (34 0) (35 0) (36 1545.0) 
(37 923.0) (38 3014.0) (39 1881.0) (404541.0) (41 6295.0) (42 3594.0) (43 10183.0) (44 154.0) (45
3782.0) (46 4269.0) (47 4447.0) (48 3980.0) (49 2890.0) (50 3215.0) (51 2615.0) (52 3813.0) (53
1779.0) (54 1997.0) (55 1865.0) (56 2616.0) (57 2794.0) (58 4014.0) (59 261.0) (60 3683.0) (61
4216.0) (62 6269.0) (63 3359.0))
>
> (savevar b_hh "bbt_hh")

; Similarly for residents

> (create_index_list 63)
NIL
> listi
((63 0) (62 0) (61 0) (60 0) (59 0) (58 0) (57 0) (56 0) (55 0) (54 0) (53 0) (52 0) (51 0) (50 0) (49 0) (48 
0) (47 0) (46 0) (45 0) (44 0) (43 0) (42 0) (41 0) (40 0) (39 0) (38 0) (37 0) (36 0) (35 0) (34 0) (33 0) 
(32 0) (31 0) (30 0) (29 0) (28 0) (27 0) (26 0) (25 0) (24 0) (23 0) (22 0) (21 0) (20 0) (19 0) (18 0) (17 
0) (16 0) (15 0) (14 0) (13 0) (12 0) (11 0) (10 0) (9 0) (8 0) (7 0) (6 0) (5 0) (4 0) (3 0) (2 0) (1 0))
> (def lut nil)
LUT
> lut 
NIL
> (create_LUT beatgs-id residents)
NIL
> (first lut)
(61 603.0)
> (last lut)
((59 722.0))

> (get_value_from_lut listi lut)
NIL
> (savevar b_hh "bbtjih")
(B_HH)
> (first listi)
(63 8640.0)
> (last listi)
((1 2239.0))
> listi
((63 8640.0) (62 16967.0) (61 10993.0) (60 9562.0) (59 722.0) (58 10169.0) (57 6598.0) (56 7076.0)
(55 4565.0) (54 4672.0) (53 3906.0) (52 9039.0) (51 6146.0) (50 7455.0) (49 6522.0) (48 10193.0) (47
10481.0) (46 10132.0) (45 7835.0) (44 313.0) (43 25358.0) (42 8191.0) (41 17679.0) (40 10554.0) (39
4466.0) (38 6535.0) (37 1505.0) (36 3364.0) (35 0) (34 0) (33 338.0) (32 0) (31 1423.0) (30 4715.0) (29
479.0) (28 0) (27 4053.0) (26 3008.0) (25 4269.0) (24 1910.0) (23 3291.0) (22 5227.0) (21 3568.0) (20
3375.0) (19 3382.0) (18 2987.0) (17 2671.0) (16 3449.0) (15 4320.0) (14 5020.0) (13 6291.0) (12
6832.0) (11 4814.0) (10 8265.0) (9 5256.0) (8 8827.0) (7 8684.0) (6 6813.0) (5 5741.0) (4 4845.0) (3
1543.0) (2 14146.0) (1 2239.0))

> (setq bbt_r listi)
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> (savevar bbt_r "bbt_r")
(BBT_R)
>

; To make zone residents hh r/hh p hh/p r/p table...

> (defun make_pair_list (listl list2)
(def pairjist nil)
(dolist (i listl)

(def pairjist (cons (list i (car list2)) pairjist))
(def list2 (cdr list2))))

MAKE_PAIR_LIST
> (make_pair_list beatgs-id edgs-id)
NIL
> (length pairjist)
821
> (first pairjist)
(61 803)
> (last pairjist)
((59 797))

>; loading "C:\HO\PHD\BEDPLIST.LSP"
(length bed_plist)
825
>
> (create Jndex J ist 63)
NIL
> listi
((63 0) (62 0) (61 0) (60 0) (59 0) (58 0) (57 0) (56 0) (55 0) (54 0) (53 0) (52 0) (51 0) (50 0) (49 0) (48 
0) (47 0) (46 0) (45 0) (44 0) (43 0) (42 0) (41 0) (40 0) (39 0) (38 0) (37 0) (36 0) (35 0) (34 0) (33 0) 
(32 0) (31 0) (30 0) (29 0) (28 0) (27 0) (26 0) (25 0) (24 0) (23 0) (22 0) (21 0) (20 0) (19 0) (18 0) (17 
0) (16 0) (15 0) (14 0) (13 0) (12 0) (11 0) (10 0) (9 0) (8 0) (7 0) (6 0) (5 0) (4 0) (3 0) (2 0) (1 0))

> (defun makejist3 (listl list2)
(def list3 nil)
(dolist (i listl)

(match_cons i list2)))
MAKE_LIST3
> (defun match_cons (id_pair list2)

(dolist (i list2)
(cond ((= (second id_pair) (second i)) (def list3 (cons (cons (first id_pair) i) list3)))

(T nil))))
MATCH.CONS
>
> (makeJist3 pairjist bed_plist)

> (last pairjist)
((59 797))
> (last list3)
((61 0 803))
> (tenth list3)
(2 41 18)
> (def bbt_ped list3)
BBTJPED
> (length bbt_ped)
821
> (savevar bbt_ped "bbt_ped")
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(BBT_PED)
>

> (defun makejistv (n listl)
(def listv nil)
(dotimes (i n)

(def j (+ 1 i))
(def v 0)
(dolist (k listl)

(cond ((= j (car k)) (def v (+ v (second k))))
(T nil)))

(def listv (cons (list j v) listv))))
MAKE.LISTV
> (makejistv 63 bbt_ped)
NIL
> (length listv)
63
> (first listv)
(63 859)
> (second listv)
(62 576)
> (last listv)
((1 1346))
> (first bbt_ped)
(59 0 797)
> listv
((63 859) (62 576) (61 492) (60 489) (59 0) (58 863) (57 849) (56 587) (55 544) (54 459) (53 174) (52 
452) (51 649) (50 1186) (49 865) (48 1129) (47 1002) (46 974) (45 421) (44 92) (43 2463) (42 599) (41 
1184) (40 1033) (39 241) (38 312) (37 49) (36 191) (35 0) (34 0) (33 73) (32 0) (31 106) (30 468) (29 
50) (28 0) (27 296) (26 230) (25 399) (24 171) (23 276) (22 487) (21 251) (20 161) (19 252) (18 251) 
(17 263) (16 311) (15 471) (14 451) (13 744) (12 520) (11 694) (10 684) (9 465) (8 1533) (7 1343) (6 
847) (5 751) (4 488) (3 168) (2 1555) (1 1346))
>
> (def bbt_plist listv)
BBT.PLIST
> (savevar ,bbt_plist "bbt_plist")
(BBT_PLIST)
>
> bbt_r
((63 8640.0) (62 16967.0) (61 10993.0) (60 9562.0) (59 722.0) (58 10169.0) (57 6598.0) (56 7076.0)
(55 4565.0) (54 4672.0) (53 3906.0) (52 9039.0) (51 6146.0) (50 7455.0) (49 6522.0) (48 10193.0) (47
10481.0) (46 10132.0) (45 7835.0) (44 313.0) (43 25358.0) (42 8191.0) (41 17679.0) (40 10554.0) (39
4466.0) (38 6535.0) (37 1505.0) (36 3364.0) (35 0) (34 0) (33 338.0) (32 0) (31 1423.0) (30 4715.0) (29
479.0) (28 0) (27 4053.0) (26 3008.0) (25 4269.0) (24 1910.0) (23 3291.0) (22 5227.0) (21 3568.0) (20
3375.0) (19 3382.0) (18 2987.0) (17 2671.0) (16 3449.0) (15 4320.0) (14 5020.0) (13 6291.0) (12
6832.0) (11 4814.0) (10 8265.0) (9 5256.0) (8 8827.0) (7 8684.0) (6 6813.0) (5 5741.0) (4 4845.0) (3
1543.0) (2 14146.0) (1 2239.0))
> bbtjih
Error: The variable BBT_HH is unbound.
> b_hh
((1 870.0) (2 5830.0) (3 635.0) (4 2077.0) (5 2288.0) (6 2654.0) (7 3680.0) (8 3508.0) (9 1910.0) (10
3297.0) (11 2108.0) (12 2866.0) (13 2674.0) (14 2173.0) (15 1772.0) (16 1438.0) (17 1078.0) (18
1290.0) (19 1439.0) (20 1538.0) (21 1877.0) (22 2519.0) (23 1684.0) (24 851.0) (25 2173.0) (26
1478.0) (27 2207.0) (28 0) (29 271.0) (30 2352.0) (31 727.0) (32 0) (33 164.0) (34 0) (35 0) (36 1545.0) 
(37 923.0) (38 3014.0) (39 1881.0) (40 4541.0) (41 6295.0) (42 3594.0) (43 10183.0) (44 154.0) (45
3782.0) (46 4269.0) (47 4447.0) (48 3980.0) (49 2890.0) (50 3215.0) (51 2615.0) (52 3813.0) (53
1779.0) (54 1997.0) (55 1865.0) (56 2616.0) (57 2794.0) (58 4014.0) (59 261.0) (60 3683.0) (61
4216.0) (62 6269.0) (63 3359.0))
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> (def bbt_hh b_hh)
BBT.HH
> bbt_plist
((63 859) (62 576) (61 492) (60 489) (59 0) (58 863) (57 849) (56 587) (55 544) (54 459) (53 174) (52 
452) (51 649) (50 1186) (49 865) (48 1129) (47 1002) (46 974) (45 421) (44 92) (43 2463) (42 599) (41 
1184) (40 1033) (39 241) (38 312) (37 49) (36 191) (35 0) (34 0) (33 73) (32 0) (31 106) (30 468) (29 
50) (28 0) (27 296) (26 230) (25 399) (24 171) (23 276) (22 487) (21 251) (20 161) (19 252) (18 251) 
(17 263) (16 311) (15 471) (14 451) (13 744) (12 520) (11 694) (10 684) (9 465) (8 1533) (7 1343) (6 
847) (5 751) (4 488) (3 168) (2 1555) (1 1346))
> (def bbt_r (reverse bbt_r))
BBT_R
> (def bbt_plist (reverse bbt_plist))
BBT_PLIST

> (defun my_21 (v)
(second (car v)))

> (defun my_print (listl list2 list3)
(dotimes (i (length listl))

(def j (+ 1 i))
(print j) (princ ",")
(prinl (my_21 listl)) (princ ",")
(prinl (my_21 list2)) (princ V )
(print_ratio listl list2)

(prinl (my_21 list3)) (princ ",")
(print_ratio list2 list3)
(print_ratio listl list3)
(def listl (cdr listl))
(def list2 (cdr list2))
(def list3 (cdr list3))))

MY.PRINT
>
> (defun print_ratio (listl list2)

(cond ((= (my_21 list2) 0) (prinl 0))
(T (prinl (/ (my_21 listl) (my_21 list2))) (princ ","))))

PRINT_RATIO

> (my_print bbt_r bbt_hh bbt_plist)

1.2239.0.870.0.2.57 , 1346,0.65 , 1.66 ,
2 ,14146.0,5830.0,2.43 , 1555,3.75 , 9.1 ,
3 ,1543.0,635.0,2.43 , 168,3.78 , 9.18 ,
4 ,4845.0,2077.0,2.33 , 488,4.26 , 9.93 ,
5 ,5741.0,2288.0,2.51 , 751,3.05 , 7.64 ,
6 ,6813.0,2654.0,2.57 , 847,3.13 , 8.04 ,
7 ,8684.0,3680.0,2.36 , 1343,2.74 , 6.47 ,
8 ,8827.0,3508.0,2.52 ,1533,2 .29,5 .76 ,
9 ,5256.0,1910.0,2.75 , 465,4.11 ,11.3 ,
10.8265.0.3297.0.2.51 , 684,4.82 ,12.08 ,
11 ,4814.0,2108.0,2.28 , 694,3.04 , 6.94 ,
12 ,6832.0,2866.0,2.38 , 520,5.51 ,13.14 ,
13 ,6291.0,2674.0,2.35 , 744,3.59 , 8.46,
14 ,5020.0,2173.0,2.31 ,451,4.82 , 11.13 ,
15 ,4320.0,1772.0,2.44 , 471,3.76 ,9.17 ,
16 ,3449.0,1438.0,2.4 , 311,4.62 , 11.09 ,
17 ,2671.0,1078.0,2.48 , 263,4.1 ,10.16 ,
18 ,2987.0,1290.0,2.32 , 251,5.14 ,11.9 ,
19 ,3382.0,1439.0,2.35 , 252,5.71,13.42 ,
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20.3375.0.1538.0.2.19 , 161,9.55 ,20.96 ,
21.3568.0.1877.0.1.9 , 251,7.48 , 14.22 ,
22 $221.02519.0,2.08 ,487,5.17 ,10.73 ,
23 3291.0,1684.0,1.95 , 276,6.1, 11.92 ,
24.1910.0.851.0.2-24 , 171,4.98 , 11.17 ,
25 ,4269.0,2173.0,1.96 , 3993-45 ,10.7 ,
26.3008.0.1478.0.2.04 , 230,6.43 , 13.08 ,
27 ,4053.03207.0,1.84 , 296,7.46 , 13.69 ,
28.0.0.00.00
29.479.0.271.0.1.77 , 50,5.42 , 9.58 ,
30.4715.0.2352.0.2 , 4683-03 , 10.07 ,
31.1423.0.727.0.1.96 , 106,6.86 , 13.42 ,
32.0.0.00.00
33 ,338.0,164.03-06 , 73,2.25 , 4.63 ,
34.0.0.00.00
35.0.0.00.00
36.3364.0.1545.0.2.18 ,191,8.09 , 17.61 ,
37 ,1505.0,923.0,1.63 , 49,18.84 , 30.71 ,
38 ,6535.0,3014.0,2.17 , 312,9.66 , 20.95 ,
39.4466.0.1881.0.2.37 , 241,7.8 , 18.53 ,
40.10554.0.4541.0.2.32 , 1033,4.4 , 10.22 ,
41.17679.0.6295.0.2.81 ,1184,5.32 , 14.93 ,
42.8191.0.3594.0.2.28 , 599,6 , 13.67 ,
43 ,25358.0,10183.0,2.49 , 2463,4.13 , 10.3 ,
44.313.0.154.0.2.03 ,92,1.67 , 3.4 ,
45 ,7835.0,3782.0,2.07 ,421,8.98 , 18.61 ,
46.10132.0.4269.0.2.37 , 974,4.38 , 10.4 ,
47 ,10481.0,4447.0,2.36 , 1002,4.44 ,10.46 ,
48 ,10193.0,3980.0,2.56 , 1129,3.53 , 9.03 ,
49.6522.0.2890.0.2.26 , 865,3.34 , 7.54 ,
50.7455.0.3215.0.2.32 , 1186,2.71 , 6.29 ,
51.6146.0.2615.0.2.35 , 649,4.03 , 9.47 ,
52.9039.0.3813.0.2.37 , 452,8.44 , 20 ,
53 ,3906.0,1779.0,2.2 , 174,10.22 , 22.45 ,
54.4672.0.1997.0.2.34 , 459,4.35 , 10.18 ,
55 ,4565.0,1865.0,2.45 , 544,3.43 , 8.39 ,
56.7076.0.2616.0.2.7 , 587,4.46 , 12.05 ,
57 ,6598.0,2794.0,2.36 , 849,3.29 , 7.77 ,
58 ,10169.0,4014.0,2.53 , 863,4.65 , 11.78 ,
59 ,722.0,261.0,2.77 , 0,00
60.9562.0.3683.0.2.6 , 489,7.53 , 19.55 ,
61.10993.0.4216.0.2.61 ,492,8.57 , 22.34 ,
62.16967.0.6269.0.2.71 , 576,10.88 , 29.46 ,
63 ,8640.0,3359.0,2.57 , 859,3.91 , 10.06 ,
NIL
>
; Calibration of Landsat image completed 

; 091296.log

> (def bbt_r ’((63 8640.0) (62 16967.0) (61 10993.0) (60 9562.0) (59 722.0) (58 10169.0) (57 6598.0) 
(56 7076.0) (55 4565.0) (54 4672.0) (53 3906.0) (52 9039.0) (51 6146.0) (50 7455.0) (49 6522.0) (48
10193.0) (47 10481.0) (46 10132.0) (45 7835.0) (44 313.0) (43 25358.0) (42 8191.0) (41 17679.0) (40
10554.0) (39 4466.0) (38 6535.0) (37 1505.0) (36 3364.0) (35 0) (34 0) (33 338.0) (32 0) (31 1423.0) 
(30 4715.0) (29 479.0) (28 0) (27 4053.0) (26 3008.0) (25 4269.0) (24 1910.0) (23 3291.0) (22 5227.0) 
(21 3568.0) (20 3375.0) (19 3382.0) (18 2987.0) (17 2671.0) (16 3449.0) (15 4320.0) (14 5020.0) (13
6291.0) (12 6832.0) (11 4814.0) (10 8265.0) (9 5256.0) (8 8827.0) (7 8684.0) (6 6813.0) (5 5741.0) (4
4845.0) (3 1543.0) (2 14146.0) (1 2239.0)))
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BBT_R
> (length bbt_r)
63
> (def bbt.hh ’((1 870.0) (2 5830.0) (3 635.0) (4 2077.0) (5 2288.0) (6 2654.0) (7 3680.0) (8 3508.0) (9
1910.0) (10 3297.0) (11 2108.0) (12 2866.0) (13 2674.0) (14 2173.0) (15 1772.0) (16 1438.0) (17
1078.0) (18 1290.0) (19 1439.0) (20 1538.0) (21 1877.0) (22 2519.0) (23 1684.0) (24 851.0) (25
2173.0) (26 1478.0) (27 2207.0) (28 0) (29 271.0) (30 2352.0) (31 727.0) (32 0) (33 164.0) (34 0) (35 0) 
(36 1545.0) (37 923.0) (38 3014.0) (39 1881.0) (40 4541.0) (41 6295.0) (42 3594.0) (43 10183.0) (44
154.0) (45 3782.0) (46 4269.0) (47 4447.0) (48 3980.0) (49 2890.0) (50 3215.0) (51 2615.0) (52
3813.0) (53 1779.0) (54 1997.0) (55 1865.0) (56 2616.0) (57 2794.0) (58 4014.0) (59 261.0) (60
3683.0) (61 4216.0) (62 6269.0) (63 3359.0)))
BBT_HH
> (length bbt_hh)
63
> (def bbt_plist ’((63 859) (62 576) (61 492) (60 489) (59 0) (58 863) (57 849) (56 587) (55 544) (54 
459) (53 174) (52 452) (51 649) (50 1186) (49 865) (48 1129) (47 1002) (46 974) (45 421) (44 92) (43 
2463) (42 599) (41 1184) (40 1033) (39 241) (38 312) (37 49) (36 191) (35 0) (34 0) (33 73) (32 0) (31 
106) (30 468) (29 50) (28 0) (27 296) (26 230) (25 399) (24 171) (23 276) (22 487) (21 251) (20 161) 
(19 252) (18 251) (17 263) (16 311) (15 471) (14 451) (13 744) (12 520) (11 694) (10 684) (9 465) (8 
1533) (7 1343) (6 847) (5 751) (4 488) (3 168) (2 1555) (1 1346)))
BBT_PLIST
> (length bbt_plist)
63

; 121296.log from probtf.log

; Carry out Monte Carlo simulation Bristol Beat

>; loading "C:\HO\PHD\FPRO.LSP"
(setf f  (open "wbbtxOl.img"))
#<Input-Stream 5:"c:\idrisi\data\wbbtx01 .img">
> (list_batch pn_list f  4030)

’Please wait.." Saving this list into file "bbtlf'
P lease wait.." Saving this list into file "bbt2f'

Please wait..” Saving this list into file "bbt39f'

> (close f)
T
>; loading "C:\HO\PHD\MONTEICLSP"

; also load MCBH.LSP

> (def bbt (read-data-file "wbbtxOl.img"))
BBT
> (length bbt)
160460
>
> (max bbt)
56

(monte_go 300 pnjist 10)

> (savevar ’new_list "bbthid")
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(NEWJJST)
> (histogram (car new_list»
#<Object: 228004122, prototype = fflSTOGRAM-PROTO>

Appendix 7.5

30 40 50 60 70 80

; A normal distribution was obtained after 300 runs.

; Statistical note. Since here one is sampling from a list of numbers with only two possible outcomes: 
0 or 1, it is equivalent to the so-called independent Bernoulli trials (e.g. the coin-tossing experiment). 
The corresponding probability density function (pdf) is:

and
P{x=0}= p 

P{x=l} = q = 1 - p

where 0 < q < 1

Assume the case of n numbers in the list (Bernoulli trials from the pixels of the Landsat image) each 
with an equal and independent chance (P=l/n) where n is specified in advanced from the stratified 
random sample. The probability of a particular combination of outcomes with k zero values and (n-k) 
counts is

k n - k
p q » 0 < k < n

(For k = 1, i.e. the probability that the first number is zero and the remaining numbers are non-zero is
pq )

In this case all the distinct combinations having k zeros (regardless of their order of occurrence in the 
list) are:

(A 7.5.1 )
k\(n-k)\
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According to the addition law o f probability,

p { x  =  k}  =
r  n \

\ K J

_ k „ n - k
P <1 (A7.5. 2)

k = 0, 1, 2 , n

This is the binomial distribution with parameters n and p. It satisfies the conditions for pdf, since 

P{x=k} > 0 , Vk = 0 ,1 ,2  n

2>(*=*}=X
i-0 *«0

_  k  n —k
P <7 (A7.5. 3)

\ * /
= (p + q )"= l

So theoretically, the distribution from the stratified random sampling should be binomial. However 
given a fixed p, n —» <» infinity (or very large, in this case n= 300), the binomial distribution 
approximates the normal distribution (Taha, 1982):

k*a
- k  n - k
\P <1 J{a-n-M 2) (A7.5. 4)

where p. = np and <7 — ijn p q

As n —> oo, p and p. —> 0; and
Since P = pq = 1/n, a  = 1. This satisfies the conditions for the standard normal pdf:

0(z) =
1 e 1 /2  , -oo < z  < oo (A 7 .5 .5)

with its parameters given by p. = 0 and a  = 1. The corresponding cumulative density function is given 
by:

r z ,2dz (A 7 .5 .6)
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; Re-do 10/12/1996
>; loading "C:\HO\PHD\MONTEK.LSP" 

; also load MCBH.LSP

> (monte_gol)
(monte_gol)
(monte_go 298 pn_list 10)

> (length newjist)
63
> (length (car newjist))
301
> (savevar ’new jist "bbthid")
(NEWJLISD

20 He 60 86

> (histogram (car newjist))
#<Object: 234329114, prototype = fflSTOGRAM-PROTO>

£ = .

26 36 H0 56 66

> (histogram (tenth newjist))
#<Object: 233301690, prototype = HISTOGRAM-PROTO>

166

76
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e se 1 ee 1 se
> (histogram (last new_list))
#<Object: 233795738, prototype = fflSTOGRAM-PROTO>

; 121296.1og
; Assessing Monte Carlo accuracy

(def _hID X(0 1) (0 2) (0 3) (0 4) (0 5) (0 6) (0 7) (0 8) (0 9) (0 10) (0 11) (0 12)
(0 13) (0 14) (0 15) (0 16) (0 17) (0 18) (0 19) (0 20) (0 21) (0 22) (0 23) (0 24) (0 25) (0 26)
(0 27) (0 28) (0 29) (0 30) (0 31) (0 32) (0 33) (0 34) (0 35) (0 36) (0 37) (0 38) (0 39) (0 40)
(0 41) (0 42) (0 43) (0 44) (0 45) (0 46) (0 47) (0 48) (0 49) (0 50) (051) (0 52) (0 53) (0 54)
(0 55) (0 56) (0 57) (0 58) (0 59) (0 60) (0 61) (0 62) (0 63)))
J f lD
> (defun init_fill (id_list)

(dolist (index id jist)
(def (first index) 0)))

INIT_FILL
> (defim match_cons (listl i)

(dolist (v listl)
(cond ((= (car (last i)) (car (last v))) (def new jist (cons (cons (car i) v) newjist))) 

a  NIL))))
MATCH.CONS
> (defun cons.valuejntojist (listl list2)

(dolist (h list2)
(match_cons listl h)))

CONS.VALUEJNTOJJST
> (defun assignh (m yJist idjist)

(dolist (p my Jist)
(cond ((= p 0) NIL)

(T (matchJill id jist p)))))
ASSIGNH
> (defun match J i l l  (id jist p)

(dolist (index idjist)
(cond ((= p (car (last index))) (def (first index) (+ 1 (first index))))

(TNIL))))
MATCH JTLL
> (def pnJist ’("bbtlf' "bbt2f "bbt3f "bbt4f Mbbt5f' "bbt6f ,,bbt7f' Mbbt8f ”bbt9f' "bbtlOf 
" b b tllf ”bbtl2f’ ”bbtl3f' Hbbtl4f' ”b b tl5 f Mb b tl6 f Mbbtl7r "bbtl8f' "bbtl9f' "bbt20f’ 
"bbt21f' "bbt22f ”bbt23f' "bbt24f "bbt25f’ "bbt26f ”bbt27f' "bbt28f’ ,,bbt29f' "bbt30f 
"bbt31f' "bbt32f "bbt33f ”bbt34f' "bbt35f "bbt36r ”bbt37f’ "bbt38f ,,bbt39f’))
PN_LIST
> (def J iid l X(l) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)
(27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40)
(41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54)
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(55) (56) (57) (58) (59) (60) (61) (62) (63)))
_HDD1
> (defun assignh_file_batch (file_list id_list)

(dolist (file_name file_list)
(load file_name)
(assignh p_list idjist)))

ASSIGNH JFILE.BATCH
> ; loading "C:\USERS\LAW\GIS\HO\DATA\OK.LSP"
; a simple flag to indicate the programs run in the correct data directory 
H O JS.O K

(assignh_file_batch pnjist JiED)
; loading "bbtlf.lsp”
; loading "bbt2f.lsp"
; loading "bbt3f.lsp"
; loading Mbbt4f.lsp”
; loading "bbt5f.lsp"
; loading "bbt6f.lsp"
; loading "bbt7f.lsp"
; loading "bbt8f.lsp"
; loading "bbt9f.lsp"
; loading "bbtlOf.lsp”
; loading "bbtl lf.lsp"
; loading ’’bbtl2f.lsp"
; loading "bbtl3f.lsp"
; loading "bbtl4f.lsp"
; loading "bbtl5f.lsp"
; loading "bbtl6f.lsp"
; loading ”bbtl7f.lsp"
; loading "bbtl8f.lsp"
; loading "bbtl9f.lsp"
; loading "bbt20f.lsp"
; loading "bbt2lf.lsp"
; loading "bbt22f.lsp"
; loading "bbt23f.lsp"
; loading "bbt24f.lsp"
; loading ”bbt25f.lsp"
; loading "bbt26f.lsp"
; loading "bbt27f.lsp"
; loading "bbt28f.lsp"
; loading "bbt29f.lsp"
; loading "bbt30f.lsp"
; loading "bbt3lf.lsp"
; loading "bbt32f.lsp"
; loading "bbt33f.lsp"
; loading "bbt34f.lsp"
; loading "bbt35f.isp"
; loading "bbt36f.lsp"
; loading "bbt37f.lsp"
; loading "bbt38f.lsp"
; loading "bbt39f.lsp"
NIL
> (length new jist)
Error: The variable NEW J J S T  is unbound.
> (length Jiid)
63
> (first _hid)
(868 1)
> _hid
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((868 1) (1435 2) (124 3) (643 4) (769 5) (753 6) (974 7) (1736 8) (494 9) (561 10) (704 11) (503 12) 
(1108 13) (471 14) (479 15) (330 16) (280 17) (224 18) (296 19) (161 20) (242 21) (405 22) (269 23) 
(223 24) (365 25) (222 26) (297 27) (66 28) (84 29) (246 30) (147 31) (10 32) (23 33) (8 34) (8 35) 
(153 36) (70 37) (336 38) (376 39) (843 40) (1251 41) (475 42) (2562 43) (116 44) (292 45) (1139 46) 
(1029 47) (1204 48) (736 49) (1068 50) (796 51) (467 52) (184 53) (432 54) (587 55) (588 56) (996 
57) (1004 58) (0 59) (501 60) (548 61) (970 62) (598 63))
> (def bbt_hid _hid)
BBTJflD
> bbt_hid
((868 1) (1435 2) (124 3) (643 4) (769 5) (753 6) (974 7) (1736 8) (494 9) (561 10) (704 11) (503 12) 
(1108 13) (471 14) (479 15) (330 16) (280 17) (224 18) (296 19) (161 20) (242 21) (405 22) (269 23) 
(223 24) (365 25) (222 26) (297 27) (66 28) (84 29) (246 30) (147 31) (10 32) (23 33) (8 34) (8 35) 
(153 36) (70 37) (336 38) (376 39) (843 40) (1251 41) (475 42) (2562 43) (116 44) (292 45) (1139 46) 
(1029 47) (1204 48) (736 49) (1068 50) (796 51) (467 52) (184 53) (432 54) (587 55) (588 56) (996 
57) (1004 58) (0 59) (501 60) (548 61) (970 62) (598 63))
> (savevar bbtjiid  "bbt_hid")
(BBTJflD)
> (defun error_% (observed actual)

(* (/ (- actual observed) actual) 100))
ERROR_%

; Note the above I accidentally define the error as actual -  observed 
; it should be observed -  actual i.e. (- observed actual)
; so the final printed results of the error % had to be multiply by -1.
; This was done in Excel spreadsheet and reported in the main text.

> (rmse 1 2)
Error: The function RMSE is unbound.
>
(defim sq_d (list_no mean_x)

(do ((x list_no (cdr x)))
((null x) d_sq)

(setq d_sq (+ d_sq (A (- (car x) mean_x) 2)))))
SQ_D
>
(defun rmse (observedJist actual)

(sqrt (/ (sq_d observed J ist actual) (length observed Jist))))
RMSE
> (rmse 1 2)
Error: The variable D_SQ is unbound.
Happened in: #<FSubr-DO: #ld57393a>

> ;  loading "C:\USERS\LAW\GIS\HO\DATA\BBTHID.LSPM 
(length (car newjist))
301
> (last (car newjist))
(63)
> (last (last bbtjiid))
((598 63))
> (last (car newjist))
(63)
> (last (car bbtjiid))
(1)
> (def bbtjiid (reverse bbtjiid))
BBTJflD
> (last (car bbtjiid))
(63)
> bbtjiid
((598 63) (970 62) (548 61) (501 60) (0 59) (1004 58) (996 57) (588 56) (587 55) (432 54) (184 53) 
(467 52) (796 51) (1068 50) (736 49) (1204 48) (1029 47) (1139 46) (292 45) (116 44) (2562 43) (475
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42) (1251 41) (843 40) (376 39) (336 38) (70 37) (153 36) (8 35) (8 34) (23 33) (10 32) (147 31) (246 
30) (84 29) (66 28) (297 27) (222 26) (365 25) (223 24) (269 23) (405 22) (242 21) (161 20) (296 19) 
(224 18) (280 17) (330 16) (479 15) (471 14) (1108 13) (503 12) (704 11) (561 10) (494 9) (1736 8) 
(974 7) (753 6) (769 5) (643 4) (124 3) (1435 2) (868 1))
> (car (car bbtjiid))
598
> (cdr (reverse (car newjist)))
(61 68 46 66 76 62 63 68 50 68 65 53 58 63 51 59 70 50 51 59 71 66 60 51 66 55 64 56 52 49 60 55 62 
48 72 63 61 65 53 62 69 64 60 57 64 54 72 48 57 59 51 66 57 63 54 57 56 58 78 62 62 57 51 64 51 61
53 74 50 68 68 71 67 78 57 62 64 59 68 51 65 59 46 62 71 46 69 60 55 47 56 67 64 76 58 51 65 59 69
65 62 66 57 67 66 62 54 68 57 56 64 75 53 64 52 61 61 48 49 56 62 50 62 42 72 53 56 67 61 65 68 66
68 63 43 57 60 52 53 44 63 61 50 59 62 63 53 52 59 59 60 59 63 55 74 56 61 51 49 52 65 65 65 65 64
60 71 52 56 64 54 57 51 83 61 50 60 53 59 60 45 65 57 62 62 34 57 68 77 50 56 66 57 59 45 50 68 60
70 58 66 71 67 59 54 54 54 64 52 61 61 65 59 67 68 60 54 69 59 56 69 64 77 68 67 53 59 60 58 52 59
72 59 66 63 55 61 68 55 63 59 65 61 60 54 57 56 60 64 63 68 57 74 67 65 55 64 66 55 58 55 59 58 59
58 59 56 57 69 61 52 63 71 70 69 63 55 57 67 59 59 73 71 59 64 55 56 58 58 53 58 60 73 61 49 45 62
58 80 62)
> (length (cdr (reverse (car newjist))))
300
> (rmse (cdr (reverse (car newjist))) (/ (car (car bbtjiid)) 10))
Error: The variable D_SQ is unbound.
Happened in: #<FSubr-DO: #ld57393a>
> (setq d_sq 0)
0
> (rmse 1 2)
Error: bad argument type - 1 
Happened in: #<Subr-CAR: #ld574d3a>
> (rmse (cdr (reverse (car newjist))) (/ (car (car bbtjiid)) 10))
7.37956638292522
> (* 10 (rmse (cdr (reverse (car newjist))) (/ (car (car bbtjiid)) 10)))
104.36282863165415
> (setq d_sq 0)
0
> (* 10 (rmse (cdr (reverse (car newjist))) (/ (car (car bbtjiid)) 10)))
73.79566382925221
> (standard-deviation (cdr (reverse (car newjist))))
7.376889248408003
> (rmse (cdr (reverse (car newjist))) (mean (cdr (reverse (car newjist)))))
10.425694221489511
> (setq d_sq 0)
0
> (rmse (cdr (reverse (car newjist))) (mean (cdr (reverse (car newjist)))))
7.364584170202682
>d_sq
16271.129999999976
> (defun round_2d (n) (/ (round (* n 100)) 100))
ROUND.2D
> (DEF BBTJIID (QUOTE ((868 1) (1435 2) (124 3) (643 4) (769 5) (753 6) (974 7) (1736 8) (494 9) 
(561 10) (704 11) (503 12) (1108 13) (471 14) (479 15) (330 16) (280 17) (224 18) (296 19) (161 20) 
(242 21) (405 22) (269 23) (223 24) (365 25) (222 26) (297 27) (66 28) (84 29) (246 30) (147 31) (10 
32) (23 33) (8 34) (8 35) (153 36) (70 37) (336 38) (376 39) (843 40) (1251 41) (475 42) (2562 43)
(116 44) (292 45) (1139 46) (1029 47) (1204 48) (736 49) (1068 50) (796 51) (467 52) (184 53) (432 
54) (587 55) (588 56) (996 57) (1004 58) (0 59) (501 60) (548 61) (970 62) (598 63))))
BBTJIID
> bbtjiid
((868 1) (1435 2) (124 3) (643 4) (769 5) (753 6) (974 7) (1736 8) (494 9) (561 10) (704 11) (503 12) 
(1108 13) (471 14) (479 15) (330 16) (280 17) (224 18) (296 19) (161 20) (242 21) (405 22) (269 23) 
(223 24) (365 25) (222 26) (297 27) (66 28) (84 29) (246 30) (147 31) (10 32) (23 33) (8 34) (8 35) 
(153 36) (70 37) (336 38) (376 39) (843 40) (1251 41) (475 42) (2562 43) (116 44) (292 45) (1139 46)

290



Appendix 7.5

(1029 47) (1204 48) (736 49) (1068 50) (796 51) (467 52) (184 53) (432 54) (587 55) (588 56) (996 
57) (1004 58) (0 59) (501 60) (548 61) (970 62) (598 63))
> (length bbt_hid)
63
> (def new_list (reverse new_list))
NEW_LIST
> (last (car newjist))
(1)
> (defin print jm_mc_results (list_mc list jm )

(dolist (i list jm )
(print (second i))

(prinl (car i))
(setq d_sq 0)
(def rmse (* 10 (rmse (cdr (reverse (car list_mc))) (/ (car i) 10))))
(def sd (* 10 (rmse (cdr (reverse (car list_mc))) (mean (cdr (reverse (car list_mc)))))))
(def sd (standard-deviation (* 10 (cdr (reverse (car listjmc))))))
(prinl (round_2d %_err))
(prinl (round_2d rmse))
(prinl (round_2d sd))
(prinl (round_2d sd-1))
(def list_mc (cdr list_mc))))

Error: The function DEFIN is unbound.
> (defun print_tm_mcjresults (list_mc list_tm)

(dolist (i list jm )
(print (second i))

(prinl (car i))
(setq d_sq 0)
(def rmse (* 10 (rmse (cdr (reverse (car list_mc))) (/ (car i) 10))))
(def sd (* 10 (rmse (cdr (reverse (car list_mc))) (mean (cdr (reverse (car list_mc)))))))
(def sd (standard-deviation (*10  (cdr (reverse (car list_mc))))))
(prinl (round_2d %_err))
(prinl (round_2d rmse))
(prinl (round_2d sd))
(prinl (round_2d sd-1))
(def list_mc (cdr list_mc))))

PRINT_TM_MC_RESULTS
> sd
Error: The variable SD is unbound.
>sd-l
Error: The variable SD-1 is unbound.
> d_sq
16271.129999999976
> (setq d_sq 0)
0
> (printJm_mc_results new jist bbtjiid)

1868
Error: The variable %JERR is unbound.
Happened in: #<Closure-PRINT_TM_MC_RESULTS: #164771da>
> (defim print_tm_mc_results (list_mc listjm )

(dolist (i list_tm)
(print (second i))

(prinl (car i)) (princ ",")
(setq d_sq 0)
(setq rmse 0)
(setq sd 0)
(setq sd-1 0)
(setq %_err 0)

(cond ((= 0 (car i)) (setq rmse 0)
(setq sd 0)
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(setq sd-1 0)
(setq %_err 0))

(T
(def rmse (* 10 (rmse (cdr (reverse (car list_mc))) (/ (car i) 10))))
(def sd (* 10 (rmse (cdr (reverse (car list_mc))) (mean (cdr (reverse (car list_mc))))))) 
(def sd-1 (* 10 (standard-deviation (cdr (reverse (car list_mc))))))
(def %_err (error_% (* 10 (mean (cdr (reverse (car list_mc))))) (car i)))))
(def mc_mean (*10 (mean (cdr (reverse (car list_mc))))))
(prinl (round_2d mc_mean))(princ ",")
(prinl (round_2d %_err)) (princ ", ”)
(prinl (round_2d rmse)) (princ ", ”)
(prinl (round_2d sd)) (princ ", ”)
(prinl (round_2d sd-1))
(def list_mc (cdr list_mc))))

PRINT_TM_MC_RESULTS 
> (print_tm_mc_results new jist bbt_hid)

1 868 , 866.73 ,0.15 , 88.71 , 125.45 , 88.85
2 1435 , 1430.1 ,0.34 , 104.42 ,147.6 , 104.48
3 124 , 122.27 , 1.4 , 32.39 ,45.78 , 32.4
4 643 , 644.03 , -0.16 , 76.13 , 107.66 , 76.25
5 769 , 770.6 , -0.21, 86.83 , 122.79 , 86.96
6 753 , 745.5 , 1 , 85.29 , 120.38 , 85.10
7 974 ,969.6 , 0.45 , 89.09 , 125.91 , 89.13
8 1736 , 1746.8 , -0.62 ,125.08 , 176.56 , 124.82
9 494 , 494.03 , -0 .01,69.39 , 98.13 , 69.5
10 561 , 563.57 , -0.46 , 71.08 , 100.49 , 71.16
11 704 , 709.2 , -0.74 , 77.87 , 110 , 77.82
12 503 , 504.07 , -0.21 ,65.32 , 92.37 , 65.42
13 1108 , 1104 , 0.36 , 98.38 , 139.07 , 98.46
14 471 , 466.8 ,0.89 ,62.67 , 88.53 , 62.63
15 479 , 481.87 , -0.6 , 62.46 , 88.29 , 62.5
16 330 , 329.2 ,0.24 ,49.33 , 69.76 , 49.4
17 280 , 282.73 , -0.98 ,49.95 , 70.58 , 49.96
18 224 , 222.7 , 0.58 ,42.29 ,59.79 ,42.34
19 296 , 303.27 , -2.45 , 50.37 , 70.87 ,49.93
20 161,158.83 , 1.35 , 37.13 ,52.47 , 37.13
21 242 , 243.37 , -0.56 ,45.62 , 64.5 , 45.67
22 405 , 410.8 , -1.43 , 62.27 , 87.87 , 62.1
23 269 , 265.83 , 1.18 ,47.32 , 66.84 , 47.29
24 223 , 224.43 , -0.64 ,44.83 , 63.38 ,44.88
25 365 , 368.47 , -0.95 ,56.84 , 80.3 , 56.82
26 222 , 227.47 , -2.46 ,5 0 .1 1 , 70.66 , 49.9
27 297 , 290.77 , 2.1 ,51.26 , 72.22 , 50.96
28 66 , 66.57 , -0.86 , 22.19 , 31.37 , 22.22
29 84 , 85.40, -1.67 , 28 , 39.58 , 28.01
30 246 , 245.2 , 0.33 ,43 , 60.8 ,43.06
31 147 , 145.2 , 1.22 , 34.78 , 49.15 , 34.79
32 10 , 9 , 10 , 8.94 , 12.61 , 8.9
33 23 , 21.9 ,4.78 , 14.83 , 20.94 , 14.81
34 8 , 8.43 , -5.42 , 8.76 , 12.38 , 8.76
35 8 , 8.53 , -6.67 , 8.45 , 11.94, 8.45
36 153 , 152.8 , 0.13 . 39.11 .55.31 ,39.17
37 70 , 70.5 , -0.71 ,23.94 , 33.85 , 23.97
38 336 , 334.37 , 0.49 , 53.33 , 75.41 , 53.4
39 376 , 376.07 , -0.02 , 54.37 , 76.90 , 54.46
40 843 , 843.43 , -0.05 , 85.60 , 121.06 , 85.75
41 1251 , 1250.97 , 0 , 100.17 , 141.66 , 100.34
42 475 , 473.03 , 0.41 , 66.77 ,94.41 , 66.85
43 2562 , 2558.8 ,0.12 , 142.83 , 201.97 , 143.04
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44 116, 113.87 ,1.84 , 33.73 , 47.65 , 33.72
45 292 ', 294.63 , -0.9 , 47.17 , 66.66 , 47.18
46 1139 ,1148.17 , -0.8 ,96.36 , 135.97 , 96.09
47 1029 , 1027.8 , 0.12 , 88.2 , 124.72 , 88.34
48 1204 , 1208.7 , -0.39 , 100.51 , 142.07 , 100.57
49 736, 730.83 , 0.7 , 78.22 ,110.49 , 78.18
50 1068 ,1065.9 ,0.2 ,98.08 , 138.69 ,98.22
51 796, 797.43 , -0.18 , 84.58 ,119.6 , 84.71
52 467 , 466.07 , 0.2 , 65.19 ,92.18 , 65.29
53 184 , 183.97 , 0.02 , 38.44 ,54.36 , 38.5
54 432 ,432.7 , -0.16 ,59.45 , 84.08 , 59.55
55 587 , 581.33 ,0.97 , 72.27 , 102.05 , 72.17
56 588 , 588.07 , -0.01 ,71.12 , 100.58 ,71.24
57 996 , 999.5 , -0.35 , 90.56 ,128.03 ,90.65
58 1004 ,1004.17 , -0.02 , 90.90 , 128.55 , 91.05
5 9 0 , 0 , 0 , 0 , 0 , 0
60 501 , 506.97 , -1.19 , 67.7 , 95.55 , 67.55
61 548 , 554.77 , -1.23 , 66.88 , 94.34 , 66.65
62 970 , 974.23 , -0.44 , 93.75 , 132.52 , 93.81
63 598 , 602.7 , -0.79 , 73.8 , 104.26 , 73.77 
NIL

; 131296.log

> ; loading ,,C:\USERS\LAW\GIS\HO\DATA\POSTBBT.LSPM

1 870.0" "563.37 ±57.66" "-54.43 ±0.1
2 5830.0" "5362.88 ±391.58" "-8.71 ±1.28
3 635.0" "462.18 ±122.43" "-37.39 ±5.29
4 2077.0" "2743.57 ±324.31" "24.3 ±-0.68
5 2288.0" "2350.33 ±264.83" "2.65 ±-0.64
6 2654.0" "2333.42 ±266.96" "-13.74 ±3.13
7 3680.0" "2656.7 ±244.11" "-38.52 ±1.23
8 3508.0" "4000.17 ±286.43" "12.3 ±-1.42
9 1910.0" "2030.46 ±285.19" "5.93 ±-0.04
10 3297.0" "2716.41 ±342.61" "-21.37 ±-2.22
11 2108.0" "2155.97 ±236.72" "2.22 ±-2.25
12 2866.0" "2777.43 ±359.86" "-3.19 ±-1.16
13 2674.0" "3963.36 ±353.18" "32.53 ±1.29
14 2173.0" "2249.98 ±302.07" "3.42 ±4.29
15 1772.0" "1811.83 ±234.85" "2.2 ±-2.26
16 1438.0" "1520.9 ±227.9" "5.45 ±1.11
17 1078.0" "1159.19 ±204.8" "7 ±-4.02
18 1290.0" "1144.68 ±217.37" "-12.7±2.98
19 1439.0" "1731.67 ±287.61" "16.9 ±-13.99
20 1538.0" "1516.83 ±354.59" "-1.4 ±12.89
21 1877.0" "1820.41 ±341.24" "-3.11 ±-4.19
22 2519.0" "2123.84 ±321.94" "-18.61 ±-7.39
23 1684.0" "1621.56 ±288.65" "-3.85 ±7.2
24 851.0" "1117.66 ±223.25" "23.86 ±-3.19
25 2173.0" "2008.16 ±309.78" "-8.21 ±-5.18
26 1478.0" "1462.63 ±322.21" "-1.05 ±-15.82
27 2207.0" ”2169.14 ±382.4" "-1.75 ±15.67
28 0" "0±0""±0
29 271.0" "462.87 ±151.76" "41.45 ±-9.05
30 2352.0" "1233.36 ±216.29" "-90.7 ±1.66
31 727.0" "996.07 ±238.59" "27.01 ±8.37
32 0" "0±0""±0
33 164.0" "49.28 ±33.37" "-232.83 ±10.76
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34 0" "0±0""±0
35 0" "0±0" "±0
36 1545.0" "1236.15 ±316.4" "-24.98 ±1.05
37 923.0" "1328.22 ±451.03" "30.51 ±-13.38
38 3014.0" "3230.01 ±515.17" "6.69 ±4.73
39 1881.0" "2933.35 ±424.09" "35.88 ±-0.16
40 4541.0" "3711.09 ±376.6" "-22.36 ±-0.22
41 6295.0" "6655.16 ±532.9" "5.41 ±0
42 3594.0" "2838.18 ±400.62" "-26.63 ±2.46
43 10183.0" "10567.84 ±589.89" "3.64 ±0.5
44 154.0" "190.16 ±56.33" "19.02 ±3.07
45 3782.0" "2645.78 ±423.59" "-42.94 ±-8.08
46 4269.0" "5028.98 ±422.06" "15.11 ±-3.5
47 4447.0" "4563.43 ±391.61" "2.55 ±0.53
48 3980.0" "4266.71 ±354.8" "6.72 ±-1.38
49 2890.0" "2440.97 ±261.25" "-18.4 ±2.34
50 3215.0" "2888.59 ±265.8" ”-11.3 ±0.54
51 2615.0" "3213.64 ±340.86" "18.63 ±-0.73
52 3813.0" "3933.63 ±550.2" "3.07 ±1.69
53 1779.0" "1880.17 ±392.86" "5.38 ±0.2
54 1997.0” "1882.24 ±258.61" "-6.1 ±-0.7
55 1865.0" "1993.96 ±247.89" "6.47 ±3.33
56 2616.0" "2622.79 ±317.2" "0.26 ±-0.04
57 2794.0" "3288.36 ±297.94" "15.03 ±-1.15
58 4014.0" "4669.39 ±422.69" "14.04 ±-0.09
59 261.0" "0±0""±0
60 3683.0" "3817.48 ±509.78" ”3.52 ±-8.96
61 4216.0" "4754.38 ±573.16" "11.32 ±-10.54
62 6269.0" "10599.62 ±1020" "40.86 ±-4.79
63 3359.0" "2356.56 ±288.56" "-42.54 ±-3.09 
>

; 040397.Log
; Printing histograms 
; For Bristol

> (def bbthid (reverse new_list)) 
BBTMD
> (last (car bbthid))
(1)
> (def listl (car bbthid))
LIST1
(def listl (reverse listl))
(def listl (cdr listl))
(histogram listl)

> (defun list_histogram (alists)
(dolist (listl alists)

(def listl (reverse listl)) 
(def listl (cdr listl)) 
(histogram listl)))

LIST.fflSTOGRAM
>

; Similarly for Coventry...

; see file: lsplog.doc
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; file: lsplog.doc
; Frequency distribution of the Monte Carlo sampling

; The following two sets of histograms show the frequency distribution of household-pixels based on the 

Monte Carlo simulation for Bristol and Coventry respectively

; Bristol
; The frequency distribution of household-pixels in each beat: Beat-ID from 1 to 63 (except Beat 59 
which contain no household pixel):

J
66 86 166 126

Beat 1

M ih
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; Coventry
; The frequency distribution of household-pixels in each beat (except Beat 1 which is outside the city 
boundary):
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Appendix 9.1 

Thematic maps of the Safer Cities action intensity

This appendix shows the whole range o f beat maps of the action intensity for burglary 

prevention for each year of the Safer Cities Programme. The action intensity score is 

defined as the average amount of funds acting on each household over a given year 

(Ekblom et al, 1996).

The overlay method and the Monte Carlo method were implemented using ARC/INFO 

and XLISP-STAT respectively. Maplnfb (version 4) was used to produce the lay out for 

printing the final output maps. See the main text for the explanation and interpretation of 

the maps.

i
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Figure A9. 1: Coventry 1990 Action score distribution (overlay method)
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Figure A9. 2: Coventry 1990 Action score distribution (Monte Carlo method)
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Figure A9. 4: Bristol 1990 Action score distribution (Monte Carlo method)
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Figure A9. 5: Coventry 1991 Action score distribution (overlay method)
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Figure A9. 7: Bristol 1991 Action score distribution (overlay method)
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Figure A9. 8: Bristol 1991 Action score distribution (Monte Carlo method)
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Figure A9. 9: Coventry 1992 Action score distribution (overlay method)
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Figure A9. 11: Bristol 1992 Action score distribution (overlay method)
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Figure A9. 12: Bristol 1992 Action score distribution (Monte Carlo method)
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Appendix 9.2 

Frequency distribution of the Monte Carlo sampling

The following two sets of histograms show the frequency distribution of the Monte 

Carlo sampling from the beats in scope for Coventry and Bristol respectively.

Vertical bars are marked to show the estimated error percentage of the overlay method 

deviated from the mean of the Monte Carlo results
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Appendix 10.1 

Burglary risk in Bristol (overlay method)

Table A 10.1 shows the burglary risk computed by the overlay method for Bristol. The 

burglary risk is defined as the number o f domestic burglaries per 100 households in each 

beat, in each year.

Table A10.1: Burglary risk in Bristol (overlay method)

t-ID super-id 1987 1988 1989 1980 1991 1992
32 206 0 0 0 0 0 0
33 207 0.024421 0.024421 0.048821 0.036621 0.018321 0.0061
44 208 0.058421 0.168821 0.097421 0.084421 0.162321 0.0325
36 209 0.024621 0.028521 0.042721 0.038821 0.051121 0.0252
53 210 0.073621 0.126521 0.069721 0.106821 0.128721 0.0433

9 211 0.030221 0.026521 0.024621 0.059721 0.0691 0.073
10 211 0.030221 0.026521 0.024621 0.059721 0.0691 0.073
15 212 0.035212 0.051212 0.041621 0.068212 0.108121 0.0926
16 212 0.035212 0.051212 0.041621 0.068212 0.108121 0.0926
24 212 0.035212 0.051212 0.041621 0.068212 0.108121 0.0926
34 213 0 0 0 0 0 0
35 214 0 0 0 0 0 0
31 215 0.019322 0.012422 0.012422 0.033215 0.042622 0.0261
37 216 0.013216 0.015222 0.024922 0.030322 0.026216 0.0498
21 217 0.045322 0.0778 0.058122 0.084222 0.111322 0.0991
45 218 0.025422 0.022722 0.028322 0.033322 0.050222 0.0701
20 219 0.100822 0.171219 0.124822 0.109222 0.135222 0.1131
19 220 0.143822 0.186922 0.134822 0.111222 0.223122 0.2168
54 221 0.039122 0.076122 0.057622 0.054122 0.079622 0.1292
25 222 0.0705 0.041722 0.025122 0.036222 0.051922 0.0544
26 222 0.0705 0.041722 0.025122 0.036222 0.051922 0.0544
27 222 0.0705 0.041722 0.025122 0.036222 0.051922 0.0544
30 222 0.0705 0.041722 0.025122 0.036222 0.051922 0.0544
52 223 0.050922 0.052222 0.034622 0.060122 0.090222 0.123
41 224 0.020922 0.016122 0.014422 0.047522 0.054322 0.0787
63 225 0.107225 0.130423 0.102323 0.124723 0.156323 0.1747
38 226 0.022223 0.022823 0.017523 0.025123 0.031623 0.0199
39 226 0.022223 0.022823 0.017523 0.025123 0.031623 0.0199
42 226 0.022223 0.022823 0.017523 0.025123 0.031623 0.0199
57 226 0.022223 0.022823 0.017523 0.025123 0.031623 0.0199
58 227 0.019227 0.022123 0.020823 0.020323 0.019227 0.0152
60 227 0.019227 0.022123 0.020823 0.020323 0.019227 0.0152
40 228 0.011823 0.010523 0.0079 0.011323 0.013123 0.0135
43 228 0.011823 0.010523 0.0079 0.011323 0.013123 0.0135
61 228 0.011823 0.010523 0.0079 0.011323 0.013123 0.0135
62 228 0.011823 0.010523 0.0079 0.011323 0.013123 0.0135

8 229 0 0.016229 0.019229 0.029623 0.0729 0.044923
14 229 0 0.016229 0.019229 0.029623 0.0729 0.044923
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2 230 0.0184 0.025423 0.016523 0.022523 0.051723 0.053423
11 231 0.0273 0.037223 0.023923 0.037423 0.075223 0.039232
12 231 0.0273 0.037223 0.023923 0.037423 0.075223 0.039232
7 232 0.0057 0.022523 0.019223 0.042723 0.082523 0.057423

13 232 0.0228 0.036123 0.021823 0.036523 0.048523 0.014123
48 233 0.0228 0.036123 0.021823 0.036523 0.048523 0.014123
49 233 0.0228 0.036123 0.021823 0.036523 0.048523 0.014123
50 233 0.0228 0.036123 0.021823 0.036523 0.048523 0.014123
55 233 0.0228 0.036123 0.021823 0.036523 0.048523 0.014123
47 234 0.0215 0.032234 0.025523 0.032723 0.063923 0.012924
51 234 0.0215 0.032234 0.025523 0.032723 0.063923 0.012924
22 235 0.072 0.061224 0.030224 0.054524 0.08235 0.064824
23 235 0.072 0.061224 0.030224 0.054524 0.08235 0.064824
28 235 0.072 0.061224 0.030224 0.054524 0.08235 0.064824
29 235 0.072 0.061224 0.030224 0.054524 0.08235 0.064824

1 239 0.046 0.020724 0.026424 0.026424 0.050624 0.012624
5 240 0.007 0.015324 0.025824 0.013524 0.036724 0.0087
4 241 0.0462 0.040424 0.022124 0.018824 0.040424 0.007724
3 242 0 0.1024 0.074242 0.127624 0.146524 0.037824

46 244 0 0.019224 0.0305 0.021324 0.041724 0.010325
56 246 0.050525 0.059325 0.0245 0.044246 0.089125 0.032125
18 247 0 0.076247 0.067425 0.1031 0.172925 0.038825
17 248 0 0.079825 0.061225 0.085325 0.1744 0.030625
6 249 0 0.010225 0.006425 0.017249 0.033925 0.0045

0.032957 0.04402 0.032433 0.044084 0.06668 0.045343
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Appendix 10.2 

Burglary risk in Bristol (Monte Carlo dasymetric method)

Table A10.2 shows the burglary risk computed by the overlay method for Bristol.

Table A10.2: Burglary risk in Bristol (Monte Carlo dasymetric method)
Beat-ID super>id 1987’ 1988’ 1989’ 1980’ 1991’ 1992’

32 206 0 0 0 0 0 0
33 207 0.081279 0.081279 0.16249 0.121885 0.060977 0.020303
44 208 0.047309 0.136711 0.078891 0.068364 0.131447 0.026319
36 209 0.030771 0.035645 0.053393 0.048518 0.063891 0.031495
53 210 0.06966 0.119714 0.06597 0.101074 0.121796 0.04097

9 211 0.032554 0.028569 0.026522 0.064332 0.074435 0.078636
10 211 0.032554 0.028569 0.026522 0.064332 0.074435 0.078636
15 212 0.031514 0.045833 0.03725 0.061047 0.096765 0.082874
16 212 0.031514 0.045833 0.03725 0.061047 0.096765 0.082874
24 212 0.031514 0.045833 0.03725 0.061047 0.096765 0.082874
34 213 0 0 0 0 0 0
35 214 0 0 0 0 0 0
31 215 0.014103 0.009066 0.009066 0.024244 0.031109 0.01905
37 216 0.009184 0.010577 0.017318 0.02107 0.018217 0.034606
21 217 0.046731 0.08022 0.059929 0.086841 0.114784 0.102182
45 218 0.036338 0.032479 0.040483 0.04763 0.071787 0.100201
20 219 0.102233 0.173616 0.126569 0.110751 0.137115 0.114683
19 220 0.119516 0.155332 0.112037 0.092425 0.185414 0.180161
54 221 0.041509 0.080766 0.061137 0.057424 0.084479 0.137081
25 222 0.088426 0.052331 0.03151 0.045433 0.065125 0.068233
26 222 0.088426 0.052331 0.03151 0.045433 0.065125 0.068233
27 222 0.088426 0.052331 0.03151 0.045433 0.065125 0.068233
30 222 0.088426 0.052331 0.03151 0.045433 0.065125 0.068233
52 223 0.049359 0.050619 0.033559 0.058277 0.087452 0.119224
41 224 0.01979 0.01525 0.013642 0.044951 0.051384 0.074442
63 225 0.152839 0.185904 0.14585 0.177779 0.222822 0.249017
38 226 0.020502 0.021056 0.016166 0.023177 0.029174 0.018359
39 226 0.020502 0.021056 0.016166 0.023177 0.029174 0.018359
42 226 0.020502 0.021056 0.016166 0.023177 0.029174 0.018359
57 226 0.020502 0.021056 0.016166 0.023177 0.029174 0.018359
58 227 0.017539 0.02018 0.018994 0.018538 0.017539 0.013865
60 227 0.017539 0.02018 0.018994 0.018538 0.017539 0.013865
40 228 0.010834 0.02018 0.018994 0.018538 0.017539 0.013865
43 228 0.010834 0.02018 0.018994 0.018538 0.017539 0.013865
61 228 0.010834 0.02018 0.018994 0.018538 0.017539 0.013865
62 228 0.010834 0.02018 0.018994 0.018538 0.017539 0.013865

8 229 0 0.014953 0.017718 0.027295 0.06717 0.041392
14 229 0 0.014953 0.017718 0.027295 0.06717 0.041392
2 230 0.020003 0.083896 0.017962 0.024485 0.056228 0.058076

11 231 0.028118 0.038338 0.02464 0.038544 0.077476 0.040407
12 231 0.028118 0.038338 0.02464 0.038544 0.077476 0.040407

7 232 0.007896 0.031199 0.026628 0.05918 0.114311 0.079543
13 232 0.022069 0.034966 0.021124 0.035353 0.046969 0.013671
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Mean

48 233 0.022069 0.034966 0.021124 0.035353 0.046969 0.013671
49 233 0.022069 0.034966 0.021124 0.035353 0.046969 0.013671
50 233 0.022069 0.034966 0.021124 0.035353 0.046969 0.013671
55 233 0.022069 0.034966 0.021124 0.035353 0.046969 0.013671
47 234 0.019223 0.034966 0.021124 0.035353 0.046969 0.013671
51 234 0.019223 0.034966 0.021124 0.035353 0.046969 0.013671
22 235 0.07739 0.065807 0.032486 0.058605 0.088515 0.069677
23 235 0.07739 0.065807 0.032486 0.058605 0.088515 0.069677
28 235 0.07739 0.065807 0.032486 0.058605 0.088515 0.069677
29 235 0.07739 0.065807 0.032486 0.058605 0.088515 0.069677

1 239 0.071038 0.032004 0.040806 0.040806 0.078178 0.019495
5 240 0.006815 0.014918 0.02514 0.013166 0.035751 0.008469
4 241 0.034973 0.030601 0.016748 0.01425 0.030601 0.005847
3 242 0 0.140687 0.102001 0.175343 0.20131 0.051967

46 244 0 0.01632 0.025891 0.018102 0.03542 0.008765
56 246 0.050393 0.05917 0.024436 0.044131 0.088893 0.032041
18 247 0 0.08593 0.075988 0.116194 0.194886 0.043756
17 248 0 0.074237 0.056939 0.079352 0.162192 0.028481
6 249 0 0.01163 0.007308 0.019619 0.038586 0.005118

0.035486 0.047929 0.036003 0.048015 0.069561 0.047819
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Appendix 10.3 

Burglary risk in Coventry (overlay method)

Table A10.1 shows the burglary risk computed by the overlay method for Coventry. The 

burglary risk is defined as the number of domestic burglaries per 100 households in each 

beat, in each year.

Table A 10.3: Burglary risk in Coventry (overlay method)
Beat-ID 1987 1988 1989 1980 1991 1992 1993

2 0.021529 0.040629 0.018229 0.028929 0.055529 0.063429 0.0168
3 0.014728 0.010528 0.010128 0.019284 0.025428 0.026228 0.0068
4 0.011128 0.031828 0.027228 0.023628 0.034128 0.031128 0.0052
5 0.010928 0.018628 0.012928 0.017128 0.028528 0.025328 0.0041
6 0.033328 0.047628 0.026328 0.033128 0.028128 0.035628 0.0166
7 0.035128 0.060828 0.055228 0.044628 0.031228 0.040128 0.0262
8 0.026428 0.038528 0.052278 0.033928 0.038128 0.041278 0.0227
9 0.011628 0.038228 0.041928 0.042628 0.034528 0.056328 0.0132

10 0.022727 0.042272 0.045827 0.056327 0.038627 0.044427 0.0227
11 0.040827 0.064827 0.047327 0.054227 0.061527 0.051927 0.024
14 0.045927 0.102627 0.061527 0.063527 0.063527 0.063127 0.0176
15 0.053728 0.071328 0.078428 0.070728 0.064128 0.104328 0.0352
16 0.034228 0.042828 0.038228 0.047328 0.042228 0.073628 0.0434
17 0.056927 0.091527 0.060127 0.069227 0.066527 0.0995 0.0279
18 0.045727 0.062227 0.042227 0.059727 0.07427 0.064627 0.025
19 0.0632 0.064126 0.117626 0.102256 0.101126 0.09901 0.0253
20 0.015629 0.023287 0.015129 0.021729 0.032529 0.035929 0.01
21 0.042429 0.046129 0.055929 0.059629 0.055929 0.073829 0.0159
22 0.044229 0.052329 0.043829 0.048429 0.037829 0.082829 0.0174
23 0.038127 0.047527 0.047527 0.028127 0.043927 0.075627 0.0217
24 0.043425 0.06765 0.076254 0.054325 0.0627 0.144825 0.0338
25 0.038426 0.027426 0.039526 0.032926 0.034255 0.075726 0.0165
26 0.025429 0.029329 0.02129 0.023729 0.02829 0.029329 0.0066
27 0.017429 0.019229 0.0096 0.028529 0.039229 0.042129 0.0067
28 0.017929 0.016329 0.010829 0.021629 0.026829 0.031129 0.0049
29 0.153825 0.174825 0.0909 0.188825 0.216825 0.195825 0.1119
30 0.017425 0.024925 0.054725 0.034825 0.044825 0.049825 0.0149
31 0.050326 0.082426 0.088 0.086426 0.090526 0.100226 0.0178
32 0.047226 0.105258 0.122126 0.093626 0.100926 0.129426 0.0399
33 0.157626 0.174826 0.143326 0.108926 0.088826 0.151926 0.0516
34 0.063126 0.065426 0.049926 0.055126 0.068326 0.065426 0.0253
35 0.041126 0.053261 0.042126 0.037626 0.065326 0.070326 0.0158
36 0.047626 0.045126 0.035526 0.036726 0.057226 0.081826 0.0246
37 0.050826 0.079326 0.076226 0.137263 0.137263 0.127826 0.0408
38 0.057526 0.063626 0.091526 0.132526 0.150826 0.246726 0.0898
39 0.059627 0.061327 0.059627 0.072827 0.0778 0.112265 0.0386
40 0.018927 0.022727 0.027527 0.042627 0.049727 0.049727 0.027
41 0.011929 0.009729 0.014529 0.035829 0.049529 0.060929 0.0182
42 0.025229 0.038729 0.024929 0.045429 0.044729 0.061429 0.0332
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Appendix 10.3 Burglary risk in Coventry (overlay method)

Mean

43 0.10733 0.11433 0.08423 0.11013 0.15853 0.17043 0.0645
44 0.03423 0.04296 0.03423 0.065296 0.0753 0.09893 0.051
45 0.03297 0.03323 0.02683 0.038297 0.05033 0.04453 0.023
46 0.038528 0.045528 0.032128 0.051228 0.050928 0.079276 0.0368
47 0.007629 0.010729 0.013129 0.0099 0.016529 0.036829 0.0078

100 0.044227 0.047727 0.055427 0.048927 0.040327 0.083327 0.0321
101 0.137427 0.160827 0.145627 0.166227 0.189273 0.215327 0.0516

0.043823 0.056841 0.051481 0.058354 0.06463 0.081386 0.027878



Appendix 10.4 Burglary risk in Coventry (Monte Carlo dasymetric method)

Appendix 10.4 

Burglary risk in Coventry (Monte Carlo dasymetric method)

Table A 10.1 shows the burglary risk computed by the Monte Carlo dasymetric method 

for Coventry.

Table A10.4: Burglary risk in Coventry (Monte Carlo dasymetric method)
Beat-1 D 1987’ 1988’ 1989’ 1980’ 1991’ 1992’ 1993’

2 0.012347 0.023301 0.010454 0.016591 0.031846 0.036377 0.009635
3 0.015488 0.011072 0.010651 0.020279 0.026741 0.027582 0.007151
4 0.012663 0.036217 0.030983 0.026887 0.038834 0.035421 0.005917
5 0.011941 0.020355 0.014127 0.018716 0.031173 0.027676 0.00448
6 0.047639 0.068079 0.037633 0.047353 0.040206 0.050927 0.023728
7 0.027614 0.047817 0.043415 0.035082 0.024548 0.031545 0.020596
8 0.033508 0.048849 0.066283 0.043017 0.048342 0.052336 0.028781
9 0.013091 0.043037 0.047203 0.047991 0.038872 0.063414 0.014861

10 0.023677 0.044039 0.047743 0.058682 0.040242 0.046284 0.023649
11 0.045494 0.072237 0.052737 0.060425 0.06856 0.057862 0.026743
14 0.051732 0.115599 0.069304 0.071557 0.071557 0.071106 0.019825
15 0.054098 0.07182 0.078969 0.071216 0.06457 0.105047 0.035443
16 0.0315 0.039414 0.035181 0.043556 0.038862 0.06776 0.039941
17 0.06501 0.104524 0.068665 0.079057 0.075974 0.113629 0.031862
18 0.047707 0.064921 0.044055 0.062313 0.077486 0.067425 0.026083
19 0.07735 0.078483 0.143962 0.125151 0.123768 0.121178 0.030965
20 0.016304 0.024293 0.015782 0.022667 0.033934 0.037481 0.010432
21 0.082999 0.090237 0.109408 0.116646 0.109408 0.144424 0.031104
22 0.075118 0.088875 0.074439 0.082252 0.064249 0.140677 0.029552
23 0.071354 0.088946 0.088946 0.052639 0.082209 0.141535 0.040612
24 0.03791 0.059058 0.06657 0.047426 0.054737 0.126433 0.029507
25 0.032739 0.023367 0.033676 0.028053 0.029185 0.064518 0.014058
26 0.016765 0.019337 0.014036 0.015645 0.018652 0.019337 0.004351
27 0.016714 0.01844 0.009206 0.027359 0.03762 0.040401 0.006425
28 0.02285 0.020811 0.013801 0.027566 0.034193 0.039673 0.006245
29 0.085527 0.097203 0.05054 0.104987 0.120555 0.108879 0.062216
30 0.023226 0.033223 0.072943 0.046419 0.059748 0.066412 0.01986
31 0.081266 0.133101 0.142102 0.13956 0.146181 0.161844 0.028743
32 0.040855 0.091059 0.105651 0.080996 0.087311 0.111966 0.034517
33 0.120269 0.133392 0.109358 0.08311 0.067774 0.115919 0.039371
34 0.065784 0.06818 0.052028 0.057447 0.071203 0.06818 0.026365
35 0.058218 0.075396 0.059634 0.053264 0.092476 0.099554 0.022366
36 0.043268 0.040997 0.032276 0.033366 0.05199 0.074339 0.022349
37 0.043146 0.06734 0.064709 0.116523 0.116523 0.108512 0.034635
38 0.047154 0.052155 0.075024 0.108632 0.123632 0.202242 0.073609
39 0.065512 0.067379 0.065512 0.080014 0.085479 0.123346 0.04241
40 0.020053 0.024079 0.029164 0.045163 0.052685 0.052685 0.028607
41 0.014998 0.012232 0.018266 0.045045 0.062268 0.0766 0.022881
42 0.029397 0.045127 0.029048 0.052934 0.052119 0.071578 0.038685
43 0.115379 0.122904 0.090547 0.118389 0.170419 0.183212 0.069338
44 0.038953 0.048888 0.038953 0.074307 0.085691 0.112582 0.058038
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Appendix 10.4 Burglary risk in Coventry (Monte Carlo dasymetric method)

Mean

45 0.02809 0.028312 0.022859 0.032629 0.042881 0.037939 0.019596
46 0.039764 0.046989 0.033159 0.052872 0.052562 0.081821 0.037981
47 0.008378 0.011782 0.014417 0.010871 0.018151 0.040442 0.008565

100 0.038036 0.041046 0.047668 0.042078 0.034682 0.071662 0.027606
101 0.150222 0.1758 0.159185 0.181703 0.206894 0.235374 0.056404

0.045676 0.059559 0.055223 0.061053 0.067543 0.085546 0.028176
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Appendix 10.5 Thematic maps of Burglary Risk in Bristol (Overlay method)

Appendix 10.5

Thematic maps of Burglary Risk in Bristol (Overlay method)

The following beat maps show the burglary risk from 1987-1992 for Bristol using the 

overlay method.

No. of burglaries 
r 100 household hi 1907

Ba m  to 0.15 (1)
a i  to 0.125 (2) 

a  0.06 to 0.075 (12)

8 0.025 to 0.05 (12) 
0.0001 to 0.025 (25)

□  0 toO (10)

No. of burglaries 
per 100 households in 1988

10.175 to 0.2 (1)
10.15 to 0.175 ■
10 125 toO.15 (2 )
10.1 to 0.125 (1)
0 075 to 0.1 (4)

10 06 10 0.075 M
0 025 to 0.06 ( 18 ,
0 0001 10 0 025 (22)

10 MO (3)
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Appendix 10.5 Thematic maps of Burglary Risk in Bristol (Overlay method)

■  0.125 to 0.15 (1)
□  0.1 to 0.125 (2)
□  0.075 to 0.1 (1)
□  0.05 to 0.075 (6 )
□  0.025 to 0.05 (20)
□  0.0001 to 0.025 (29)
□  0 toO (3)

No. of burglaries 
per 100 households in 1989

No. of burglaries 
per 100 households in 1990

■  0.125 to 0.15 (1)
□  0.1 to 0.125 (5)
□  0.075 to 0.1 (3)
□  0.05 to 0.075 (11)
□  0.025 to 0.05 (28)
□  0 0001 to 0.025 (11)
□  0 toO (3)
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Appendix 10.5 Thematic maps of Burglary Risk in Bristol (Overlay method)

No. of burglaries 
100 households in 1991

■  0.2 to 0.225 (1)
■  0.15 to 0.175 (4)
□  0.125 to 0.15 (3) 
(90.1 to 0.125 (4)
□  0.075 to 0.1 (10)
□  0.05 to 0.075 (15)
□  0.025 to 0.05 (15)
□  0.0001 to 0.025 (7)
□  0 toO (3)

No. of Burglaries 
per 100 households in 1992

■  0.2 to 0.225 (1)
□  0 15 to 0 .175 (1)
130.125 to 0 .15 (1)
□  0.1 to 0.125 (2)
□  0.075 to 0.1 (5)
□  0.05 to 0.075 (13) 
U  0.025 to 0.05 (13)
□  0.0001 to 0 025 (23)
□  0 toO (3)
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Appendix 10.6 Thematic maps of Burglary Risk in Bristol (Monte Carlo dasymetric method)

Appendix 10.6

Thematic maps of Burglary Risk in Bristol (Monte Carlo dasymetric method)

The following beat maps show the burglary risk from 1987-1992 for Bristol using the 

Monte Carlo dasymetric method.

No. of burglaries 
per 100 households' in 1987

B 0 .1 9  to 0.175 (1)
□  0.1 to 0.125 (2)
□  0.075 to 0.1 (9)
□  0.05 to 0.075 (3)
□  0.025 to 0.05 (14)
□  0.0001 to 0.025 (23)
□  0 toO (10)

No. of burglaries 
per 100 hooseholds’ in 1988

■  0.175 to 0 2 (1)
n o . 15 to0.175 (2) 
n  0.125 to 0.15 (2)
□  0.1 to 0.125 (1)
□  0.075 to 0.1 (5)
□  0.05 to 0.075 (11)
□  0.025 to 0.05 (10)
□  0.0001 to 0.025 (18)
□  0 toO (3)
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Appendix 10.6 Thematic maps of Burglary Risk in Bristol (Monte Carlo dasymetric method)

□  0.15 to 0.175 (1) 
H  012 5  to 0.15 (2)
□  0.1 to 012 5  (2)
□  0.075 to 0.1 (2)
□  0.05 to 0.075 (5)
□  0.025 to 0.05 (19)
□  0.0001 to 0 025 (28)
□  0  toO (3)

No. of burglaries 
per 100 households' in 1989

No. of burglaries 
per 100 households' in 1990

□  0.162 to 0.178 (2)
□  0.108 to 0.126 (3)
□  0.09 to 0.108 (2)
□  0.072 to 0.09 (2)
□  0.054 to 0.072 (13)
□  0.036 to 0.054 (11)
□  0.018 to 0.036 (24)
□  0 to 0.018 (5)
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Appendix 10.6 Thematic maps of Burglary Risk in Bristol (Monte Carlo dasymetric method)

No. of burglaries 
per 100 households' in 1991

■  0.2 to 0.225 (2)
■  0.175 to 0.2 (2)
■  0.15 to 0.175 (1)
■  0.125 to 0.15 (2)
■  0.1 to 0.125 (3)
□  0.075 to 0.1 (13)
□  0.05 to 0.075 (13)
□  0.025 to 0.05 (18)
□  0.0001 to 0.025 (7)
□  0 toO (3)

■  0 225 to 0.25 (1)
D  0.175 to 0.2 (1)
□  0 125 to 0.15 (1)
□  0.1 to 0.125 (4)
□  0.075 to 0.1 (6)
□  0.05 to 0.075 (11)
□  0.025 to 0.05 (11)
□  0.0001 to 0.025 (24)
□  0 to 0 (3)

No. of burglaries 
per 100 households' in 1992
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Appendix 10.7 Thematic maps of Burglary risk in Coventry (Overlay method)

Appendix 10.7

Thematic maps of Burglary Risk in Coventry (Overlay method)

The following beat maps show the burglary risk from 1987-1993 for Coventry using the 

overlay method.

0 0 .1 5  to 0.175 (2)
□  0.125 to 0.15 (1)
□  0.1 to 0.125 (1)

30 05 to 0.075 (8 ) 
0.025 to 0.05 (21)

□  0.0001 to 0.025 (13)

No. of burglaries 
per 100 households in 1987

No. of burglaries 
per 100 households in 1988

Q 0  IS 10 0.175 (3)

80.1 to 0.125 (3) 
0.075 to 0.1 (3)

0 05 to 0.075 (11)

80 025 to 0 05 (17)
0 0001 to 0 025 (0)
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Appendix 10.7 Thematic maps of Burglary risk in Coventry (Overlay method)

■  0.175 to 0 2 (1)
■  0.15 too 175 (1)
□  0.1 to 0.125 (5)
□  0.075 to 0.1 (4)

80 05 to 0.075 (10) 
0 025 to 0 05 (16)

□  0.0001 to 0.025 (9)

No. o f  b u rg la r ie s  
p e r  100 h o u seh o ld s  in 1989

B o 175 to0.2 (1)
□  0 15 to 0.175 (1)
□  0125  M 01S  (2)
□  01 to 0 125 (3)
□  0.075 to 0.1 (2)
□  0 05 to 0 075 (12)
□  0 025 to 0 05 (18)
□  0 0001 to 0.025 (7)

No. o f  b u rg la r ie s  
p e r  100 h o u seh o ld s  in 1990
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Appendix 10.7 Thematic maps of Burglary risk in Coventry (Overlay method)

■  0.2 lo 0.225 (1)
■  0175 to 0.2 (1)
■  0.15 to 0.175 (2)
■  0.125 toO.15 (1)
■  0.1 toO. 125 (2)
□  0.075 to 0.1 (4)
□  0.05 to 0075 (13)
□  0 025 to 0.05 (21)
□  0.0001 to 0.025 (1)

No. of burglaries 
100 households in 1991

No. of burglaries
per 100 households lu 1992

1■  0.225 to 0.25 (1)1□  0 2 to 0  225 (1)1□  0.175 to 0.2 (1)
□  0 15 1O0175 (2)9 0.123 to 0.15 (3)13  0.1 to 0125 (3)
□  0.075 to 0.1 (0)
□  0 05 to 0.075 (11)1□  0.025 to 005 (15)
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Appendix 10.7 Thematic maps of Burglary risk in Coventry (Overlay method)

43

47

No. of burglaries 
per 100 households in 1993

□  0.075 to 0.1 (1)
□  0.05 to 0.075 (4)
□  0.025 to 0.05 (15)
□  0.0001 to 0.025 (25)
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Appendix 10.8 Thematic maps of Burglary risk in Coventry (Monte Carlo dasymetric method)

Appendix 10.8

Thematic maps of Burglary Risk in Coventry (Monte Carlo dasymetric method)

The following beat maps show the burglary risk from 1987-1993 for Coventry using the 

Monte Carlo dasymetric method.

No. of burglaries 
per 100 households' in 1987

0 0 1 9  toO. 175 (1)
Q0 .129 to 0 .15 (3)
Q0.1 to0.125 (1)
□  0075 to 01 (2)

B OOS to 0075 (8) 
0025 to 0.05 (20)

□  90001 to 0.025 (13)

10.15 H 0.176 (6) 
]  0 125 to 0.15 (1)
io .1  10 0.126 (3) 
10 075 to 01 (2)
10 05 to 0 075 (12) 
]  0 025 to 0 06 (13) 
]  0 0001 to 0 025 (10)

No. of burglaries 
per 100 households' lo 1988
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Appendix 10.8 Thematic maps of Burglary risk in Coventry (Monte Carlo dasymetric method)

n  0.175 to 0.2 (1)

10 15 to 0175 (1) 
0.1 to 0.129 (9)

□  0.075 to 0.1 (4)

80 05 to 0.075 (10) 
0.025 to 0.05 (19)

□  00001 to 0 0B5 (9)

No. o f burglaries 
100 households' lo 1989

No. of burglaries 
per 100 households' in 1990

■  0179 to 0.2 (1)
□  0 15 to 0175 (2)
■  0 129 to 0.15 (2) 
Q0.1 to 0.125 (3)
□  0.075 to 01 (3)

80 05 to 0 075 (15)
0 025 to 0 05 (13)

□  0.0001 to 0.025 (7)
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Appendix 10.8 Thematic maps of Burglary risk in Coventry (Monte Carlo dasymetric method)

No. of burglaries 
100 homeholdi'ia 1991

10 2 to 0.225 (1) 
0175 to 0 2 (2)

0 1 5  to 0.175 (1) 
0125 to 0.15 (1)
0 1  to 0.125 (3)

□  0.075 lo 0 1  (6)
□  00 6  to 0.075 (13)
□  0 025 to 0.05 (15)
□  0.0001 to 0.025 (3)

■  0.2 to 0.225 (3)

8 0.175 to 0.2 (4)
0.15 to 0.175 (1)

■  0 .125 to 0 .15 (1)
□  01  to 0.125 (4)
Q  0.075 to 0.1 (10)
□  0 05 to 0 075 (10)
□  0 025 to 0 05 (12)
□  0.0001 to 0 025 (1)

No. ofburglarie* 
per 100 household*' 1992
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Appendix 10.8 Thematic maps of Burglary risk in Coventry (Monte Carlo dasymetric method)

No. of burglaries 
per 100 households' in 1993

□  0.1 to 0.125 (1)
□  0.075 to 0.1 (2)
□  0.05 to 0.075 (4)
□  0.025 to 0.05 (17)
□  0.0001 to 0.025 (22)
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Appendix 11.1 

Log file of Multi-level modelling

As described in Chapter 5 (p 96), Multi-level modelling was developed by Goldstein 

(1995) and Woodhouse et al (1992) into a software called ML3 used in the Safer Cities 

Programme Evaluation. This allows the analysis of three levels. A new version Mlwin is 

now available on Microsoft Window which allows analysis of n levels (Goldstein, 1998). 

Since ML3 was used in the Safer Cities Programme Evaluation, ML3 is also used for this 

case study.

As an example, this appendix provides a print out of the ML3 log file for the multi-level 

modelling of the burglary risk and action intensity in Coventry. Bristol and the two cities 

combined were modelled similarly. Comments are after the key word ‘NOTE’.

ML3 - Software for three-level analysis. Tue Apr 6 15:39:41 1999 

Note input 9 columns of data from the file called mlc99.dat 
dinput cl-c9
250000 spaces left on worksheet
Type file name
— ^

mlc99
1

.dat
1 0.021529 0.39309636 0.012347 0.339846367 0 0

1
X

2 0.040629 0.465602705 0.023301 0.401392135 0 0

1
1
3 0.018229 0.376258863 0.010454 0.325473449 0 0

1
1
4 0.028929 0.425102277 0.016591 0.3670844 0 0

1
X

5 0.055529 0.50685922 0.031846 0.436134225 0 0
1

X

61 0.063429 0.525733671 0.036377 0.451953425 0 0

1
1
7 0.0168 0.368289946 0.009635 0.318667924 0 0

2
1
81 0.014728 0.355827497 0.015488 0.360536018 0 0

2
1
9
-I

0.010528 0.326069146 0.011072 0.330358147 0 0
2

1
101 0.010128 0.322812327 0.010651 0.327052641 0 0

2
X

n
i

0.019284 0.381861373 0.020279 0.386949283 0 0
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2

2

2

3

3
3

3

3
3

3
4

4

4

4

4

4

4

5

5
5

5

5

5

5
6

6

6

6

Appendix 11.1

12 0.025428 0.410782034
1
13 0.026228 0.414170689
1
14 0.0068 0.291262909
1
15 0.011128 0.330790971
1
16 0.031828 0.436068354
1

17 0.027228 0.418306015
1
18 0.023628 0.402873931
1
19 0.034128 0.444283646
1
2 0 0.031128 0.433486364
1
2 1 0.0052 ' 0.271871807
1

2 2 0.010928 0.32923788
1

23 0.018628 0.378404156
1

24 0.012928 0.343937217
1

25 0.017128 0.370160533
1

26 0.028528 0.423525818
1
o  7 0.025328 0.410353211

28 0.0041 0.255825319
1

291 0.033328 0.441471023

30 0.047628 0.486075923
31 0.026328 0.414589146
1
32 0.033128 0.440760559

33 0.028128 0.421937777

34 0.035628 0.449436499
1

35 0.0166 0.367136536
1

36 0.035128 0.447735866
1

37 0.060828 0.519702477
1

38 0.055228 0.506105408
1
39 0.044628 0.47757078
1

026741 0.416305659 0 0
027582 0.419744393 0 0
007151 0.295060971 0 0
012663 0.342088078 0 0
036217 0.451418795 0 0
030983 0.43294648 0 0
026887 0.416908017 0 0
038834 0.459966716 0 0
035421 0.448734453 0 0
005917 0.281032953 0 0
011941 0.336904833 0 0
020355 0.387330569 0 0
014127 0.351979389 0 0
018716 0 .3788729 0 0
031173 0.433653558 0 0
027676 0.420124161 0 0

00448 0.261690375 0 0

047639 0.486106428 0 0
068079 0.536118379 0 0
037633 0.456094875 0 0
047353 0.485311747 0 0

040206 0.464290223 0 0
050927 0.495017994 0 0

023728 0.403324192 0 0
027614 0.419873777 0 0
047817 0.486599382 0 0
043415 0.474020982 0 0
035082 0.447578568 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Appendix 11.1

0 . 0 3 1 2 2 8

0 . 0 4 0 1 2 8

0 . 0 2 6 2

0 . 0 2 6 4 2 8

0 . 0 3 8 5 2 8

0 . 0 5 2 2 7 8

0 . 0 3 3 9 2 8

0 . 0 3 8 1 2 8

0 . 0 4 1 2 7 8

0 . 0 2 2 7

0 . 0 1 1 6 2 8

0 . 0 3 8 2 2 8

0 . 0 4 1 9 2 8

0 . 0 4 2 6 2 8

0 . 0 3 4 5 2 8

0 . 0 5 6 3 2 8

0 . 0 1 3 2

0 . 0 2 2 7 2 7

0 . 0 4 2 2 7 2

0 . 0 4 5 8 2 7

0 . 0 5 6 3 2 7

0 . 0 3 8 6 2 7

0 . 0 4 4 4 2 7

0 . 0 2 2 7

0 . 0 4 0 8 2 7

0 . 0 6 4 8 2 7

0 . 0 4 7 3 2 7

0 . 0 5 4 2 2 7

0 . 4 3 3 8 5 7 6 7 8 0 . 0 2 4 5 4 8 0 . 4 0 6 9 6 6 8 5 3 0 0

0 . 4 6 4 0 4 7 1 7 0 . 0 3 1 5 4 5 0 . 4 3 5 0 2 9 2 9 9 0 0

0 . 4 1 4 0 5 3 3 2 0 . 0 2 0 5 9 6 0 . 3 8 8 5 3 3 0 2 0 0

0 . 4 1 5 0 0 6 4 9 0 . 0 3 3 5 0 8 0 . 4 4 2 1 0 7 9 1 4 0 0

0 . 4 5 8 9 8 8 1 4 2 0 . 0 4 8 8 4 9 0 . 4 8 9 4 3 3 1 0 2 0 0

0 . 4 9 8 5 6 6 6 4 0 . 0 6 6 2 8 3 0 . 5 3 2 1 6 4 9 5 0 0

0 . 4 4 3 5 8 4 8 1 5 0 . 0 4 3 0 1 7 0 . 4 7 2 8 4 1 4 8 4 0 0

0 . 4 5 7 7 0 0 8 5 1 0 . 0 4 8 3 4 2 0 . 4 8 8 0 4 6 0 9 3 0 . 0 1 0 . 0 1

0 . 4 6 7 5 9 8 2 9 4 0 . 0 5 2 3 3 6 0 . 4 9 8 7 1 7 5 9 2 0 . 0 1 0 . 0 1

0 . 3 9 8 6 3 0 0 2 1 0 . 0 2 8 7 8 1 0 . 4 2 4 5 2 2 2 3 1 0 . 0 1 0 . 0 1

0 . 3 3 4 5 8 7 5 9 8 0 . 0 1 3 0 9 1 0 . 3 4 5 0 6 1 1 3 2 0 0

0 . 4 5 8 0 2 3 5 4 3 0 . 0 4 3 0 3 7 0 . 4 7 2 9 0 0 9 3 3 0 0

0 . 4 6 9 5 7 5 4 9 1 0 . 0 4 7 2 0 3 0 . 4 8 4 8 9 3 6 5 0 0

0 . 4 7 1 6 8 1 4 1 6 0 . 0 4 7 9 9 1 0 . 4 8 7 0 8 0 0 5 4 0 0

0 . 4 4 5 6 7 2 8 3 7 0 . 0 3 8 8 7 2 0 . 4 6 0 0 8 7 8 6 7 0 . 0 3 0 . 0 3

0 . 5 0 8 8 4 6 9 5 9 0 . 0 6 3 4 1 4 0 . 5 2 5 6 9 9 3 6 6 0 . 0 3 0 . 0 3

0 . 3 4 5 8 0 7 1 1 4 0 . 0 1 4 8 6 1 0 . 3 5 6 6 6 3 8 3 2 0 . 0 3 0 . 0 3

0 . 3 9 8 7 5 5 2 1 0 . 0 2 3 6 7 7 0 . 4 0 3 0 9 4 7 2 6 0 0

0 . 4 7 0 6 1 3 3 8 9 0 . 0 4 4 0 3 9 0 . 4 7 5 8 5 5 4 4 4 0 0

0 . 4 8 1 0 1 5 4 1 6 0 . 0 4 7 7 4 3 0 . 4 8 6 3 9 4 5 9 8 0 0

0 . 5 0 8 8 4 4 4 8 4 0 . 0 5 8 6 8 2 0 . 5 1 4 5 9 5 2 6 0 . 1 9 0 . 2

0 . 4 5 9 3 0 5 3 2 3 0 . 0 4 0 2 4 2 0 . 4 6 4 4 0 2 2 9 2 0 . 3 9 0 . 4 1

0 . 4 7 6 9 8 7 1 5 8 0 . 0 4 6 2 8 4 0 . 4 8 2 3 1 2 1 5 7 0 . 5 3 0 . 5 5

0 . 3 9 8 6 3 0 0 2 1 0 . 0 2 3 6 4 9 0 . 4 0 2 9 6 8 5 9 7 0 . 5 3 0 . 5 5

0 . 4 6 6 2 1 3 8 3 4 0 . 0 4 5 4 9 4 0 . 4 8 0 0 6 4 9 6 2 0 0

0 . 5 2 8 9 0 7 4 7 0 . 0 7 2 2 3 7 0 . 5 4 5 0 1 3 6 4 9 0 0

0 . 4 8 5 2 3 9 3 4 1 0 . 0 5 2 7 3 7 0 . 4 9 9 7 5 8 1 6 2 0 0

0 . 5 0 3 5 7 8 4 6 5 0 . 0 6 0 4 2 5 0 . 5 1 8 7 5 2 6 8 6 0 0

351



10

10

10
11

11

11

11

11

11

11

12

12

12

12

12

12

12

13
13
13

13

13

13

13
14

14

14

14

14
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681 0.061527 0.521339961 0.06856 0.537165428 0 0
X
691 0.051927 0.497650697 0.057862 0.51261074 0 0
X
70 0.024 0.'404542178 0.026743 0. 416313926 0 0 1
711 0.045927 0.481299917 0.051732 0.497140029 0 0
X
721 0.102627 0.601644128 0.115599 0.622531868 0 0
X
731 0.061527 0.521339961 0.069304 0.538775455 0 0
X
74-| 0.063527 0.525957663 0.071557 0.543582441 0 0
X
751 0.063527 0.525957663 0.071557 0.543582441 0 0
X
761 0.063127 0.525041956 0.071106 0.542628266 0 0
X
771 0.0176 0.372808085 0.019825 0.384650248 0 0
X
78
I

0.053728 0.502307026 0.054098 0.503250535 0 0
X
791 0.071328 0.543098446 0.07182 0.544137039 0 0
X
80 0.078428 0.5576545 0.078969 0.558727643 0 0
X
81 0.070728 0.54182546 0.071216 0.542861359 0 .,31 0 .,31
X
821 0.064128 0.527326324 0.06457 0.528327457 2 .,52 2.,54
X
831 0.104328 0.604474202 0.105047 0.605661698 4.,81 4..84
X
84 0.0352 0.447981786 0.035443 0.448809202 4.,81 4.,84
X
85 0.034228 0.444631998 0.0315 0.434863482 0 0
X
86 0.042828 0.472278753 0.039414 0.461807058 0 0
X
871 0.038228 0.458023543 0.035181 0.447916924 0 0
X
88 0.047328 0.485242127 0.043556 0.474437069 0 0
X
89 0.042228 0.470480958 0.038862 0.460055993 0 0
X
90 0.073628 0.547913932 0.06776 0.535421272 0 0
X
91 0.0434 0.473976663 0.039941 0.46346314 0 0
X
92-| 0.056927 0.510324745 0.06501 0.529319545 0 0
X
93 0.091527 0.582401569 0.104524 0.604798425 0 0
X
94
1

0.060127 0.518047632 0.068665 0.537393347 0 0
X
95 0.069227 0.538609358 0.079057 0.558901749 0 0
X
96
1

0.066527 0.532706187 0.075974 0.552724977 0 ..1 0 ..11
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14 97 0.0995 0.596363093 0.113629 0.619457652 1 .,03 1.18
14

X
981 0.0279 0.421025515 0.031862 0.436192755 1 .,03 1.18

15
X
99 0.045727 0.48073049 0.047707 0.486294895 0 0

15
X
1001 0.062227 0.522967389 0.064921 0.529119233 0 0

15
X
101 0.042227 0.470477947 0.044055 0.475902247 0 0

15
X
102 0.059727 0.517097568 0.062313 0.523166486 0 0

15
X
1031 0.07427 0.549240387 0.077486 0.555774328 0 0

15
X
104 . 1 0.064627 0.52845623 0.067425 0.534686857 0 0

15
X
105 0.025 0..408938265 0.026083 0.<413561932 0 0 1

16 1061 0.0632 0.52520936 0.07735 0.555501649 0 0
16

X
107
1

0.064126 0.527321783 0.078483 0 .557763819 0 0
16

X
108
1

0.117626 0.625661248 0.143962 0.663621033 0 0

16
X
109
1

0.102256 0.601022939 0.125151 0.636995741 0 0

16
X
110 0.101126 0.599122078 0.123768 0.634944719 0 .,22 0.27

16
X
111
1

0.09901 0.595526061 0.121178 0.631065459 2..4 2.94

16
1
112 0.0253 0.410232927 0.030965 0.432879337 2..4 2 .94

17
X
113
1

0.015629 0.361391311 0.016304 0.365411164 0 0

17
X
114
1

0.023287 0.401328368 0.024293 0.405843374 0 0

17
X
115
I

0.015129 0.358332951 0.015782 0.362313183 0 0

17
X
116
1

0.021729 0.394056285 0.022667 0.398476871 0 0

17
X
117
*1

0.032529 0.438614739 0.033934 0.443605821 0 0
17

X
118 0.035929 0.450452331 0.037481 0.455598804 0 0

17
X
119 o o H* O 321750554 0.010432 0.:325295764 0 0 1

18 120 0.042429 0.471085157 0.082999 0.566574855 0 0

18
X
121 0.046129 0.481873325 0.090237 0.580070356 0 0

18
X
122 0.055929 0.507856721 0.109408 0.612756977 0 0

18
X
123
1

0.059629 0.516864153 0.116646 0.62415249 0 0

18
X
124
*1

0.055929 0.507856721 0.109408 0.612756977 0 0

18
X
125 0.073829 0.548330037 0.144424 0.664247766 0 0
1
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18
19

19

19

19

19
19
19

20

20

20

20

20

20

20

21

21

21

21

21
21

21

22

22

22

22

22

22
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126 0.0159 0.36301982
1
127 0.044229 0.476410482
1
128 0.052329 0.498699379
1
129 0.043829 0.475240073
1
130 0.048429 0.4882848
1
131 0.037829 0.456732508
1
132 0.082829 0.566248897
1
133 0.0174 0.37169249
1
134 0.038127 0.457697621
1
135 0.047527 0.485795612
1
136 0.047527 0.485795612
1
137 0.028127 0.421933788
1
138 0.043927 0.475527496
1
139 0.075627 0.552019566
1
140 0.0217 0.393917484
1
141 0.043425 0.474050522
1
142 0.06765 0.535180386
1
143 0.076254 0.553292648
1
144 0.054325 0.503827239
1
145 0.0627 0.524060164
1
146 0.144825 0.66479078
1
147 0.0338 0.443136062
1
148 0.038426 0.458660761
1
149 0.027426 0.419112135
1
150 0.039526 0.462160283
1
151 0.032926 0.440039961
1
152 0.034255 0.444725932
1
153 0.075726 0.552221037
1

031104 0.433397125 0 0
075118 0.55098098 0 0
088875 0.577585667 0 0
074439 0.54958831 0 0
082252 0.565139307 0 0
064249 0.527600844 0 0
140677 0.659129635 0 0
029552 0.427521477 0 0
071354 0.543153449 0 0
088946 0.577715795 0 0
088946 0.577715795 0 0
052639 0.499504353 0 0
082209 0.565056414 0.05 0.09
141535 0.660308738 0.05 0.09
040612 0.465550139 0.05 0.09
03791 0.456995355 0 0

059058 0.515499023 0 0
06657 0.532801432 0 0

047426 0.485514895 0 0

054737 0.504869809 0.16 0.14

126433 0.638884602 0.16 0.14

029507 0.427347936 0.16 0.14

032739 0.439370131 0 0

023367 0.401692388 0 0

033676 0.442700207 0 0

028053 0.421638264 0 0

029185 0.426100725 0.03 0.03

064518 0.528209913 0.03 0.03

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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22

23

23
23

23
23

23

23
24

24
24

24

24

24

24

25

25

25

25

25

25
25

26

26

26
26
26

26
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154 0.0165 0.366556113 0.014058 0.351530137 0. 03 0
X
155 0.025429 0.410786316 0.016765 0.368088809 0 0
X
156
*1

0.029329 0.426659665 0.019337 0.382137024 0 0
X
157
*1

0.02129 0.391940944 0.014036 0.351386566 0 0
X
158
*1

0.023729 0.403328688 0.015645 0.361488017 0 0
X
159 0.02829 0.422582825 0.018652 0.378532151 0 0
X
160
1

0.029329 0.426659665 0.019337 0.382137024 0. 23 0
X
161
-1

0.0066 0.289034584 0.004351 0.259741673 0.23 0
X
162
-1

0.017429 0.371854816 0.016714 0.367795186 0 0
X
163 0.019229 0.381574751 0.01844 0.377397453 0 0
X
164 0.0096 0.318367922 0.009206 0.314934911 0 0
X
165 0.028529 0.423529768 0.027359 0.418839815 0 0
X
166 0.039229 0.461222089 0.03762 0.456052502 0 0
X
167 0.042129 0.470182643 0.040401 0.464896441 0 0
X
168 0.0067 0.290154797 0.006425 0.287044116 0 0
X
169 0.017929 0.374623769 0.02285 0.399324186 0 0
X
170 0.016329 0.365557748 0.020811 0.389597365 0 0
X
171 0.010829 0.32846151 0.013801 0.349842805 0 0
X
172 0.021629 0.393577106 0.027566 0 .41967966.2 0 0
X
173 0.026829 0.416668999 0.034193 0 .444510155 0 0
X
174*1 0.031129 0.433490081 0.039673 0.462622849 0 0
X
175 0.0049 0.267763327 0.006245 0 .284955151 0 0
X
176 0.153825 0.676750475 0.085527 0.5713718 0 0
X
177 0.174825 0.703148515 0.097203 0.59241633 0 0
X
178 0.0909 0.581271145 0.05054 0 .493989746 0 0
X
179 0.188825 0.719749695 0.104987 0.605562799 0 0
X
180*1 0.216825 0.751015787 0.120555 0.630124736 0 0
X
181
1

0.195825 0.727791991 0.108879 0.611905879 0 0
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26
27
27

27
27
27

27

27

28

28
28
28
28
28

28

29

29

29

29

29

29

29

30

30
30

30
30

30
30
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1821 0.1119 0.61673205 0.062216 0.52294191 0 0
X
1831 0.017425 0.371832437 0.023226 0.40105021 0 0
X
1841 0.024925 0.408612895 0.033223 0.441098399 0 0
X
185 0.054725 0.504839517 0.072943 0.546490228 0 0
X
1861 0.034825 0.446697114 0.046419 0.48269355 0 0
X
1871 0.044825 0.478141047 0.059748 0.517147552 0.08 0.11
X
1881 0.049825 0.49207589 0.066412 0.53245126 0.08 0.11
X
1891 0.0149 0.356908057 0.01986 0.384828806 0.08 0.11
X
1901 0.050326 0.493418862 0.081266 0.563231433 0 0
X
191 0.082426 0.565474445 0.133101 0.648525183 0 0
X
192 0.088 0.!575976453 0.142102 0.'661085586 0 0 1
193-1 0.086426 0.573055537 0.13956 0.657588119 0 0
X
194*1 0.090526 0.580594471 0.146181 0.666620394 0.57 0.92
X
195
I

0.100226 0.59759847 0.161844 0.687063881 6.27 10.12
X
196
1

0.0178 0.373914693 0.028743 0.424372964 6.27 10.12
X
197
1

0.047226 0.484957817 0.040855 0.466300092 0 0
X
198 0.105258 0.606009212 0.091059 0.58155828 0 0
X
199 0.122126 0.632491226 0.105651 0.606655309 0 0
X
200
1

0.093626 0.586150134 0.080996 0.562706371 0 0
X
201
-1

0.100926 0.598784243 0.087311 0.574702039 0.57 0.49
X
202
1

0.129426 0.64324927 0.111966 0.616836573 6.27 5.42
X
203
-1

0.0399 0.46333484 0.034517 0.445634784 6.27 5.42
X
204 0.157626 0.681677285 0.120269 0.629691875 0 0
X
205 0.174826 0.703149727 0.133392 0.648939149 0 0
X
206
<1

0.143326 0.662756289 0.109358 0.612676644 0 0
X
207 0.108926 0.611981601 0.08311 0.566787453 0 0
X
208 0.088826 0.577495821 0.067774 0.535451911 0.2 0.15
X
209 0.151926 0.674262171 0.115919 0.62302815 2.25 1.72
X
210
1

0.0516 0.496793607 0.039371 0.461671261 2 .25 1.72
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31

31
31
31
31
31

31
32

32

32
32

32

32

32

33
33
33

33

33

33
33
34

34

34

34

34

34
34
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211
1

0.063126 0.525039662 0.065784 0.531053947 0 0
1
212 0.065426 0.530253424 0.06818 0.536338643 0 0
X
213 0.049926 0.492347363 0.052028 0.497914686 0 0
X
214 0.055126 0.505849336 0.057447 0.511599184 0 0
X
215
1

0.068326 0.536656662 0.071203 0.542833824 0. 11 0. 11
X
216
1

0.065426 0.530253424 0.06818 0.536338643 1.22 1. 27
X
217
1

0.0253 0.410232927 0.026365 0.414743693 1.22 1. 27
X
218 0.041126 0.467132856 0.058218 0.513474613 0 0
X
219
1

0.053261 0.501109885 0.075396 0.551548793 0 0
X
220 0.042126 0.470173595 0.059634 0.516876068 0 0
X
221 0.037626 0.45607206 0.053264 0.501117598 0 0
X
222
1

0.065326 0.530029294 0.092476 0.584103119 0 0
1
223 0.070326 0.54096857 0.099554 0.596455177 0 0
1
224
1

0.0158 0.362421219 0.022366 0.397072637 0 0
1
2251 0.047626 0.486070376 0.043268 0.473586203 0 0
1
226 0.045126 0.479009073 0.040997 0.46673692 0 0

227 0.035526 0.449090917 0.032276 0.437700156 0 0

228 0.036726 0.453113975 0.033366 0.441605676 0 0

22 9 0.057226 0.511058498 0.05199 0.497815404 0 0

230 0.081826 0.564316846 0.074339 0.549382501 0 0

231 0.0246 0.407194946 0.022349 0.396992931 0 0
1
232 0.050826 0.494750152 0.043146 0.473224598 0 0
1
2331 0.079326 0.559433175 0.06734 0.534500129 0 0
1
2341 0.076226 0.553235943 0.064709 0.52864135 0 0
X
235 0.137263 0.654394668 0.116523 0.623962571 0 0
X
236 0.137263 0.654394668 0.116523 0.623962571 0 0
X
237 0.127826 0.640923765 0.108512 0.611313895 0 0
X
238
1

0.0408 0.466130619 0.034635 0.446042554 0 0
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35

35
35

35

35
35

35
36
36

36
36

36

36
36
37

37

37

37
37

37
37
38

38

38
38
38

38
38

39
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239 0.057526 0.511792122 0.047154 0.484756876 0 0
X
240*1 0.063626 0.526183707 0.052155 0.498246143 0 0
X
241 0.091526 0.58239977 0.075024 0.550788674 0 0
X
242 0.132526 0.647705592 0.108632 0.611507597 0 0
X
2431 0.150826 0.672812413 0.123632 0.634742269 0 0
X
2441 0.246726 0.78211335 0.202242 0.735026242 0 0
X
245 0.0898 0.579275784 0.073609 0.54787456 0 0
X
246
I

0.059627 0.516859387 0.065512 0.530445993 0 0
X
247
1

0.061327 0.520872713 0.067379 0.534585824 0 0
X
248
1

0.059627 0.516859387 0.065512 0.530445993 0 0
X
249
1

0.072827 0.546248265 0.080014 0.560787038 0 0
X
250
-1

0.0778 0.556402702 0.085479 0.57128158 0 0
X
251 0.112265 0.617309613 0.123346 0.634316082 0 0
X
252
1

0.0386 0.459218875 0.04241 0.471028128 0 0

X
253 0.018927 0.379990477 0.020053 0.385809441 0 0

X
254
1

0.022727 0.39875521 0.024079 0.404894109 0 0

X
255
*1

0.027527 0.419521768 0.029164 0.426019052 0 0

X
256
-I

0.042627 0.471678425 0.045163 0.479115501 0 0

X
257
*1

0.049727 0.491812123 0.052685 0.499623527 0 0

X
258 0.049727 0.491812123 0.052685 0.499623527 0 0

X
259 0.027 0.<417372652 0.028607 0.<423837612 0 0 1

260 0.011929 0.336816804 0.014998 0.35751974 0 0

X
261 0.009729 0.319469766 0.012232 0.339020322 0 0

X
262 0.014529 0.354565989 0.018266 0.376459196 0 0

X
263 0.035829 0.4501155 0.045045 0.478775874 0 0

X
264 0.049529 0.491278128 0.062268 0.52306233 0 0

X
265 0.060929 0.519939855 0.0766 0.553992246 0 0

X
266
-1

0.0182 0.376101643 0.022881 0.399467246 0 0

X
267
1

0.025229 0 .409927503 0.029397 0.426922943 0 0
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40

40

40

40

40

40

40
41

41
41

41

41

41

41
42
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42
42

42
43
43
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268-1 0.038729 0.459631531 0.045127 0.47901195 0 0
X
2691 0.024929 0.408630265 0.029048 0.425567164 0 0
X
270 0.045429 0.479878884 0.052934 0.500267407 0 0
X
271*1 0.044729 0.477863364 0.052119 0.498152242 0 0
X
2721 0.061429 0.521111136 0.071578 0.543626774 0 0
X
2731 0.0332 0.441016668 0.038685 0.459490887 0 0
X
2741 0.10733 0.609398706 0.115379 0.622190178 0 0
X
275 0.11433 0.620555346 0.122904 0.633656234 0 0
X
276*1 0.08423 0.568922357 0.090547 0.580632514 0 0
X
277 0.11013 0.613914441 0.118389 0.62683054 0 0
X
2781 0.15853 0.682838759 0.170419 0.697768613 0 0
X
279-1 0.17043 0.697782143 0.183212 0.713180034 0 0
X
280-1 0.0645 0.528169211 0.069338 0.538848758 0 0
X
281 0.03423 0.444638958 0.038953 0.460345839 0 0
X
282 0.04296 0.47267195 0.048888 0.48953939 0 0
X
283 0.03423 0.444638958 0.038953 0.460345839 0 0
X
284 0.065296 0.529962011 0.074307 0.549316604 0 0
X
285 0.0753 0.551352869 0.085691 0.571679806 0 0
X
286 0.09893 0.595389153 0.112582 0.617810273 0 0
X
287 0.051 0.495211359 0.058038 0.:513038268 0 0 1
288 0.03297 0.440197184 0.02809 0.421786094 0 0
X
289
-I

0.03323 0.441123266 0.028312 0.422670224 0 0
X
2901 0.02683 0.416673123 0.022859 0.399365734 0 0
X
2911 0.038297 0.458245861 0.032629 0.438974871 0 0
X
2921 0.05033 0.493429548 0.042881 0.472436727 0 0
X
2931 0.04453 0.477286453 0.037939 0.457089366 0 0
X
294 0.023 0.400015144 0.019596 0. 383476417 0 0 1
2951 0.038528 0.458988142 0.039764 0.462908608 0 0
X
296
1

0.045528 0.480162222 0.046989 0.484295597 0 0
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43 297
1

0.032128 0.437162831
43 298

1
0.051228 0.49581409

43 299
1

0.050928 0.495020644

43 300
1

0.079276 0.559334486
43 301

1
0.0368 0.453359071

44 302
1

0.007629 0.300021171

44 303
1

0.010729 0.327672084
44 304 

• 1
0.013129 0.345321703

44 305
1

0.0099 0.320914194
44 306

1
0.016529 0.366724693

44 307
1

0.036829 0.45345503
44 308

1
0.0078 0.301740778

45 309
1

0.044227 0.476404648
45 310

1
0.047727 0.486350292

45 311
1

0.055427 0.506604084
45 312

1
0.048927 0.48964562

45 313
1

0.040327 0.464666626

45 314
1

0.083327 0.567202541

45 315
1

0.0321 0.437060981
46 316

1
0.137427 0.654623734

46 317
1

0.160827 0.685772684

46 318
1

0.145627 0.665874123

46 319
1

0.166227 0.692575358

46 320
1

0.189273 0.720269314

46 321
1

0.215327 0.749400477

46 322
1

0.0516 0.496793607

0.033159 0.440870876 0 0

0.052872 0.500107275 0 0

0.052562 0.499304707 0 0

0.081821 0.564307176 0 0

0.037981 0.457225433 0 0

0.008378 0.307358087 0 0

0.011782 0.335733242 0 0
0.014417 0.353850547 0 0
0.010871 0.328791501 0 0

0.018151 0.375835591 0 0

0.040442 0.465023646 0 0

0.008565 0.309115159 0 0

0.038036 0.457403459 0 0

0.041046 0.466887415 0 0

0.047668 0.486186826 0 0

0.042078 0.470028778 0.88 0. 76

0.034682 0.446204702 1.83 1. 57

0.071662 0.543804019 2. 52 2. 17

0.027606 0.419841441 2 .52 2 .17

0.150222 0.672013705 0 0
0.1758 0.704328527 0 0

0.159185 0.683677896 0 0

0.181703 0.71139462 2. 59 2. 83

0.206894 0.740192623 7 .9 8. 64

0.235374 0.770549565 10 .49 11 .47

0.056404 0.509035041 10 .49 11 .47

note Give each column-variable a sensible name
note riskov and riskmc are the transformed burglary risks from overlay 
method and the Monte Carlo method respectively, risktov and risktmc are
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the burglary risks from overlay method and the Monte Carlo method 
respectively.
Note actov and actmc are the action scores from overlay method and the 
Monte Carlo method respectively.
name cl 'beat-no' c2 'case' c3 'riskov' c4 'risktov' c5 'riskmc'
name c6 'risktmc' c7 'actov' c8 'actmc' c9 'cons'
Note look at the initial setting of the multi-level model

sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in
IDENtifying codes for level 1: level 2: level 3:
RESEtting covariances level 1: ON level 2: ON level 3: ON
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is OFF

LEVEL 3 RANDOM PARAMETER MATRIX unspecified
LEVEL 2 RANDOM PARAMETER MATRIX unspecified
LEVEL 1 RANDOM PARAMETER MATRIX unspecified

Note Check to see the variables are all ok

names

Name n missing min max
1 BEAT-NO 322 0 1.0000 46.000
2 CASE 322 0 1.0000 322.00
3 RISKOV 322 0 0,.0041000 0.24673
4 RISKTOV 322 0 0.25583 0.78211
5 RISKMC 322 0 0,.0043510 0.23537
6 RISKTMC 322 0 0.25974 0.77055
7 ACTOV 322 0 0.00000 10.490
8 ACTMC 322 0 0.00000 11.470
9 CONS 322 0 1.0000 1.0000

10 CIO 0
11 Cll 0
12 C12 0
13 C13 0
14 C14 0
15 C15 0
16 C16 0
17 C17 0
18 C18 0
19 C19 0
20 C20 0

q

Note above quit for no more printing
Note print the variables to their values read in ok
print 'beat-no'-'riskmc'
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BEAT-NO CASE RISKOV RISKTOV RISKMC
N = 322 322 322 322 322

1 1.0000 1.0000 0.021529 0.39310 0.012347
2 1.0000 2.0000 0.040629 0.46560 0.023301
3 1.0000 3.0000 0.018229 0.37626 0.010454
4 1.0000 4.0000 0.028929 0.42510 0.016591
5 1.0000 5.0000 0.055529 0.50686 0.031846
6 1.0000 6.0000 0.063429 0.52573 0.036377
7 1.0000 7.0000 0.016800 0.36829 0.0096350
8 2.0000 8.0000 0.014728 0.35583 0.015488
9 2.0000 9.0000 0.010528 0.32607 0.011072

10 2.0000 10.000 0.010128 0.32281 0.010651
11 2.0000 11.000 0.019284 0.38186 0.020279
12 2.0000 12.000 0.025428 0.41078 0.026741
13 2.0000 13.000 0.026228 0.41417 0.027582
14 2.0000 14.000 0.0068000 0.29126 0.0071510
15 3.0000 15.000 0.011128 0.33079 0.012663
16 3.0000 16.000 0.031828 0.43607 0.036217
17 3.0000 17.000 0.027228 0.41831 0.030983
18 3.0000 18.000 0.023628 0.40287 0.026887
19 3.0000 19.000 0.034128 0.44428 0.038834
20

/*T

3.0000 20.000 0.031128 0.43349 0.035421
q
print 'riskmc'-' cons'

RISKMC RISKTMC ACTOV ACTMC CONS
N = 322 322 322 322 322

1 0.012347 0.33985 0.00000 0.00000 1.0000
2 0.023301 0.40139 0.00000 0.00000 1.0000
3 0.010454 0.32547 0.00000 0.00000 1.0000
4 0.016591 0.36708 0.00000 0.00000 1.0000
5 0.031846 0.43613 0.00000 0.00000 1.0000
6 0.036377 0.45195 0.00000 0.00000 1.0000
7 0.0096350 0.31867 0.00000 0.00000 1.0000
8 0.015488 0.36054 0.00000 0.00000 1.0000
9 0.011072 0.33036 0.00000 0.00000 1.0000

10 0.010651 0.32705 0.00000 0.00000 1.0000
11 0.020279 0.38695 0.00000 0.00000 1.0000
12 0.026741 0.41631 0.00000 0.00000 1.0000
13 0.027582 0.41974 0.00000 0.00000 1.0000
14 0.0071510 0.29506 0.00000 0.00000 1.0000
15 0.012663 0.34209 0.00000 0.00000 1.0000
16 0.036217 0.45142 0.00000 0.00000 1.0000
17 0.030983 0.43295 0.00000 0.00000 1.0000
18 0.026887 0.41691 0.00000 0.00000 1.0000
19 0.038834 0.45997 0.00000 0.00000 1.0000
20 0.035421 0.44873 0.00000 0.00000 1.0000

q

Note initial model 
sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in
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IDENtifying codes for level 1: level 2: level 3:
RESEtting covariances level 1: ON level 2: ON level 3: ON
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is OFF

LEVEL 3 RANDOM PARAMETER MATRIX unspecified
LEVEL 2 RANDOM PARAMETER MATRIX unspecified
LEVEL 1 RANDOM PARAMETER MATRIX unspecified

Note first define the explanatory variable as CONS to set the base 
line, and response variable as burglary risk (overlay method. Identify 
the number of cases (beat-years) as Level 1, and Beat-no as Level 2.
Set variance at Level 1 & 2 CONS as their variable names so that their 
coefficients become the values of the variances.
expl 'cons' 
resp 'riskov'
identify 1 'case' 2 'beat-no' 
setv 1 'cons' 
setv 2 'cons'

Note the new setting 
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKOV
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note start running the model 

start

Iteration number 1 in progress 
Iteration number 1 completed 
Convergence not achieved
Note so turn on the BATCH mode (a toggle command) 
batch

BATCh mode is ON 
next

level 2: BEAT-NO level 3: 
level 2: ON level 3: ON
METHod is IGLS BATCh is OFF
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Iteration number 2 in progress 
Iteration number 2 completed 
Convergence achieved

Note here goes the results of the fixed components 
fixe

PARAMETER
CONS

ESTIMATE
0.05491

S. ERROR 
0.005022

PREV. ESTIMATE 
0.05491

Note here goes the results of the random components 
rand

PARAMETER
NCONV

LEVEL 3 

ESTIMATE S. ERROR PREV. ESTIMATE

PARAMETER
NCONV
CONS /CONS
1

LEVEL 2 

ESTIMATE S. ERROR
0.001074 0.000242

PREV. ESTIMATE 
0.001074

PARAMETER
NCONV
CONS 'CONS
1

LEVEL 1 

ESTIMATE S. ERROR
0.0006024 0.00005128

PREV. ESTIMATE 

0.0006024

Note look at the setting again 
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKOV
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

level 2: BEAT-NO level 3: 
level 2: ON level 3: ON
METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note do the similar routine as above for the Monte Carlo method
resp 'riskmc'
sett

364



Appendix 11.1

EXPLanatory variables in 
FPARameters 
FMEAns 
RMEAns
RESPonse variable in 
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON

CONS
CONS

RISKMC

MAXIterations TOLErance
level 2: BEAT-NO 
level 2: ON 
METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
start

Iteration number 1 in progress 
Iteration number 1 completed
Iteration number 2 in progress 
Iteration number 2 completed 
Convergence achieved 
fixe

PARAMETER ESTIMATE S. ERROR
CONS 0.05754 0.004768
rand

PARAMETER
NCONV

PARAMETER
NCONV
CONS /CONS
1

PARAMETER 
NCONV
CONS /CONS
1
sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in

LEVEL 3 

ESTIMATE S. ERROR

LEVEL 2 

ESTIMATE S . ERROR
0.0009548 0.0002182

LEVEL 1 

ESTIMATE S . ERROR
0.000637 0.00005422

CONS
CONS

RISKMC

PREV. ESTIMATE 
0.05754

PREV. ESTIMATE

PREV. ESTIMATE 

0.0009548

PREV. ESTIMATE 
0.000637
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IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

level 2: BEAT-NO 
level 2: ON 
METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note do the similar routine as above for the transformed risk 
resp 'risktov'
sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in 
IDENtifying codes for level 
RESEtting covariances level
MAXIterations TOLErance

CONS
CONS

RISKTOV
CASE
ON

2

level
level

BEAT-NO
ON

METHod is IGLS
level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
start

Iteration number 1 in progress 
Iteration number 1 completed

Iteration number 2 in progress 
Iteration number 2 completed 
Convergence achieved 
fixe

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE
CONS 0.4829 0.01162 0.4829
rand

LEVEL 3

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE
NCONV

LEVEL 2
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PARAMETER
NCONV
CONS /CONS 
1

ESTIMATE

0.005732
S. ERROR 
0.001296

PREV. ESTIMATE 
0.005732

LEVEL 1

PARAMETER ESTIMATE S. ERROR
NCONV
CONS /CONS 0.00336 0.000286
1
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in 
IDENtifying codes for level 1 
RESEtting covariances level 1
MAXIterations TOLErance

RISKTOV
CASE
ON

2

level 2 
level 2 
METHod

PREV. ESTIMATE
0.00336

is
BEAT-NO 
ON 
IGLS ■

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note do the similar routine as above for the transformed risk with the 
Monte Carlo method

resp 'risktmc' 
sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in 
IDENtifying codes for level 
RESEtting covariances level
MAXIterations TOLErance

CONS
CONS

RISKTMC
CASE
ON

2

level
level
METHod is

BEAT-NO
ON
IGLS

level 3: 
level 3: 
BATCh is

ON
ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
start

Iteration number 1 in progress
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Iteration number 1 completed

Iteration number 2 in progress 
Iteration number 2 completed 
Convergence achieved 
fixe

PARAMETER
CONS
rand

ESTIMATE
0.4899

S. ERROR 
0.01156

PREV. ESTIMATE
0.4899

LEVEL 3
PARAMETER

NCONV
ESTIMATE S. ERROR PREV. ESTIMATE

PARAMETER
NCONV
CONS /CONS
1

LEVEL 2 

ESTIMATE S . ERROR

0.005644 0.001282
PREV. ESTIMATE 

0.005644

LEVEL 1

PARAMETER ESTIMATE S. ERROR
NCONV
CONS /CONS 0.00351 0.0002988
1
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in 
IDENtifying codes for level 1 
RESEtting covariances level 1

PREV. ESTIMATE

0.00351

MAXIterations TOLErance

RISKTMC
CASE
ON

2

level 2 
level 2

BEAT-NO
ON

METHod is IGLS
level 3: 
level 3: 
BATCh is

ON
ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note do the similar routine as before using action scores from the 
Monte Carlo method
expl 'actmc' 
sett
EXPLanatory variables in CONS ACTMC
FPARameters CONS ACTMC
FMEAns

368



F

Appendix 11.1

RMEAns
RESPonse variable in RISKTMC
IDENtifying codes for level 1: CASE level 2: BEAT-NO level 3:
RESEtting covariances level 1: ON level 2: ON level 3: ON
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX
LEVEL 2 RANDOM PARAMETER MATRIX

CONS
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX

CONS
CONS 1
start

Iteration number 1 in progress
Iteration number 1 completed
Iteration number 2 in progress
Iteration number 2 completed
Iteration number 3 in progress
Iteration number 3 completed
Iteration number 4 in progress
Iteration number 4 completed
Convergence achieved 
fixe

PARAMETER
CONS
ACTMC
rand

PARAMETER
NCONV

PARAMETER
NCONV
CONS /CONS
1

ESTIMATE
0.4911

-0.00365
S. ERROR 
0.01185 

0.002817

LEVEL 3 

ESTIMATE S . ERROR

LEVEL

ESTIMATE
0.005921

S. ERROR 

0.001338

PARAMETER 
NCONV
CONS /CONS 
2
sett
EXPLanatory variables in

LEVEL

ESTIMATE

0.003465

CONS

S. ERROR 

0.000295

ACTMC

PREV. ESTIMATE 
0.4911 

-0.003649

PREV. ESTIMATE

PREV. ESTIMATE 
0.005919

PREV. ESTIMATE 

0.003465
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FPARameters CONS
FMEAns
RMEAns
RESPonse variable in RISKTMC
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

ACTMC

level 2: BEAT-NO 
level 2: ON 
METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
1

riskmc'
CONS 
resp 
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKMC
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

ACTMC
ACTMC

level 2 
level 2 
METHod is

BEAT-NO
ON
IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX
LEVEL 2 RANDOM

CONS
PARAMETER MATRIX

CONS 1
LEVEL 1 RANDOM

CONS
PARAMETER MATRIX

CONS 1
start

Iteration number 1 in progress
Iteration number 1 completed

Iteration number 2 in progress
Iteration number 2 completed

Iteration number 3 in progress
Iteration number 3 completed

Iteration number 4 in progress
Iteration number 4 completed
Convergence achieved 
fixe

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE
CONS 0.05778 0.004844 0.05778
ACTMC -0.0007402 0.001202 -0.0007389
rand
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PARAMETER
NCONV

LEVEL 3

ESTIMATE S. ERROR PREV. ESTIMATE

PARAMETER
NCONV
CONS /CONS 
1

LEVEL 2

ESTIMATE S. ERROR PREV. ESTIMATE
0.000982 0.0002236 0.000981

LEVEL 1
PARAMETER ESTIMATE

NCONV
CONS /CONS
2
sett
EXPLanatory variables in 
FPARameters 
FMEAns 
RMEAns
RESPonse variable in 
IDENtifying codes for level 1 
RESEtting covariances level 1

S. ERROR
0.0006335 0.00005393

PREV. ESTIMATE

0.0006336

CONS
CONS

MAXIterations TOLErance

RISKMC
CASE
ON

2

ACTMC
ACTMC

level 2: 
level 2:

BEAT-NO
ON

METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
expl 'actov' 
resp 'riskov' 
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKOV
IDENtifying codes for level i: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

ACTMC
ACTMC

ACTOV
ACTOV

level 2: BEAT-NO 
level 2: ON 
METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
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expl 'actmc' 
sett
EXPLanatory variables in
FPARameters
FMEAns
RMEAns
RESPonse variable in 
IDENtifying codes for level 
RESEtting covariances level
MAXIterations TOLErance

CONS
CONS

RISKOV
CASE
ON

2

ACTOV
ACTOV

level
level
METHod is

BEAT-NO
ON
IGLS

level 3: 
level 3: 
BATCh is

ON
ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
start

Iteration number 1 in progress
Iteration number 1 completed
Iteration number 2 in progress
Iteration number 2 completed

Iteration number 3 in progress
Iteration number 3 completed

Iteration number 4 in progress
Iteration number 4 completed
Convergence achieved 
fixe

PARAMETER
CONS
ACTOV
rand

PARAMETER
NCONV

PARAMETER
NCONV
CONS /CONS
2

ESTIMATE
0.0551

•0.0006442
S. ERROR 
0 .005076 
0.001351

LEVEL 3 
ESTIMATE S . ERROR

LEVEL 2 
ESTIMATE S . ERROR
0.001092 0.0002457

PREV. ESTIMATE 
0.0551 

-0.000644

PREV. ESTIMATE

PREV. ESTIMATE 
0.001092

LEVEL 1
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PARAMETER ESTIMATE S. ERROR
NCONV
CONS /CONS 0.0006004 0.00005111
2
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in 
IDENtifying codes for level 1 
RESEtting covariances level 1
MAXIterations TOLErance

RISKOV
CASE
ON

2

ACTOV
ACTOV

level
level

PREV. ESTIMATE
0.0006004

BEAT-NO
ON

METHod is IGLS
level 3: 
level 3: 
BATCh i s

ON
ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
Note do the similar routine as above for the overlay method (vs 
transformed risk)
resp 'risktov' 
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKTOV
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

ACTOV
ACTOV

level 2: BEAT-NO level 3: 
level 2: ON level 3: ON
METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
start

Iteration number 1 in progress
Iteration number 1 completed

Iteration number 2 in progress
Iteration number 2 completed

Iteration number 3 in progress
Iteration number 3 completed
Convergence achieved
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fixe

PARAMETER
CONS
ACTOV
rand

PARAMETER
NCONV

PARAMETER
NCONV
CONS /CONS
1

ESTIMATE
0.4839

■0.003682
S . ERROR 
0.01187 

0.003178
PREV. ESTIMATE 

0.4839 
-0.003662

LEVEL 3 

ESTIMATE S. ERROR PREV. ESTIMATE

LEVEL 2

ESTIMATE S. ERROR PREV. ESTIMATE

0.005961 0.001333 0.005912

LEVEL 1

PARAMETER ESTIMATE
NCONV
CONS /CONS 0.003324
1
sett
EXPLanatory variables in CONS
FPARameters CONS
FMEAns 
RMEAns
RESPonse variable in RISKTOV
IDENtifying codes for level 1: CASE 
RESEtting covariances level 1: ON 
MAXIterations 5 TOLErance 2

ERROR

0.0002834

ACTOV
ACTOV

PREV. ESTIMATE

0.003329

level 2: BEAT-NO 
level 2: ON 
METHod is IGLS

level 3: 
level 3: ON 
BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1

Note save the model for the future use 

save mlc99.ws
247092 spaces left on worksheet

Note logoff (toggle command) and type stop to exit ML3 
logo
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Appendix 11.2 

Log file of significance testing in ML3

This appendix provides a print out of the ML3 log file for the significance testing of the 

burglary risk and action intensity in Coventry as an example. The results of the multi­

level modelling from Bristol and the two cities combined were tested similarly. 

Comments are after the key word ‘NOTE’.

ML3 - Software for three-level analysis. Tue Apr 20 14:05:54 1999 

Note retrieve the saved model 

retr mlc99.ws

note look at the setting o f the model 
sett
EXPLanatory variables in CONS ACTMC 
FPARameters CONS ACTMC
FMEAns 
RMEAns
RESPonse variable in RISKTMC
IDENtifying codes for level 1: CASE level 2: BEAT-NO level 3:
RESEtting covariances level 1: ON level 2: ON level 3: ON 
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1

Note re-run the model 
start

Iteration number 1 in progress 
Iteration number 1 completed

Iteration number 2 in progress 
Iteration number 2 completed

Iteration number 3 in progress 
Iteration number 3 completed

Iteration number 4 in progress 
Iteration number 4 completed
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Convergence achieved 
fixe

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE 
CONS 0.4911 0.01185 0.4911
ACTMC -0.00365 0.002817 -0.003649
rand

LEVEL 3

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV

LEVEL 2

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV
CONS /CONS 0.005921 0.001338 0.005919 1

LEVEL 1

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV
CONS /CONS 0.003465 0.000295 0.003465 2

Note compute the likelihood of the model (the fit statistics are calculated as -2[log (likelihood ratio)], 

likelihood

-2*log(lh) is -792.508

Note look at the setting again 
sett
EXPLanatory variables in CONS ACTMC 
FPARameters CONS ACTMC
FMEAns 
RMEAns
RESPonse variable in RISKTMC
IDENtifying codes for level 1: CASE level 2: BEAT-NO level 3: 
RESEtting covariances level 1: ON level 2: ON level 3: ON
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1

Note remove the explanary variable - action score (Monte Carlo method) - from the model
expl ’actmc’
sett
EXPLanatory variables in CONS 
FPARameters CONS
FMEAns
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RMEAns
RESPonse variable in RISKTMC
IDENtifying codes for level 1: CASE level 2: BEAT-NO level 3: 
RESEtting covariances level 1: ON level 2: ON level 3: ON 
MAXIterations 5 TOLErance 2 METHod is IGLS BATCh is ON

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 
LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 
CONS 1
LEVEL 1 RANDOM PARAMETER MATRIX 

CONS 
CONS 1 
start

Iteration number 1 in progress 
Iteration number 1 completed

Iteration number 2 in progress 
Iteration number 2 completed 
Convergence achieved 
fixe

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE 
CONS 0.4899 0.01156 0.4899
rand

LEVEL 3

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV  

LEVEL 2

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV
CONS /CONS 0.005644 0.001282 0.005644 1

LEVEL 1

PARAMETER ESTIMATE S. ERROR PREV. ESTIMATE NCONV
CONS /CONS 0.00351 0.0002988 0.00351 1

Note compute the likelihood with the action variable removed 
likelihood

-2*log(lh) is -790.895

Note compare the probability of the above two models, the difference is 1.613 with 1 degree o f freedom, so 
compute the probability (a chi-square distribution) 
cprob 1.613 with 1 df

0.20407

logoff
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Geographical Information Charter Standard Statement 

Draft adoption by the Home Office

• 1. Consult users when preparing applications or drafting legislation for the 

collection o f data

Where appropriate, the Home Office will consult its main customers and data users, 

usually in the development phase of the data.

• 2. Provide information about what data are available

The Home Office produces a variety of publications to provide customers with a broad 

understanding of the work and services. Usually, data are documented in Technical 

Reports. Other methods of increasing awareness will be investigated and adopted where 

appropriate.

• 3. Provide clear statements on the price o f data;

At present most of the data sets are available free of charge for appropriate organisations 

(such as research institutions) on request. This will be subject to review in the future, 

and it may van- across different agencies. It is envisaged that pricing of data will also 

vary' depending on the proposed use intended by the purchaser and will be negotiated on 

an individual basis.

• 4. Make data available, unless there are specific reasons for not doing so, in which 

case those reasons should be explained;

The Home Office will seek to make data and statistics readily available unless there are 

reasons to withhold them. Specific reasons will be explained if data are withheld (for 

example, due to confidentiality constraints, commercial consideration etc.). Some data 

sets would be too sensitive to release (in their entirety) outside the Home Office although 

aggregate data will be available through publications etc.
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• 5. Ensure that data adhere to British, European and international standards and 

classifications, unless there are specific reasons for not doing so, in which case those 

reasons should be explained;

At present there are no British, or international standards which relate to spatial data held 

by the Home Office. However the Home Office would assess emerging standards and 

where appropriate will consider adoption of a relevant standard when it becomes 

established. It will review its adoption of these standards when they are published and 

clearly explain its position to users in the event of any not being adopted.

• 6. Deliver data in standard digital, or other, formats wherever possible;

The Home Office produces statistics in forms convenient to users, and aims to adopt 

common data exchange standards and meet their needs wherever possible.

• 7. Supply accompanying documentation with data to enable users to judge the fitness 

fo r their purpose;

Home Office produces a variety of publications to provide customers with a broad 

understanding of the work and services. Usually, data are documented in Technical 

Reports to enable users to judge the fitness for their purpose.

• 8. Consult users before the destruction o f any data set, subject to the prior guidance 

o f the appropriate national record office;

The Home Office has no plans to destroy any of the data sets. However, the Home 

Office would consult users before the destruction of any data sets. Certain data sets, 

such as the British Crime Survey, are also deposited in the ESRC data archive, which is 

available for secondary analysis to bona fide academic researchers.

• 9. Publish a contact point to deal with enquiries;

The Home Office operates a central enquiry desk at each office to answer telephone or 

written enquires. The Home Office’s published reports include the Information & 

Publication Group contact point for further enquiries.
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• 10. Provide information about how users can complain if they are not satisfied with 

the service they receive.

The Home Office publishes a contact point for details of its complaint procedures.
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