University of Leicester
Browse

Getting the strain under control: Trans-Varestraint tests for hot cracking susceptibility

Version 2 2019-06-11, 09:12
Version 1 2019-06-11, 09:01
Posted on 2019-06-11 - 09:12 authored by Rob Thornton
A new method for conducting Trans-Varestraint tests for assessing hot cracking susceptibility is proposed. Experiments were carried out, to validate the new method, with an industrial scale rig using tungsten inert gas welding. The hot cracking susceptibility of API-5L X65 and EN3B steel was compared. The results indicated that, by using the new method, the strain applied to the welding bead and consequently to the solidification front was controlled in a repeatable and reliable way. The results also indicated that EN3B has a maximum crack length (a parameter in the test) higher than X65 and it is reached at lower augmented strain thus demonstrating it is more susceptible to hot cracking, while also indicating that there is a capability of predicting the initiation position of hot cracks during welding. By using the method proposed, the capability of setting standardized test procedures for Trans-Varestraint tests is improved. It is recommended that future tests for assessing hot cracking susceptibility should employ the proposed method in order for the results to be comparable and to also study the effect of strain rate in hot cracking of materials.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

EPSRC Centre for Doctoral Training in Innovative Metal Processing IMPaCT

Engineering and Physical Sciences Research Council

SHARE

email
need help?