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Abstract 

Objective: 

Network meta-analyses have extensively been used to compare the effectiveness of 

multiple interventions for healthcare policy and decision-making. However, methods 

for evaluating the performance of multiple diagnostic tests are less established. In a 

decision-making context, we are often interested in comparing and ranking the 

performance of multiple diagnostic tests, at varying levels of test thresholds, in one 

simultaneous analysis.  

 

Study design and setting: 

Motivated by an example of cognitive impairment diagnosis following stroke, we 

synthesized data from 13 studies assessing the efficiency of two diagnostic tests: 

Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), 

at two test thresholds: MMSE <25/30 and <27/30, and MoCA <22/30 and <26/30. 

Using Markov Chain Monte Carlo (MCMC) methods, we fitted a bivariate network 

meta-analysis model incorporating constraints on increasing test threshold, and 

accounting for the correlations between multiple test accuracy measures from the 

same study.  

 

Results: 

We developed and successfully fitted a model comparing multiple tests/threshold 

combinations while imposing threshold constraints. Using this model, we found that 

MoCA at threshold <26/30 appeared to have the best true positive rate, whilst 

MMSE at threshold <25/30 appeared to have the best true negative rate. 

 

Conclusion: 

The combined analysis of multiple tests at multiple thresholds allowed for more 

rigorous comparisons between competing diagnostics tests for decision making. 

 

Keywords: 

Network meta-analysis; meta-analysis; diagnostic test accuracy; multiple tests; 

multiple thresholds 
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1. Background 

 

Evidence-based healthcare evaluations, as endorsed by the National Institute for 

Health and Care Excellence (NICE) in the UK and similar organisations worldwide, 

have highlighted the crucial role systematic reviews, including meta-analysis where 

appropriate, have to play in the decision making process to answer clinically relevant 

questions such as whether a technology works, for whom and how it compares with 

alternatives (1).  Such evidence based evaluations are important to the decision 

making process within the area of diagnostic test performance as early diagnosis of 

disease can lead to more successful treatment than if treatment is delayed.  

 

Diagnostic test accuracy is defined by Leeflang et al (2) as the ability of a test to 

distinguish between patients with a specified target condition and those without, 

and the results are usually expressed in terms of sensitivity (i.e. the proportion of 

people with the condition correctly detected by the test) and specificity (i.e. the 

proportion of people without the condition correctly detected by the test).  The 

dependence between these outcomes (i.e. sensitivity and specificity) adds an 

additional complexity that makes evidence synthesis of diagnostic test accuracy data 

more complicated than for intervention studies. The dependence between 

outcomes can occur in one of two ways. For meta-analyses of studies evaluating a 

single pair of sensitivity and specificity, the dependence between sensitivity and 

specificity occurs across studies for differing thresholds (3). For meta-analyses of 

studies evaluating multiple tests and/or multiple thresholds, and therefore, multiple 

pairs of sensitivity and specificity, the dependence between outcomes occurs both 

within and across studies. Another additional issue includes correctly estimating the 

joint conditional performance of multiple tests when they are used in combination 

(4).  A number of methods have been proposed to meta-analyse studies reporting 

single pairs of sensitivity and specificity data including independent meta-analyses of 

sensitivity and specificity (5), meta-analysis of diagnostic odds ratios (5), summary 

receiver operating curve (sROC) regression modelling (6), hierarchical sROC model 
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(7), and bivariate meta-analysis models (7, 8). In cases where the test threshold is 

suspected or known to vary between studies, the latter 2 approaches (which have 

been shown to be equivalent (9)) are the most appropriate as they allow for this 

variability in the analysis. However, neither of these incorporates test threshold 

information explicitly into the analysis, which hampers accurate prediction of test 

performance at particular thresholds; a fact which limits the clinical applicability of 

results, at least in contexts where test threshold can be explicitly specified. Work 

extending the hierarchical sROC / bivariate approach, allowing for data from multiple 

thresholds for the same tests from the same study to be synthesised, was described 

some time ago (10) but is rarely used in practice and suffers from the same 

limitation that explicit threshold value information is not included in the analysis. 

Alternative approaches have since been described (3, 11-14) including a 

generalization of the bivariate model to include the use of multivariate random 

effects (11), and the use of Poisson-correlated gamma frailty models (12). For both 

of these approaches, the number of thresholds across all studies has to be identical, 

which is often impractical in a meta-analysis setting. Multivariate regression models 

(13) and linear mixed effects models (3) have also been proposed. These methods 

consist of a two-stage approach, however, estimation of the uncertainty from stage-

one of these analyses are ignored and may lead to unrealistic results. More recently, 

Hoyer et al (14) proposed a bivariate time-to-event model for interval censored data 

incorporating random effects. This approach overcomes the limitations described 

above, and provides a flexible framework to account for various distributions of the 

underlying diagnostic marker. However, a limitation of this model is the potential 

constraint of the proportional hazards assumptions when meta-analysing ROC curves 

from studies which report a single threshold.   

 

In comparison to interventional research, methodology for meta-analysing 

diagnostic test accuracy data has relatively recently been adopted by Cochrane. As 

such, the development of guidance, and best practice statements are ever evolving. 

However, at present, the preferred Cochrane methods are suited to meta-analysing 

diagnostic test accuracy of single tests (using the statistical methods outlined above). 

From a clinical and decision-making perspective, often interest lies in assessing the 
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performance of multiple diagnostic tests with multiple thresholds in one 

simultaneous analysis, since it addresses clinically relevant questions such as: which 

test at which threshold is most effective, or most cost-effective (15). In 

interventional research, when multiple competing healthcare interventions are of 

interest, network meta-analyses (NMA) have been used extensively to compare and 

identify the “best” intervention(s). However, methods for evaluating the 

performance of multiple diagnostic tests are less established. Network meta-

analyses of healthcare interventions are commonly used to synthesise  

data from several clinical trials in similar patient populations with the aim to 

evaluate multiple interventions that may not have been compared otherwise. This 

approach combines both direct information (obtained from head-to-head trials) and 

indirect information (obtained from trials that share a common comparator) to 

obtain relative treatment effects for all interventions whilst maintaining 

randomisation. Combining direct and indirect information 

in this way assumes an additive relationship between treatment effects. In a 

diagnostic test accuracy setting, this framework has previously been adopted to 

model the difference or relative risk in sensitivity and specificity (16), as well as the 

relative Diagnostic Odds Ratio between two tests (16-18). Throughout this paper, 

network meta-analyses are used to describe the synthesis of diagnostic test accuracy 

data from a network of diagnostic tests that have been evaluated in the same study 

and thus, the same individuals. Our approach differs to the framework commonly 

used for healthcare interventions in that our approach models the absolute 

sensitivity and specificity of each test incorporating random effects to allow for 

heterogeneity, as well as similarities between data belonging to the same study, and 

the same tests within studies (i.e. to account for multiple thresholds within tests).  

 

Through careful consideration of a motivating example, this paper sets out an 

approach to network meta-analysis of diagnostic test accuracy studies which allows 

for both the incorporation of multiple tests and multiple explicit threshold values, 

potentially reported by the same studies. Section 2 introduces the motivating 

example. Section 3 discusses the visual representation of diagnostic test accuracy 

data, highlighting where appropriate, key assumptions that are revisited throughout 
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the remainder of this article. Section 4 describes each of the proposed meta-analysis 

models. Section 5 presents the results from the analysis of the motivating example 

and Section 6 concludes this article with a discussion. 

 

2. Motivating example 

Cognitive impairment is highly prevalent in stroke survivors and it can lead to 

increased mortality, disability, and institutionalization.  Early detection of cognitive 

impairment is an essential step in the efficient management of patient care. In the 

UK, screening for cognitive impairment is recommended by governing bodies such as 

the National Institute for Health and Care Excellence (NICE) and the Royal College of 

Physicians (RCP). However, although cognitive assessment is recommended in 

various clinical guidelines, there is no consensus on how to efficiently diagnose 

patients, where differing guidelines recommend differing tests and thresholds (19). A 

robust synthesis of the evidence in one simultaneous analysis has the potential to 

provide an evidence base where currently best clinical practice is primarily opinion 

based.  

 

In a study by Lees et al (20), the authors investigated the test accuracy of multiple 

screening tests for the diagnosis of cognitive impairment and dementia in stroke 

patients. Cognitive impairment is an umbrella term that encompasses any objective 

memory and thinking problem. It includes, but is not limited to, the clinical 

syndrome of dementia. Gold standard assessment for cognitive impairment is a 

detailed examination of various aspects of cognition (neuropsychological battery 

(NPB)), while there is no consensus on the ‘gold’ standard ante-mortem diagnosis of 

dementia, dementia diagnosis is currently made according to clinical criteria which 

can often be informed by data from  NPB. In the Lees et al review, as the index tests 

of interest were ‘screening’ tests, the authors decided to include both cognitive 

impairment on NPB and clinical dementia diagnosis as their reference standard. The 

authors were able to synthesize data from 13 diagnostic test accuracy studies for 

two key screening tests; Folstein’s Mini Mental State Examination (MMSE) and 

Montreal Cognitive Assessment (MoCA). MMSE and MoCA examinations are based 

on a scoring system, where a higher value indicates a more desired response from 
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the participant. Thus a disease-positive response on a lower test threshold would 

suggest a more severe case of cognitive impairment. The authors focused on 2 

disparate cut points per test for dementia diagnosis; MMSE <25/30, MMSE <27/30, 

MoCA <22/30, MoCA <26/30. In this article, each of the test-threshold combinations 

are treated as independent tests. Figure 1 illustrates the network of comparative 

studies. The nodes represent each of the test-threshold combinations of interest. 

The dashed interconnecting lines illustrate that a comparative study examining both 

tests in the same patient population exists. Typically networks of treatment 

comparisons are presented alongside network meta-analyses of healthcare 

interventions, where the interconnecting lines represent direct evidence on the 

relative differences between treatments. Figure 1 differs to a network of treatment 

comparisons for network meta-analyses of healthcare interventions whereby the 

interconnecting lines represent a comparative study illustrating tests that have been 

undertaken in the same cohort of patients and thus, there is a within-study 

dependence between pairs of sensitivity and specificity for these tests. Table 1 

shows the extracted data from the original papers. The choice of test thresholds 

were determined by the most commonly reported test-threshold combinations in 

the published literature at the time of publication. The reference standard tests 

included NPB and clinical diagnosis of dementia (and the authors assumed that these 

were perfect, as do we in this paper). In this example, Lees et al (20) pooled data 

from studies using both reference tests. Data from 12, 5, 4, and 6 studies were 

pooled in separate bivariate meta-analyses for MMSE<25/30, MMSE<27/30, 

MoCA<26/30 and MoCA<22/30, respectively.  
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Figure 1: Network of comparative studies 

 
 

 

 

 

 

 
Table 1: Diagnostic test accuracy data obtained from the original papers 

Study Author Test TP FP FN TN Sensitivity (95%CI) Specificity (95%CI) 

Blake 2002 MMSE<25 19 10 12 71 0.61 [0.42,0.78] 0.88[0.78,0.94] 

Bour 2010 MMSE<25 21 29 1 143 0.95 [0.77,1.00] 0.83 [0.77,0.88] 

Cumming 2010 MMSE<25 48 22 10 69 0.83 [0.71,0.91] 0.76 [0.66,0.84] 

Cumming 2013 MMSE<25 21 4 17 17 0.55 [0.38,0.71] 0.81 [0.58,0.95] 

 MMSE<27 35 10 3 11 0.92 [0.79,0.98] 0.52 [0.30,0.74] 

 MoCA<26 39 12 0 9 1.00 [0.91,1.00] 0.43 [0.22,0.66] 

 MoCA<22 30 5 9 16 0.77 [0.61,0.89] 0.76 [0.53,0.92] 

de Koning 1998 MMSE<25 44 51 11 178 0.80 [0.67,0.90] 0.78 [0.72,0.83] 

Dong 2010 MMSE<25 52 10 8 45 0.87 [0.75,0.94] 0.82 [0.69,0.91] 

 MMSE<27 45 17 3 26 0.94 [0.83,0.99] 0.60 [0.44,0.75] 

 MoCA<22 54 13 6 42 0.90 [0.79,0.96] 0.76 [0.63,0.87] 

MMSE 
<27/30 

MMSE 
<25/30 

MoCA 
<22/30 

MoCA 
<26/30 
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Dong 2012 MMSE<25 28 32 4 65 0.88 [0.71,0.96] 0.67 [0.57,0.76] 

 MoCA<22 53 65 7 114 0.88 [0.77,0.95] 0.64 [0.56,0.71] 

Godefroy 2011 MMSE<25 45 2 19 29 0.70 [0.58,0.81] 0.94 [0.79,0.99] 

 MMSE<27 55 12 9 19 0.86 [0.75,0.93] 0.61 [0.42,0.78] 

 MoCA<26 60 20 4 11 0.94 [0.85,0.98] 0.35 [0.19,0.55] 

 MoCA<22 48 4 16 28 0.75 [0.63,0.85] 0.88 [0.71,0.96] 

Grace 1995 MMSE<25 20 9 26 46 0.43 [0.29,0.59] 0.84 [0.71,0.92] 

Morris 2012 MMSE<25 21 3 15 10 0.58 [0.41,0.74] 0.77 [0.46,0.95] 

 MMSE<27 30 8 6 5 0.83 [0.67,0.94] 0.38 [0.14,0.68] 

Pendlebury 2012 MMSE<25 11 3 8 69 0.58 [0.33,0.80] 0.96 [0.88,0.99] 

 MMSE<27 15 15 4 57 0.79 [0.54,0.94] 0.79 [0.68,0.88] 

 MoCA<26 19 39 0 33 1.00 [0.82,1.00] 0.46 [0.34,0.58] 

 MoCA<22 13 11 6 61 0.68 [0.43,0.87] 0.85 [0.74,0.92] 

Salvadori 2013 MoCA<26 78 46 2 29 0.97 [0.91,1.00] 0.39 [0.28,0.51] 

 MoCA<22 73 18 7 58 0.91 [0.83,0.96] 0.76 [0.65,0.85] 

Srikanth 2006 MMSE<25 4 4 4 67 0.50 [0.16,0.84] 0.94 [0.86,0.98] 

 

 

3. Illustrating diagnostic test accuracy data 

This section highlights some of the key principles of diagnostic test accuracy data 

through the use of visual representations. Figures 2 and 3 illustrate the relationship 

between the thresholds of the same study for MMSE and MoCA, respectively. The 

nodes represent the observed sensitivity and specificity, colour-coded for each 

threshold; and the corresponding number represents the exact threshold used. The 

interconnecting lines illustrate the ROC curve for each study that reports multiple 

threshold values. One of the properties of an ROC curve is that higher test thresholds 

for a positive outcome must, mathematically, have an increased sensitivity but 

decreased specificity.  For the remainder of this article, this property will be referred 

to as a threshold assumption. In this example, MMSE and MoCA are scored out of 30 

points, with a point deducted for each error. Lower scores therefore suggest greater 

impairment. If the ‘test positive’ threshold is lowered then at the lower threshold 
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the test is more specific and less sensitive, and thus should lie in the lower left hand 

side of the ROC space. From Figure 2, it is evident that there is a large amount of 

heterogeneity in sensitivities and specificities reported between the studies 

identified by Lees et al (20), where datapoints with lower thresholds for MMSE lie 

towards the top left hand side of the ROC space, above that of higher thresholds.  

Figure 4 illustrates schematically the relationship between the threshold assumption 

and that of heterogeneity. Heterogeneity between studies can be described as the 

difference in ROC curves between studies, shifting the ROC curve in a Southeast or 

Northwest direction from the summary ROC. The threshold assumption shifts the 

observed sensitivity and specificity in a Northeast or Southwest direction along the 

study specific ROC curve. 

 

Figure 2: Relationship of increasing test thresholds within MMSE 
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Figure 3: Relationship of increasing test thresholds within MoCA 
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Figure 4: Schematic relationship of the impact of heterogeneity in test performance due to threshold and 
between study heterogeneity. The labels "Lower threshold" and "Higher threshold" apply specifically to the 
given example. 

 
 

4. Models and estimation 

4.1. Network meta-analysis for diagnostic test accuracy studies  

Building on the bivariate meta-analysis model described by Reitsma et al (8)  and 
Sutton et al (15), let the observed number of true positives, 𝑡𝑡𝑝𝑝𝑖𝑖, for the ith 
observation be considered as a binomial count from a sample of disease positive 
individuals, 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖. This information allows for estimation of the diagnostic sensitivity, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖, which is associated with the rate of accurate detection of diseased individuals. 
Likewise, let the number of true negatives, 𝑡𝑡𝑛𝑛𝑖𝑖, be considered as a binomial count 
from a sample of disease negative individuals, 𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 . This information allows for 
estimation of the specificity of the test, 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖, which is associated with the rate of 
accurate detection of non-diseased individuals, such that:  

𝑡𝑡𝑝𝑝𝑖𝑖~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖,𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖) 

𝑡𝑡𝑛𝑛𝑖𝑖~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖,𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖) 
( 1 ) 

Logistic regression models can be used to specify sensitivity and specificity. Across 
studies, the sensitivity and specificity of each test are likely to be correlated. To 

Heterogeneity 

Threshold 

Lower threshold 

Higher threshold 
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account for this across-study dependence the (logit) sensitivity, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖, and 
specificity, 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖, of observation i, where observation i represents each pair of 
sensitivities and specificities for each study,  are drawn from a bivariate normal 
distribution with mean equal to the pooled test accuracy estimates of sensitivity, 
𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and specificity, 𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with between-observation covariance matrix 𝚺𝚺: 

 

�
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖)

� ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ��
𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐

� ,𝚺𝚺� 

𝚺𝚺 = �
𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜌𝜌𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �, 

( 2 ) 

where 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 denote the between-observation standard deviation in logit 

transformed sensitivity and specificity, and 𝜌𝜌 denotes the between-observation 

correlation. In order to model the inherent correlations between multiple sensitivity 

and specificity data-pairs from the same study, a variance component model can be 

used (21) such that diagnostic test-threshold combinations are considered fixed 

effects, while study, and study-specific diagnostic test are considered random 

effects. Study and study-specific diagnostic test are nested within each observation. 

The model is given by:  

𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑗𝑗,𝑘𝑘 + 𝑐𝑐𝑙𝑙(𝑖𝑖) + 𝑑𝑑𝑙𝑙(𝑖𝑖),𝑗𝑗(𝑖𝑖) 

𝜇𝜇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛿𝛿𝑗𝑗,𝑘𝑘 + 𝑒𝑒𝑙𝑙(𝑖𝑖) + 𝑓𝑓𝑙𝑙(𝑖𝑖),𝑗𝑗(𝑖𝑖) 

( 3 ) 

where 𝛽𝛽 and 𝛿𝛿 denote fixed effects of sensitivity and specificity due to diagnostic 
test, j, and test-threshold, k, respectively. Parameters c and d, and e and f, denote 
random effects of sensitivity and specificity due to study, l, and the interaction 
between study, l, and diagnostic test, j, respectively. Non-informative prior 
distributions were specified for the test-specific and threshold-specific accuracy 
parameters on the logit scale (with more information given in technical appendix 
A.1). All models were estimated in a Bayesian framework using Markov Chain Monte 
Carlo (MCMC) simulation, and implemented in the WinBUGS 1.4.3 software (22).  
Example WinBUGS code is given in Appendix A.2.   

 

4.2. Network meta-analysis incorporating threshold constraints 
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Building on the network meta-analysis framework of 4.1, constraints can be specified 

on the underlying threshold parameters, assuming that overall, higher test-

thresholds have an increased sensitivity but decreased specificity. We applied these 

constraints using a method described by Owen et al (23), where the authors place 

constraints on increasing doses of an intervention for comparative effectiveness 

research. In this paper, imposing constraints allows information to be borrowed 

between thresholds within a test, and thus potentially increase the precision in the 

estimated test accuracy for decision-making (which is further discussed in Section 6). 

An alternative approach is to specify the underlying cumulative distribution function 

of the tests (3, 12, 14). This approach is flexible to multiple and different thresholds. 

However, specifying constraints on the summary estimates of the accuracy measures 

for increasing test thresholds, as described in this paper, makes fewer assumptions 

about the distributional form of these estimates and rather this approach simply 

allows the summary estimates to be greater than or equal to, or less than or equal 

to, the reference threshold. 

  

 5. Analysis of the motivating example 

In this section, we synthesized diagnostic test accuracy data across all tests and 
thresholds of interest. This includes MMSE at threshold <25 and <27, and MoCA at 
threshold <22 and <26. We illustrate estimates of diagnostic test accuracy using a 
number of models each with different heterogeneity and correlation assumptions, as 
described in the technical appendix (Appendix A.1). We extend each of these models 
to incorporate constraints on increasing thresholds.  

Table 2 gives the model fit statistics for each of these models. Using measures of DIC, 
it is apparent that there is very little difference in model fit across all models 
considered (a difference in DIC > 5 is considered an important difference). For this 
reason, the most simplistic model, assuming a common heterogeneity and 
correlation parameter across models was used for illustration. The results from the 
remaining models are given in Appendix A.3.  

Table 2: Model fit statistics 

Model Posterior between-
observation SD(s) 

  Correlation 
parameter(s) 

  DIC 

 Sensitivity Specificity      
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 MMSE  MoCA MMSE MoCA MMSE MoCA    
Assuming common heterogeneity and correlation parameters across tests 
       
Without 
threshold 
constraints 

0.28 (SD:0.21) 0.17 (SD:0.13) -0.17 (SD:0.70)   281.59 

With 
threshold 
constraints 

0.29 (SD:0.21) 0.16 (SD:0.13) -0.16 (SD:0.70)   281.23 

Assuming common heterogeneity and test-specific correlation parameters 
 
Without 
threshold 
constraints 

0.29 (SD:0.22) 0.17 (SD:0.13) -0.14 
(SD:0.71) 

-0.01 
(SD:0.71) 

  281.64 

With 
threshold 
constraints 

0.29 (SD:0.21) 0.17 (SD:0.13) -0.20  
(SD:0.70) 

0.02 
(SD:0.71) 

  281.18 

Assuming test-specific heterogeneity and common correlation parameters across tests 
 
Without 
threshold 
constraints 

0.39 
(SD:0.27) 

0.29 
(SD:0.21) 

0.45 
(SD:0.38) 

0.22 
(SD:0.19) 

-0.28 (SD:0.68)   282.94 

With 
threshold 
constraints 

0.40 
(SD:0.27) 

0.28 
(SD:0.20) 

0.44 
(SD:0.38) 

0.21 
(SD:0.19) 

-0.28  (SD:0.68) 
 

  282.82 

 

 

5.1. Assuming common heterogeneity and correlation parameters across tests 

This section illustrates the results from a model assuming a common heterogeneity 

and correlation parameter across multiple, diverse tests. Section 5.1.1 presents 

estimates of test accuracy from a model without threshold constraints and section 

5.1.2 presents results from a model with threshold constraints. 

 

5.1.1. Model without threshold constraints 

Table 3 displays the results of the summary test accuracy measures, relative rankings 

and probabilities that each test was the most accurate overall in terms of the true 

positive rate (sensitivity) and true negative rate (specificity). Combining diagnostic 

test accuracy data for all test-threshold combinations illustrated that MoCA<26 

appeared to have the optimal true positive rate (sensitivity: 0.97, 95%CrI: 0.94, 0.99) 

for 99% of MCMC iterations. There appeared to be little difference between 

MMSE<27 and MoCA<22 in terms of sensitivity, with each of these tests ranking in 

second (95%CrI: 2,3) and third place (95%CrI: 2,4), respectively. However, MoCA<22 
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appeared to have a better true negative rate (specificity: 0.77, 95%CrI: 0.67, 0.85) 

compared to MMSE<27 (specificity: 0.58, 95%CrI: 0.45, 0.70), and subsequently 

ranked in second place for specificity (Rank: 2, 95%CrI: 1,2). MMSE<25 appeared to 

have the optimal true negative rate overall (specificity: 0.84, 95%CrI: 0.79, 0.89), 

ranking in first place for 97% of model iterations.  

   

5.1.2. Model with threshold constraints 

Incorporating threshold constraints on increasing thresholds marginally reduced the 

between-observation standard deviation for specificity (Table 2). However, including 

threshold constraints had very little impact on the posterior point estimates which 

mirror those of the unconstrained model (Table 3). Overall, incorporating threshold 

constraints appeared to marginally increase precision in the effect estimates. 

Subsequently, MoCA<26 ranked in first place for sensitivity for 100% of MCMC 

iterations. Incorporating threshold constraints reduced the variability within-studies. 

The estimated within-study standard deviation for sensitivity was 0.62 (SD: 0.31) 

compared to 0.63 (SD: 0.30) from the unconstrained model. Similarly, the estimated 

within-study standard deviation for specificity was 0.42 (SD: 0.21) compared to 0.44 

(SD: 0.20) from the unconstrained model. However, the variability within-tests 

within a study marginally increased when incorporating threshold constraints. For 

sensitivity, the estimated standard deviation from the model incorporating threshold 

constraints was 0.30 (SD: 0.22) compared to 0.28 (SD: 0.22) from the unconstrained 

model. For specificity, the estimated standard deviation was 0.27 (SD: 0.20) 

compared to a standard deviation of 0.25 (SD: 0.17) for the unconstrained model. 

 

 

Figure 5 displays the posterior point estimates and 95% credible regions in ROC 

space. Whilst MoCA<26 and MMSE<25 rank in first place for sensitivity and 

specificity, respectively, joint and equal consideration of these diagnostic measures 

would suggest that MoCA<22 appears to have the optimal diagnostic accuracy 

overall. Table 4 gives the estimated mean difference in sensitivity (top right) and 

specificity (bottom left) between each of the tests. In comparison to MoCA<22, the 

estimated sensitivity gained by receiving the optimal true positive test (MoCA<26) is 
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0.14 with corresponding 95% credible interval (0.07,0.25). Similarly, the estimated 

specificity gained from receiving the optimal true negative test (MMSE<25) is 0.07 

with corresponding 95% credible interval (-0.01,0.18). As these intervals are close to, 

or span, the point of no difference, there is no strong evidence to suggest that 

MoCA<22 loses efficiency in accurate diagnosis. 

 

Table 3: Posterior point estimates and 95% credible intervals obtained from a network meta-analysis model 
assuming a common between-observation standard deviation and correlation parameter 

Test Sensitivity 
(95%CrI) 

Specificity 
(95%CrI) 

Rank best 
sensitivity 
(95%CrI) 

p(Best) 
sensitivity 

Rank best 
specificity 
(95%CrI) 

p(Best) 
specificity 

Without threshold constraints 
MMSE<25 0.72 

(0.61, 0.82) 
0.84  
(0.79, 0.89) 

4 (3,4) 0 1 (1,2) 0.97 

MMSE<27 0.89 
(0.81, 0.95) 

0.58  
(0.45, 0.70) 

2 (2,3) 0.01 3 (3,3) 0 

MoCA <22 
 

0.82 
(0.70, 0.91) 

0.77 
(0.67, 0.85) 

3 (2,4) 0 2 (1,2) 0.03 

MoCA <26 
 

0.97 
(0.94, 0.99) 

0.35  
(0.23, 0.48) 

1 (1,1) 0.99 4 (4,4) 0 

With threshold constraints 
MMSE<25 0.73 

(0.62, 0.82) 
0.84  
(0.79, 0.88) 

4 (3,4) 0 1 (1,2) 0.96 

MMSE<27 0.90 
(0.81, 0.95) 

0.58  
(0.44, 0.70) 

2 (2,3) 0 3 (3,3) 0 

MoCA <22 
 

0.83 
(0.71, 0.91) 

0.77 
(0.67, 0.86) 

3 (2,4) 0 2 (1,2) 0.04 

MoCA <26 
 

0.98 
(0.94, 0.99) 

0.35 
(0.22, 0.47) 

1 (1,1) 1 4 (4,4) 0 
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Figure 5: Posterior point estimates and 95% credible regions in ROC space obtained from a model 
incorporating threshold constraints and assuming a common heterogeneity and correlation parameter across 
tests 

 
 

Table 4: Estimated mean difference (95%CrI) in sensitivity (top right) and specificity (bottom left) between 
each test-threshold combination (row – column) obtained from a model incorporating threshold constraints 
and assuming a common heterogeneity and correlation parameter across tests 

  MMSE<25 MMSE<27 MoCA<22 MoCA<26 

MMSE<25 - 0.17 (0.08,0.26) 0.10 (-0.01,0.22) 0.25 (0.15,0.35) 

MMSE<27 0.26 (0.15,0.39) - -0.07 (-0.18,0.03) 0.08 (0.02,0.16) 

MoCA<22 0.07 (-0.01,0.18) -0.19 (-0.33,-0.06) - 0.14 (0.07,0.25) 

MoCA<26 0.49 (0.38,0.61) 0.23 (0.08,0.37) 0.42 (0.31,0.52) - 

Above the leading diagonal gives estimates of the mean difference (row – column) in sensitivity (95%CrI), and 
below the leading diagonal gives estimates of the mean difference in specificity (95%CrI) 
 

 

6. Discussion 
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In this paper, we propose a unified network meta-analysis framework for 

synthesizing diagnostic test accuracy data which allows for both the incorporation of 

multiple tests and multiple explicit thresholds of the same tests. We further 

developed this framework to incorporate constraints on increasing test thresholds 

such that estimates for higher test thresholds had an increased sensitivity but 

decreased specificity compared to lower thresholds of the same test. In this way, by 

departing from the usually conducted separate analyses of different tests, the 

combined analysis of multiple tests/threshold allows for more detailed and rigorous 

comparisons between competing tests.  For example in the dementia example 

presented, we found that MoCA<26 had the optimum true positive rate, and 

MMSE<25 had the optimum true negative rate of diagnosing cognitive impairment 

following a stroke. While joint and equal consideration of sensitivity and specificity 

suggested that MoCA<22 appeared to have the optimal diagnostic test accuracy 

overall.  

 

From a decision makers’, clinicians’, and patients’ perspective, interest lies in both 

the true positive rate (sensitivity) and true negative rate (specificity) of a diagnostic 

test in order to efficiently manage patient care. Therefore, unlike the analysis 

considered here, consideration to the relative weighting of sensitivity and specificity 

will be required (i.e. the relative health implications of a false negative compared to 

a false positive result). In order to make robust decisions regarding the optimal 

diagnostic test in terms of clinical-effectiveness and/or cost-effectiveness, a fully 

comprehensive clinical or economic decision model will need to be developed 

incorporating potential treatment plans and longer-term follow-up.  

  

Further extensions to the network meta-analysis framework described in this paper 

could include incorporating meta-regression methods. Both observation or study-

level covariates could easily be included in the bivariate component of the model as 

described by Reitsma et al (8), with the aim to explain some of the heterogeneity 
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between observations or between studies. Further work could also look to derive a 

set of inconsistency equations to assess consistency between different sources of 

information i.e. comparative versus non-comparative studies.  

 

In clinical practice, a sequential approach to testing is often used. Thus stroke 

patients may receive a brief diagnostic test initially, and those identified as 

remaining ‘at risk’ may receive further, more comprehensive, testing such as NPB or 

clinical diagnosis. In this example, it may be reasonable to administer MoCA<26 

initially to ensure that the optimal number of true negative patients are identified 

and discharged from further routine cognitive assessment.  Alternatively, MoCA<22 

may be used initially to ensure that the maximum number of true positive and true 

negative patients are identified. The utility of a staged and triaged approach to 

diagnostic testing in this setting remains unanswered and provides an opportunity 

for further work, as does the further development of statistical methods to evaluate 

the performance of sequences of tests taking lack of dependence into account (4, 

24).  

 

A potential limitation of our approach is that it treats different test and threshold 

combinations as separate tests for the purposes of the analysis, and thus full sROC 

plots are not estimated across different thresholds, as has been done elsewhere (3, 

10-14), however methods to estimate full sROC curves have not taken into account 

explicit threshold values until very recently (14, 25), or allow for constraints to be 

placed on the heterogeneity which can be attributed to threshold differences. 

Combining a comparative framework such as the model described in this paper, with 

the flexible approach of modelling the distributional form of multiple test thresholds 

such as the model described by Hoyer et al (14, 25), whereby both the model 

parameters and distributional forms could be estimated simultaneously, is an 

opportunity for further work.  
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Further, if studies do not report the threshold values used, or the thresholds cannot 

be explicitly expressed, as is often the case for tests involving the interpretation of 

some sort of diagnostic image etc, then the performance of a test at different 

thresholds cannot be estimated via the model presented. However this is not an 

argument for not using the valuable extra information when thresholds are known, 

and more generally there is no reason why the same methodology should be used in 

these two different contexts (despite this being the case historically). 

 

Table 5 describes the similarities and differences between a number of additional 

approaches in the current literature to synthesise diagnostic test accuracy data from 

multiple tests (16, 26-31). All of these methods extend the bivariate model of 

Reitsma et al (8) to synthesise data for two or more tests. Trikalinos et al (26), Hoyer 

and Kuss (27), and Cheng (31) make use of multinomial distributions to model the 

within-study variation for multiple tests, whilst Dimou et al (30) makes use of 

multivariate normal distributions on logit sensitivities and specificities to account for 

within-study covariances. If full cross-tabulations, i.e. the full response array across 

all competing tests, are available, then the correlation between tests can be taken in 

to account as in Trikalinos et al (26), Dimou et al (30), and Cheng (31). These 

approaches have the advantage of appropriately modelling the within-study 

covariance structure, however, partial or full cross-tabulations are required for a 

sufficient number of studies in order to adequately model the correlation between 

tests (31). A limitation of these approaches is that as the number of competing tests 

increases, the number of parameters to be estimated by the model rapidly increases, 

which can result in issues with model convergence (31). Cheng (31) further considers 

a multivariate extension of the HSROC model by Rutter and Gatsonis (7), and 

explores the use of beta-binomial marginals and multivariate Gaussian copulas. The 

author found that use of the beta-binomial marginal and multivariate Gaussian 

copulas produced less biased estimates of the posterior mean summary points 

compared to the multivariate extension of the bivariate model and HSROC model, 

however this approach appeared to be computationally expensive. Nyaga et al (28, 

29) use a two stage hierarchical model based on the logit transformed sensitivity and 
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specificity (28), and a one-stage approach based on the beta-binomial distribution 

modelling on the probability scale (29). Both models include shared random effects 

to induce study level correlations. This approach is most similar to the model we 

describe in this paper. However, our model further incorporates shared random 

effects on test to account for multiple thresholds and applies constraints on 

increasing test-thresholds. Similarly to the model outlined in this paper, many of the 

approaches described in Table 5 adopt an arm-based approach and model the 

absolute measures of test accuracy (26-31). Menten and Lesaffre (16) developed a 

contrast-based approach, which models both the direct (or head-to-head) 

comparisons of diagnostic tests as well as indirect comparisons through a common 

diagnostic test. This approach directly models the relative logit sensitivities and 

specificities between multiple tests. This model can be further extended to a 

hierarchical latent class model to account for imperfect gold standards. A contrast-

based approach works well if all studies evaluate all diagnostic tests. In the case of 

mixed reporting, further assumptions regarding the missingness of data is required. 

In a comparison between the contrast-based approach of Menten and Lesaffre (16) 

and a hierarchical arm-based approach of Nyaga et al (28), Nyaga et al (28) argue 

that an arm-based approach may be more appealing than contrast-based 

approaches since it allows for a more straightforward interpretation of the 

parameters, makes use of all available data resulting in increased precision, and 

adopts a more natural variance-covariance structure. In choosing an approach to 

synthesise diagnostic test accuracy data for multiple tests, the user needs to 

consider a number of factors related to the decision question. The first of which is 

the available data; if partial, or full cross-tabulations are available for a sufficient 

number of studies, a multivariate approach may be preferred to adequately model 

the within-study correlation structures (16, 26, 30, 31). If there are a number of test-

thresholds of interest, a multivariate approach to the HSROC model (31), or an 

extension to the multinomial approach as described by Hoyer and Kuss (27) may be 

most appropriate.  However, if there are many competing diagnostic tests, the 

number of additional parameters to be estimated by a multivariate model may be 

too large causing issues with model convergence. In this instance, a hierarchical 

model  (28, 29), including the model described in this paper, may be preferred. 
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Furthermore, in the case of many competing tests and multiple test thresholds, our 

approach using shared random effects and constraints on increasing test thresholds 

may be considered. Indeed, a comprehensive comparison of all of the approaches 

described in Table 5, including an assessment of model performance under different 

criteria and different reporting structures, is still required and would be a valuable 

addition to the current literature.  

 

In this paper, we evaluated a number of models each with different assumptions 

regarding the heterogeneity parameters and correlation parameters. The first model 

assumed common heterogeneity and correlation parameters across tests, the 

second model assumed common heterogeneity and test-specific correlation 

parameters, and the third model assumed test-specific heterogeneity parameters 

and a common correlation parameter. It is worth noting that allowing both 

heterogeneity and correlation parameters to be test-specific leads to 

unidentifiability of the covariance matrix, and thus causes issues with model 

convergence.  

 

In conclusion, this paper proposes a number of network meta-analysis models for 

synthesizing diagnostic test accuracy data. The proposed frameworks allow for the 

analysis of multiple tests at multiple thresholds together with the option to 

incorporate constraints on increasing test thresholds. It could be argued that 

constraints on threshold effects should be applied to all models with explicit 

threshold information regardless of model fit, due to the implicit threshold 

assumption which by definition must be satisfied (but is not imposed by previous 

models commonly fitted). Incorporating this information through the use of 

constraints has the potential to more appropriately attribute variability between 

results to (genuine) threshold effects and better explain heterogeneity between 

studies.   
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Table 5: Approaches to synthesising diagnostic test accuracy data of multiple tests 

Reference  Model Description Type of 
model 

Available data Number of 
tests 

Multiple 
thresholds 
per test 

Imperfect 
GS 

(26) Trikalinos, T. A., 
(2014). Research 
Synthesis Methods. 
 

Multinomial model approximated by 
multivariate normal distribution, 
modelling the joint TPR and FPR. 
Correlations between tests are modelled 
as random parameters. 
 
 

Arm-
based  

Full cross-
tabulations 

2 index tests + 
GS  

No No 

(16) Menten, J. and 
Lesaffre, E. (2015). 
BMC Medical 
Research 
Methodology. 

Hierarchical model which is partly based 
on contrasts between transformed 
sensitivity and specificity (similar to that 
of NMA for interventions) 
 
Adds in allowance for imperfect GS by 
modelling response pattern across tests 
as multinomial: latent class models  
 

Contrast-
based 

Full cross-
tabulations 

3 index tests + 
multiple GS 
 

No Yes 

(27) Hoyer, A. and Kuss, 
O. (2016). 
Statistical Methods 
in Medical 
Research. 
 

Multinomial model similar to that of 
Trikalinos et al (21) but does not 
account for correlations between tests 
since full cross-tabulations are not 
used. This model can be extended to 
account for multiple test thresholds.  
 

Arm-
based 

2x2 tables for each 
test versus GS only 

2 index tests + 
GS from each 
study 

Yes  No 

(28, 
29) 

Nyaga, V. N., et al. 
(2016a,b). 

Two-stage hierarchical model based on 
logit transformed sensitivity and 

Arm-
based 

2 x 2 tables for each 
test versus GS only  

11 tests (in 
example 

No No 
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Statistical Methods 
in Medical 
Research. 

specificity. Shared random effects are 
specified to induce study level 
correlations. 
 
One stage approach modelling directly on 
the probability scale (using beta-binomial 
distribution) without logit transformation. 

dataset) 
Between 1 
and 6 tests 
per study. 

(30) Dimou, N. L, et al. 
(2016). Statistics in 
Medicine. 
 

Multivariate normal distribution with 
closed form formulae for the within-study 
covariance matrix (needs full cross-
tabulations). Full reporting then used to 
impute when only 2 x 2 table information 
is presented. Correlation between tests 
are estimated and “plugged in”. 

Arm-
based 

Full cross-
tabulation and 2x2 
tables for each test 
versus GS only  

2 index tests + 
GS 
(Not all 
studies have 
to report both 
tests) 

No No 

(31) Cheng, W. (2016). 
Repository Library, 
Brown University 
(Doctoral Thesis)  

Multinomial model 
with decomposition of test and study 
specific effects (Chapter 2) 
 
Multivariate extension of the HSROC 
model (Chapter 3) 
 
Beta-binomial marginals 
and multivariate 
Gaussian copulas (Chapter 4) 
 
All models account for study-type specific 
effects and within study-type 
random effects 
 

Arm-
based 

Full cross-
tabulations, 
partially crossed-
tabulations, 2x2 
tables for each test 
versus GS only 

3 index tests + 
GS 

No 
 
 
 
 
Yes 
 
 
 
 
No 

No 

GS: Gold standard 
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