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New genetic signals for lung function highlight pathways and pleiotropy, and chronic obstructive 1 
pulmonary disease associations across multiple ancestries. 2 
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Abstract 176 
Reduced lung function predicts mortality and is key to the diagnosis of COPD. In a genome-wide 177 
association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 178 
139 of which are new. In combination, these variants strongly predict COPD in independent patient 179 
populations. Furthermore, the combined effect of these variants showed generalisability across 180 
smokers and never-smokers, and across ancestral groups. We highlight biological pathways, known 181 
and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related 182 
and other pleiotropic effects of lung function associated variants. This new genetic evidence has 183 
potential to improve future preventive and therapeutic strategies for COPD. 184 

Introduction 185 
Impaired lung function is predictive of mortality1 and is the key diagnostic criterion for chronic 186 
obstructive pulmonary disease (COPD). Globally, COPD accounted for 2.9 million deaths in 20162, 187 
being one of the key causes of both Years of Life Lost and Years Lived with Disability worldwide3. 188 
Determinants of maximally attained lung function and of lung function decline can influence the risk 189 
of developing COPD. Tobacco smoking is the single largest risk factor for COPD, although other 190 
environmental exposures and genetic makeup are important4,5. Genetic variants associated with 191 
lung function and COPD susceptibility can provide aetiological insights, assisting with risk prediction, 192 
as well as drug target identification and validation6. Whilst there has been considerable progress in 193 
identifying genetic markers associated with lung function and risk of COPD4,7-19 seeking a high yield 194 
of associated genetic variants is key to progressing knowledge because: (i) implication of multiple 195 
molecules in each pathway will be needed to build an accurate picture of the pathways 196 
underpinning development of COPD; (ii) not all proteins identified will be druggable and; (iii) 197 
combining information across multiple variants can improve prediction of disease susceptibility. 198 

Through new detailed quality control and analyses of spirometric measures of lung function in UK 199 
Biobank and expansion of the SpiroMeta Consortium, we undertook the largest genome-wide 200 
association study of lung function performed to date. Our study entailed a near seven-fold increase 201 
in sample size over previous studies of similar ancestry to address the following aims: (i) to generate 202 
a high yield of genetic markers associated with lung function; (ii) to confirm and fine-map previously 203 
reported lung function signals; (iii) to investigate the putative causal genes and biological pathways 204 
through which lung function associated variants act, and their wider pleiotropic effects on other 205 
traits; and (iv) to generate a weighted genetic risk score for lung function and test its association 206 
with COPD susceptibility in individuals of European and other ancestries. 207 

Results 208 
139 new signals for lung function 209 

We increased the sample size available for the study of quantitative measures of lung function in UK 210 
Biobank by refining the quality control of spirometry based on recommendations of the UK Biobank 211 
Outcomes Adjudication Working Group (Supplementary Note). Genome-wide association analyses 212 
of forced expired volume in 1 second (FEV1), forced vital capacity (FVC) and FEV1/FVC were then 213 
undertaken in 321,047 individuals in UK Biobank (Supplementary Table 1) and in 79,055 individuals 214 
from the SpiroMeta Consortium (Supplementary Tables 2 and 3). A linear mixed model approach 215 
implemented in BOLT-LMM20 was used for UK Biobank to account for relatedness and fine-scale 216 
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population structure (Online Methods). A total of 19,871,028 autosomal variants imputed in both 217 
UK Biobank and SpiroMeta were analysed. Peak expiratory flow (PEF) was also analysed genome-218 
wide in UK Biobank and up to 24,218 samples from SpiroMeta. GWAS results in UK Biobank were 219 
adjusted for the intercept of LD score regression21, but SpiroMeta and the meta-analysis were not as 220 
intercepts were close to 1.00 (Online Methods). All individuals included in the genome-wide 221 
analyses were of European ancestry (Supplementary Figure 1 and Supplementary Note). 222 

To maximise statistical power for discovery of new (previously unreported) signals, whilst 223 
maintaining stringent significance thresholds to minimise reporting of false positives, we adopted a 224 
study design incorporating both two-stage and one-stage approaches (Figure 1). In the two-stage 225 
analysis, 99 new distinct signals, defined using conditional analyses22, were associated with one or 226 
more traits at P<5×10-9 in UK Biobank and showed association (P<10-3) with a consistent direction of 227 
effect in SpiroMeta (“Tier 1” signals, Supplementary Figure 2; Supplementary Table 4). In the one-228 
stage analysis, we meta-analysed UK Biobank and SpiroMeta (up to 400,102 individuals) and 40 229 
additional new distinct signals associated with one or more lung function traits reaching P<5×10-9 230 
(see 23) were identified (Supplementary Figure 2, Supplementary Table 4) that were also associated 231 
with P<10-3

 separately in UK Biobank and in SpiroMeta, with consistent direction of effect (“Tier 2” 232 
signals). An additional 323 autosomal signals were significantly associated with one or more lung 233 
function traits in the meta-analysis of UK Biobank and SpiroMeta (P<5×10-9) and reached P<10-3 for 234 
association in only one of UK Biobank or SpiroMeta (“Tier 3” signals, Supplementary Table 5). 235 
Analysis of association of FEV1, FVC and FEV1/FVC with 240,417 chromosome X variants in 359,226 236 
individuals (321,027 UK Biobank and 38,199 SpiroMeta15) gave an additional 5 Tier 3 signals. Only 237 
the 139 signals meeting Tier 1 and Tier 2 criteria were followed up further. The strength and 238 
direction of association of the sentinel variant (the variant in each signal with the lowest P value) for 239 
these 139 new signals across all 4 lung function traits are shown in Figure 2. Of the 139 signals, 131 240 
were associated with at least two lung function traits at P<10-3, eight signals were unique to 241 
FEV1/FVC and no signals were unique to FEV1, FVC or PEF at this threshold. 242 

We assessed whether any of these 139 signals associated with lung function could be driven via an 243 
underlying association with smoking behaviour (Online Methods). Only rs193686 (in an intron of 244 
MET, Supplementary Table 6) was associated with smoking behaviour. Therefore, we tested for 245 
association between this variant and lung function in never smokers (n=173,658). Whilst rs193686 246 
was associated with smoking initiation (P=9.18×10-6), the allele associated with smoking initiation 247 
was associated with increased lung function in never smokers (FEV1/FVC P=5.28×10-10, 248 
Supplementary Table 7). Therefore, this signal was retained for further analysis. 249 

A total of 279 signals of association for lung function 250 

Of 157 previously published signals of association with lung function and COPD3,6-18
, 142 were 251 

associated at P<10-5 in UK Biobank (Online Methods, Supplementary Figure 3, Supplementary Table 252 
8). Two sentinel variants (rs1689510 and rs11134789) were associated with smoking initiation 253 
(Supplementary Table 6), but were also associated with lung function in never smokers 254 
(Supplementary Table 7). SNP rs17486278 at CHRNA5 and rs11667314 near CYP2A6 were each 255 
associated with cigarettes per day (Supplementary Table 6); neither were significantly associated 256 
with lung function among never smokers and so were excluded from further analysis. This brings the 257 
total number of distinct signals of association with lung function to 279 (Supplementary Table 9). 258 
None of these variants showed interaction with ever-smoking status (P>1.8×10-4, Online Methods, 259 
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Supplementary Table 7). Using the effect estimates, allele frequencies and assuming a total 260 
heritability of 40%24,25 (Online Methods), we calculated that the 140 previously reported lung 261 
function signals showing association in this study (UK Biobank P<10-5) explained 5.0%, 3.4%, 9.2% 262 
and 4.5% of the estimated heritability of FEV1, FVC, FEV1/FVC and PEF, respectively. The 139 new 263 
signals reported here, explain an additional 4.3%, 3.3%, 3.9% and 3.3% of the estimated heritability, 264 
respectively. 265 

Identification of putative causal genes 266 

Bayesian refinement was undertaken for each signal to identify the set of variants that were 99% 267 
likely to contain the underlying causal variant (assuming the causal variant has been analysed). The 268 
results from the meta-analysis of UK Biobank and SpiroMeta were used to define the 99% credible 269 
sets (Online Methods, Supplementary Table 10, Supplementary File–Region Plots). 270 

To identify putative causal genes for each signal, we identified deleterious variants and variants 271 
associated with gene expression (eQTLs) or protein levels (pQTLs) within each 99% credible set for all 272 
new and previously reported signals outside the HLA region (Online Methods). 273 

There were 25 SNPs, located in 22 unique genes, which were annotated as potentially deleterious 274 
(Online Methods, Supplementary Table 11). Amongst our new signals, there were 10 variants 275 
annotated as deleterious in 9 different genes: DOCK9 (rs117633128), CEP72 (rs12522955), BCHE 276 
(rs1799807), DST (rs11756977), KIAA0753 (rs2304977, rs9889363), LRRC45 (rs72861736), BTC 277 
(rs11938093), C2orf54 (rs6709469) and IER5L (rs184457). Of these, the missense variant in BCHE 278 
(rs1799807) had the highest posterior probability (0.996) in its respective credible set, was low 279 
frequency (MAF=1.95%) and resulted in an amino acid change from aspartic acid (D) to glycine (G), 280 
known to affect the function of the encoded butyrylcholinesterase enzyme by altering substrate 281 
binding26. The two common missense variants in KIAA0753 were within the credible set of new 282 
signal rs4796334. KIAA0753, CEP72 and LRRC45 all encode proteins with a role in ciliogenesis or cilia 283 
maintenance27-31, and all are highly expressed in the airway epithelium32.  284 

Variants in the 99% credible sets were queried in three eQTL resources to identify associations with 285 
gene expression in lung33-35 (sample size n=1,111; Supplementary Table 12), blood36 (n=4,896) and a 286 
subset of GTEx37 tissues (max n=388, Online Methods). The tissues included from GTEx were lung 287 
and blood, plus nine tissues known to contain smooth muscle (Online Methods). The latter were 288 
chosen based on previous reports of enrichment of lung function GWAS signals in smooth muscle-289 
containing tissues18,38. We identified 88 genes, implicated by 58 of the 279 signals, for which the 290 
most significant SNP associated with expression of that gene in the respective eQTL resource was 291 
within one of the 99% credible sets (Supplementary Table 13). 292 

We checked credible set variants for association with protein levels in a pQTL study39 comprising SNP 293 
associations for 3,600 plasma proteins (Online Methods). We found 5 proteins with a sentinel pQTL 294 
contained within our lung function credible set: ECM1, THBS4, NPNT, C1QTNF5 and SCARF2 295 
(Supplementary Table 14). 296 

In total, 107 putative causal genes were identified (Table 1), amongst which, we highlight 75 for the 297 
first time as putative causal genes for lung function (43 implicated by a new signal and 32 newly 298 
implicated by a previous signal18). 299 
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Pathway analysis 300 

We tested whether these 107 putative causal genes were enriched in gene sets and biological 301 
pathways (Online Methods), finding an enrichment of genes in elastic fibre and extracellular matrix 302 
organisation pathways, and a number of gene ontologies including gene sets relating to the 303 
cytoskeleton and processes involved in ciliogenesis (Supplementary Table 15). Whilst the 304 
enrichment in elastic fibre-related pathways is consistent with our previous study18, enrichment in 305 
these pathways was further supported in this analysis by two new genes, ITGAV (at a new signal) and 306 
GDF5 (a newly implicated gene for a previously reported signal), and by strengthened eQTL evidence 307 
for TGFB2 and MFAP2 at two previously reported signals.  The presence of TGFB2, GDF5 and SMAD3 308 
in our list of 107 genes resulted in enrichment of a TGF-β superfamily signalling pathway (TGF-Core) 309 
and related gene ontology terms (Supplementary Table 15). 310 

Functional enrichment analyses 311 

Using stratified LD-score regression,40 we showed that FEV1/FVC and FVC heritability is significantly 312 
enriched at variants overlapping histone marks that are specific to lung, foetal lung, and smooth 313 
muscle-containing (i.e. colon and stomach) cell lines. SNPs that overlap with H3K4me1 marks that 314 
are specific to foetal lung cells correspond to 6.99% of the input SNPs yet explain 57.09% (P=2.85x10-315 
25) and 35.84% (P=4.19x10-21) of the SNP-chip heritability for FEV1/FVC and FVC, respectively 316 
(Supplementary Table 16).  317 

We also tested enrichment of (i) FEV1/FVC and (ii) FVC SNPs at DNase I hypersensitive site (DHS) 318 
hotspots using GARFIELD41 (Online Methods). For FEV1/FVC results, we see significant enrichment 319 
across most cell lines with increased fold-enrichment in foetal and adult lung, foetal muscle and 320 
fibroblasts (Supplementary Figure 4A). For FVC, we see similar broad significant enrichment without 321 
evidence of increased enrichment in a subset of tissues (Supplementary Figure 4B). This suggests 322 
that SNPs influencing FVC may act via more complex and broader developmental pathways. 323 

We used DeepSEA42 to identify whether our signals were predicted to have a chromatin effect in 324 
lung-related cell lines.  We identified 10 signals (including 5 new signals) for which the SNP with the 325 
largest posterior probability of being causal also had a significant predicted effect on a DHS in lung-326 
related cells (Supplementary Table 17). This included a new signal near SMURF2 (17q24.1, 327 
rs11653958). 328 

Drug targets  329 

All 107 putative causal genes were investigated for known gene-drug interactions43 (Supplementary 330 
Table 18). We highlight two examples of new genetic signals implicating targets for drugs in 331 
development for indications other than COPD. One of our new signals is an eQTL for ITGAV. ITGAV 332 
encodes a component of the αvβ6 integrin heterodimer, which is inhibited by a monoclonal antibody 333 
in development for pulmonary fibrosis (NCT01371305) and for which the small molecule 334 
GSK3008348 (NCT03069989) is an antagonist44. Integrins have an emerging role as local activators of 335 
TGFβ and specifically the avb6 integrin heterodimer can activate latent-TGFβ45. In our study, the 336 
allele associated with reduced expression of ITGAV (Supplementary Table 13) was associated with 337 
increased lung function (Supplementary Table 9) suggesting that inhibitors of αvβ6 integrin might 338 
also have a beneficial effect in COPD. Another of our new signals is associated with expression of 339 
TNFSF13 (synonym APRIL), a cytokine of the TNF ligand family. Atacicept blocks B cell stimulation by 340 
TNFSF13 (as well as by BLyS) and reduced systemic lupus erythematosus disease activity in a recent 341 
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Phase IIb trial46. In our study, the allele associated with decreased expression of TNFSF13 was 342 
associated with reduced FEV1, indicating that vigilance for pulmonary consequences of atacicept 343 
may be warranted. 344 

Genetic Risk Score: association with FEV1/FVC and COPD in multiple ancestries 345 

We constructed a genetic risk score (GRS) weighted by FEV1/FVC effect sizes comprising all 279 346 
sentinel variants, and tested for association with FEV1/FVC and GOLD Stage 2-4 COPD (FEV1/FVC<0.7 347 
and FEV1<80% predicted) in different ancestry groups in UK Biobank, and China Kadoorie Biobank 348 
(Online Methods, Supplementary Table 19). UK Biobank participants of non-European ancestry 349 
were not included in the discovery analyses. The GRS was associated with a significant decrease in 350 
lung function, and corresponding significant increase in COPD risk in each of the independent 351 
ancestry groups (Figure 3a).  352 

We tested for a GRS interaction with smoking in European ancestry individuals in UK Biobank47. No 353 
statistical interaction was seen for FEV1/FVC (interaction term -0.002 per SD change in GRS, 95% CI: 354 
[0.009, 0.005], P=0.532), whilst the findings for COPD were consistent with a slightly smaller effect of 355 
the GRS in ever-smokers (OR for ever-smoking-GRS interaction term per SD change in GRS 0.96, 95% 356 
CI: [0.92, 0.99], P=0.015). 357 

The association of the GRS with COPD susceptibility was additionally tested in five independent 358 
COPD case-control studies (Supplementary Table 20, Online Methods). Similar effect size estimates 359 
were seen across each of the 5 European ancestry studies (Figure 3b); in the meta-analysis of these 360 
studies (n=6,979 cases and 3,915 controls), the odds ratio for COPD per standard deviation of the 361 
weighted GRS was 1.55 (95% CI: [1.48, 1.62]), P=2.87×10-75 (Supplementary Table 21). The GRS was 362 
also associated with COPD in individuals of African-American ancestry in COPDGene (P=8.36×10-7), 363 
albeit with a smaller effect size estimate, odds ratio=1.26 (95% CI: [1.15, 1.37]). 364 

To aid clinical interpretation, we divided individuals in each of the five European ancestry COPD 365 
case-control studies into deciles, according to their value of the weighted GRS. The odds ratio for 366 
COPD in members of the highest GRS decile compared to the lowest GRS decile was 4.73 (95% CI: 367 
[3.79, 5.90]), P=3.00×10-43 (Figure 3c, Supplementary Table 22). We calculated the population 368 
attributable risk fraction (Supplementary Note) and estimated that the proportion of COPD cases 369 
attributable to risk scores above the first GRS decile was 54.6% (95% CI: [50.6%, 58.4%]).  370 

Incorporation of the GRS into a risk model already comprising available clinical information (age, sex, 371 
height and pack-years of smoking in COPDGene non-Hispanic Whites) led to a statistically significant 372 
(P=3.33×10-10), yet modest, increase in the area under the curve, from 0.751 to 0.771 373 
(Supplementary Note). Based on our estimated GRS relative risk and absolute risk estimates of 374 
COPD48, one would expect the highest GRS risk decile group of smokers to have an absolute risk of 375 
developing COPD by approximately 70 years of age of 82.4%, versus 17.4% for the lowest GRS decile 376 
(Supplementary Note). 377 

Pleiotropy and phenome-wide association studies  378 

As phenome-wide association studies (PheWAS) can provide evidence mimicking pharmacological 379 
interventions of drug targets in humans and informing drug development49, we undertook a PheWAS 380 
of 2,411 phenotypes in UK Biobank (Online Methods, Figure 4, Supplementary Table 23); 226 of the 381 
279 sentinel variants were associated (FDR<1%) with one or more traits and diseases (excluding 382 
quantitative lung function traits). Eighty-five of the lung function signals were associated with 383 
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standing height. In order to investigate whether the genetic association signals for lung function 384 
were driven by incomplete adjustment for height, we tested for correlation of effects on lung 385 
function in UK Biobank and height in a meta-analysis of UK Biobank and the GIANT consortium for 386 
246 of the 279 signals that had a proxy variant in GIANT50; there was no significant correlation 387 
(Supplementary Figure 5). Additionally, the PheWAS revealed associations with body composition 388 
measures such as fat free mass (54 SNPs) and hip circumference (40 SNPs), as well as muscle 389 
strength (32 SNPs, grip strength). One hundred and fourteen of the 279 SNPs were associated with 390 
several quantitative measures of blood count, including eosinophil counts and percentages (25 391 
SNPs). Twenty-five of our SNPs were also associated with asthma including 12 SNPs associated both 392 
with asthma and eosinophil measures (Supplementary Table 24). Eight of these SNPs were in LD 393 
(r2>0.1) with a SNP reported for association with asthma in previously published genome-wide 394 
association studies. We compared our observed effect sizes with those estimated after exclusion of 395 
all self-reported asthma cases and observed similar estimates (Supplementary Figure 6) suggesting 396 
that the lung function associations we report are not driven by asthma. 397 

We examined the specificity of genetic associations, given the potential for this to predict specificity 398 
of drug target modification, and found that 53 of the 279 signals were associated only with lung 399 
function and COPD-related traits. In contrast, three of our 279 signals were associated with over 100 400 
traits across multiple categories – among these rs3844313, a known intergenic signal near HLA-DQB1 401 
was associated with 163 traits, and also had the strongest signal in the PheWAS, which was for 402 
association with intestinal malabsorption and coeliac disease. 403 
 404 
In our 279-variant weighted GRS PheWAS analysis (Supplementary Table 25), we found association 405 
with respiratory traits including COPD, chronic bronchitis, emphysema, respiratory failure, 406 
corticosteroid use and both paediatric and adult-onset asthma (Figure 5a). The GRS was also 407 
associated with non-respiratory traits including coeliac disease, an intestinal autoimmune disorder 408 
(Figure 5b).  These pleiotropic effects on risk of autoimmune diseases was further confirmed by 409 
analysis of previously reported GWAS (Online Methods, Supplementary Table 26) which showed 410 
overlapping single variant associations with Crohn’s disease, ulcerative colitis, psoriasis, systemic 411 
lupus erythematosus, IgA nephropathy, pediatric autoimmune disease and type 1 diabetes. 412 

Discussion 413 
The large sample size of our study, achieved by our refinement of the spirometry in UK Biobank and 414 
inclusion of the substantially expanded SpiroMeta consortium data set, has doubled the yield of lung 415 
function signals to 279.  Fine-mapping of all new and previously reported signals, together with gene 416 
and protein expression analyses with improved tissue specificity and stringency, has implicated new 417 
genes and pathways, highlighting the importance of cilia development, TGF-β signalling via SMAD3, 418 
and elastic fibres in the aetiology of airflow obstruction. Many of the genes and pathways reported 419 
here contain druggable targets; we highlight examples where the genetic variants mimicking 420 
therapeutic modulation of targets may have opposing effects on lung function. We have developed 421 
and applied the first weighted GRS for lung function and tested it in independent COPD case-control 422 
studies. Our GRS shows stronger association and larger effect size estimates than a previous GRS in 423 
European ancestry populations18, as well as generalisability to other ancestry groups. We undertook 424 
the first comprehensive PheWAS for lung function signals, and report genetic variants with apparent 425 
specificity of effects and others with pleiotropic effects that might indicate shared biological 426 
pathways between different diseases. 427 
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For the first time in a GWAS of lung function, we report an enrichment of genes involved in 428 
ciliogenesis (including KIAA0753, CDK2 and CEP72). Defects in primary cilia as a result of highly 429 
deleterious mutations in essential genes result in ciliopathies known to affect multiple organ 430 
systems. We found an enrichment of genes with a role in centriolar replication and duplication, core 431 
processes in primary and motile cilia formation. Mutations in KIAA0753 cause the ciliopathies 432 
Joubert Syndrome and Orofaciodigital Syndrome28. Reduced airway motile cilia function impacting 433 
mucus clearance is a feature of COPD, but it has not been clear whether this is causal or the 434 
consequence of damage by external factors such as smoking or infection. Our findings suggest that 435 
impaired ciliary function might be a driver of the disease process. We have previously shown 436 
enrichment of rare variants in cilia-related genes in heavy smokers without airflow obstruction51. 437 

New signals, implicating ITGAV and GDF5, as well as stronger support for TGFB2 and MFAP2 as likely 438 
causal genes, provide new genetic support for the importance of elastic fibre pathways in lung 439 
function and COPD18. The elastic fibres of the extracellular matrix are known to be disrupted in 440 
COPD52. As the breakdown of elastic fibres by neutrophil elastase leads to emphysema in individuals 441 
with alpha1-antitrypsin deficiency, we also assessed the association with the SERPINA1 Z allele, 442 
which was not associated with FEV1/FVC in our study (rs28929474, P=0.109 in UK Biobank).  443 

Smoking and genetic risk both have important effects on lung function and COPD. For lung function, 444 
we found no interaction between smoking and individual variants, and for FEV1/FVC no interaction 445 
between smoking status and the weighted GRS. However, for COPD a weak smoking-GRS interaction 446 
was observed. Whilst the weighted GRS showed a strong association with COPD susceptibility, and a 447 
high attributable risk, we do not claim that this would represent an appropriate method of screening 448 
for COPD risk. Importantly, our findings demonstrate the high absolute risk among genetically 449 
susceptible smokers (82.4% by approximately 70 years of age). 450 

The unprecedented sample size of UK Biobank as a single cohort has revolutionised genetic studies. 451 
We used two complementary study designs to maximise sample size for discovery and ensure 452 
robustness of findings by requiring independent support for association. Furthermore, through 453 
additional analysis of the spirometry data in UK Biobank and substantial expansion of the SpiroMeta 454 
consortium, we have markedly increased samples sizes to almost seven times those included in 455 
previous studies. As no lower MAF threshold was applied in our analyses, an overall threshold of 456 
P<5×10-9, as recommended for re-sequencing analyses of European ancestry individuals23, was 457 
applied. We identified the largest number of new signals in our more stringent two-stage design 458 
(“Tier 1”, 99 new signals). Amongst the signals that we report as “Tier 3” (and did not include in 459 
further analyses), all reached P<10-3 in UK Biobank and 183 met a less stringent threshold of P<0.05 460 
in SpiroMeta. As the primary objective of our paper was to identify variants that were robustly 461 
associated with lung function and COPD; we did not include the Tier 3 signals in the downstream 462 
analyses. However, as a GRS based on fuller sets of variants are likely to add power for genetic 463 
prediction, we have made available our Tier 3 signals (and genome-wide findings) to the scientific 464 
community. 465 

Our study is the first to investigate genome-wide associations with PEF. PEF is determined by various 466 
physiological factors including lung volume, large airway calibre, elasticity of the lung and expiratory 467 
muscle strength, is used for monitoring asthma, and was incorporated in a recently evaluated clinical 468 
score for diagnosing COPD and predicting acute exacerbations of COPD53. Overall, 133 of the 279 469 
signals were also associated with PEF (P<10-5) and for 15 signals (including 4 new signals), PEF was 470 
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the most significantly associated trait. Of note, a signal near SLC26A9, a known cystic fibrosis 471 
modifier gene54, was highly significantly associated with PEF in UK Biobank (P=3.97×10-66) and 472 
nominally significant in SpiroMeta (P=6.93×10-3), with consistent direction of effect, but did not meet 473 
the Tier 2 criteria. This could reflect the limited power for PEF in SpiroMeta (up to 24,218 for PEF 474 
compared to 79,055 for the other traits). 475 

Examining associations of a given genetic variant with a wide range of human phenotypes is a 476 
valuable tool in therapeutic target validation. As in our PheWAS, it can highlight variants which show 477 
associations with one or more respiratory traits that might be expected to demonstrate greater 478 
target specificity than variants associated with many traits. Additionally, in some instances, 479 
association with multiple traits may indicate the relevance of drug repurposing. Association of a 480 
given SNP with multiple traits does not necessarily imply shared aetiology, and further investigation 481 
is warranted. Our GRS PheWAS assesses broader genetic overlap between lung function and other 482 
traits and supports the evidence for some shared genetic determinants with autoimmune diseases. 483 

Our study did not assess interaction of the signals with factors other than smoking, further studies 484 
might include assessments for interaction effects, for example, with sex, air pollution and dietary 485 
intake. We did not analyse variants on the sex chromosomes as those data were not available at the 486 
time of our study. 487 

In summary, our study has doubled the number of signals for lung function and provides new 488 
understanding and resources of utility for the development of therapeutics. The 279-variant GRS we 489 
constructed was associated with a 4.73-fold increased relative risk of moderate-severe COPD 490 
between highest and lowest deciles, such that one would expect over 80% of smokers in the highest 491 
genetic risk decile to develop COPD. The GRS was also predictive of COPD across multiple ancestral 492 
groups. Our PheWAS highlights both expected and unexpected associations relevant to respiratory 493 
and other systemic diseases. Investigating the nature of the pleiotropic effects of some of these 494 
variants will be of benefit for drug target identification and validation. 495 

Online Methods 496 
Study Design Overview and rationale 497 

For the two-stage approach, we firstly selected distinct signals of association (defined using 498 
conditional analyses) with one or more traits achieving P<5×10-9 in UK Biobank only (n up to 499 
321,047). A threshold of P<5×10-9 was selected to maximise stringency of findings and to be 500 
consistent with currently recommended genome-wide significance thresholds for re-sequencing 501 
analyses of European ancestry individuals23. We then reported as new those signals which 502 
additionally met P<10-3 in SpiroMeta (N effective>70% of n up to 79,055; see Supplementary Note 503 
and Supplementary Figure 7 for power calculations), with consistent directions of effect and term 504 
them “Tier 1“ signals as they meet our highest level of stringency. Methods for conditional analyses 505 
and determining novelty are described below. 506 

For the one-stage approach, we selected distinct signals of association (defined using conditional 507 
analyses) with one or more traits reaching P<5×10-9 in the meta-analysis of UK Biobank and 508 
SpiroMeta (n up to 400,102) and reported as new those which additionally met P<10-3 in both UK 509 
Biobank and SpiroMeta with a consistent direction of effect. We term these signals “Tier 2“ as they 510 
meet our second-highest level of stringency. 511 
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All signals meeting either set of criteria described above, and that had not been previously 512 
published, were reported as new signals of association with lung function. Signals that reached 513 
P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta, had a consistent direction of effect in 514 
UK Biobank and SpiroMeta, but which did not reach P<10-3 in both UK Biobank and SpiroMeta are 515 
presented as “Tier 3” and were not included in further analyses. 516 

Data for chromosome X were available for 321,027 European individuals in UK Biobank and 38,199 517 
individuals from SpiroMeta (1000 Genomes Project Phase 1 imputation).55 518 

UK Biobank  519 

The UK Biobank data resource is described elsewhere (http://www.ukbiobank.ac.uk). Individuals 520 
were selected for inclusion in this study if they met the following criteria: (i) had complete data for 521 
age, sex, height and smoking status; (ii) had spirometry meeting quality control requirements (based 522 
on analyses of acceptability, reproducibility and blow curve metrics; Supplementary Note); (iii) had 523 
genome-wide imputed genetic data and; (iv) were of European ancestry based on genetic data 524 
(Supplementary Note; Supplementary Figure 1). Genotyping was undertaken using the Affymetrix 525 
Axiom® UK BiLEVE and UK Biobank arrays13. Genotypes were imputed to the Haplotype Reference 526 
Consortium panel56 (Supplementary Note), and retained if minor allele count≥3 and imputation 527 
quality (info)>0.5. A total of 321,047 individuals were included in this analysis (Supplementary Table 528 
1). 529 

Residuals from linear regression of each trait (FEV1, FVC, FEV1/FVC and PEF) against age, age2, sex, 530 
height, smoking status (ever/never) and genotyping array were ranked and inverse-normal 531 
transformed to obtain adjusted, normally distributed Z-scores. These Z-scores were then used for 532 
genome-wide association testing under an additive genetic model using BOLT-LMM v2.320. Principal 533 
components were not included as BOLT-LMM uses a linear mixed model to account for relatedness 534 
and fine-scale population structure. 535 

Linkage disequilibrium (LD) score regression implemented in LDSC21 was used to estimate inflation of 536 
test statistics due to confounding. Genomic control was applied, adjusting all test statistics by LD 537 
score regression intercepts: 1.12 for FEV1, 1.14 for FVC, 1.19 for FEV1/FVC and 1.13 for PEF 538 
(Supplementary Figure 8; Supplementary Table 27), acknowledging that this might be over-539 
conservative for UK Biobank. 540 

SpiroMeta consortium 541 

The SpiroMeta consortium meta-analysis was comprised of a total of 79,055 individuals from 22 542 
studies. Thirteen studies (n=21,436 individuals) were imputed to the 1000 Genomes Project Phase 1 543 
reference panel55 (B58C, BHS1&2, three Croatian studies [CROATIA-Korcula, CROATIA-Split and 544 
CROATIA-Vis], Health 2000, KORA F4, KORA S3, LBC1936, NSPHS, ORCADES, SAPALDIA and YFS) and 9 545 
studies (n=61,682 individuals) were imputed to the Haplotype Reference Consortium (HRC) panel57 546 
(EPIC [obese cases and population-based studies], GS:SFHS, NFBC1966, NFBC1986, PIVUS, SHIP, 547 
SHIP-TREND, UKHLS and VIKING). See Supplementary Tables 2 and 3 for the definitions of all 548 
abbreviations, study characteristics, details of genotyping platforms and imputation panels and 549 
methods). Measurements of spirometry for each study are described in the Supplementary Note. 550 

In each study, linear regression models were fitted for each lung function trait (FEV1, FEV1/FVC, FVC 551 
and PEF, where available), with adjustment for age, age2, sex and height. For studies with unrelated 552 
individuals, these models were fitted separately in ever smokers and never smokers, with additional 553 

http://www.ukbiobank.ac.uk/
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adjustment for principal components of ancestry. Studies with related individuals fitted mixed 554 
models in all individuals to account for relatedness, with ever smoking status as a covariate. 555 

In all studies, rank-based inverse normal transformations were undertaken on the residuals, with 556 
these transformed residuals used as the phenotype for association testing under an additive genetic 557 
model (Supplementary Table 3). 558 

In the study level results, variants were excluded if they had a very low minor allele count (MAC) 559 
(Supplementary Table 3) or imputation quality (info)<0.3. In studies with unrelated individuals, the 560 
ever and never smokers results were combined, using inverse variance weighted meta-analysis, to 561 
give an overall study result. Genomic control was then applied to all study level results, before 562 
combining results across all studies using inverse variance weighted meta-analysis. LD score 563 
regression intercepts for the meta-analysis were close to 1.00 (Supplementary Figure 8; 564 
Supplementary Table 27) and so genomic control was not applied. 565 

Meta-analyses 566 

A total of 19,871,028 variants (imputed or genotyped) in both UK Biobank and SpiroMeta were 567 
meta-analysed using inverse-variance weighted fixed effect meta-analysis, and no further genomic 568 
control was applied as LD score regression intercepts were close to 1.00 (Supplementary Table 27). 569 

Selection of new signals using conditional analyses 570 

All SNPs ±1Mb were extracted around each sentinel variant. GCTA58 was then used to perform 571 
stepwise conditional analysis to select independently associated SNPs within each 2Mb region. LD 572 
was estimated for UK Biobank from the same individuals used in discovery, and for SpiroMeta, from 573 
an unrelated subset of 48,943 UK Biobank individuals18. Any secondary signals identified within each 574 
2Mb region were required to meet Tier 1 or Tier 2 criteria (described above) after conditioning on 575 
the primary sentinel variant. A combined list of distinct lung function signals was then made across 576 
the 4 phenotypes, FEV1, FVC, FEV1/FVC and PEF as follows: where sentinel variants for 2 signals for 577 
different phenotypes were in high LD (r2>0.5), we retained the most significant variant; where 2 578 
signals were in moderate LD (0.1>r2>0.5), we retained variants if, after conditional analysis, they still 579 
met the Tier 1 or Tier 2 threshold; for signals in low LD (r2<0.1) we retained both variants. We then 580 
used the same criteria to identify a subset of new signals which were distinct from previously 581 
published independent signals (see below). 582 

Assessment of previously reported lung function signals 583 

We identified 184 autosomal signals from previous GWAS analyses of lung function and COPD1,4-14. 584 
After LD pruning (keeping only those signals with LD of r2<0.1), we removed 24 non-independent 585 
SNPs, leaving 160 previously reported independent signals. Of 6 previously reported signals in the 586 
HLA region, we included only the 3 independent lung function HLA signals reported from conditional 587 
analysis using all imputed HLA genotypes18: AGER (rs2070600), HLA-DQB1 (rs114544105) and near 588 
ZNF184 (rs34864796) leaving 157 signals. 589 

We confirmed association of previously reported signals in our data if they met any of three criteria: 590 
(i) the previously reported sentinel was associated (P<10-5) with any lung function trait in UK 591 
Biobank; (ii) a proxy for the previously reported sentinel with r2>0.5 was associated (P<10-5) with any 592 
lung function trait in UK Biobank; (iii) a proxy for the previously reported sentinel with r2>0.1 was 593 
associated with any lung function trait meeting tier 1 or tier 2 criteria (Supplementary Figure 3). 594 



15 
 

Effect on COPD susceptibility – genetic risk score in multiple ancestries 595 

To test association of all lung function signals and COPD susceptibility, we constructed a 279-variant 596 
weighted GRS comprising the 139 novel and 140 previously reported signals; we used the previously 597 
reported sentinel SNP for published signals. Weights were derived using the FEV1/FVC ratio 598 
decreasing (COPD risk increasing) alleles. For previously reported signals (n=140), results from the 599 
UK Biobank analysis were used to derive weights for the 94 signals that were not discovered using 600 
UK Biobank data and weights were taken from SpiroMeta for 46 signals where UK Biobank was 601 
included in the discovery of those signals. For novel signals identified in this study, weights were 602 
taken from SpiroMeta for two-stage (tier 1) signals (n=99), and the smallest absolute effect size from 603 
either of UK Biobank or SpiroMeta was used for one-stage (tier 2) signals (n=40) (Supplementary 604 
Table 28). This approach was taken in order to derive conservative weights for each variant, thus 605 
reducing the likelihood of bias by winner’s curse. For the weighted GRS the number of risk alleles at 606 
each variant was multiplied by its weight.  607 

The GRS was first calculated in unrelated individuals (KING kinship coefficient of<0.0884) within 6 608 
ancestral groups of UK Biobank: Europeans, South Asians, Africans, Chinese, Mixed African and 609 
Europeans, and Mixed Other (total sample of unrelated individuals across six ancestries: 323,001) 610 
using PLINK. Weights and alleles were as described above. COPD was defined as FEV1/FVC<0.7 and 611 
FEV1<0.8 of the predicted value, i.e. GOLD stage 2-4 categorisation. Associations with the GRS were 612 
then tested using COPD (in ancestral groups with at least 100 COPD cases) and FEV1/FVC as the 613 
outcomes. 614 

In addition, we calculated the GRS in individuals from the China Kadoorie Biobank (CKB). Four of the 615 
279 SNPs were not available in CKB (rs1800888, rs56196860, rs72724130 and rs77672322), and for 616 
12 SNPs, proxies were used (minimum r2=0.3). Analyses were undertaken in all COPD GOLD stage 2-4 617 
cases (FEV1/FVC<0.7 and FEV1<0.8 of the predicted value, in 6,013 cases and 69,567 controls), 618 
against an unbiased set of population controls. The GRS was also tested for association with 619 
FEV1/FVC in CKB (n=72,796). 620 

Logistic regression of COPD case-control status with the GRS in UK Biobank and China Kadoorie 621 
Biobank assumed an additive genetic effect and was adjusted for age, age2, sex, height, and smoking 622 
(Supplementary Table 19). Ten principal components were also included in UK Biobank analyses. In 623 
China Kadoorie Biobank, analyses were stratified by geographical regions and then meta-analysed 624 
using an inverse-variance fixed effect model. Linear models assessing the association with FEV1/FVC 625 
were fitted using the same transformed outcome as in the main GWAS analysis.  626 

We then tested association in 5 European ancestry COPD case-control studies: COPDGene (Non-627 
Hispanic White Population) (3,068 cases and 2,110 controls), ECLIPSE (1,713 cases and 147 controls), 628 
GenKOLS (836 cases and 692 controls), NETT-NAS (374 cases and 429 controls) and SPIROMICS (988 629 
cases and 537 controls) (Supplementary Table 20). In addition, we tested this GRS in the COPDGene 630 
African American population study (910 cases and 1,556 controls). Logistic regression models using 631 
COPD as outcome and the GRS as exposure were adjusted for age, age2, sex, height, and principal 632 
components (Supplementary Table 21, Supplementary Figure 9). Single variant associations of the 633 
279 SNPs with COPD are in Supplementary Table 29. 634 

Next, we divided individuals in the external COPD case-control studies into deciles according to their 635 
values of the weighted GRS. This was undertaken separately by study group, and for each decile 636 
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logistic models were fitted, comparing the risk of COPD for members of each decile group compared 637 
to those in the lowest decile (i.e. those with lowest values of the weighted GRS). Covariates were as 638 
for the COPD analyses. Results were combined across European-ancestry study groups by fixed 639 
effect meta-analysis (Supplementary Table 22). 640 

Effects on smoking behaviour  641 

As our discovery GWAS in UK Biobank was adjusted for ever vs. never smoking status, and not for 642 
pack years of smoking (pack years information was missing for 32% of smokers), we evaluated 643 
whether any signals of association with lung function might be driven by an association with smoking 644 
behaviour by testing for association with smoking initiation (123,890 ever smokers vs. 151,706 never 645 
smokers) and cigarettes per day (n=80,015) in UK Biobank (full methods in Supplementary Note). 646 
We also tested for association with lung function in never smokers only (n=173,658). We excluded 647 
any signals associated with smoking behaviour (Supplementary Table 6), but not with lung function 648 
in never smokers. 649 

Smoking interaction  650 

For associated variants (new and previously reported), we repeated association testing for lung 651 
function separately in UK Biobank and SpiroMeta (up to 176,701 ever smokers and 197,999 never 652 
smokers), and tested for an interaction effect with smoking using the Welch test (Supplementary 653 
Note). A threshold of P<1.79×10-4 (Bonferroni corrected for 279 tests) indicated significance. 654 

We further tested for interaction between the weighted GRS and smoking, within 303,619 unrelated 655 
individuals of European ancestry in UK Biobank, using COPD and FEV1/FVC as outcomes (the 656 
FEV1/FVC phenotype was pre-adjusted for age, age2

, sex, and height, and the residuals transformed 657 
as per the main GWAS analysis). For COPD (defined as FEV1/FVC<0.7, and FEV1<80% predicted) the 658 
following logistic model was fitted:  659 

COPD ~ genotyping array + 10 principal components + age + age2 + sex + height + smoking status + 660 
weighted risk score + (smoking status × weighted risk score).  661 

For FEV1/FVC the following linear model was fitted:  662 

FEV1/FVC ~ genotyping array + 10 principal components + smoking status + weighted risk score + 663 
(smoking status x weighted risk score). 664 

Proportion of variance explained 665 

We calculated the proportion of variance explained by each of the previously reported (n=140) and 666 
new variants (n=139) associated with lung function using the formula: 667 

∑ 2𝑓𝑓𝑖𝑖(1 − 𝑓𝑓𝑖𝑖)𝛽𝛽𝑖𝑖2𝑛𝑛
𝑖𝑖=1

𝑉𝑉
 668 

where n is the number of variants fi and βi are the frequency and effect estimate of the i’th variant, 669 
and V is the phenotypic variance (always 1 as our phenotypes were inverse-normal transformed). 670 
We used the same conservative effect estimates (β) as used to calculate GRS weights at the same set 671 
of 279 sentinel variants used for the GRS, which uses either UK Biobank or SpiroMeta effect 672 
estimates (described above). Our previously published estimate of proportion of variance 673 
explained18 used effect estimates derived from UK Biobank. We assumed a heritability of 40%24,25 to 674 
estimate the proportion of additive polygenic variance. 675 
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Fine-mapping 676 

A Bayesian method59 was used to fine-map lung-function-associated signals to the set of variants 677 
that were 99% likely to contain the underlying causal variant (assuming that the causal variant has 678 
been analysed). This was undertaken for new signals and for previously reported signals reaching 679 
P<10-5 in UK Biobank. For the previously reported signals, the top sentinel variant from the current 680 
analysis in UK Biobank was used, instead of the previously reported variant. We used a value of 0.04 681 
for the prior W in the approximate Bayes factor formula60. Effect sizes and standard errors for fine-682 
mapping were obtained from an inverse variance weighted meta-analysis of UK Biobank and 683 
SpiroMeta (n up to 400,102). Signals in the HLA region were not included.  684 

Implication of potentially causal genes 685 

Annotation of deleterious variants 686 

Variants in the 99% credible sets were checked for predicted functional effect if they were 687 
annotated as “exonic”, “splicing”, “ncRNA_exonic”, “5’-UTR” or “3’-UTR” (untranslated region) by 688 
ANNOVAR61.  We then used SIFT, PolyPhen-2 (implemented using the Ensembl GRCh37 Variant 689 
Effect Predictor, https://www.ensembl.org/vep, accessed 1 February 2018) and FATHMM62 to 690 
annotate missense variants, and CADD (also implemented using VEP) to annotate non-coding 691 
variation. Variants were annotated as deleterious in our study if they were labelled 'deleterious' by 692 
SIFT, 'probably damaging' or 'possibly damaging' by PolyPhen-2, ‘damaging’ by FATHMM (specifying 693 
the ‘Inherited disease’ option of the coding variants methods, and setting the prediction algorithm 694 
to ‘Unweighted’) or had a CADD scaled score ≥204. The union of the four methods was taken to 695 
establish the number of potentially deleterious variants and their unique genes.  696 

Gene expression and protein levels 697 

At 276 of 279 (3 HLA signals excluded) signals, the sentinel variant and 99% credible set59 were used 698 
to query three eQTL resources: lung eQTL (n=1,111)13, blood eQTL (n=4,896)63 and GTEx (V7; with n 699 
up to 388 depending on tissue: Artery Aorta (n=267), Artery Coronary (n=152), Artery Tibial (n=388), 700 
Colon Sigmoid (n=203), Colon Transverse (n=246), Esophagus Gastroesophageal Junction (n=213), 701 
Esophagus Muscularis (n=335), Lung (n=383), Small Intestine Terminal Ileum (n=122), Stomach 702 
(n=237), and Whole Blood (n=369))64, and one blood pQTL resource (n=3,301)39. 703 

A gene was classified as a ‘putative causal gene’ if the sentinel SNP or any SNP in the respective 99% 704 
credible set was associated with expression of this gene or its protein levels (FDR<5% for eQTL, 705 
P<5.03×10-8 [for 276 tests at 3,600 proteins] for pQTL) and if the GWAS sentinel SNP or any SNP in 706 
the respective 99% credible set was also the variant most strongly associated with expression of the 707 
respective gene or level of the respective protein (i.e. the sentinel eQTL/pQTL SNP) in one or more of 708 
the eQTL and pQTL data sets. 709 

Pathway analysis 710 

We tested for enrichment of genes identified via variant function annotation, gene expression or 711 
protein level analyses in pathway and gene set ontology databases using ConsensusPathDB.65 712 
Pathways or gene sets represented entirely by genes implicated by the same association signal were 713 
excluded. Gene sets and pathways with FDR<5% are reported. 714 
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Functional enrichment analyses 715 

We carried out stratified LD score regression to identify significant enrichment of heritability at 716 
variants overlapping histone marks (e.g. H3K4me1, H3K4me3) that are specific to lung, foetal lung, 717 
and smooth muscle containing (i.e. colon, stomach) cell lines using methods specified by Finucane et 718 
al.40  719 

We separately selected FEV1/FVC and FVC associated SNPs passing two thresholds (P<5×10-5 and 720 
P<5×10-9 in the meta-analysis) as input to GARFIELD41 to test for enrichment of our signals for 424 721 
DHS hotspot annotations derived from 55 different tissues in the RoadMap Epigenomics project and 722 
the ENCODE projects. 723 

Using DeepSEA42, we analysed all SNPs in the 99% credible set for predicted chromatin effects. We 724 
reported effects for any chromatin effect and lung-related cell line that had an E-value<0.05 (i.e. the 725 
expected proportion of SNPs with a larger predicted effect based on empirical distributions of 726 
predicted effects for 1000 Genomes SNPs) and an absolute difference in probability of>0.1 727 
(threshold for “high confidence”) between the reference and alternative allele.  728 

Drug targets 729 

Genes identified as potentially causal using eQTL, pQTL or variant annotation were interrogated 730 
against the gene-drug interactions table of the Drug-Gene Interactions Database (DGIDB) 731 
(http://www.dgidb.org/data/), accessed 16th October 2017. Drugs were mapped to CHEMBL IDs 732 
(https://www.ebi.ac.uk/chembl/drug/indications), and indications (as MeSH headings) were added. 733 

Phenome-wide association studies 734 

To identify whether the 279 signals overlap with signals of association for other traits and diseases, 735 
the weighted GRS was calculated in up to 379,337 UK Biobank samples, and a phenome-wide 736 
association study (PheWAS) was performed, with the GRS as the exposure. Traits included UK 737 
Biobank baseline measures (from questionnaires and physical measures), self-reported medication 738 
usage, and operative procedures, as well as those captured in Office of Population Censuses and 739 
Surveys codes from the electronic health record. We also included self-reported disease variables 740 
and those from hospital episode statistics (ICD-10 codes truncated to three-character codes and 741 
combined in block and chapter groups), combining these where possible to maximise power. The 742 
GRS analysis included 2,453 traits, and the single-variant analysis contained 2,411 traits (traits 743 
with>200 cases were included for the single-variant PheWAS, whereas traits with>50 cases were 744 
included in the GRS PheWAS). Analyses were conducted in unrelated European-ancestry individuals 745 
(KING kinship coefficient <0.0442), and were adjusted for age, sex, genotyping array, and ten 746 
principal components. Logistic and linear models were fitted for binary and quantitative outcomes, 747 
respectively. False discovery rates were calculated on the basis of the number of traits in the GRS 748 
and single-variant PheWAS (2,453 or 2,411, respectively).  749 

In addition, the sentinel variants and variants within the 99% credible sets were queried against the 750 
GWAS catalog66 (https://www.ebi.ac.uk/gwas/, accessed 5th February 2018) and GRASP67 751 
(https://grasp.nhlbi.nih.gov/Overview.aspx, accessed 6th February 2018) for associations reported 752 
at P<5×10-8. Associations relating to methylation, expression, metabolite or protein levels, as well as 753 
lung function and COPD, were not included. 754 

  755 

http://www.dgidb.org/data/
https://www.ebi.ac.uk/chembl/drug/indications
https://www.ebi.ac.uk/gwas/
https://grasp.nhlbi.nih.gov/Overview.aspx
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Figures and Figure Legends 1154 
 1155 

 1156 

Figure 1: Study design 1157 
Tier 1 signals had P<5×10-9 in UK Biobank and P<10-3 in SpiroMeta with consistent direction of effect. 1158 
Tier 2 signals had P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta with P<10-3 in UK Biobank and P<10-3 in 1159 
SpiroMeta with consistent directions of effect. Signals with P<5×10-9 in the meta-analysis of UK Biobank and 1160 
SpiroMeta, and that had consistent directions of effect but did not meet P<10-3 in both cohorts were reported as Tier 1161 
3. 1162 
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 1163 
Figure 2: Strength and direction of association across four lung function traits for 139 novel signals: Signals are in chromosome and genomic position order from top to 1164 
bottom then left to right. Red indicates a decrease in the lung function trait; blue indicates an increase. All effects are aligned to the allele associated with decreased 1165 
FEV1/FVC, hence the FEV1/FVC column is only red or white. P-values are from the meta-analysis of UK Biobank and SpiroMeta (n=400,102). The scale points are thresholds 1166 
used for (i) confirmation in 2-stage analysis and 1-stage analysis (P<10-3); (ii) confirmation of association of previous signals (P<10-5); (iii) signal selection in 2-stage and 1-1167 
stage analysis (P<5×10-9); capped at (P<10-20). 1168 
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1169 
Figure 3: Association of weighted genetic risk score (GRS) with COPD and FEV1/FVC. 1170 

A. Association of the weighted genetic risk score (GRS) with FEV1/FVC and COPD in UK Biobank and China 1171 
Kadoorie Biobank (CKB). For means and standard deviations of the risk scores in each group, see 1172 
Supplementary Table 19. The left-hand axis denotes change in standard deviation (SD) units of FEV1/FVC per 1173 
1 SD increase in weighted GRS (blue bars). The right axis shows the translation of this effect to COPD in the 1174 
same individuals, defined as FEV1/FVC<0.7 and FEV1<0.8 of the predicted value, i.e. GOLD stage 2-4 1175 
categorisation. Odds ratios (OR) for COPD (red bars) are given per 1 standard deviation (SD) increase in 1176 
weighted GRS (OR for COPD shown only for ancestries in UK Biobank with>100 cases of COPD). Bars are 1177 
labelled with ancestral groups, and the total sample size and number of COPD cases are given. The height of 1178 
the bars represents the effect estimate, and the black whiskers represent 95% confidence intervals. Note 1179 
some variants included in the GRS were discovered in UK Biobank individuals of European ancestry, and 1180 
therefore the results for UKB Europeans (far left bars, greyed out) are shown for reference only. All other 1181 
ancestral groups shown in the plot are independent to UK Biobank Europeans. There were 13 SNPs with 1182 
MAF<0.1% in at least one ancestral group: 13/279 in Chinese (of which 4/13 were monomorphic). Two of the 1183 
13 SNPs that were monomorphic in Chinese people had MAF<0.1% in Africans. 1184 
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 1185 

B. Odds ratio (OR) for COPD per 1 standard deviation (SD) increase in weighted genetic risk score in each of six study groups (COPDGene [Non-Hispanic White], 1186 
COPDGene [African-American], ECLIPSE, GenKOLS, SPIROMICS, NETT-NAS). COPD was defined using GOLD 2-4 criteria. For means and standard deviations of the risk 1187 
scores in each group see Supplementary Table 21. The vertical black line indicates the null effect (an OR of 1). The point estimate of each study is represented by a 1188 
box proportional to the study’s weight, with the lines representing the lower and upper bounds of the 95% confidence interval. A fixed effect meta-analysis of the 1189 
five European-ancestry groups is denoted with a diamond, the width of which represents the 95% confidence interval for the estimate (I2 statistic=0).1190 
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 1191 
 1192 

C. Odds ratios (OR) for COPD according to membership of deciles 2-10 of the weighted genetic risk score, with 1193 
decile 1 as the reference group (the 10% of individuals with the lowest genetic risk score). Each point 1194 
represents a meta-analysis of results for a given comparison (i.e. decile 2 vs reference, decile 3 vs reference … 1195 
decile 10 versus reference) in five external European-ancestry study groups (COPDGene, ECLIPSE, GenKOLS, 1196 
SPIROMICS, NETT-NAS). Deciles were calculated and models were run in each group separately. Points 1197 
represent odds ratios, and error bars correspond to 95% confidence intervals (Supplementary Table 22).1198 
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 1199 
Figure 4: Individual PheWAS with 279 variants (traits passing FDR 1% threshold) 1200 
Separate association of 279 variants with 2,411 traits (FDR<1%) in UK Biobank (n up to 379,337). In each category, the trait with the strongest association, i.e. highest –1201 
log10(FDR), is shown first, followed by other traits in that category in descending order of –log10(FDR). Categories are colour-coded, and outcomes are denoted with a 1202 
circular or triangular point, according to whether they were coded as binary or quantitative. The top association per-category is labelled with its rsID number, and a plain 1203 
English label describing the trait. The letter at the beginning of each label allows easy cross-reference with the categories labelled in the legend. Zoomed in versions of each 1204 
category with visible trait names and directionality are available in Supplementary Figure 10. These plots have signed log10(FDR) values, where a positive values indicates 1205 
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that a positive SNP-trait association is concordant with the risk allele for reduced lung function (as measured by lower FEV1/FVC). Tabulated results of all SNP-trait PheWAS 1206 
associations associated at an FDR of<1% are available in Supplementary Table 23.1207 
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Figure 5: PheWAS with genetic risk score (traits passing FDR 1% threshold) 1209 
Association of 279 variant weighted genetic risk score with 2,453 traits (FDR<1%) in UK Biobank (n up to 379,337). In each panel, the category with the strongest 1210 
association, i.e. highest –log10(FDR), is shown first, followed by all other associations in that category, ordered by descending order of –log10(FDR). Sample sizes varied 1211 
across traits and are available in Supplementary Table 25, along with the full summary statistics for each association, plus details of categorisation and plain English labels 1212 
for each trait. Trait categories are colour coded, and outcomes are denoted with a circular or triangular point, according to whether they were coded as binary or 1213 
quantitative. The sign of the log10(FDR) value is positive where an increase in the risk score (i.e. greater risk of COPD, reduced lung function) is associated with a positive 1214 
effect estimate for that trait. *QC refers to spirometry passing ERS/ATS criteria. HES=Hospital Episode Statistics. 1215 

A. Associations with respiratory traits.1216 



38 
 

 1217 
B. Associations with all other traits. ENT=Ear, Nose and Throat; FBC=Full Blood Count. 1218 
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Tables 1219 

Table 1: Genes implicated using gene expression data, protein level data and functional annotation 1220 
†Genes implicated by eQTL signals: Lung eQTL (n=1,111) and Blood eQTL (n=4,896) datasets and eleven GTEx (V7) tissues were screened: Artery Aorta (n=267), Artery 1221 
Coronary (n=152), Artery Tibial (n=388), Colon Sigmoid (n=203), Colon Transverse (n=246), Esophagus Gastroesophageal Junction (n=213), Esophagus Muscularis (n=335), 1222 
Lung (n=383), Small Intestine Terminal Ileum (n=122), Stomach (n=237), and Whole Blood (n=369); see Supplementary Table 13 for direction of gene expression for the 1223 
COPD risk (FEV1/FVC reducing) allele. 1224 
‡Genes implicated by pQTL signals: pQLT look up in 3,600 plasma proteins (n up to 3,300). 1225 
*Genes implicated because they contain a deleterious variant (Supplementary Table 11). 1226 
“Other traits” column lists the other lung function traits for which the sentinel was associated at P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta. 1227 
In total, 107 putative causal genes were identified: 8 by both a deleterious variant and an eQTL signal (including KIAA0753 implicated by two deleterious variants), 1 (NPNT) 1228 
by both an eQTL and a pQTL signal, 1 (SCARF2) by both a deleterious variant and a pQTL signal, 13 by a deleterious variant only, 81 by an eQTL signal only and 3 by a pQTL 1229 
signal only 1230 

Gene Phenotype Other traits 
Novel Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

DHDDS (intron) FVC FEV1 Tier 2 rs9438626 1:26,775,367 G/C DHDDS† 
DHDDS (3’-UTR) FEV1  Tier 1 rs12096239 1:26,796,922 C/G HMGN2†, DHDDS† 
NEXN (intron) FEV1/FVC FEV1 Tier 1 rs9661687 1:78,387,270 T/C NEXN† 
DENND2D (intron) FEV1/FVC  Tier 1 rs9970286 1:111,737,398 G/A CEPT1†, CHI3L2†, DRAM2† 
C1orf54 (intron) PEF FVC Tier 1 rs11205354 1:150,249,101 C/A MRPS21†, RPRD2†, ECM1‡ 
KRTCAP2 FEV1/FVC  Tier1 rs141942982 1: 155153537 T/C THBS4‡ 
RALGPS2 (intron) FEV1  Tier 1 rs4651005 1:178,719,306 C/T ANGPTL1† 
LMOD1 (intron) FEV1/FVC FEV1 Tier 2 rs4309038 1:201,884,647 G/C SHISA4† 
ATAD2B (intron) FVC FEV1 Tier 2 rs13009582 2:24,018,480 G/A UBXN2A† 
PKDCC FVC  Tier 1 rs4952564 2:42,243,850 A/G PKDCC† 
ITGAV (intron) FEV1/FVC  Tier 1 rs2084448 2:187,530,520 C/T ITGAV† 
SPATS2L (intron) FEV1/FVC  Tier 2 rs985256 2:201,208,692 C/A SPATS2L† 
C2orf54 FVC FEV1 Tier 1 rs6437219 2:241,844,033 C/T C2orf54†* 
MIR548G FVC  Tier 1 rs1610265 3:99,420,192 T/C FILIP1L† 
BCHE (exon) FEV1/FVC FEV1 Tier 1 rs1799807 3:165,548,529 C/T BCHE* 
BTC (intron) FEV1/FVC FEV1/FVC Tier 1 rs62316310 4:75,676,529 G/A BTC* 
LOC100996325 FEV1 FEV1/FVC, PEF Tier 1 rs11739847 5:609,661 A/G CEP72* 
RNU6-71P FEV1 FVC, PEF Tier 1 rs2894837 6:56,336,406 G/A DST* 
JAZF1 (intron) FEV1  Tier 1 rs1513272 7:28,200,097 C/T JAZF1† 
MET (intron) FEV1/FVC  Tier 2 rs193686 7:116,431,427 T/C MET† 
IER5L FEV1  Tier 2 rs967497 9:131,943,843 G/A CRAT†, PPP2R4†, IER5L* 
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Gene Phenotype Other traits 
Novel Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

DOCK9 FEV1/FVC  Tier 1 rs11620380 13:99,665,512 A/C DOCK9* 
CHAC1 FVC  Tier 1 rs4924525 15:41,255,396 A/C INO80†, CHP1†, RAD51† 
ATP2A3 FEV1/FVC  Tier 1 rs8082036 17:3,882,613 G/C ATP2A3† 
PITPNM3 FEV1  Tier 2 rs4796334 17:6,469,793 A/G KIAA0753†*, TXNDC17†, PITPNM3† 
TNFSF12-TNFSF13 FEV1  Tier 2 rs4968200 17:7,448,457 C/G TNFSF13†, SENP3† 
NCOR1 (intron) FVC FEV1 Tier 2 rs34351630 17:16,030,520 C/T ADORA2B†, TTC19† 
ASPSCR1 (intron) FVC FEV1 Tier 1 rs59606152 17:79,952,944 C/T LRRC45* 
C18orf8 FVC  Tier 1 rs303752 18:21,074,255 A/G C18orf8† 
ZFP82 FVC FVC, PEF Tier 2 rs2967516 19:36,881,643 A/G ZFP14†, ZFP82† 
MFAP2 FEV1/FVC FEV1, PEF Previous rs9435733 1:17,308,254 C/T MFAP2† 
LOC101929516 FEV1/FVC  Previous rs755249 1:39,995,074 T/C PABPC4† 
TGFB2 PEF FEV1/FVC Previous rs6604614 1:218,631,452 C/G TGFB2† 
TRAF3IP1 FEV1 FVC, FEV1/FVC, PEF Previous rs6710301 2:239,441,308 C/A ASB1* 
SLMAP (intron) FEV1 FEV1 Previous rs6445932 3:57,879,611 T/G SLMAP† 
RSRC1 (intron) FVC FVC, FEV1/FVC Previous rs12634907 3:158,226,886 G/A RSRC1† 
GSTCD (intron) FEV1 FEV1, FVC, PEF Previous rs11722225 4:106,766,430 T/C INTS12† 
NPNT (intron) FEV1/FVC  Previous rs34712979 4:106,819,053 A/G NPNT†‡ 
AP3B1 (intron) FVC  Previous rs425102 5:77,396,400 G/T AP3B1† 
SPATA9 FEV1/FVC  Previous rs987068 5:95,025,146 C/G RHOBTB3† 
P4HA2-AS1 FVC FEV1, PEF Previous rs3843503 5:131,466,629 A/T SLC22A5†, P4HA2†, C1QTNF5‡ 
CYFIP2 (intron) FEV1/FVC FEV1, PEF Previous rs11134766 5:156,908,317 T/C ADAM19† 
ADAM19 (intron) FEV1/FVC  Previous rs11134789 5:156,944,199 A/C ADAM19†* 
DSP (intron) FEV1/FVC FEV1 Previous rs2076295 6:7,563,232 T/G DSP† 
MIR588 FVC FVC, PEF Previous rs6918725 6:126,990,392 T/G CENPW† 
GPR126 (exon) FEV1/FVC  Previous rs17280293 6:142,688,969 A/G GPR126* 
C1GALT1 (intron) FEV1/FVC FEV1 Previous rs4318980 7:7,256,490 A/G C1GALT1† 
QSOX2 (3’-UTR) FVC  Previous rs7024579 9:139,100,413 T/C QSOX2† 
DNLZ (intron) FVC FEV1, FVC, PEF Previous rs4073153 9:139,259,349 G/A SNAPC4†, CARD9†, INPP5E† 
CDC123 (intron) FEV1/FVC FEV1 Previous rs7090277 10:12,278,021 T/A NUDT5† 
MYPN (intron) FVC FVC Previous rs10998018 10:69,962,954 A/G MYPN* 
EML3 (intron) FEV1 FEV1 Previous rs71490394 11:62,370,155 G/A EEF1G†, ROM1†*, EML3†* 
ARHGEF17 (intron) FEV1/FVC  Previous rs2027761 11:73,036,179 C/T FAM168A†, ARHGEF17†* 
RAB5B (intron) FEV1 PEF Previous rs1689510 12:56,396,768 C/G CDK2† 
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Gene Phenotype Other traits 
Novel Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

LRP1 (intron) FEV1/FVC  Previous rs11172113 12:57,527,283 T/C LRP1† 
FGD6 (intron) FEV1/FVC  Previous rs113745635 12:95,554,771 T/C FGD6† 
RPAP1 FEV1/FVC  Previous rs2012453 15:41,840,238 G/A ITPKA†, LTK†, TYRO3†, RPAP1† 
AAGAB FVC FEV1, PEF Previous rs12917612 15:67,491,274 A/C AAGAB†, SMAD3†, IQCH† 
THSD4 (intron) FEV1/FVC  Previous rs1441358 15:71,612,514 G/T THSD4† 

IL27 FEV1  Previous rs12446589 16:28,870,962 A/G SBK1†, TUFM†, CCDC101†, SULT1A1†, SULT1A2†*, SH2B1†, NPIPL1†, CLN3†, 
ATXN2L†, EIF3C† 

MMP15 (intron) FEV1/FVC PEF Previous rs11648508 16:58,063,513 G/T MMP15† 
SSH2 (intron) FEV1/FVC FEV1 Previous rs2244592 17:28,072,327 A/G EFCAB5† 
FBXL20 (intron) FVC FVC, PEF Previous rs8069451 17:37,504,933 C/T CRKRS†, FBXL20† 
MAPT-AS1 FEV1  Previous rs79412431 17:43,940,021 A/G LRRC37A4†, MAPT* 
TSEN54 (intron) FEV1 PEF Previous rs9892893 17:73,525,670 G/T CASKIN2†, TSEN54* 
LTBP4 (exon) FEV1/FVC  Previous rs34093919 19:41,117,300 G/A LTBP4* 
ABHD12 (intron) FEV1 FEV1, PEF Previous rs2236180 20:25,282,608 C/T PYGB†* 
UQCC1 (5’-UTR) FVC FEV1 Previous rs143384 20:34,025,756 G/A UQCC1†, GDF5† 
SLC2A4RG (intron) FVC FEV1/FVC Previous rs4809221 20:62,372,706 A/G LIME1† 
SCARF2 (intron) FEV1 FEV1 Previous rs9610955 22:20,790,723 C/G SCARF2*‡ 
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