2020AbdullaASEPhD.pdf (3.19 MB)
Download file

Using Remote Sensing to assess the effect of Time of Day on the spatial and temporal variation of LST in Urban Areas

Download (3.19 MB)
thesis
posted on 30.04.2021, 12:11 by Akram Abdulla
This thesis seeks to add to the study of the relationship between land surface temperature (LST) and urban land cover by presenting a method to project Landsat LST data from the satellite overpass time (9:40 am) to a local peak of temperature (estimated to be around 1:15 pm locally), to investigate the impact of the time of image acquisition on modelling the spatial and temporal variations of LST. Additionally, it would also verify the effects of extreme temperature to reach more representative seasonal images.
The study uses remote sensing data extracted from Landsat 5 and 8 (30 m resolution) and the Spinning Enhanced Visible and Infrared Imager LST products (SEVIRI 3 km resolution), in addition to LST-based measurements collected from the ground. The study presented a method to convert Landsat images to be estimated during local peaks in LST with an accuracy of: standard error of 1.7°C and an R of 0.82 in comparison with actual ground-based measurements. This allowed an investigation of the effects of time of day on the spatial and temporal variation of LST, where it was found that this factor has clearly affected the relationship between LST and urban land cover. Similarly, the time of day has caused differences in estimating LST change over several years. It is also found that the extreme values of temperature can affect the trend of LST temporal variation, and which can be minimized by using the images in the form of the average of seasonal images for each year rather than images being used in a standalone manner. This study contributes to the improved study of LST by minimizing the uncertainty that can occur because of the angle of the sun and associated factors such as shadows, which has long been a controversial issue among researches due to the lack of appropriate satellite data.

History

Supervisor(s)

Kevin Tansey; Kirsten Barrett

Date of award

08/12/2020

Author affiliation

School of Geography, Geology and Environment

Awarding institution

University of Leicester

Qualification level

Doctoral

Qualification name

PhD

Language

en