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Abstract 

Sintering, originated in ancient civilization thousands of years ago, is a typical process 

applied to ceramic and metal component manufacture by heating material powders until 

particles are fully densified and adhere to each other. With the development of controlled 

sintering of metal and ceramics in the early twentieth century, the technological background 

for modern theory and practice of sintering was established, and then experienced fast 

growth after the mid-1940s. In sintering study, empirical and theoretical ways are used to 

understand sintering behaviours and connect behaviours to sintering variables. The 

experimental studies and theoretical analyses have been performed quite well over the last 

60 years when providing an outstanding qualitative understanding of sintering in terms of 

the driving forces, the mechanisms, and the influence of major sintering variables such as 

the particle size, temperature and applied pressure. However, the analytical solutions of 

experiments and the models of sintering are not so successful when providing a quantitative 

description for most sintering. With the development of computer technology, the powerful 

computing capability of computer allows us to build a complex sintering model with more 

sintering variables that provide a more accurate description on the effects of sintering 

variables. 

In this thesis, a computational model is firstly presented to validate and correct the previous 

assumption of fast surface diffusion for modelling first-stage sintering by coupled grain-

boundary and surface diffusion. There are two main achievements in this study. To be 

specific, the first one is providing a numerical solution for the curvature at a triple junction 

(pore tip), and the second one is demonstrating the effect of surface diffusion on first-stage 

sintering by coupled grain-boundary and surface diffusion. Then a temperature-dependent 

model is presented to study the effect of the fast heating rate on sintering. Based on the 

analysis of numerical results, the effect of spark plasma sintering on densification can be 

partially attributed to its fast heating rate. Finally, a computational model is presented to 

qualify and quantify the effects of inhomogeneity concerning sintering variables on 

sintering kinetics. 

The work in this thesis is entirely computational and guided by existing experimental data 

and observations in the literature. 
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Chapter 1 Introduction 

 

1.1 Introduction to Sintering 

Sintering is an ancient technique that is featured with its origins in the ancient civilizations of 

thousands of years ago. Meanwhile, sintering is also an advanced technique of producing a wide 

range of high-tech components and products, such as bearings, valves and pump components used 

in the extreme abrasive and corrosive environment. Recently, an increasing number of nano-

structured materials used in cutting edge technology are manufactured by sintering. Due to its high 

tech added value, advanced sintering technology has aroused attention to a great extent. 

Practically speaking, sintering is a process of heating material powders until particles are fully 

densified and adhere to each other. Theoretically speaking, sintering is a thermal treatment that 

bonds particles into a coherent and predominantly solid structure via mass transport events that often 

occur on the atomic scale. Then, the bonding leads to strength improvement and a reduction of total 

free energy. As the main work of this thesis is to develop computational models of sintering, only 

relevant basic background of sintering is introduced in the following subsection. 

1.1.1 Major Phenomena in Sintering 

It is common that there are three major phenomena in sintering. The first phenomenon is 

formation of the grain boundary (surface loss), as shown in Fig. 1.1. 

 

Fig. 1.1 Schematic Diagram: formation of the grain boundary 
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The second major phenomenon is densification from loose powder to the densified body, as 

shown in Fig. 1.2. 

 

Fig. 1.2 Schematic Diagram: Densification [1] 

The third phenomenon is coarsening which means big particles swallow smaller ones during 

sintering, as shown in Fig. 1.3. 

 

Fig. 1.3 Schematic Diagram: Coarsening [2] 
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1.1.2 Driving Force for Sintering 

(1) Solid State Sintering 

As the sintering temperature increases, two particles in contact tend to form a neck between 

them and bond together, as shown in Fig. 1.4. Driving force for this process, which 

essentially motivates sintering, is the reduction of total free energy. More specifically, the 

reduction of total free energy is caused by replacing the two free surfaces with a single grain-

boundary in the neck region. Therefore, the general equation for the reduction of total free 

energy is: 

∆E = −(2γsv − γss)Ac                                                                                    (1.1) 

where γsv represents the specific energy for the solid-vapour interface; γss represents the 

specific energy for the solid-solid interface, and Ac represents the area of the contact. 

 

Fig. 1.4 Schematic Diagram: Sintering of Two Particles in Contact 

 (2) Liquid Phase Sintering 

Another important mechanism is sintering in the presence of a liquid phase, as shown in Fig. 

1.5. The detailed mechanism of liquid phase sintering is that aiming to sinter particles of 
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material A, a small amount of material B is added. As temperature rises, material B firstly 

melts and helps material A dissolve into B, and then forms a liquid film. The liquid film 

wets these two particles of material A and pulls them closer to each other. Then the neck 

growth is that material A dissolves into the liquid phase and then diffuses out of the contact 

region. The driving force for material B melting is the reduction of chemical free energy. 

Similarly, the driving force for neck growth is the reduction of total free energy: 

∆E = −2γLVAc                                                                                              (1.2) 

where γLV is the specific energy for the liquid-vapour interface. 

 

Fig. 1.5 Schematic Diagram: Liquid Phase Sintering of Two Particles 

1.1.3 Classification of Sintering Mechanisms 

According to the matter transport mechanism, sintering mechanisms can be classified into 

five categories as follows. 

(1) Sintering by Grain-boundary Diffusion 

The neck can be formed by matters that diffuse out of the neck and deposit them onto the 

particle surface, as shown in Fig. 1.6. This process contains grain-boundary diffusion jgb 
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and surface diffusion js . However, if surface diffusion is faster, then grain-boundary 

diffusion is the rate-controlling mechanism. 

 

Fig. 1.6 Schematic Diagram: Sintering by Grain-boundary Diffusion 

(2) Sintering by Surface Diffusion 

If grain-boundary diffusion is much smaller than surface diffusion, for example sintering at 

relatively low temperature, the neck can be formed by matters diffusing from the particle 

surface onto the neck area, as shown in Fig.1.7. In this case, there is no densification in 

sintering, and the centres of two particles do not approach to each other. 
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Fig. 1.7 Schematic Diagram: Sintering by Surface Diffusion 

(3) Sintering by Lattice Diffusion 

For large particles, the neck can grow when matter diffusing out of the grain-boundary 

through the particle body and depositing onto the neck surface, as shown in Fig. 1.8. 

 

Fig. 1.8 Schematic Diagram: Sintering by Lattice Diffusion 

(4) Sintering by Vapour Evaporation and Condensation 
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The neck can grow by atoms evaporating from the particle surface and depositing onto the 

neck region as shown in Fig. 1.9. Like sintering by surface diffusion, this mechanism never 

causes the centres of the two particles to approach to each other. 

 

Fig. 1.9 Schematic Diagram: Sintering by Vapour Evaporation and Condensation 

(5) Liquid Phase Sintering 

Assuming the two particles shown in Fig. 1.10 are completely wetted by a thin film of liquid, 

the neck can grow when atoms dissolving into the thin liquid film between the two particles, 

then diffusing out of the neck through the film, and finally precipitating on  Particle A. 

 

Fig. 1.10 Schematic Diagram: Liquid Phase Sintering 
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1.1.4 Major Sintering Variables 

From an industrial point of view on sintering, the sinterability and the sintered 

microstructure of a powder compact are mainly determined by two categories of variables: 

material variables and process variables, listed in Table 1.1 [3]. 

Table 1.1 Major sintering variables affecting sinterability and microstructure [3] 

Variables related to raw 

materials (material 

variables) 

Powder: shape, size, size distribution, agglomeration, 

mixedness, etc. 

Chemistry: composition, impurity, homogeneity, etc. 

Variables related to 

sintering condition 

(process variables) 

Temperature, time, pressure, heating and cooling rate, 

atmosphere, etc. 

 

1.2 Research Objectives and the Thesis Structure  

1. Research Objectives 

Research objectives of this thesis are studying and simulating first stage solid state sintering 

through computer modelling. In order to understand sintering behaviours and study the 

effects of sintering variables on these behaviours, several particle-scale models are 

developed by adopting finite difference method in this thesis. For these computational 

models, there are following features. 

(a) They are axisymmetric models. 

(b) They can simulate microstructure evolution such as grain-boundary growth and change 

of the particle profile. 

(c) The coupled sintering mechanism of grain-boundary and surface diffusion is considered 

in these models. 

(d) The governing equations of sintering mechanisms, such as the equation of the 

densification rate, are mathematically solved in these computational models. 
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(e) Problems of the curvature at the triple junction (pore tip) must be numerically solved 

rather than being estimated with a geometric way. 

(f) Alumina material parameters are used for all simulations. 

2. The Structure of This Thesis  

In chapter 1, an overview of the thesis theme is presented, and a brief introduction to the 

sintering background is also given. 

In chapter 2, a brief introduction to sintering modelling is presented, and a brief literature 

review on sintering modelling at particle scale is also given.   

In chapter 3, a computational model is built to study the role of surface diffusion and external 

pressure on first-stage sintering where powders are densified by grain-boundary diffusion. 

Coupled grain-boundary and surface diffusion is considered as the mechanism for matter 

redistribution. There are two main achievements in this study. To be specific, the first one 

is providing a numerical solution to the curvature at a triple junction (pore tip), and the 

second one is demonstrating the effect of surface diffusion on first-stage sintering by 

coupled grain-boundary and surface diffusion. 

In chapter 4, a computational model is built to study the role of the fast heating rate on 

sintering. In this study, a temperature dependent model is developed for simulating the 

sintering with a heating process from 600oC to 1400oC. By calculating a series of different 

heating rate cases, effect of the fast heating rate on sintering is revealed, and the widely 

observed SPS effect on densification can be partially attributed to its fast heating rate, 

because the rapid heating rate supports sintering to quickly pass through the low temperature 

domain that surface diffusion dominates, and then the blunting effect of fast surface 

diffusion near the triple junction is minimized. 

In chapter 5, a computational model is built to qualify and quantify effects of inhomogeneity 

on sintering kinetics. A series of cases concerning sintering variables’ inhomogeneity is 

computed to display their effects on sintering kinetics. Furthermore, five critical sintering 

variables such as the grain size, surface tension and diffusivity are chosen to study the effects 

of their inhomogeneity on sintering kinetics. 

In chapter 6, the main achievements and conclusions of this thesis are given, and future 

work is also discussed.  
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Chapter 2 Introduction to Sintering Modelling 

 

2.1 Introduction 

In sintering study, two common ways are adopted to understand sintering behaviours and 

connect behaviours to sintering variables. The first one is the empirical way of measuring 

the sintering behaviours in the experiment under a set of controlled conditions. The second 

one is the theoretical way of modelling the sintering process. The theoretical analyses and 

experimental studies have been performed quite well over the last 60 years when providing 

an outstanding qualitative understanding on sintering in terms of the driving forces, the 

mechanisms, and the influence of major sintering variables such as the particle size, 

temperature and applied pressure. However, the analytical solutions of experiments are not 

successful enough when concerning providing a quantitative description for most sintering. 

Therefore, it is quite important to develop sintering modelling that can simulate and predict 

sintering behaviours more accurately. 

For one thing, with the development of the new sintering technique as well as the increase 

in costs of raw material and labour, there is a strong demand for sintering modelling from 

the industry. From the perspective of the market, manufacturers should guarantee the 

performance of their products instead of providing ‘typical’ properties, and they have to 

develop robust processes to present high tolerance and net shape. In addition, with the 

gradually strict environmental legislations, the manufacturers should reduce their rejection 

rate significantly because the costs for processing the waste become extremely high. 

Modelling can partially solve the above issues and save the costs. 

As introduced in chapter 1, the general working mechanism of sintering is as follows. For 

loosely compacted powder, it contains a huge number of pores, so the powder compact is 

brittle. With the temperature rise during sintering, material powders start adhering to each 

other and turn into a strong solid. Two major micro-processes namely densification 

(porosity reduction) and grain growth occur during sintering. Driving force for sintering is 

the reduction of total free energy. To be more specific, the reduction of total free energy is 

caused by replacing the two free surfaces with a single grain-boundary in the neck region. 

The external pressure applied to the powder compact gives the extra driving force that 
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accelerates densification during sintering. The densification process unavoidably 

accompanies grain growth, because the reduction in total free energy appears because of the 

reduction of the free surface area. Furthermore, the increase of sintering temperature leads 

to faster surface diffusivity, and then cause a faster sintering process. Both solid state 

sintering and liquid phase sintering are widely used in the industry. 

Since the 1940s, a series of typical sintering models was founded by Frenkel [4], Kuczynski 

[5], Coble [6] and Kingery [7]. These early models tended to identify the fundamental 

mechanisms in sintering and laid a solid foundation for our current understanding of the 

sintering process. These fundamental theories are completely reviewed by German [8]. 

Since then, numerous models have been developed. In the 1980s, Ashby [9] collected all 

these models together and built their sintering mechanism maps which have been widely 

cited in the literature. Subsequently, the full constitutive laws were developed for the finite 

element analysis of sintering. The finite element analysis supports researchers to predict 

deformation, density and the grain size over time during an entire sintering cycle. Hence, it 

is an extremely powerful tool to assist development and design of products. The constitutive 

laws for the finite element analysis of sintering were reviewed by Cocks [10] and Olevsky 

[11] respectively. Besides the finite element analysis, there were another two significant 

developments in modelling sintering in the early 2000s. The first one is the development of 

the various robust numerical schemes for the computer simulation of microstructural 

evolution, which can be considered as the further development of the early sintering models. 

Cocks, Gill and Pan [12] provided a comprehensive review of a variational technique for 

the computer simulation. The second major development is the molecular dynamic 

simulation of sintering.  In this type of models, the sintering process is literally simulated 

atom by atom on a computer. Rafii-Tabar [13] reviewed molecular dynamics which was not 

directed at modelling sintering but provided an excellent starting point. 

 

2.2 A Brief Literature Review of Sintering Modelling at Particle Scale 

The main purpose of this thesis is to understand sintering behaviours and study the effects 

of sintering variables on these behaviours through more real sintering models at particle 

scale. A brief literature review on the topic of sintering modelling at particle scale is 

presented in this section. 
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2.2.1 Sintering Variables 

For sintering models at particle scale, there are many matured methods and classical models 

developed by early researchers like Frenkel [4], Kuczynski [5], Coble [6] and Kingery [7]. 

In addition, there are much more models developed by other authors in the subsequent 

studies. In general, the typical sintering variables input to these models are the particle size, 

the specific energies of the surface and a grain boundary, and the diffusion coefficients for 

the lattice, grain boundary and free surface respectively. Meanwhile, the typical sintering 

variables output in these models are velocity of neck growth and densification. In summary, 

Swinkels et al [14] and German [8] gave a complete overview on these achievements of 

early studies. 

However, there is a common limitation in these early models based on some restricted 

assumptions about the geometry of particles and pores. However, in real sintering, the 

evolution of particles and pores is too complicated to be described mathematically. In order 

to derive the velocity equations, the simplified microstructure is used in these early models, 

but these simplifications have limited our understanding of sintering mechanisms. For 

example, sintering is regularly divided into three distinctive stages in early studies. To be 

specific, stage one is neck formation; stage two is shrinkage and stage three is coarsening, 

although the evolution in real sintering is continuous. For geometry assumption in early 

models, particles were assumed to be perfectly spherical and uniform in stage one, and 

particles were assumed as uniform tetrakaidecahedron grains in stage two and three. 

Furthermore, sintering was divided into different independent regimes, and each of these 

regimes is dominated by a single mechanism, although various mechanisms interact in 

complicated behaviours during real sintering. 

With the development of computer technology, a new powerful tool called the numerical 

method was developed in the 1990s for computer simulation of the microstructure evolution 

during solid state sintering. In this new numerical simulation, the representative unit, where 

complete sintering mechanisms can be achieved, is simply assembled with particles of any 

shape and arrangement, and the scale of this representative unit can easily reach tens of 

thousands of particles. Inputs of this new computer simulation are the specific energy of 

interfaces, diffusivity, grain-boundary mobility as well as thermodynamic and kinetic 

properties of the material. Furthermore, external pressure applied to the powder compact 

can also be introduced into this new computer simulation that allows us to abandon the 
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limited assumptions about particle and pore geometry in classical models, and to examine 

the full interactions between different sintering mechanisms. In addition, a significantly 

typical example is shown in Fig. 2.1 [15]. Therefore, some limitations owing to over-

simplifications in the early models were found in subsequent studies [16]. 

 

Fig. 2.1 Schematic Diagram: Computer simulation of sintering three particles: two large 

particles quickly grab their share of small particles between them (coupled grain growth 

and densification occur during sintering) [15]. 
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2.2.2 Kinetic Laws for Solid State Sintering 

There are various matter transport mechanisms leading to microstructure evolution during 

sintering. For solid state sintering, its main mechanisms are solid-state diffusion through 

different paths, power law creep, vapour evaporation and condensation, and curvature 

driven grain-boundary migration. The effects of these mechanisms on sintering are not the 

same, and they depend on the chemical composition, the particle size, sintering temperature, 

the external pressure and the stage of sintering. 

For a numerical model, to deal with the complex microstructure and the interplay between 

the various mechanisms is no longer difficult. For solid state sintering, these kinetic laws 

have been well established in this numerical model. According to Fick’s laws, the flux can 

be formulated in terms of the concentration gradient of diffusing species, but a more 

generalized form of the equations is expressed in terms of the chemical potential (the Gibbs 

free energy). Therefore, the diffusive flux is assumed to be linearly proportional to the 

gradient of the chemical potential: 

ji = −Mi∇μ                                                                                                                       (2.1) 

where i represents the diffusion routes such as the grain boundary or the free surface, and 

Mi  represents the relevant diffusivity strongly dependent on temperature. Herring [17] 

expressed the chemical potential of vacancies in terms of the principal curvature κ𝑠  at a free 

surface and the normal stress σ  at a grain boundary: 

μ = −Ωγsκs ,          free  surface                                                                   (2.2)       

μ = −Ωσ ,               grain boundary                                                                     (2.3)       

where γs is the specific energy of the free surface and Ω is the atomic volume. The free 

surface and grain-boundary diffusion are derived by substituting Eq. (2.2) and (2.3) into (2.1) 

respectively. For lattice diffusion, Fick’s first law is often assumed to govern the vacancy 

diffusion inside the grains while Eq. (2.2) and (2.3) are defined as the boundary conditions 

for the chemical potential at the free surface and the grain boundary. 

The grain growth in sintering is caused by grain-boundary migration. It is assumed that the 

migration velocity Vm  is linearly proportional to the principal curvature κs  of the grain 

boundary: 
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Vm = Mmγgbκgb                                                                                                         (2.4) 

where Mm is the grain-boundary diffusivity which depends on temperature and γgb is the 

specific energy of a grain boundary. 

Except for the equations mentioned above, governing equations for solid state sintering also 

include matter conservation, continuity of chemical potential at the interface junction, 

balance of interface tension at the interface junction and global force equilibrium. These 

conditions should be observed for numerical model development. 

2.2.3 Numerical Techniques: the Finite Difference Method 

Finite difference methods (FDMs) are numerical methods for solving differential equations 

by approximating them with difference equations, where finite differences approximate the 

derivatives. Perhaps Nickols and Mullins [18] were the first people to do the computer 

simulation of solid state sintering by adopting a finite difference method. Later, Bross and 

Exner [19] used this approach to study the importance of rearrangement in powders by 

showing angle changes in a three-particle geometry. Since then, FDMs have become a 

dominant approach to studying solid state sintering when an increasing number of finite 

difference schemes have been developed by various authors, such as Bouvard and 

McMeeking [20], Zhang and Schneibel [21, 22], Svoboda and Riedel [23], Zhang and 

Gladwell [24], and Pan [25]. These numerical studies reviewed the sintering process 

between two particles and significantly improved the velocity equations for neck growth 

and densification. However, there are still some limitations on these finite difference 

schemes. For example, they cannot deal with more realistic models without considering the 

interaction between many particles of different sizes. Furthermore, some assumptions in 

these numerical studies need to be validated. As computer computing capability becomes 

gradually powerful, many enhanced FDMs have been developed by researchers such as R. 

Ganeriwala, T. I. Zohdi [26, 27] and K. Shinagawa [28] in recent years. In their studies, 

multi-physics models were developed to simulate the more complex sintering environment.  

2.2.4 Problems of Sintering Models at the Particle Level 

The numerical techniques have provided a powerful tool for us to deal with real 

microstructure evolution and coupling issues between different mechanisms in sintering 

models at particle scale. However, a numerical model can perform well only if the physics 
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of the sintering mechanism is clear. For example, the physics of the solid-state and liquid-

phase sintering model is determined by the kinetic law, and physics of viscous sintering is 

determined by the constitutive laws. A linear kinetic law is a common assumption in most 

of the existing models, but this is obviously invalid for many practical material systems and 

processing conditions. For example, if external pressure is applied in sintering, the 

relationship between the densification rate and external pressure is nonlinear, which is often 

observed in fine powder compacts [29]. Applying non-linear kinetic laws to the numerical 

techniques is not tough [30]. The real issue is to find the proper non-linear kinetic laws for 

numerical techniques, which can only be realised by fitting numerical simulations with 

experimental data.  

  



 
 

24 
 

Chapter 3 Effects of Surface Diffusion and External Pressure 

on First-Stage Sintering 

 

3.1 Introduction 

Surface diffusion is an important mechanism for matter redistribution. In some powder 

systems under certain conditions, sintering can occur along with surface diffusion alone. 

Kuczynski [31] considered various matter transportation mechanisms for sintering of 

metallic powders. However, the powder compact of most ceramics sinters results from a 

combination of the grain boundary and surface diffusion. In this sintering mechanism, grain-

boundary diffusion at the particle contact is responsible for densification. The role of surface 

diffusion is however rather complex. It is often argued that surface diffusion is much faster 

than grain-boundary diffusion, and hence materials delivered by grain-boundary diffusion 

to the contact neck can be quickly redistributed onto the pore surface by surface diffusion. 

It follows that grain-boundary diffusion is the rate limiting process. Many analytical models 

for sintering from the classical model by Coble [32] to modern constitutive laws [33, 34], 

rely on this assumption of fast surface diffusion. As this assumption is valid for the later 

stage of sintering when pores are isolated, it has been generally recognised that surface 

diffusion plays an important role in the first stage of sintering when the contact between 

particles is isolated. Earlier works on this topic include those conducted by Nichols and 

Mullins [35], German and Lathrop [36], Bross and Exner [37] and Exner [38]. In particular, 

the simulation results of Exner [37] showed that surface redistribution from the grain 

boundary would limit grain-boundary diffusion only for high grain-boundary diffusivity. 

Svoboda and Riedel [39] developed an analytical treatment for surface diffusion to model 

its effect on sintering behaviours. In their study, a two-dimension model for the sintering of 

row configuration is developed, and a numerical solution is derived to describe the whole 

process from initial neck formation to the later stage when the pore shape is in equilibrium 

or near equilibrium and finally disappears. Meanwhile, the analytical solutions of initial 

neck formation and the later sintering stage are derived respectively by a thermodynamic 

principle. J. Svoboda and H. Riedel found that the reduction of surface diffusivity has a 

double-fold effect on sintering behaviours during the later sintering stage. Furthermore, the 

ratio of surface diffusivity to grain-boundary diffusivity is considered, and the analytical 
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estimate based on the equilibrium pore shape can describe the effect of surface diffusivity 

quite well. 

Bouvard and McMeeking [20] provided an analytical contact law between particles by 

fitting their numerical results of computer simulation concerning sintering by coupled 

surface and grain-boundary diffusion. Bouvard and McMeeking demonstrated that fast 

surface diffusion accelerates neck growth and retards shrinkage.  

One technical issue for modelling the coupled surface and grain-boundary diffusion is how 

to calculate the curvature at the triple junction between the grain-boundary and particle 

surfaces, because the triple junction always keeps sharp throughout sintering, and it is 

especially sharper in the early sintering stage. D. Bouvard et al [20] proposed a simple 

estimation formula for the curvature at the triple junction, and it can be restrictedly applied 

for the computation combining small pressure assisted sintering and free sintering. With the 

development of sintering techniques, extremely high pressure can be applied during 

sintering, such as Spark Plasma Sintering (SPS). Therefore, the significance for numerically 

solving the curvature at the triple junction becomes more important. The curvature is 

required for both calculating surface diffusion flux and completing the solution to grain-

boundary diffusion. It however does not exist mathematically because of tangential 

discontinuity of the free surface at the junction. Pan and Cocks [40] resolved the issue by 

showing that it is possible to find the expression for the chemical potential at the triple 

junction which should be used in the calculation instead of the curvature. 

Zhang and Gladwell [41] studied the effect of surface diffusion on sintering of particles in 

different sizes, and found that careful treatment of the triple junction is significant when 

modelling the sintering process. 

Despite all the existing understandings about the important role of surface diffusion, the 

effect of surface diffusivity is often ignored in sintering models, particularly in many studies 

on first-stage sintering using the discrete element method. This is mainly due to two reasons. 

Firstly, the problem of surface diffusion has to be solved numerically in general. It is 

difficult to build the numerical solution into a sintering model for the powder compact made 

of millions of three-dimensional particles. The assumption of fast surface diffusion 

simplifies the modelling effort considerably. However, recent development of combining 

sintering models at continuum and particle levels [42] has made it possible to take into 

account of surface diffusion fully in finite element analysis of sintering at the component 
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scale. Secondly, the assumption seems plausible. Although the effect of surface diffusion 

was well understood by many previous researchers, it was buried in analytical expressions 

and numerical details. A simple demonstration, particularly related to experimental data, on 

the effect of surface diffusion in densification dominated by grain-boundary diffusion is 

missing. 

Purposes of This Chapter 

The purposes of this chapter are to (a) present a simple and definitive case for invalidity of 

the assumption of fast surface diffusion for first-stage sintering where densification is 

achieved by grain-boundary diffusion, (b) provide a straightforward understanding of the 

reason why fast surface diffusion retards densification under such conditions and (c) show 

the effect of external pressure on sintering. The co-sintering problem of two spherical 

particles is revisited using the numerical method developed by Pan and Cocks [33]. One 

tool used in this demonstration is to examine the relative relation between the shrinkage and 

neck growth as sintering proceeds. A small ratio of shrinkage over neck growth indicates 

that the sintering process is detrimental to densification. The ratio is zero if grain-boundary 

diffusion is completely prohibited. Besides, a large ratio indicates that the sintering process 

favours densification. Another tool of demonstrating the effect of surface diffusion is to 

examine the direction of the surface diffusion flux in the vicinity of the triple junction 

between grain-boundary and particle surfaces. If the flux is away from the junction region, 

then surface diffusion supports densification by moving atoms away and depositing them 

onto pore surfaces. If the flux is toward the junction region, then surface diffusion is harming 

the densification by moving atoms from the particle surfaces onto the junction region and 

reducing the driving force for further densification. These tools were available to all 

previous researchers who have developed numerical models that have not been used to make 

the case for the effect of surface diffusion as far as we are aware. 

 

3.2 Methodology 

3.2.1 Assumption of Geometry and Sintering Variables 

Two identical and spherical particles are considered as shown in Fig. 3.1(a) which shows 

sinter by coupled surface and grain-boundary diffusion. In the figure, R0 represents the 
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initial radius of two particles; 2a is the neck diameter; γs is the surface tension; γgb is the 

grain-boundary tension and θ  is the dihedral angle at the triple junction. A cylindrical 

coordinate (r, z) is used. The grain boundary is assumed as the straight and neck grow along 

a grain boundary. Additionally, a lower particle is fixed, while the upper particle is free to 

move with a velocity Vgb. 

 

Fig. 3.1 The sintering model used in this study (a) geometry overview and (b) local details of the 

contact neck 

3.2.2 Governing Equations and Their Numerical Solutions 

According to Fick’s laws, the diffusive flux j is linearly dependent on the gradient of 

chemical potential μ of the diffusion atoms: 

j = −
Dδ

kT

∂μ

∂s
                                                                                                                             (3.1) 

where D is diffusivity; δ is the thickness of the diffusion layer; k is Boltzmann’s constant; 

T is the sintering temperature and s is the local coordinate along the diffusion path. 

3.2.2.1 Grain-boundary Diffusion 

On the grain boundary, the chemical potential is related to the stress σ normal to the grain 

boundary through 
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μ = −Ωσ                                                                                                                           (3.2) 

where Ω is the atomic volume. Substituting Eq. (3.2) into Eq. (3.1) leads to  

jgb = 𝒟gb
∂σ

∂r
                                                                                                  (3.3) 

in which an effective grain-boundary diffusivity has been introduced as 

 𝒟gb =
DgbδgbΩ

kT
                                                                                                  (3.4) 

where  Dgb  is grain-boundary diffusivity and δgb  is the thickness of the grain-boundary 

diffusion layer. 

As shown in Fig. 3.2, grain-boundary diffusion jgb flows through the grey ring and then 

becomes jgb
′ . Consequently, this process leads to a vertical speed −Vgb  of the grain 

boundary. Defining the grey ring as a unit, to satisfy mass conservation at neck 1, there is 

−Vgb ∗ 2πr ∗ Δr = jgb
′ ∗ [2π(r + Δr)] − jgb ∗ 2πr                                          (3.5) 

When Δr → 0, there is 

−Vgb =
∂jgb

∂r
+

jgb

r
                                                                                                   (3.6) 

According to the product rule, there is 

−Vgb =
1

r
∗

∂(rjgb)

∂r
                                                                                                   (3.7) 

An approximate solution can be proposed as follows. 

ĵgb = Ar + B ⇒     r ∗ ĵgb = Ar2 + Br ⇒     
∂(rĵgb)

∂r
= 2Ar + B                       (3.8) 

When r=0, ĵgb = 0, the value of B is easily deduced, and it equals to 0. Hence, 

ĵgb=Ar

∂(rĵgb)

∂r
=2Ar

} ⇒
∂(rĵgb)

∂r
= 2ĵgb                                                                               (3.9) 

When substituting Eq. (3.9) into Eq. (3.7), the expression for the grain-boundary flux  jgb  

can be obtained as 
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jgb = −
1

2
Vgb ∗ r                                                                                                 (3.10) 

When substituting Eq. (3.10) into Eq. (3.3), after integration, normal stress σ at the neck can 

be found as 

σ = −
1

4𝒟gb
Vgbr2 + C                                                                                          (3.11) 

where C is an integration constant to be determined. 

 

Fig. 3.2 Schematic diagram for mass conservation at the neck 

3.2.2.2 Surface Diffusion 

On the particle surface, the chemical potential is related to the principal curvature κ :  

μ = −Ωγsκ                                                                                                        (3.12) 

where γs is the surface tension; κ is the principal curvature of the free surface. Substituting 

Eq. (3.12) into Eq. (3.1) leads to  

js = 𝒟s
∂κ

∂s
                                                                                                          (3.13) 

in which the effective surface diffusivity has been introduced as 

𝒟s =
DsδsΩγs

kT
                                                                                                      (3.14) 
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where  Ds is surface diffusivity and δs is the thickness of the diffusion layer. 

To derive the expression for surface migration velocity Vs  with the finite difference method, 

the geometry of this model is meshed as Fig. 3.1(b). In the figure, the profile of two particles 

is composed of many discrete nodes (N point), and then κ and Vs are defined on the N point. 

Furthermore, the M point is used for bisecting two neighbouring N points, and then js is 

defined on the M point. 

In this discrete-node system, according to Eq. (3.13), the surface diffusive flux at any M 

point is obtained as 

js(i) = 𝒟s
κ(i+1)−κi

∆Si
                                                                                              (3.15) 

where κi  is the principal curvature and ∆Si is the distance between two neighbouring M 

points. Apart from the triple junction, the principal curvature at the N point is defined as the 

sum of the maximum curvature and the minimum curvature, and it is negative for the convex 

surface. 

In addition, mass conservation provides a relation between the surface migration velocity 

Vs and the surface diffusion flux js , as shown in Fig. 3.3. To satisfy mass conservation at 

the shadow area, there is 

js(i) ∗ 2πr(i) − js(i−1) ∗ 2πr(i−1) = Vs(i) ∗ As                                                    (3.16) 

where As is the shadow area.  

Finally, there is 

Vs(i) =
2π∗(js(i)∗r(i)−js(i−1)∗r(i−1))

As
                                                                         (3.17) 

Except for the triple junction, the surface diffusion flux js and the surface migration velocity 

Vs can be calculated with Eq. (3.15) and Eq. (3.17) respectively. 
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Fig. 3.3 Schematic diagram for mass conservation on the free surface 

3.2.2.3 Continuity Conditions at the Triple Junction 

(1) Mass conservation is satisfied at the junction. 

As shown in Fig. 3.1(b), at the triple junction, mass conservation requires  

jgb = js(1,2) − js(n−1,1)                                                                                      (3.18) 

(2) The chemical potential is continuous at the junction. 

The chemical potential must be continuous at the junction. If not, there would be an 

unbounded flux at the junction. Then there is 

μ = −Ω σtip = −Ωγsκtip           ⇒                σtip = γsκtip                                     (3.19) 

(3) There is equilibrium of surface tension γs and grain-boundary tension γgb at the triple 

junction. 

As shown in Fig. 3.1(a), surface tension γs  and grain-boundary tension γgb  must be in 

equilibrium at the junction. Then there is 

cos θ =
γgb

2γs
                                                                                                                          (3.20) 
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3.2.2.4 Global Equilibrium of Forces 

When drawing the free body diagram of the upper particle, force analysis is illustrated in 

Fig. 3.4. The expression of force balance is as follows. 

σ∞πa2 −  2πaγs sin θ  − ∫ (σ)2πrdr
a

0
= 0                                                            (3.21) 

When substituting Eq. (3.11) into Eq. (3.21), there is 

σ∞πa2 −  2πaγs sin θ  + 
1

8𝒟gb
Vgba4  −  Ca2 = 0                                                          (3.22) 

For the triple junction, r = a, and when substituting  r = a into Eq. (3.11), there is 

σ = −
1

4𝒟gb
Vgba2 + C                                                                                       (3.23) 

At the triple junction, σ = σtip. When substituting Eq. (3.19) and Eq. (3.23) into σ = σtip, 

there is 

C = γsκtip + 
1

4𝒟gb
Vgba2                                                                                   (3.24) 

When substituting Eq. (3.24) into Eq. (3.22), the equation of the shrinkage rate is obtained.  

Vgb = 8𝒟gb(
σ∞

a2
−

2γs sin θ

a3
−

γsκtip

a2
)                                                                  (3.25) 

In case of free sintering, no external pressure is applied during sintering, and the first item 

in brackets in Eq. (3.25) is equal to zero. From Eq. (3.25), the inside mechanism of the 

shrinkage rate is obvious. The shrinkage rate is under the combined effect of external 

pressure, free surface tension and chemical potential of the free surface at the pore tip. The 

external pressure σ∞  accelerates the densification rate. Similarly, the surface tension γs 

always has a positive effect on shrinkage, which explains why the powder compact can be 

densified in free sintering. However, the effect of the curvature at the triple junction κtip 

should be further studied. 
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Fig. 3.4 The free body diagram of the upper particle 

3.2.2.5 Completing Governing Equations and Solving κtip 

For the triple junction, r = a. When substituting Eq. (3.10) and Eq. (3.15) into Eq. (3.18), 

there is 

Vgb =
2𝒟s

a1
{[

κtip

∆S(n−1,1)
+

κtip

∆S(1,2)
] − [

κ(n−1,1)

∆S(n−1,1)
+

κ(2,2)

∆S(1,2)
]}                                        (3.26) 

When substituting Eq. (3.25) into Eq. (3.26), the curvature of the triple junction κtip  is 

solved as 

κtip =
4𝒟gb(

σ∞
a

−
2γs sin θ

a2 ) + 𝒟s(
κ(2,2)

ΔS(1,2)
 + 

κ(N−1,1)

ΔS(N−1,1)
)

4𝒟gbγs

a
 + 

𝒟s
ΔS(N−1,1) 

 + 
𝒟s

ΔS(1,2)

                       (3.27) 

From Eq. (3.27), it can be observed that κtip depends on  diffusivity, external stress, surface 

tension, the dihedral angle and local-area curvature. Furthermore, the expression of κtip is 
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no longer the traditional definition of curvature. It is more like a combination of all sintering 

variables acting at the triple junction. Therefore, it cannot be the curvature that could be 

uniquely determined from the local geometry of the free surface at the triple junction. If 

𝒟s >> 𝒟gb , Eq. (3.27) is reduced to κtip =  κ1. However, if  𝒟gb is comparable to 𝒟s, then 

the effect of σ∞ and γs cannot be ignored. 

3.2.3 Update of the Particle Profile 

In this model, the lower particle is fixed, and therefore its profile is only updated by the 

surface migration velocity Vs. Euler’s method is used to describe the time step integration 

of the particle profile. Hence, new cylindrical coordinates (r, z) of the lower particle are 

expressed as follows. 

r(t+∆t) = rt + VS ∗ nr∆t  

Z(t+∆t) = Zt + VS ∗ nz∆t                                                                                  (3.28) 

And 

∆t =
∆Sm

Vmax
                                                                                                         (3.29) 

where ∆t is the time step; ∆Sm is the average of the distance between two nodes and Vmax 

is the maximum value of Vs. 

For the upper particle, its profile is not only updated by the surface migration velocity Vs 

but also by the densification rate Vgb, because the upper particle is free to move. Therefore, 

new cylindrical coordinates (r, z) of the upper particle are expressed as follows. 

r(t+∆t) = rt + VS ∗ nr∆t  

Z(t+∆t) = Zt + VS ∗ nz∆t + Vgb ∗ ∆t                                                                               (3.30) 

And 

∆t =
∆Sm

Vmax
                                                                                                          (3.31) 
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where ∆t is the time step; ∆Sm is the average of the distance between two nodes and Vmax 

is the maximum value of Vs. 

 

3.2.4 A Brief Introduction to Application of Commercial Software in This Chapter 

In order to run the above mathematical model, Fortran (Formula Translation) is selected as 

programming language, because it is one of the most common languages in scientific 

computation. Then Windows Visual Studio 2010 and Intel Visual Fortran Compiler 11 are 

selected for programming and running model computation. Detailed steps of using the 

software are as follows. 

Step 1: Open “Windows Visual Studio”, the operation interface is shown as Fig. 3.5. 

 

Fig. 3.5 The operation interface of “Windows Visual Studio” 

Step 2: Click “File → New → Project” in upper left corner, pop-up dialog box is shown as 

Fig. 3.6. In this dialog box, choose “Intel(R) Visual Fortran → Empty Project”. 
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Fig. 3.6 Dialog box of choosing language compiler 

Step 3: Then right click to add “New item” in “Source File of Solution Explorer” on right 

side, a dialog box will pop up and ask the form of Fortran code, as shown in Fig. 3.7. Choose 

“Fortran Free-form File (. f90)” in this dialog box. 

 

Fig. 3.7 Dialog box of choosing the form of Fortran code 

Step 4: Then an empty dialog box will pop-up, and programme Fortran code in this dialog, 

as shown in Fig. 3.8. 
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Fig. 3.8 Dialog box of programming Fortran code 

Step 5: When finish programming the code, just press “F5” button, then it will start 

debugging. 

Finally, the source code used to compute the model of Chapter three is in the CD, which is 

submitted with this thesis. 

 

3.3 Effects of Surface Diffusion and External Pressure on Sintering 

To simulate the real sintering, material parameters of alumina are selected in this numerical 

study. Table 3.1 presents the material data which are loosely based on micron-sized alumina 

powders [43]. 

Furthermore, both 𝒟gb and 𝒟s depend on temperature, so 

𝒟gb =
Ω(Dgb0δgb)exp (−Qgb/RT)

kT
                                                                                         (3.32) 

and 

𝒟s =
Ωγs(Ds0δs)exp (−Qs/RT)

kT
                                                                                              (3.33) 
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in which  Dgb0  and Ds0 are the pre-exponential coefficients for the grain-boundary and 

surface diffusivity respectively; Qgb and Qs are the activation energy of the grain boundary 

and surface diffusion respectively and R is the gas constant. In this study, the thickness of 

the surface diffusion layer  δs is taken as √Ω 
3

. 

Table 3.1 Alumina Material Data Used in the Numerical Study [43] 

Atomic volume 𝛀 8.47×10−30 m3 

Specific surface energy 𝛄𝐬 1.1 J/m2 

Specific grain-boundary energy 𝛄𝐠𝐛 1.21 J/m2 

Grain-boundary thickness × pre-exponential grain-

boundary diffusion coefficient 𝛅𝐠𝐛𝐃𝐠𝐛𝟎 
1.02×10−7 m3s−1 

Activation energy for grain-boundary diffusion 𝐐𝐠𝐛 5.3×105 J/mol 

Gas constant R 8.3144621 J/(mol K) 

Boltzmann’s constant k 1.3806503×10−23m2kg/(s2K) 

Dihedral angle 𝛉 130° 

Initial particle radius R0 10−6m 

 

The isothermal sintering temperature is selected as 1200°C . Using the data in Table 3.1 and 

the sintering temperature, Eq. (3.32) gives 𝒟gb = 6.8531648×10−36 m4s/kg . The 

effective surface diffusivity 𝒟s was varied 5 times to 10000 times of 𝒟gb to explore the 

effect of surface diffusion. When presenting the results, the time is normalised by the 

characteristic time defined as τg = kTR4/δgDgΩγs [20], which is the time for the neck to 

reach R0 by grain-boundary diffusion [44]. All the simulations started from a small initial 

neck radius of a/R0 = 0.01. In addition, a series of pressure-assisted sintering cases is also 

computed to reveal the effect of external pressure. 

A series of numerical computation cases in this chapter is listed as Table 3.2. 
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Table 3.2 Numerical Computation Cases with Different 𝓓𝐬/𝓓𝐠𝐛 and 𝛔∞ 

 

 

3.3.1 Validation by Comparing with Results of Coblenz and Bouvard 

At the beginning, validation of this model is carried out by comparing with analytical 

prediction of Coblenz et al [45] and numerical results of Bouvard et al [20], where sintering 

variables are 𝒟s/𝒟gb = 5, θ = 130° and σ∞ = 0. 

Fig. 3.9 shows neck growth over time. In this figure, the overall trend of numerical results 

in this model fits those of Coblenz and Bouvard reasonably well. In particular, numerical 

results of this model are in good agreement with those of Bouvard. 

Fig. 3.10 shows shrinkage over time. In this figure, numerical results of this model and those 

of Coblenz are somewhat different due to the error on estimating κtip, while the numerical 

results fit those of Bouvard quite well because of a simple estimation formula for κtip used 

in Bouvard’s model. 

0 MPa -25 MPa -50 MPa -75 MPa -100 MPa

5 √ √ √ √ √

50 √ √ √ √ √

100 √ √ √ √ √

1000 √ √ √ √ √

10000 √ √ √ √ √

𝓓𝐬/𝓓𝐠𝐛

𝛔∞
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Fig. 3.9 Comparison of neck growth for 𝒟s/𝒟gb = 5, θ = 130° and σ∞ = 0 

 

Fig. 3.10 Comparison of shrinkage for 𝒟s/𝒟gb = 5, θ = 130° and σ∞ = 0 
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3.3.2 Numerical Results 

(1) 𝒟s/𝒟gb = 5 and σ∞ = 0 ~ − 100MPa 

Fig. 3.11 shows neck growth over time for 𝒟s/𝒟gb = 5 and σ∞ = 0 ~ − 100MPa. In this 

figure, the neck grows relatively faster owing to the increase of external pressure during 

sintering.  

Fig. 3.12 shows shrinkage over time for 𝒟s/𝒟gb = 5 and σ∞ = 0 ~ − 100MPa. In this 

figure, the powder compact densifies much faster due to the increase of external pressure. 

Besides, the shrinkage of σ∞ = −100MPa is almost three times of free sintering. 

A straightforward explanation can be given by reviewing the expression of Vgb [Eq. (3.25)]. 

When external pressure is applied, an extra driving force is added, hence leading to a faster 

shrinkage rate. According to the expression of jgb [Eq. (3.10)], the flux of grain-boundary 

diffusion increases, which means more matter flows out of the triple junction and distributes 

on the free surface near the triple junction, thus leading to the faster neck growth. From the 

phenomenological point of view, the mechanism of pressure assisted sintering is like 

squeezing the matter out of the grain boundary, thus accelerating the densification and neck 

growth. 
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Fig. 3.11 The neck size over time for 𝒟s/𝒟gb = 5 and σ∞ = 0 ~ − 100MPa 

 

Fig. 3.12 Shrinkage over time for 𝒟s/𝒟gb = 5 and σ∞ = 0 ~ − 100MPa 
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(2) 𝒟s/𝒟gb = 50 and σ∞ = 0 ~ − 100MPa 

Fig. 3.13 shows neck growth over time for 𝒟s/𝒟gb = 50 and σ∞ = 0 ~ − 100MPa. In this 

figure, the similar phenomenon is observed, and the neck grows faster with the increase in 

external pressure.  

Fig. 3.14 shows shrinkage over time for 𝒟s/𝒟gb = 50 and σ∞ = 0 ~ − 100MPa. In this 

figure, the same effect of external pressure on shrinkage is observed.  

Noticeably, three critical phenomena are observed as follows.  

(a) Comparing the neck sizes of free sintering in Fig. 3.11 and Fig. 3.13 respectively, a faster 

surface diffusion leads to a lager neck size in the same time. 

(b) Comparing the shrinkage of free sintering in Fig. 3.12 and Fig. 3.14 respectively, a faster 

surface leads to the slower shrinkage that is opposite to the case for neck growth. 

(c) Comparing the neck sizes of pressure assisted sintering in Fig. 3.11 and Fig. 3.13 

respectively, the effect of external pressure on neck growth is weakened. 

Due to these three important phenomena, a doubt “Is fast surface diffusion a justified 

assumption for modelling first-stage sintering by coupled grain-boundary and surface 

diffusion?” is proposed.  
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Fig. 3.13 The neck size over time for 𝒟s/𝒟gb = 50 and σ∞ = 0 ~ − 100MPa 

 

Fig. 3.14 Shrinkage over time for 𝒟s/𝒟gb = 50 and σ∞ = 0 ~ − 100MPa 
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(3) 𝒟s/𝒟gb = 100 and σ∞ = 0 ~ − 100MPa 

Fig. 3.15 shows neck growth over time for 𝒟s/𝒟gb = 100 and σ∞ = 0 ~ − 100MPa. In 

this figure, except for the features mentioned above, the effect of external pressure on neck 

growth is quite small.  Specifically, if the ratio 𝒟s/𝒟gb keeps increasing, its effect can be 

ignored. 

Fig. 3.16 shows shrinkage over time for 𝒟s/𝒟gb = 100 and σ∞ = 0 ~ − 100MPa. In this 

figure, except the features mentioned above, the promoting effect of external pressure on 

shrinkage is confirmed again. 

 

Fig. 3.15 The neck size over time for 𝒟s/𝒟gb = 100 and σ∞ = 0 ~ − 100MPa 
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Fig. 3.16 Shrinkage over time for 𝒟s/𝒟gb = 100 and σ∞ = 0 ~ − 100MPa 

3.3.3 Effects of Surface Diffusion and External Pressure on Neck Growth 

Aiming to find the inside mechanism, a series of cases listed in Table 3.2 has been computed. 

A fixed neck size of 𝐚/𝐑𝟎 = 𝟐𝟓% is selected for comparing the sintering time of reaching 

this ratio. 

Fig. 3.17 shows the time taken for the neck radius to reach a = 25% R0 as a function of the 

relative diffusivity 𝒟s/𝒟gb  for different values of the external pressure σ∞ . Three 

observations can be made from the figure as follows. 

(a) The faster surface diffusion always leads to the faster neck growth over this large range 

of 𝒟s/𝒟gb. 

(b) The surface diffusion process has to be modelled in order to calculate the neck growth; 

i.e. the assumption of fast surface diffusion does not make sense when calculating neck 

growth. 

(c) The effect of the applied compressive force on neck growth can be ignored if  𝒟s/𝒟gb >

100. 
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Fig. 3.17 Time taken for the neck radius to reach a = 25% R0 as a function of the relative 

diffusivity 𝒟s/𝒟gb for different external pressure σ∞ 

In order to further understand these numerical findings, Table 3.3 presents the directions of 

the surface diffusion flux in the vicinity of the triple junction. Then, to demonstrate the effect 

of surface diffusion only, results are obtained from the cases without the external pressure. 

The observation point is selected at a small arc length of s/R=0.06 away from the triple 

junction. In the numerical analysis, the surface diffusion flux may oscillate with time. In 

order to obtain a stabled direction, the surface diffusion flux at this point was integrated 

during a small period of t = 10−9τg . It can be observed that surface diffusion changes the 

direction at 
𝒟s

𝒟gb
= 50, which has a profound implication on our understanding of the role 

played by surface diffusion during the sintering process. If surface diffusion is not too fast 

when compared with grain-boundary diffusion, it helps move atoms away from the triple 

junction. However, if surface diffusion is about 50 times faster than grain-boundary 

diffusion, it moves atoms from the particle surface unto the junction. 

Fig. 3.18 (a), (b) and (c), the profiles of the triple junction for 𝒟s/𝒟gb = 5  and  𝒟s/𝒟gb =

50 are compared respectively during three different periods. In order to demonstrate the 

effect of surface diffusion only, results are obtained from the cases without the applied 
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compressive force. In the figure, because of the reversed surface diffusion for  𝒟s/𝒟gb =

50, the neck grows faster than that of 𝒟s/𝒟gb = 5 . However, the local curvature near the 

junction also becomes smaller for  𝒟s/𝒟gb = 50 than in the case of 𝒟s/𝒟gb = 5. As shown 

in the next sub-section, this blunting of the triple junction retards grain-boundary diffusion 

as well as densification. This mechanism will be detailedly discussed in the next sub-section. 

Table 3.3 The Direction of the Surface Diffusion Flux Near the Triple Junction 

σ∞ = 0, 

𝒟s/𝒟gb 

Direction of surface diffusion flux, + for 

away from the junction 

5 + 
10 + 
50 - 

100 - 
1000 - 
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Fig. 3.18 Comparison of profiles of the triple junction for  𝒟s/𝒟gb = 5 and 50 respectively 

at (a) t/τg = 10−7, (b) t/τg = 10−6 and (c) t/τg = 10−5 
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3.3.4 Effects of Surface Diffusion and External Pressure on Shrinkage 

The fixed shrinkage of 𝐰/𝐑𝟎 = 𝟏% is selected for comparing the sintering time of reaching 

this ratio. 

Fig. 3.19 shows the time taken for the shrinkage to reach w = 1% R0  as a function of 

𝒟s/𝒟gb for a range of remote stress σ∞. Three observations can be made from the figure as 

follows. 

(a) The faster surface diffusion always leads to the slower shrinkage in opposite to the case 

for neck growth. 

(b) The assumption of fast surface diffusion cannot be valid because a change in 𝒟s/𝒟gb 

always leads to a significant change in the shrinkage rate especially for free sintering. 

(c) The external pressure always has a significantly beneficial effect on shrinkage.  

Bouvard and McMeeking [20] reported the detrimental effect of surface diffusion on 

shrinkage, as shown in Fig. 3.19. In the figure, the time for cases of different diffusivity 

ratio ξ reaching 1%R0 varies largely. Time for ξ = 6 reaching 1%R0 is comparable to time for 

ξ = 2 , because grain-boundary diffusion is much faster than surface diffusion in the 

sintering of these two ratios, and there is no backflow of surface diffusion near the triple 

junction area. Thus, the sharpness on the triple junction is kept, and densification of the 

powder compact is not retarded. For cases of ξ = 0.2 and 0.02, time for shrinkage reaching 

1%R0 becomes longer as ξ gets smaller. A similar explanation is given. To be specific, fast 

surface diffusion causes a diffusion backflow near the triple junction, and then blunting of 

the triple junction retards grain-boundary diffusion and densification. 

The results in Fig. 3.20 confirm and strengthen their conclusion using a clearer presentation. 

Our study also provides a straightforward explanation for this detrimental effect – the 

surface diffusion changes its direction as 𝒟s/𝒟gb increases. As shown in the previous sub-

section, the reversed surface diffusion blunts the triple junction and hence reduces the 

driving force for grain-boundary diffusion. Furthermore, it is important to observe from Fig. 

3.20 that the detrimental effect of surface diffusion on densification is still significant even 

if the remote pressure is applied although this effect is significantly weakened. 
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Fig. 3.19 Effect of the diffusivity ratio ξ on the evolution of the shrinkage and a 

comparison with the model of Coblenz for ψ = 130° and σ∞ = 0 [20] 

 

Fig. 3.20 Time taken for shrinkage to reach w = 1%R0 as function of 𝒟s/𝒟gb for a range 

of remote stress σ∞ 
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3.4 Summary of This Chapter 

The curvature of the triple junction κtip  is numerically solved as a combination of all 

sintering variables acting at the triple junction, which means it depends on the diffusivity, 

the external stress, surface tension, the dihedral angle and the local-area curvature. 

Therefore, it cannot be simply considered as the curvature which could be determined from 

the local geometry of the free surface at the triple junction. If there is more driving force for 

densification during sintering, they can also be added into the formula of κtip. 

Furthermore, the numerical study in this chapter reveals or reconfirms the following 

conclusions.  

(a) The assumption of fast surface diffusion is invalid for almost all practical circumstances. 

(b) The faster surface diffusion always leads to a slower shrinkage rate and a faster neck 

growth rate. 

(c) The effect of external pressure on neck growth can be ignored if surface diffusion is fast 

enough. 

(d) The external pressure always has a significantly beneficial effect on shrinkage. 

Finally, by analysing the numerical results, this study gives an extremely clear and 

straightforward explanation for the effect of surface diffusion. Surface diffusion in the 

vicinity of the triple junction changes the direction from moving atoms away from the 

junction to depositing atoms onto the junction as the rate of surface diffusion increases. The 

reverse surface diffusion blunts the triple junction and hence retards densification. It 

however accelerates neck growth. 
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Chapter 4 Effect of the Fast Heating Rate on Sintering 

 

4.1 Introduction 

Spark plasma sintering (SPS) is a recent sintering technique mainly characterized by high 

assisting pressure, a fast heating and cooling rate and short sintering time. These 

characteristics make SPS an advanced technique that can produce highly dense materials 

with the controlled microstructure. Due to its excellent densify effect, SPS gives an effective 

method for ceramics sintering, especially for nano-sized powders. However, there are many 

unclear understandings of the SPS’s fundamental mechanism. These unclear understandings 

result from the complexity of the thermal, electrical and mechanical processes that may be 

involved during SPS.  

In summary, the complexity of SPS is mainly composed of the electrical field, the stress 

field and the thermal field [46]. Therefore, most of the studies focus on these three aspects 

to reveal the working mechanism inside SPS. The main observation of this chapter concerns 

the fast heating process during SPS. For the effect of the fast heating (Joule heating) rate on 

SPS, so many experiment studies have been conducted, and many phenomenological 

explanations have been given, but few numerical studies were given to reveal its working 

mechanism during SPS. 

A phenomenon was observed from SPS of Alumina by Shen et al [47] when compared with 

that density under a slow heating rate, and the sample is densified under a fast heating rate 

with a smaller grain size when heating rates range from several degrees Celsius to hundreds 

of degrees Celsius per minute. Additionally, Zhou et al [48] also observed a similar 

phenomenon from pulse electric current sintering of alumina when the grain size drastically 

reduces as the heating rate increases from 50 to 700oC. Similarly, Sairam et al [49] 

qualitatively pointed out that Joule heating plays a governing role in densification of powder 

compacts during SPS of boron carbide, which leads to a higher density at lower temperature 

when compared with the conventional sintering technique. 

Olevsky et al [50] developed a constitutive model considering the interplay between three 

mechanisms of material transport: surface diffusion, grain-boundary diffusion and power-

law creep. Their model shows that a better sinter ability can be achieved by increasing the 
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heating rate and this effect is attributed to the different shapes that the pore develops under 

different heating rates. 

Furthermore, Guillon et al [51] developed an analytical approach called master sintering 

curve to estimate different relative densities at different heating rates. When compared with 

the sample sintered with a fast heating rate, the sample sintered with a slow heating rate 

obtains higher density during heating.  

Purposes of This Chapter 

As the interest is significantly aroused by the fast heating rate in SPS, the purposes of this 

chapter are to (a) develop a temperature dependent model that can simulate the sintering 

with a heating process from 600 oC to 1400oC, (b) take account of surface diffusion and 

numerical solution of the curvature on the triple junction into this numerical model and (c) 

reconfirm the work of Olevsky et al [50] and provide a straightforward understanding of the 

reason why the fast heating rate is conducive to densification. Furthermore, different heating 

rates of SPS and traditional sintering are used for computation. Additionally, the external 

applied pressure is also introduced into this model. 

 

4.2 Methodology 

Olevsky et al [50] developed a model that predicts the increasing heating rate benefits 

densification because a favourable pore shape develops under the higher heating rate. In 

their model, surface diffusion is treated in isolation, which is a simplification that requires 

some validation. Hence, the study in this paper is presented following the same argument 

but using a fully numerical analysis.  

A temperature dependent model is developed for simulating the sintering under a heating 

process from 600°C to 1400°C with different heating rates. Except for the diffusion 

coefficients, other parameters used in this chapter are the same as chapter 2. To simulate the 

heating process during sintering, grain-boundary diffusion coefficient 𝒟gb  and surface 

diffusion coefficient 𝒟s are defined as temperature dependent variables.  

(1) Temperature Dependence of Grain-boundary Diffusivity 𝒟gb 

According to Eq. (3.32), grain-boundary diffusivity 𝒟gb depends on temperature: 



 
 

55 
 

𝒟gb =
Ω(Dgb0δgb)exp (−Q𝑔𝑏/RT)

kT
 

where  Ω is the atomic volume; Dgb0 is the pre-exponential coefficient for grain-boundary 

diffusivity; δgb is the thickness of the grain-boundary diffusion layer; Q𝑔𝑏 is the activation 

energy of grain-boundary diffusion; R is the gas constant; k is Boltzmann’s constant and T 

is absolute temperature of sintering. 

In order to describe the heating process, thermodynamic temperature of sintering T is 

defined as T = T0 + heating rate ∗ ∆t . Table 4.1 presents the data used for Dgb0δgb and 

Q𝑔𝑏 in the simulations. These data are from a data book of alumina [52] and are selected 

here because they come from the single source. Furthermore, other parameters used in the 

numerical study are provided in Table 4.1. 

Table 4.1 Values of 𝐃𝐠𝐛𝟎𝛅𝐠𝐛 and 𝐐𝒈𝒃 Used in the Simulation 

Authors Year Dgb0δgb (m3/s) Q𝑔𝑏 (J / mol) 

Cannon et al. [53] 1980 8.6×10−10 4.18×105 

 

(2) Temperature dependence of surface diffusivity 𝒟s 

According to Eq. (3.33), grain-boundary diffusivity 𝒟gb depends on temperature: 

𝒟s =
Ωγs(Ds0δs)exp (−Q𝑠/RT)

kT
 

where  Ω is the atomic volume; Ds0 is the pre-exponential coefficient for surface diffusivity; 

δs  is the thickness of the surface diffusion layer; Q𝑠  is the activation energy of surface 

diffusion and δs is simply defined as √Ω
3

.  

The definition of thermodynamic temperature in sintering T is the same. Table 4.2 shows 

the three sets of data for Ds0 and Q𝑠 used in the simulations from a data book of alumina 

[52]. Data for surface diffusivity reported in the literature varies significantly due to 

different measurement techniques. Furthermore, other parameters used in the numerical 

study are provided in Table 3.1. 
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Table 4.2 Values of 𝐃𝐬𝟎 and 𝐐𝒔 Used in the Simulation 

Set No. Authors Year Ds0 (m2/𝑠) Q𝑠 (J / mol) 

1. Minimum  Prochazka & Coble [54] 1970 4.8×10−6 2.34×105 

2. Intermediate Prochazka & Coble [54] 1970 1.15×10−3 2.8×105 

3. Maximum Moriyoshi & Komatsu [55] 1973 1.06×10−2 2.67×105 

 

(3) The trend diagram of the effective surface and grain-boundary diffusivity as function of 

temperature 

When substituting the values in Table 4.1 and 4.2 into Eq. (3.32) and (3.33) respectively, 

the values of 𝒟gb and 𝒟s as the temperature function are plotted in Fig. 4.1. In the figure, it 

is clear that 𝒟gb and 𝒟s  have extremely different dependence on the temperature because 

of their different activation energy. At 600 oC, 𝒟s is about five orders of magnitude larger 

than 𝒟gb while at 1400 oC, 𝒟s is only about dozens of times larger than  𝒟gb according to 

data set 2 or even slightly smaller than 𝒟gb according data set 1. As observed in chapter two, 

this change in the relative diffusivity can have a profound effect on the sintering kinetics. 

However, at the lower temperature, the absolute diffusion rates are also several orders of 

magnitude smaller than those at the higher temperature. It is therefore difficult to draw 

conclusions by just observing Fig. 4.1. Hence, further studies are conducted in the next sub-

section by simulating a series of cases of different heating rates.  
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Fig. 4.1 The effective surface and grain-boundary diffusivity as function of temperature 
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4.3 Effect of the Heating Rate on Sintering 

In order to study the effect of the heating rate on sintering, the cases of different heating 

rates are simulated in this study as listed in Table 4.3. Computer simulations with the 

temperature rise from 600°C to 1400°C are carried out using heating rates of 2 oC /min and 

10 oC /min which are typical for traditional sintering [41], and using 100 oC /min and 200 

oC /min which can be achieved by SPS [47]. It is difficult to compare results for the different 

heating rates because they all have significantly different time scales of sintering. To 

eliminate the effect of the time scale, different heating rates can be compared on a single 

standard, and the figure of shrinkage is plotted versus the neck size, which means y 

coordinate is shrinkage while x coordinate is the neck radius. 

Table 4.3 Cases of Different Heating Rates 

Simulation Cases 𝓓𝐬𝟏 𝓓𝐬𝟐 𝓓𝐬𝟑 

External Pressure 0 -50 MPa 0 -50 MPa 0 -50 MPa 

𝓓𝐠𝐛 

HR=2 oC /min √ √ √ √ √ √ 

HR=10 oC /min √ √ √ √ √ √ 

HR=100 oC /min √ √ √ √ √ √ 

HR=200 oC /min √ √ √ √ √ √ 

 

4.3.1 Numerical Results 

(1) Set 1, 𝒟s1 and σ∞ = 0, −50MPa 

Fig. 4.2 shows shrinkage versus the neck size as the temperature is increased from 600 oC 

to 1400 oC with different heating rates. In this case, the applied pressure is set as zero and 

surface diffusivity of set 1 in Table 4.2 is used. It can be observed from the figure that a 

higher heating rate clearly benefits densification. When comparing the two extreme cases 

of heating rates of 2 oC /min and 200 oC /min, at any fixed value of the neck size, the fast 

heating rate generates much more shrinkage than the slow one, simply because the faster 

heating rate helps sintering quickly pass the lower temperature range, where surface 

diffusion is much faster than grain-boundary diffusion as shown in Fig. 4.1, hence 

minimizes the blunting effect of fast surface diffusion near the triple junction. 

It would be expected that this particular mechanism of the heating rate effect diminishes if 

the external pressure is applied. Such expectation comes from the proposition that the large 
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external pressure, relative to the sintering potential which is in the order of 1-2MPa for 

micron-sized powders, would dominate densification, and hence the blunting effect 

becomes less significant. Fig. 4.3 shows the numerical results for σ∞ = −50 MPa with all 

other conditions identical to the case of Fig. 4.2. Obviously, the applied pressure leads to 

the larger shrinkage. It is interesting to observe that the heating rate effect is still significant 

even for such large applied pressure. The fast heating rate and high pressure used in Fig. 4.3 

are typical for SPS. It is therefore reasonable to argue that limiting the backflow of surface 

diffusion and its corresponding blunting effect can at least partially explain the SPS effect 

reported in the literature. 

 

Fig. 4.2 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is zero. Data of set 1 in Table 4.2 for 

surface diffusivity was used. 
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Fig. 4.3 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is σ∞ = −50 MPa . Data of set 1 in 

Table 4.2 for surface diffusivity was used. 

(2) Set 2, 𝒟s2 and σ∞ = 0, −50MPa 

Fig. 4.4 and 4.5 show similar results using data set 2 of surface diffusivity in Table 4.2. The 

same effects of heating rates are observed. However, the shrinkage achieved at a fixed value 

of the neck size is significantly reduced when comparing with Fig. 4.2 and 4.3. It can be 

seen from Fig. 4.1 that the effective surface diffusivity calculated from data set 2 is higher 

than that from data set 1. This faster surface diffusion rate across the temperature range has 

led to the significant reduction in shrinkage when comparing Fig. 4.4 and 4.5 with Fig. 4.2 

and 4.3. These results once again highlight the important role of surface diffusion when 

understanding the effect of the heating rate. By examining Fig 4.5, it can be confirmed that 

surface diffusion plays the significant role even when the large pressure is applied.  

(3) Set 3, 𝒟s3 and σ∞ = 0, −50MPa 

Fig. 4.6 and 4.7 present similar results using data set 3 of surface diffusivity in Table 4.2. 

The same effects of heating rates are also observed. These figures are provided here for 

completeness. 
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Fig. 4.4 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is zero. Data of set 2 in Table 4.2 for 

surface diffusivity was used. 

 

Fig. 4.5 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is σ∞ = −50 MPa . Data of set 2 in 

Table 4.2 for surface diffusivity was used. 



 
 

62 
 

 

Fig. 4.6 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is zero. Data of set 3 in Table 4.2 for 

surface diffusivity was used. 

 

Fig. 4.7 Shrinkage versus the neck size as temperature increases from 600 oC to 1400 oC 

with different heating rates. The external pressure is σ∞ = −50 MPa . Data of set 3 in 

Table 4.2 for surface diffusivity was used. 
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4.4 Summary of This Chapter 

As mentioned in chapter 3, if the ratio is big enough, surface diffusion changes the direction 

from moving atoms away from a contact neck to depositing atoms onto it. Subsequently, the 

reverse surface diffusion blunts the neck and retards densification. The above mechanism 

can be called as “the backflow of fast surface diffusion”. 

By analysing the above results and considering “the backflow of fast surface diffusion”, the 

working mechanism for the effect of the fast heating rate on sintering has been clearly 

revealed. As shown in Table 4.1 and 4.2, surface diffusion and grain-boundary diffusion 

often have different kinds of activation energy and hence different temperature dependence. 

As shown in Fig. 4.1, effective surface diffusivity is much larger than effective grain-

boundary diffusivity at the low temperature zone (e.g. 600 to 1200 oC), while effective 

surface diffusivity is comparable to effective grain-boundary diffusivity at the high 

temperature zone (e.g. beyond 1200 oC), which means that fast surface diffusion dominates 

sintering at the low temperature range while grain-boundary diffusion takes effect on 

sintering at the high temperature range. When comparing with the results of conventional 

sintering, fast heating rates, typically used in SPS, help sintering quickly pass through the 

low temperature range where fast surface diffusion dominates and is detrimental to 

densification, and then go into the high temperature range where grain-boundary diffusion 

takes effect and is beneficial to densification. On the contrary, time for slow heating rates 

passing through the low temperature range is so long, and then the neck area becomes so 

flat that the driving force of shrinkage is significantly weakened. 

Based on the above discussions, the beneficial effect of spark plasma sintering on 

densification can be, at least partially, attributed to its fast heating rate.  
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Chapter 5 Effects of Inhomogeneity on Sintering Kinetics 

 

5.1 Introduction 

The effects of sintering variables such as applied pressure, temperature, the heating rate and 

the particle size are well understood by many previous studies. For one-material powder 

system where identical particles are homogeneously compacted, effects of the variables on 

sintering kinetics are well described by existing models. However, in real sintering, the 

powder system cannot be completely homogeneous such as variations in packing density, 

pore distribution and particle sizes, as well as impurities in powder. This inhomogeneity 

leads to differential densification during sintering, and different regions in the powder 

compact sinter with different rates. Differential densification leads to transient stress inside 

the powder compact, which reduces the densification rate, and leads to growth of structure 

defects such as large pores and crack voids that limit mechanical properties of ceramic parts. 

Therefore, it is extremely critical to understand the effects of inhomogeneity and its 

mechanism on sintering kinetics. Through qualitative and quantitative analysis for the 

effects of inhomogeneity on sintering kinetics, sintering quality can be improved and 

structural defects can be reduced by controlling inhomogeneity of sintering variables during 

sintering. 

Due to the importance of inhomogeneity during sintering, some work has been done to 

reveal the effects of inhomogeneity on sintering kinetics and to demonstrate its working 

mechanism. Evans [56] proposed a theory that the development of transient stress during 

sintering is similar to Thermal stress in materials due to different thermal expansion 

coefficients. In sintering, the volumetric strain rate replaces the thermal strain. A detailed 

micro model was developed by Raj and Bordia [57], while the spherical inhomogeneity was 

surrounded by a uniform powder matrix, as shown in Fig. 5.1(a). If spherical inhomogeneity 

shrinks much slower than the surrounding matrix, reaction stress is generated in the matrix 

that resists sintering stress, and then leads to a reduction of the densification rate, as shown 

in Fig. 5.1(b). If the reaction stress is high enough, cracks will appear in the matrix, as shown 

in Fig. 5.1(c). However, if the spherical inhomogeneity shrinks much faster than the 

surrounding matrix, a circumferential void will appear between them, as shown in Fig. 
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5.1(d). The defects illustrated in Fig. 5.1(c) and Fig. 5.1(d) have been observed by Lang [58] 

in his experiment studies on sintering of heterogeneous powder compacts. 

 

Fig. 5.1 Schematic diagram: (a) the spherical inhomogeneity surrounded by a uniform 

powder matrix, (b) a reduction of the densification rate because spherical inhomogeneity 

shrinks much slower than the surrounding matrix, (c) generation of cracks if back stress is 

high, (d) generation of a circumferential void if spherical inhomogeneity shrinks much 

faster than the surrounding matrix [57]. 

Weiser and Jonghe [59] developed a mesoscale model to simulate the microstructural 

evolution of multi particles during sintering. In their study, a detailed statistical analysis of 

the evolution reveals that large pores and structural voids occur due to the rearrangement of 

particles under differential densification, as shown in Fig. 5.2. 
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Fig. 5.2 The two-dimensional sphere array showing sintering behaviour and evolution of 

the structure [59] 

Sudre and Lange [60] observed a critical structure called “three-grain bridge” which is 

located between two denser regions in the powder compact, as shown in Fig. 5.3. Then de-

sintering process of “three-grain bridge” was described in detail in Lange’s follow-up study 

[61, 62]. Unlike the de-sintering in constrained sintering which starts with a sintered body, 

de-sintering of three-grain bridge in the powder compact is concurrent with densification. 

In addition, unlike the de-sintering in constrained sintering which is caused by 

morphological instability, de-sintering of three-grain bridge in the powder compact is 

partially due to the inhomogeneity of sintering variables and external tensile stress. The 

denser regions apply the tensile stress to three-grain bridge that increases the aspect ratio of 

three-grain bridge, hence increasing morphological instability and then partially leading to 

de-sintering. However, effects of inhomogeneity on de-sintering and its working mechanism 

are not mentioned in Lange’s study. 
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Fig. 5.3 The three-grain bridge located between two denser regions in the powder compact 

[60]. 

Purposes of This Chapter 

The purposes of this chapter are to (a) present a simple and definitive case for understanding 

the effects of inhomogeneity on sintering kinetics as well as its working mechanism, (b) 

observe the evolution of the grain boundary during sintering with considering fast surface 

diffusion, and (c) qualify and quantify the effects of sintering variables' inhomogeneity. 

In this study, a geometry of three-grain bridge shown in Fig. 5.3 is adopted. In addition to 

that, the co-sintering problem of three spherical particles is solved by employing a similar 

numerical method of chapter 2. 

The upper and lower particles of three-grain bridge are fixed, and the middle particle is free 

to move. The direction of its movement is used to describe the sintering kinetics under the 

effects of inhomogeneity. If the middle particle moves towards the upper particle, a sintering 

process happens between them, when a de-sintering process happens between the lower 

particle and the middle particle. 
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5.2 Methodology 

5.2.1 Assumption of Geometry and Sintering Variables 

Three spherical particles of different sizes are considered as shown in Fig. 5.4(a), and it is 

sintered by coupled surface diffusion and grain-boundary diffusion. In the figure, R 

represents the radius of the particle; a is the neck size. A cylindrical coordinate (r, z) is used. 

A grain boundary is assumed as the straight and the neck that grow along the grain boundary. 

Additionally, particle 1 and particle 3 are fixed, while particle 2 is free to move with velocity 

V(2). 

The definition of material parameters is the same as chapter 2, shown in Fig. 5.4(b). In the 

figure, 𝒟gb is grain-boundary diffusivity; 𝒟s is free surface diffusivity; γs is surface tension; 

γgb is grain-boundary tension and θ is the dihedral angle at the triple junction. 

Finally, all sintering variables used in this chapter are listed as follows. 

(a) Particles radius: R1, R2, R3 

(b) Neck size: a1, a2 

(c) Surface diffusion coefficient: 𝒟s(1), 𝒟s(2), 𝒟s(3) 

(d) Grain-boundary diffusion coefficient: 𝒟gb(1), 𝒟gb(2) 

(e) Dihedral angle: θ1, θ2 

(f) Surface tension: γs(1), γs(2) 

(g) Grain-boundary tension: γgb(1), γgb(2) 
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Fig. 5.4 Assumption of geometry and sintering variables 

5.2.2 Governing Equations and Their Numerical Solutions 

According to Fick’s laws, the diffusive flux j is linearly dependent on the gradient of 

chemical potential μ regarding the diffusion atoms: 

j = −
Dδ

kT

∂μ

∂s
                                                                                                                             (5.1) 

where D is diffusivity; δ is the thickness of the diffusion layer; k is Boltzmann’s constant; 

T is the sintering temperature and s is the local coordinate along the diffusion path. 

5.2.2.1 Grain-boundary Diffusion 

On the grain boundary, the chemical potential is related to the stress σ normal to the grain 

boundary through 
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μ = −Ωσ                                                                                                                          (5.2) 

where Ω is the atomic volume. Substituting Eq. (5.2) into Eq. (5.1) leads to  

jgb = 𝒟gb
∂σ

∂r
                                                                                                 (5.3) 

in which an effective grain-boundary diffusivity has been introduced as 

 𝒟gb =
DgbδgbΩ

kT
                                                                                             (5.4) 

where  Dgb  is grain-boundary diffusivity and δgb  is the thickness of the grain-boundary 

diffusion layer. 

(1) Neck 1 

As shown in Fig. 5.4(a), particle 2 approaches to particle 1 with a speed of V(2), and hence 

the grain boundary of neck 1 obtains velocity Vgb(1), where Vgb(1) equals to V(2). As shown 

in Fig. 5.5(a), grain-boundary diffusion jgb(1) flows through the grey ring and then becomes 

jgb(1)
′. Consequently, this process leads to a vertical speed Vgb(1). Defining the grey ring as 

a unit to satisfy mass conservation at neck 1, there is 

Vgb(1) ∗ 2πr ∗ Δr = jgb(1)
′ ∗ [2π(r + Δr)] − jgb(1) ∗ 2πr                                 (5.5) 

When Δx → 0, then there is 

Vgb(1) =
∂jgb(1)

∂r
+

jgb(1)

r
                                                                                                   (5.6) 

According to the product rule, there is 

Vgb(1) =
1

r
∗

∂(rjgb(1))

∂r
                                                                                                   (5.7) 

An approximate solution can be proposed as follows. 

ĵgb(1) = Ar + B ⇒     r ∗ ĵgb(1) = Ar2 + Br ⇒     
∂(rĵgb(1))

∂r
= 2Ar + B         (5.8) 

When r=0, ĵgb(1) = 0. The value of B is easily derived and equal to 0. Hence, 



 
 

71 
 

ĵgb(1)=Ar

∂(rĵgb(1))

∂r
=2Ar

} ⇒
∂(rĵgb(1))

∂r
= 2ĵgb(1)                                                                               (5.9) 

When substituting Eq. (5.9) into Eq. (5.7), the expression for the grain-boundary flux  jgb(1)  

can be obtained as 

jgb(1) =
1

2
Vgb(1) ∗ r                                                                                                 (5.10) 

When substituting Eq. (5.10) into Eq. (5.3), after integration, normal stress σ1 at neck 1 can 

be found as 

σ1 =
1

4𝒟gb(1)
Vgb(1)r2 + C1                                                                               (5.11) 

where C1 is an integration constant to be determined. 

 

Fig. 5.5 The schematic diagram for mass conservation at (a) neck 1 and (b) neck 2 

(2) Neck 2 

Similarly, particle 2 is away from particle 3 with a speed of V(2), and hence the grain 

boundary of neck 2 obtains velocity Vgb(2), where Vgb(2) equals to V(2). As shown in Fig. 

5.5(b), grain-boundary diffusion jgb(2) flows through the grey ring and then becomes jgb(2)
′. 

Consequently, this process leads to vertical speed Vgb(2). When defining the grey ring as a 

unit, to satisfy mass conservation at neck 2, there is 

Vgb(2) ∗ 2πr ∗ Δr = −jgb(2)
′ ∗ [2π(r + Δr)] − (−jgb(2) ∗ 2πr)                       (5.12) 
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After a similar derivation, the expression for the grain-boundary flux  jgb(2) and normal 

stress σ2 can be found as 

jgb(2) = −
1

2
Vgb(2) ∗ r                                                                                           (5.13) 

and 

σ2 = −
1

4𝒟gb(2)
Vgb(2)r2 + C2                                                                               (5.14) 

where C2 is an integration constant to be determined. 

5.2.2.2 Surface Diffusion 

On the particle surface, the chemical potential is related to the principal curvature κ :  

μ = −Ωγsκ                                                                                                        (5.15) 

where γs  is the surface free energy; κ  is the principal curvature of the free surface. 

Substituting Eq. (5.15) into Eq. (5.1) leads to  

js = 𝒟s
∂κ

∂s
                                                                                                          (5.16) 

in which the effective surface diffusivity has been introduced as 

𝒟s =
DsδsΩγs

kT
                                                                                                      (5.17) 

where  Ds is surface diffusivity and δs is the thickness of the diffusion layer. 

To derive the expression for surface migration velocity Vs  with the finite difference method, 

the geometry of this model is meshed as shown in Fig. 5.6. In the figure, the profile of three 

particles is composed of many discrete nodes (N point), and then κ and Vs are defined on 

the N point. Furthermore, the M point is used for bisecting two neighbouring N points, and 

then js is defined on the M point. 

In this discrete-node system, according to Eq. (5.16), the surface diffusive flux at any M 

point is obtained as 

js(i) = 𝒟s
κ(i+1)−κi

∆Si
                                                                                              (5.18) 
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where κi  is the principal curvature and ∆Si is the distance between two neighbouring M 

points. Apart from the triple junction, the principal curvature at the N point is defined as the 

sum of the maximum curvature and the minimum curvature, and it is negative for the convex 

surface. 

 

Fig. 5.6 The schematic diagram for meshing geometry 

In addition, mass conservation provides a relation between the surface migration velocity 

Vs and the surface diffusion flux js , as shown in Fig. 5.7. To satisfy mass conservation at 

the shadow area, there is 

js(i) ∗ 2πr(i) − js(i−1) ∗ 2πr(i−1) = Vs(i) ∗ As                                                    (5.19) 

where As is the shadow area.  
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Finally, there is 

Vs(i) =
2π∗(js(i)∗r(i)−js(i−1)∗r(i−1))

As
                                                                         (5.20) 

Except for the triple junction, the surface diffusion flux js and the surface migration velocity 

Vs can be calculated with Eq. (5.18) and Eq. (5.20) respectively. 

 

Fig. 5.7 The schematic diagram for mass conservation on the free surface 

5.2.2.3 Continuity Conditions at Triple Junctions 

(1) Mass conservation is satisfied at the junction. 

As shown in Fig. 5.4(b), at triple junction 1, mass conservation requires  

jgb(1) = js(1,2) − js(n−1,1)                                                                                (5.21) 

As shown in Fig. 5.4(b), at triple junction 2, mass conservation requires  

jgb(2) = js(n−1,2) − js(1,3)                                                                                (5.22) 

(2) The chemical potential is continuous at the junction. 

The chemical potential must be continuous at the junction. If not, there would be the 

unbounded flux at the junction. 

For triple junction 1, there is 

μ1 = −Ω σtip(1) = −Ωγs(1)κtip(1)     ⇒      σtip(1) = γs(1)κtip(1)                  (5.23) 
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For triple junction 2, there is 

μ2 = −Ω σtip(2) = −Ωγs(2)κtip(2)     ⇒      σtip(2) = γs(2)κtip(2)                      (5.24) 

(3) Equilibrium of surface tension γs and grain-boundary tension γgb at the triple junction 

is presented. 

As shown in Fig. 5.4(b), surface tension γs  and grain-boundary tension γgb  must be in 

equilibrium at the junction. 

For triple junction 1, there is 

cos θ(1) =
γgb(1)

2γs(1)
                                                                                                                           (5.25) 

For triple junction 2, there is 

cos θ(2) =
γgb(2)

2γs(2)
                                                                                                                           (5.26) 

5.2.2.4 Global Equilibrium of Force 

When drawing the free body diagram of particle 2, force analysis is illustrated in Fig. 5.8. 

The expression of force balance is as follows. 

2πa1γs(1) sin θ1 + ∫ (σ1)2πrdr
a1

0
= 2πa2γs(2) sin θ2 + ∫ (σ2)2πrdr

a2

0
    (5.27) 

When substituting Eq. (5.11) and Eq. (5.14) into Eq. (5.27), there is 

    2πa1γs(1) sin θ1 +
1

8𝒟gb(1)
Vgb(1)a1

4 + C1a1
2  

= 2πa2γs(2) sin θ2 −
1

8𝒟gb(2)
Vgb(2)a2

4 + C2a2
2                                                 (5.28) 

For triple junction 1, r = a1. When substituting  r = a1 into Eq. (5.11), there is 

σ1 =
1

4𝒟gb(1)
Vgb(1)a1

2 + C1                                                                               (5.29) 

At triple junction 1, σ1 = σtip(1). When substituting Eq. (5.23) and Eq. (5.29) into σ1 =

σtip(1), there is 
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C1 = γs(1)κtip(1) −
1

4𝒟gb(1)
Vgb(1)a1

2                                                                    (5.30) 

For triple junction 2, r = a2. When substituting  r = a2 into Eq. (5.14), there is 

σ2 = −
1

4𝒟gb(2)
Vgb(2)a2

2 + C2                                                                               (5.31) 

At triple junction 2, σ2 = σtip(2). When substituting Eq. (5.24) and Eq. (5.31) into σ2 =

σtip(2), there is 

C2 = γs(2)κtip(2) +
1

4𝒟gb(2)
Vgb(2)a2

2                                                                    (5.32) 

As shown in Fig. 5.4(a), Vgb(1) = Vgb(2) = V(2). When substituting Eq. (5.30) and Eq. (5.32) 

into Eq. (5.28), there is 

V(2) =
8[a1

2γs(1)κtip(1)−a2
2γs(2)κtip(2)]+16[a1γs(1) sin θ1−a2γs(2) sin θ2]

a1
4

𝒟gb(1)
 + 

a2
4

𝒟gb(2)

                       (5.33) 

 

Fig. 5.8 The free body diagram of particle 2 
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5.2.2.5 Completing Governing Equations and Solving κtip 

For triple junction 1, r = a1 and Vgb(1) = V(2). When substituting Eq. (5.10) and Eq. (5.18) 

into Eq. (5.21), there is 

V(2) =
2

a1
{[

𝒟s(1)κ(n−1,1)

∆S(n−1,1)
+

𝒟s(2)κ(2,2)

∆S(1,2)
] − [

𝒟s(1)

∆S(n−1,1)
+

𝒟s(2)

∆S(1,2)
] ∗ κtip(1)}                  (5.34) 

For triple junction 2, r = a2 and Vgb(2) = V(2). When substituting Eq. (5.13) and Eq. (5.18) 

into Eq. (5.22), there is 

V(2) =
2

a2
{[

𝒟s(2)κ(n−1,2)

∆S(n−1,2)
+

𝒟s(3)κ(2,3)

∆S(1,3)
] − [

𝒟s(2)

∆S(n−1,2)
+

𝒟s(3)

∆S(1,3)
] ∗ κtip(2)}                  (5.35) 

For easier derivation, some temporary terms are used to replace constant terms in Eq. (5.33), 

Eq. (5.34) and Eq. (5.35) as follows. 

In Eq. (5.34), A1 =
𝒟s(1)κ(n−1,1)

∆S(n−1,1)
+

𝒟s(2)κ(2,2)

∆S(1,2)
 and B1 =

𝒟s(1)

∆S(n−1,1)
+

𝒟s(2)

∆S(1,2)
 . 

In Eq. (5.35), A2 =
𝒟s(2)κ(n−1,2)

∆S(n−1,2)
+

𝒟s(3)κ(2,3)

∆S(1,3)
 and B2 =

𝒟s(2)

∆S(n−1,2)
+

𝒟s(3)

∆S(1,3)
 . 

In Eq. (5.33), A3 = a1γs(1) sin θ1 − a2γs(2) sin θ2 , A4 =
a1

4

𝒟gb(1)
 + 

a2
4

𝒟gb(2)
, B3 = a1

2γs(1) 

and B4 = a2
2γs(2). 

Then Eq. (5.33), Eq. (5.34) and Eq. (5.35) are simplified as follows. 

V(2) =
8[B3κtip(1)−B4κtip(2)]+16A3

A4
                                                                       (5.36) 

V(2) =
2

a1
(A1 − B1κtip(1))                                                                               (5.37) 

V(2) =
2

a2
(A2 − B2κtip(2))                                                                               (5.38) 

Three unknown variables κtip(1), κtip(2) and V(2) are finally solved through Eq. (5.36), Eq. 

(5.37) and Eq. (5.38). Therefore, governing equations of this model are complete and all 

variables are solved. 
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5.2.3 Update of the Particle Profile 

In this model, particle 1 and 3 are fixed. Therefore, their profiles are only updated by the 

surface migration velocity Vs. Euler’s method is used to describe the time step integration 

of the particle profile. Hence, new cylindrical coordinates (r, z) are expressed as follows. 

r(t+∆t) = rt + VS ∗ nr∆t  

Z(t+∆t) = Zt + VS ∗ nz∆t                                                                                  (5.39) 

and 

∆t =
∆Sm

Vmax
                                                                                                         (5.40) 

where ∆t is the time step; ∆Sm is the average of the distance between two nodes and Vmax 

is the maximum value of Vs. 

For particle 2, its profile is updated not only by the surface migration velocity Vs but also 

by moving velocity of particle 2 V(2), because particle 2 is free to move. Therefore, new 

cylindrical coordinates (r, z) of particle 2 are expressed as follows. 

r(t+∆t) = rt + VS ∗ nr∆t  

Z(t+∆t) = Zt + VS ∗ nz∆t + V(2) ∗ ∆t                                                                                  

(5.41) 

and 

∆t =
∆Sm

Vmax
                                                                                                         (5.42) 

where ∆t is the time step; ∆Sm is the average of the distance between two nodes and Vmax 

is the maximum value of Vs. 
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5.3 Effects of Inhomogeneity on Sintering Kinetics 

In this section, effects of inhomogeneity on sintering kinetics are studied through analysing 

numerical results. The observation mainly concerns two aspects. To be specific, the first one 

is the direction of  particle 2 movement under the effect of inhomogeneity, and the second 

one is neck evolution at two grain boundaries when considering fast surface diffusion. 

Importantly, inhomogeneity is mainly reflected in six kinds of parameters which are listed 

as follows. 

(a) Inhomogeneity of grain-boundary diffusion coefficient: 𝒟gb(1), 𝒟gb(2) 

(b) Inhomogeneity of surface diffusion coefficient: 𝒟s(1), 𝒟s(2), 𝒟s(3) 

(c) Inhomogeneity of surface tension: γs(1), γs(2) 

(d) Inhomogeneity of initial neck size: a1, a2 

(e) Inhomogeneity of particle radius: R1, R2, R3 

For diffusion coefficients of different grain boundaries, their inhomogeneity can be more 

than ten times due to a slight difference on the thickness of the diffusion layer and activation 

energy [63]. Similarly, for surface diffusion coefficients of different free surfaces, their 

inhomogeneity can be more than ten times too. For surface tension and grain-boundary 

tension, their inhomogeneity owing to nonuniform packing among particles can be several 

times [64]. For the initial neck size and the particle radius, their inhomogeneity can be 

simply and clearly understood by Fig. 5.3. 

To study the effect of each parameter inhomogeneity on sintering kinetics, six 

corresponding cases are designed for numerical computation, and they are isothermal 

sintering at 1200°C. Furthermore, reference values are set for each kind of parameters. 

Reference values of 𝒟gb and γs are the same as those used in chapter 2. To consider the 

effect of fast surface diffusion, the reference value of 𝒟s is one hundred times of 𝒟gb. At 

last, all reference values are shown in table 5.1.  

When presenting the results, time is normalised by the same characteristic time τg used in 

chapter 2; meanwhile, shrinkage between particles and neck growth is normalised by the 

reference value of the radius. 
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Table 5.1. Reference Values Used in This Numerical Study  

Grain-boundary diffusion coefficient 𝓓𝐠𝐛 6.8531648×10−36 m4s/kg 

Surface diffusion coefficient 𝓓𝐬 100 𝓓𝐠𝐛 

Surface tension 𝛄𝐬 1.1 J/m2 

Particle radius R 10−6m 

Initial neck size a 5% R 

Dihedral angle 𝛉 130° 

 

5.3.1 Numerical Results 

(1) Inhomogeneity of Grain-boundary Diffusion 

In this case, the inhomogeneity of grain-boundary diffusion results from their different 

diffusion coefficients. Hence, the grain-boundary diffusion coefficient of neck 2 𝒟gb(2) is 

equal to the reference value in table 5.1, and the grain-boundary diffusion coefficient of 

neck 1 𝒟gb(1) is ten times of 𝒟gb(2). The radius ratio of three particles, R1:R2:R3, is 5:1:5, 

where R2 is equal to the reference value. Furthermore, other parameters are equal to 

reference values. 

Fig. 5.9 shows the shrinkage between two particles over time. The positive value represents 

two particles that are close to each other, while the negative value represents that they are 

away from each other. Two observations can be made from this figure: 

(a) Particle 2 moves towards particle 1 due to the larger grain-boundary diffusion on neck 

1, while away from particle 3.  

(b) The effect of grain-boundary diffusion inhomogeneity on particle movement is 

extremely weak. 

Fig. 5.10 shows the neck radius over time. Two observations can be made from this figure: 

(a) Both neck 1 and neck 2 grow due to the backflow of fast surface diffusion on the triple-

junction area, which is mentioned in chapter 2. 

(b) The effect of grain-boundary diffusion inhomogeneity on neck growth can be ignored. 
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Fig. 5.9 Shrinkage between two particles over time for 𝒟gb(1): 𝒟gb(2) = 10: 1 

 

Fig. 5.10 The neck radius over time for 𝒟gb(1): 𝒟gb(2) = 10: 1 
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(2) Inhomogeneity of Surface Diffusion 

In this case, the inhomogeneity of surface diffusion results from their different diffusion 

coefficients. Hence, diffusion coefficients of surface 2 and surface 3,and 𝒟s(2) and 𝒟s(3), 

are equal to reference values in table 5.1, and the diffusion coefficient of surface 1 𝒟s(1) is 

ten times of the reference value. The radius ratio of three particles, R1:R2: R3, is 5:1:5 where 

R2 is equal to the reference value. Furthermore, other parameters are equal to reference 

values. 

Fig. 5.11 shows the shrinkage between two particles over time. Similar observations can 

be made from this figure: 

(a) Particle 2 moves towards particle 1 due to the larger surface diffusion on surface 1, while 

away from particle 3. 

(b) The effect of surface diffusion inhomogeneity on particle movement is extremely weak 

too. 

Fig. 5.12 shows the neck radius over time. The same features as Fig. 5.10 are observed from 

this figure: 

(a) Both neck 1 and neck 2 grow due to the backflow of fast surface diffusion. 

(b) The effect of surface diffusion inhomogeneity on neck growth can be ignored. 
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Fig. 5.11 Shrinkage between two particles over time for 𝒟s(1): 𝒟s(2): 𝒟s(3) = 10: 1: 1 

 

Fig. 5.12 The neck radius over time for 𝒟s(1): 𝒟s(2): 𝒟s(3) = 10: 1: 1 
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(3) Inhomogeneity of Surface Tension 

In this case, the inhomogeneity results from different surface tension at triple junction 1 and 

triple junction 2. Hence, surface tension at triple junction 2 γs(2) is equal to the reference 

value in table 5.1, and surface tension at triple junction 1 γs(1) is ten times of γs(2). The 

radius ratio of three particles, R1:R2: R3, is 5:1:5, where R2 is equal to the reference value. 

Furthermore, other parameters are equal to reference values. 

Fig. 5.13 shows the shrinkage between two particles over time. Two observations can be 

made from this figure: 

(a) Particle 2 moves towards particle 1 due to the larger surface tension at triple junction 1, 

while away from particle 3. 

(b) Compared with the inhomogeneity of grain-boundary diffusion and surface diffusion, 

the effect of surface tension inhomogeneity on particle movement is noticeable. 

Fig. 5.14 shows the neck radius over time. From this figure, observation can be made, and 

both necks are growing owing to the backflow of fast surface diffusion, and neck 1 grows 

faster than neck 2 because of the larger surface tension at triple junction 1. 

 

Fig. 5.13 Shrinkage between two particles over time for γs(1): γs(2) = 10: 1 
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Fig. 5.14 The neck radius over time for γs(1): γs(2) = 10: 1 

(4) Inhomogeneity of the Initial Neck Size 

In this case, the inhomogeneity results from different initial sizes of neck 1 and neck 2. 

Hence, the initial size of neck 2 a2 is equal to the reference value in table 5.1, and the initial 

size of neck 1 a1 is twice of a2. The radius ratio of three particles, R1:R2: R3, is 5:1:5, where 

R2 is equal to the reference value. Furthermore, other parameters are equal to reference 

values. 

Fig. 5.15 shows the shrinkage between two particles over time. Two observations can be 

made from this figure: 

(a) Particle 2 moves towards particle 1 due to a larger initial size of neck 1, while away from 

particle 3. 

(b) The effect of initial neck size inhomogeneity on particle movement is obvious, but 

smaller than surface tension inhomogeneity. 

Fig. 5.16 shows the neck radius over time. Similar observation can be made, and both necks 

are growing, while neck 1 grows faster than neck 2 due to its larger initial neck size. 
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Fig. 5.15 Shrinkage between two particles over time for a1 : a2 = 2:1 

 

Fig. 5.16 The neck radius over time for a1 : a2 = 2:1 
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(5) Inhomogeneity of the Particle Size 

In this case, the inhomogeneity results from the difference of particle sizes. Hence, the radius 

ratio of three particles, R1:R2: R3, is 2:1:10, where R2 is equal to the reference value. 

Furthermore, other parameters are equal to reference values. 

Fig. 5.17 shows the shrinkage between two particles over time. Two observations can be 

made from this figure: 

(a) Particle 2 moves towards particle 3 due to its larger radius, while away from particle 1. 

(b) The effect of particle size inhomogeneity on particle movement is moderate. 

Fig. 5.18 shows the neck radius over time. The observation can be made, and both necks are 

growing, and neck 2 grows faster than neck 1 due to a larger grain size of particle 3. 

 

Fig. 5.17 Shrinkage between two particles over time for R1:R2: R3 =2:1:10 
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Fig. 5.18 The neck radius over time for R1:R2: R3 =2:1:10 

5.4 Summary of This Chapter 

In this chapter, a further numerical study on the effects of inhomogeneity on sintering 

kinetics is presented by observing a de-sintering phenomenon on “three-grain bridge” 

during sintering. The effects of different sintering variables’ inhomogeneity are examined 

by simulating a series of cases. From the above results, conclusions can be obtained as 

follows. 

(a) The middle particle (particle 2) moves towards the particle featured with larger sintering 

variables. 

(b) Effects of some variables’ inhomogeneity such as surface tension, the dihedral angle and 

the initial neck size on sintering kinetics are obvious, while effects of other variables such 

as surface diffusivity are weak. 

For these two features, a straightforward explanation is given as follows by analysing the 

equation of V(2) [Eq. (5.33)]. 
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V(2) =
8[a1

2γs(1)κtip(1) − a2
2γs(2)κtip(2)] + 16[a1γs(1) sin θ1 − a2γs(2) sin θ2]

a1
4

𝒟gb(1)
 +  

a2
4

𝒟gb(2)

 

From this equation, the conclusion (a) can be clearly explained if the sintering variable of 

neck 1 such as γs(1) is larger, and then particle 2 will get a positive velocity moving towards 

particle 1. 

For conclusion (b), its understanding is surface tension γs featured with a large weight, and 

every term in the numerator is multiplied by γs . Hence, the effect of surface tension 

inhomogeneity on sintering kinetics is significant. Similarly, for inhomogeneity of the 

dihedral angle and the initial neck size, their roles in sintering kinetics can be explained as 

mentioned above. However, for other parameters, the effects of inhomogeneity are only 

reflected in the curvature κtip  at the triple junction, and their weight in the equation is 

relatively small. 

Noticeably, no matter which direction particle 2 moves towards, both neck 1 and neck 2 

grow owing to the backflow of fast surface diffusion, which means neck growth is mainly 

controlled by the backflow of fast surface diffusion. This phenomenon once again proves 

that the previous assumption of fast surface diffusion is invalid for initial sintering of typical 

ceramic powders under practical sintering conditions. 
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Chapter 6 Concluding Remarks 

 

6.1 Conclusions 

Computer modelling of sintering at particle scale is the fundamental and essential way of 

understanding sintering behaviours and connecting sintering behaviours to sintering 

variables. Especially at particle scale, computational models provide a straightforward 

understanding of sintering in terms of the driving forces, the mechanisms, and the influence 

of major sintering variables such as the particle size, temperature and applied pressure. Only 

if these sintering factors are clarified, a larger scale model such as the mesoscale model and 

the continuum model can be built properly. 

The finite difference method, close to the method developed by Bross and Exner [19], is 

adopted to build computational models in this thesis with two main differences. The first 

one is the coupled sintering mechanism of the grain boundary, and surface diffusion is 

considered in these models, and the second one is the curvature (chemical potential) at the 

triple junction (pore tip) that is numerical solved by applying proper continuous conditions 

proposed by Pan and Cocks [40]. Then by using different parameter settings and geometries 

in different studies, the achievements and conclusions are obtained as follows. 

Chapter 3 presents a computational study on the role of surface diffusion and external 

pressure on first-stage sintering of ceramic powders which are densified by grain-boundary 

diffusion. Two conclusions can be made. The first one is the curvature at the triple junction 

κtip as a combination of all sintering variables acting at the triple junction such as diffusivity, 

external stress, surface tension, the dihedral angle and the local-area curvature. Therefore, 

it cannot be simply the curvature which is determined by the local geometry of the free 

surface at the triple junction. The advantage concerning the numerical solution of κtip  is 

that if there are more driving forces for densification during sintering, they can also be added 

into the formula of κtip. The second conclusion is the assumption of fast surface diffusion 

that is invalid for typical sintering conditions and materials in the first stage of sintering. As 

the study reveals a simple explanation for the role played by surface diffusion in matter 

redistribution of the combined grain-boundary and surface diffusion — surface diffusion 

changes the direction from moving atoms away from a contact neck to depositing atoms 
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onto it as the rate of surface diffusion increases. The reverse surface diffusion blunts the 

neck and retards densification. It is shown that this mechanism is significant not only for 

free sintering but also for pressure assisted sintering. 

Chapter 4 presents a computational study of the role played by the fast heating rate on 

sintering. In this chapter, a temperature dependent model is developed for simulating the 

sintering with a heating process from 600oC to 1400oC. Then, there is a conclusion that the 

widely observed SPS’s effect on densification can be partially attributed to its fast heating 

rate, because the rapid heating rate supports sintering to quickly pass through the low 

temperature domain (600oC to 1200oC in Fig. 4.1), where surface diffusion plays a 

dominated role due to the backflow mechanism of fast surface diffusion, and then minimises 

the blunting effect of fast surface diffusion near the triple junction. 

Chapter 5 presents a computational study on the effects of inhomogeneity concerning 

sintering kinetics by observing a de-sintering phenomenon on “three-grain bridge” during 

sintering. In this study, five critical sintering variables such as the grain size, surface tension 

and diffusivity are chosen to study the effects of their inhomogeneity on sintering kinetics. 

Through the analysis of numerical results, the conclusion that the movement of the middle 

particle (as shown in Fig 5.4) prefers the direction of larger sintering variables is obtained. 

Furthermore, the effects of some variables’ inhomogeneity such as surface tension, the 

dihedral angle and the initial neck size on sintering kinetics are obvious, while the effects 

of other variables such as surface diffusivity are weak, because inhomogeneity of different 

variables has different weights in velocity of middle particles [as Eq. (5.33)]. 

In addition, the features of computational models listed in chapter two on page 15 have been 

included in this study. 

 

6.2 Future Work 

Several modelling limitations such as distortion of total sintering time, quite simple 

geometry and only considering two sintering mechanisms still exist in this thesis. For 

practical applications, these issues should be addressed. Potential research directions are as 

follows. 
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1) For the distortion of total sintering time, it can be corrected by adding an empirical 

formula before the governing equations. 

2) For quite simple geometry, a multi-particle model can be achieved by considering the 

governing equations as a contact law of these particles. For example, the governing equation 

of grain-boundary velocity Vgb can be employed to describe the shrinkage among particles. 

3) For only considering two sintering mechanisms, more governing equations of other 

mechanisms can be added in the methodology section by applying proper continuity 

conditions. 
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