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Abstract 38 
 39 
The aim was to investigate how measurements of the lipidome differ according to the level and 40 
intensity of physical activity in a population at high risk of type 2 diabetes (T2DM). A targeted 41 
metabolomics platform provided quantitative molecular data on lipid species. Linear regression 42 
examined the associations between plasma lipid concentrations, particle size and time spent in 43 
objectively measured physical activity intensity domains, in increments of 500 counts per 44 
minute (cpm) (up to >4500cpm (~>5.6METs)). Results are presented as % difference in the 45 
concentration (lower/higher) or particle size (smaller/larger) per 10 minutes of activity within 46 
each intensity. 509 participants were included. Time spent in the lowest physical activity 47 
intensity domain (<500cpm) was unfavourably associated with VLDL (2%), HDL (-2%) and 48 
Apolipoprotein A-1 particle concentrations (-2%) and HDL diameter (-2%). Conversely, time 49 
spent in intensities ≥1000cpm were favourably associated with HDL subclass concentrations; 50 
with stronger associations seen at moderate intensities (2000-3999cpm (~4.5METs)). For 51 
Apolipoprotein-B concentration and VLDL particle concentration and size,  a negative 52 
association was consistently observed at the highest physical activity intensity only. If these 53 
associations are causal, HDL subclasses appear sensitive to light-intensities whereas only the 54 
high category of physical activity intensity was consistently associated with VLDL subclasses.  55 
 56 
 57 
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Introduction 76 

 77 

Previous research has consistently demonstrated that individuals who engage in physical 78 

activity, particularly moderate-to-vigorous intensity (MVPA), on a regular basis manifest a 79 

myriad of physiological benefits related to lipid metabolism (1). For example, HDL-C 80 

(including very large HDL particle concentrations) is generally responsive to physical activity 81 

and increases in a dose-dependent manner with increased energy expenditure (2,3). 82 

Conversely, physical inactivity (the failure to achieve the minimum activity recommendations 83 

for health (4)), and sedentary behaviour (any sitting or reclining activity with low energy 84 

expenditure (5)) are each independently associated with an increased risk of cardiovascular and 85 

all-cause mortality (6,7), primarily driven by a worsening of atherogenic dyslipidemia, which 86 

includes reduced  HDL-C and so potentially greater non-HDL-C levels (7). In contrast, the 87 

impact of exercise and inactivity on LDL-C, triglycerides and triglyceride rich lipoproteins are 88 

less consistent (8).  89 

 90 

Lipidomics is a sub-class of metabolomics focussing on the structure and function of lipids and 91 

lipid derivatives (e.g. phospholipids). These molecules may aid in pinpointing the molecular 92 

pathways linking health and disease and how they are influenced by lifestyle behaviours, such 93 

as physical activity (9). Historically, many studies have focused exclusively upon the 94 

metabolite response to exercise training (10,11). More recently, studies have also reported 95 

associations in relation to habitual physical activity and sedentary behaviour across multiple 96 

metabolite networks (3,12,13). 97 

 98 

However, there has been limited research on lipidomics and physical activity in populations at 99 

high risk of chronic disease.  This is an important limitation as international recommendations 100 

and policies specify that chronic disease prevention strategies should include targeted 101 

interventions aimed at the identification and management of high-risk individuals (14,15). 102 

Therefore, the importance of sedentary behaviour and physical activity in this group needs 103 

to be better understood in order to inform the content and structure of prevention 104 

programmes. Moreover, previous investigations have typically categorised sedentary 105 

behaviour and physical activity (light, moderate, vigorous) using population-dependent 106 

thresholds. Using a broader continuum of intensity categories allows for greater insight into 107 

the dose–response relationship between physical activity intensity and health outcomes (16). 108 

This is important as previous research has typically focused on MVPA, which occupies a very 109 
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small fraction of the day, if at all. Conversely, substantial cardiometabolic benefits may be 110 

gained from light‐intensity activity, particularly in those at high risk of chronic disease (17), 111 

which may also represent a more feasible means to increasing overall activity volume.  112 

Applying this approach to measurements of the lipidome may allow for greater understanding 113 

of how lipid metabolism differs across the precise physical activity intensity spectrum.  114 

 115 

Therefore, the aim of this study was to explore the associations between circulating lipid 116 

species and various physical activity intensities in a population at high risk of type 2 diabetes 117 

mellitus (T2DM). 118 

 119 

Materials and Methods 120 

 121 

Study population 122 

 123 

This study reports cross-sectional baseline data from the Walking Away from Diabetes study. 124 

Participants were recruited through 10 primary care practices in Leicestershire, UK (18). 125 

Individuals at increased risk of impaired glucose regulation (IGR; any combination of impaired 126 

glucose tolerance (IGT) and/or impaired fasting glycaemia (IFG) or undiagnosed T2DM) were 127 

identified for recruitment using a modified version of the Leicester Risk Score (19). This risk 128 

scoreapplies a validated algorithm to routinely collected data within primary care; based on 129 

age, sex, BMI, ethnicity, prescribed antihypertensives, and family history of diabetes. Those 130 

individuals scoring within the 90th percentile in each practice were invited to take part in the 131 

study. This approach has reasonable sensitivity and specificity for identifying participants with 132 

IGR (19). Individuals were unaware of their diabetes risk status before entering the study. 133 

Those who had previously been diagnosed with T2DM, were currently taking steroids or were 134 

unable to take part in any walking were excluded. Written informed consent was obtained from 135 

all eligible participants and the study had full ethical and governance approval. 136 

 137 

Accelerometer derived measures of physical activity 138 

 139 

All eligible participants were asked to wear an accelerometer, (Actigraph GT3X, Florida, 140 

USA), around their waist, for seven consecutive days during waking hours. These 141 

accelerometers translate raw accelerations into activity counts. Data were recorded in 15-s 142 

epochs and reintegrated into 60-s epoch files for this analysis. Non-wear time was defined as a 143 
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minimum of 60 minutes of continuous zero counts; days with at least 600 minutes of wear time 144 

were considered valid. In order to be included in the analysis, participants required a minimum 145 

of any four valid days (20).  146 

 147 

A commercially available data analysis tool (KineSoft version 3.3.76, Kinesoft, 148 

Loughborough, UK; www.kinesoft.org) was used to process the accelerometer data. Activity 149 

intensity was generated in increments of 500 counts per minute (cpm) from 0 to 4499cpm for 150 

each participant who met the inclusion criteria for accelerometer wear time; with the 151 

corresponding categories (0-499, 500-999, 1000-1499, 1500-1999, 2000-2499, 2500-2999, 152 

3000-3499, 3500-3999, 4000-4499) representing a summation of all included individuals. Any 153 

counts above 4500 were amalgamated, due to a lack of power at higher intensities. For 154 

descriptive purposes and to aid interpretation, we used the following thresholds to group 500 155 

cpm increments into: very low intensities of physical activity or sedentary behaviour 156 

(<500cpm); light-intensity physical activity (≥500-<2000cpm) and MVPA (≥2000 counts per 157 

minute); these thresholds were are broadly comparable to those that have been commonly used 158 

in the literature (21-23). 159 

 160 

Blood sample collection and lipidomics analysis 161 

 162 

Lipids were measured from Ethylenediaminetetraacetic acid (EDTA) plasma samples, obtained 163 

following an overnight fast and avoidance of alcohol and MVPA for 48 hours previously.  The 164 

level of systemic lipids in the fasting state arise from a broad combination of genetic and 165 

lifestyle related factors.  As such, the nuclear magnetic resonance (NMR) spectroscopy 166 

metabolomics platform provides a comprehensive snapshot of the individual’s physiological 167 

status as reflected in their systemic metabolism (9).  168 

 169 

Analysis was performed by Nightingale Health (Helsinki, Finland), whose platform and 170 

procedures have been described elsewhere (9). Given the fact that the chosen NMR spectra 171 

allows significant modelling of lipoprotein subclasses (24), coupled with the previous 172 

epidemiological work showing associations between sedentary time, physical activity and 173 

cardiovascular outcomes (6,20,25), the targeted focus of our analysis was on lipid species.  174 

 175 

Briefly, plasma samples were analysed using an automated high-throughput NMR workflow, 176 

acquiring NMR spectra on either a Bruker AVANCE III 500 MHz or Bruker AVANCE III HD 177 
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600 MHz spectrometer.  Following organic solvent lipid extraction, further NMR spectra were 178 

acquired from the lipid extracts on the 600 MHz spectrometer. The initial data processing, 179 

including the Fourier transformations to NMR spectra and automated phasing were performed 180 

using computers that control the spectrometers. The spectra were then automatically transferred 181 

to a centralized server, which performs various automated spectral processing steps, including 182 

overall signal check for missing/extra peaks, background control, baseline removal and spectral 183 

area-specific signal alignments (9). The spectral information also underwent various 184 

comparisons with the spectra of 2 quality control samples; the data for which is also followed 185 

and compared in a consecutive manner. For those spectral areas that passed all the quality 186 

control steps, regression modelling was performed to produce the quantified molecular data. 187 

Individual metabolic measures also underwent various statistical quality control steps and were 188 

checked against an extensive database of quantitative molecular data (9). All analyses were 189 

conducted by individuals blinded to the participants' identity and physical activity levels. As 190 

traditional clinical lipid profile may not fully capture meaningful information with regards to 191 

cardiometabolic risk (26), we report the concentration of particles (“number”) within 192 

subclasses of VLDL, HDL, IDL and LDL, apolipoprotein concentration (Apolipoprotein-A1 193 

(Apo-A1) and  Apo B) and the ratio of Apo B to Apo-A1. We also report the mean diameter 194 

particle size of VLDL, HDL and LDL.  195 

  196 

Covariates 197 

 198 

Information on smoking status and ethnicity was obtained following an interview administered 199 

protocol conducted by a healthcare professional. We were also able to adjust for available 200 

dietary biomarkers (omega-3 and omega 6 fatty acids) which are reflective of the composition 201 

of ingested fatty acids (27) and act as lipid mediators in the inflammatory response (28). In 202 

addition, an increasing dietary ratio of omega-3/omega 6 fatty acids has been associated with 203 

a higher incidence of obesity, cardiovascular disease (CVD), metabolic syndrome and insulin 204 

resistance (28-30). Conversely, diets including high amounts of seafood and fish increase the 205 

dietary amount of omega-3 and have been linked to a reduced risk of CVD, T2DM and 206 

metabolic syndrome (31,32). . 207 

 208 

 209 

 210 

 211 
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Statistical analysis 212 

 213 

Linear regression was used to examine the associations between lipid type concentrations, 214 

particle size and physical activity intensities. All lipid outcomes were log-transformed, 215 

standardised (Z score) and centered (mean =0, standard deviation =1). Any value that was 216 

below detection was set to the minimum observed value of the corresponding lipid. Time spent 217 

in each of the physical activity intensity increments was entered into models individually 218 

because of the high correlation between intensities (Table S1). Models were adjusted for age 219 

(continuous), sex (categorical), smoking status (categorical), ethnicity (categorical),, time 220 

accelerometer worn (continuous; average minutes per day) and omega-3 and 6 fatty acids 221 

(continuous).  222 

 223 

Results are presented as % difference in the lipid variable associated with 10 minutes of each 224 

activity within each intensity. Two-tailed p values of <0.05 were considered statistically 225 

significant. No further adjustment was made for multiple comparisons, therefore data were 226 

viewed with caution and in relation to the overall pattern of results. All statistical analyses were 227 

conducted using IBM SPSS Statistics v24.0. 228 

 229 

Results 230 

 231 

A total of 509 participants had complete lipidomic and accelerometer data (63% of total 232 

sample). The main reasons for participants not having complete data was insufficient 233 

accelerometer wear time over too few days and insufficient volumes of blood for additional 234 

analyses. There was no difference in the proportions of males/females, ethnicity, smoking 235 

status or age in those included vs. those excluded. Table 1 displays the characteristics of 236 

included study participants.  237 

 238 

Physical activity 239 

 240 

The average time spent in each 500cpm intensity banding is shown in Table 1. 82.4% of total 241 

accelerometer wear time was spent in the lowest physical activity category (<500cpm), 242 

compared with 0.3% in the highest activity category (>4500cpm). Table S1 also displays the 243 

correlations between each intensity band.  244 
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Lipoprotein concentrations and particle size  245 

 246 

The associations between lipid sub-type particle concentrations and physical activity intensities 247 

(in 500cpm increments, per 10 minutes of activity) are displayed in Figure 1 with associations 248 

for apolipoprotein concentration displayed in Figure 2 (corresponding values presented in 249 

Tables S2 and S3). Figure 3 displays the associations between particle size and physical activity 250 

intensities. 251 

 252 

Lipoprotein subclass HDL 253 

 254 

Concentrations of both large and medium HDL particles showed negative associations with 255 

time spent in the lowest intensity of physical activity, which is likely to include a significant 256 

amount of sedentary behaviour (<500cpm (both -2%; 95% CI= -3% to -1%, per 10 minutes of 257 

activity)) (Figure 1A, Table S3). Time spent in physical activity intensities >1000cpm were 258 

favourably associated with small and medium HDL subclasses (range = 3%-24%) with results 259 

displaying a dose response relationship for medium subclasses up to moderate intensities. 260 

Concentration of very large HDL particles were only associated with time spent in the highest 261 

intensity of physical activity (>4500cpm).   262 

 263 

Lipoprotein subclass VLDL 264 

 265 

Time spent in the lowest physical activity intensity band (<500cpm) was negatively associated 266 

with the concentration of very large, large, medium and small VLDL particles (2%; 95% CI= 267 

1% to 3%, per 10 minutes of activity) (Figure 2A, Figure 2C; Table S3). For higher intensities 268 

of physical activity, the majority of VLDL subclasses were only found to be favourably 269 

associated with time spent in the highest intensity category (>4500cpm). 270 

Concentration of IDL and LDL particles 271 

 272 

There was no association between physical activity intensities and IDL particle concentrations, 273 

whereas LDL particle concentrations (small, medium and large) were only associated at 3500-274 

3999cpm (range =10%-11%) (Figure 1D; Table S3).  275 

 276 

 277 

 278 
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Apolipoproteins 279 

 280 

Apo-A1 was negatively associated with physical activity <500cpm (-2%; 95% CI= -3% to -281 

1%, per 10 minutes of activity; Figure 2). Even low levels of activity (≥500cpm) yielded 282 

positive associations, with significant results seen up to >4500cpm (range = 3-20%). For Apo 283 

B, significant negative associations were seen from moderate (2500-2999cpm) through to the 284 

highest physical activity intensity (>4500cpm) (range =-1% to -15%). The ratio of Apo B to 285 

Apo-A1 also displayed negative associations as the physical activity intensity increased, with 286 

significant results seen at >2500cpm (range = -11% to -23%).  287 

 288 

Lipoprotein particle size 289 

 290 

Time spent in the lowest intensity of physical activity (<500cpm) was significantly associated 291 

with a higher mean diameter of VLDL (2% (95% CI = 1% to 3%, per 10 minutes of activity)) 292 

and lower mean diameter of HDL (-2% (95% CI= -3% to -1%, per 10 minutes of activity)) 293 

particles (Figure 3; Table S2). As the physical activity intensity increased, there was a dose-294 

response relationship for HDL, with greater intensity associated with a larger particle size, 295 

whereas differences in VLDL particle size were observed at the lowest (<500cpm, 500-296 

999cpm, 1000-1499cpm)and highest physical activity intensities (>4500cpm). No associations 297 

were seen for the mean diameter of LDL. 298 

 299 

Discussion 300 

 301 

This study highlights the dose-response associations between physical activity intensity and 302 

lipid species involved in the underlying pathophysiology of insulin resistance, CVD and 303 

physical activity in a population at high risk of T2DM. The most consistent associations were 304 

seen in the HDL and VLDL subclass concentrations.  Associations between VLDL subclass 305 

concentrations and physical activity were consistently only evident at the lowest (<500cpm, 306 

approximately <2.6 METs (33)) and highest intensity of physical activity (>4500cpm, 307 

approximately >5.6 METs (33)). Conversely, although results for concentrations of very large 308 

HDL particles mirrored those for VLDL,  those for smaller HDL particles and Apo-A1 showed 309 

significant adverse associations with time spent in the lowest category of physical activity 310 

(<500cpm) and positive associations across the spectrum of light- and moderate-intensity 311 

physical activity. These results suggest that engaging in different intensities of physical activity 312 
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may result in a differential impact on lipid metabolism, with high intensities of physical activity 313 

needed to disrupt the hepatic release of VLDL.   314 

 315 

To our knowledge, this is the first study to specifically investigate the association of a spectrum 316 

of intensities of objectively assessed physical activity on the lipidome, with the findings 317 

extending previous research using broad categories of physical activity. For example, a 318 

previous study in twins reported that compared to inactive individuals, active individuals had 319 

a shift towards lower levels of VLDL and higher levels of large and very large HDL (3). Our 320 

findings give insight into how physical activity intensity contributes to these observations, with 321 

most HDL subclass concentrations and Apo-A1 being sensitive to time spent in lower 322 

intensities of physical activity, whereas lower levels of VLDL subclasses and Apo B were 323 

consistently only associated with a moderate to high intensity of physical activity. The results 324 

for VLDL and Apo B are consistent with previous research suggesting that the intensity of 325 

aerobic exercise must surpass that of moderate intensity in order to have a favourable effect on 326 

non HDL-lipids, with adaptations largely modulated through glucagon stimulation (34,35). 327 

 328 

For HDL-cholesterol concentrations and Apo A-1 , associations were consistently seen across 329 

light and moderate intensities of physical activity up to a threshold of between 2500–3500cpm 330 

(approximately 3.7-4.4 METs (33)), after which little additional benefit was observed. This 331 

intensity of physical activity is equivalent to walking at ~5km/h and is considered at the lower 332 

end of the moderate intensity spectrum (36). Our finding for HDL subclasses is somewhat in 333 

agreement with a recently published study of 66 metabolome measures, which found that 334 

higher cardiorespiratory fitness, for which moderate intensities of physical activity are an 335 

important determinant, was associated with greater concentrations of larger HDL-particles 336 

(37).  Our findings are also broadly consistent with a meta-analysis of exercise training studies 337 

which concluded that duration, and not intensity, is a predictor of the HDL-C response (38). It 338 

has also been shown that low-intensity exercise may improve reverse cholesterol transport via 339 

the activation of gene transcription variables proliferator-activated receptor gamma 340 

(PPARgamma) and liver X receptor alpha (LXRalpha) (39). HDL-cholesterol may also be 341 

affected by other physiological processes, such as inflammation (40), which may be influenced 342 

by overall volumes of physical activity (41). Therefore, these data suggest that both light-343 

intensity and moderate-intensity physical activity interventions are effective at improving 344 

HDL-C concentrations, whereas engaging in higher-intensities of physical activity may not 345 

provide additional benefit on HDL-C.  346 
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 347 

A further novel finding was that the time spent in moderate intensities of physical activity were 348 

associated with larger average HDL-C particle size. Larger HDL particles are hypothesised to 349 

be more important in promoting health benefits and thus reducing the risk of CVD (42). 350 

Therefore, one of the many mechanisms linking moderate physical activity to cardiometabolic 351 

health could be through altering HDL particle size. Previous studies have also reported stronger 352 

associations between self-reported physical activity status and greater effects of exercise 353 

intervention studies on large HDL compared to smaller particles (43).   That noted, we accept 354 

that recent trials and genetics have placed a question on the causal link between HDL-C and 355 

CVD (44).  356 

 357 

Our findings also extend previous findings by showing that low levels of physical activity 358 

(<500cpm), indicative of sedentary behaviour, are detrimentally associated with HDL 359 

concentrations (20,45). Interestingly, the time spent below 500cpm was also detrimentally 360 

associated with Apo-A1 and the concentration of very large, large, medium and small VLDL 361 

particles. VLDLs are substrates for lipoprotein lipase (LPL)-mediated triglyceride removal, 362 

with larger VLDL particles carrying more triglycerides than smaller particles and correlating 363 

with insulin resistance (46). Although the precise mechanism of sedentary behaviour and 364 

(in)activity-induced lipid changes are unclear, muscle LPL regulation is thought to be one of 365 

the most sensitive metabolic responses to sedentary behaviour and low‐intensity contractile 366 

activity and may explain why even small amounts of physical activity appear to confer 367 

cardiovascular benefits (47). The mechanistic relevance of LPL to sedentary behaviour has 368 

been demonstrated in animal models (48) whereas in humans moderate intensity activity was 369 

shown to increase the affinity of large VLDL particles for LPL clearance (49). However, 370 

further insight is needed into the precise impact of increased sedentary time and reduced 371 

physical activity on LPL activity.  372 

 373 

Strengths and limitations 374 

 375 

Strengths of our study include the objective measurement of physical activity and examination 376 

of lipids in relation to different characteristics across a range of physical activity intensities. 377 

By enabling identification of the minimum intensity at which benefits may occur as well as a 378 

quantifiable dose–response relationship, this information may aid in generating hypotheses to 379 

be tested in future physical activity interventions. Furthermore, our targeted metabolomic 380 
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platform covered a wide variety of lipids with known identity and quantitative measurements. 381 

Our results are strengthened by the fact that associations with all lipoprotein subclasses were 382 

present after adjusting for dietary biomarkers (omega-3 and omega 6), supporting an 383 

independent association of physical (in) activity per se on the lipoprotein subclass profile. 384 

These results are in agreement with previous studies which have shown that significant changes 385 

in HDL and VLDL concentrations and particle size after exercise training are independent of 386 

diet (43). Our study is also accompanied by important limitations. For example, despite 387 

individuals spending a reasonable amount of time in moderate activity, the time spent in higher, 388 

more vigorous intensity activities is limited. However, this is likely reflective of the habitual 389 

behaviour of the majority of individuals at high risk of T2DM.  This coupled with the fact that 390 

our analysis is observational, means that we  cannot prove biological mechanisms or 391 

demonstrate causality; reverse causality is also a possibility whereby those with a greater 392 

burden of risk factors may be less likely to engage in greater volumes or intensities of physical 393 

activity The high risk nature of the cohort, where higher relative exercise intensities can be 394 

anticipated for a given exercise compared to a healthy population, may also affect the 395 

interpretation of the intensity thresholds used for this study. However, this is unlikely to affect 396 

the interpretation for HDL-cholesterol, where associations were seen across sedentary time and 397 

the lower intensity spectrums. Furthermore, despite adjusting for a range of potential 398 

cofounders, residual confounding or confounding from unmeasured factors remains a 399 

possibility (e.g. alcohol intake). Finally, although accelerometers allow for more robust 400 

assessments of physical activity compared to self-report, they are not without limitations. They 401 

rely on categorising movement (acceleration) strength, rather than directly distinguishing 402 

between postures or modes of physical activity.  403 

 404 

In conclusion, our data suggests potential differences in the associations between different 405 

physical activity intensities and the lipidome in subjects with a high risk of T2DM, with most 406 

HDL subclass and Apo A-1 concentrations appearing sensitive to light-intensities of physical 407 

activity.  Although structured physical activity should remain a strong focus and end point of 408 

behavioural interventions, lipid related benefits may be gained through light-intensity activity 409 

(whilst also reducing sedentary time). Given the limited time spent in higher intensity activities 410 

in this population, this may also be the option that is best tolerated in those at high risk of 411 

chronic disease. This is particularly pertinent as they are also representative of those likely to 412 

be identified as being at high risk of T2DM within routine care and referred onto available 413 

prevention programmes. Therefore, future interventions that encourage increases in physical 414 
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activity, may need to be tailored to individual characteristics and tolerability. In particular, 415 

consideration should be given to the relative intensity of physical activity prescribed, as the 416 

absolute values will differ considerably between individuals The results of this analysis also 417 

highlight the fact that more work is needed to elucidate the mechanisms by which different 418 

physical activity intensities, particularly at the lower end of the spectrum, impact health. 419 
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Table 1. Participant characteristics 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

Data presented as mean ± standard deviation, median (interquartile range) or number (column 618 

percent). cpm=counts per minute. *Cardiovascular Disease is defined a medical history of one 619 

or more of the following: Myocardial Infarction (MI), Heart Valve Disease, Heart Failure, 620 

Atrial Fibrillation, Angina, Stroke, Angioplasty/Coronary Artery Bypass Graft, Leg 621 

Angioplasty/bypass, Peripheral Vascular Disease. 622 

 623 

Variable All 
Participants (N) 509 
Age (years) 64 ± 8 
Female 176 (34.6) 
Current smokers 35 (6.9) 
Glycosylated haemoglobin (HbA1c) (%)  5.9 ± 0.4 
HbA1c (mmol/mol) 41.0 ± 2.0 
Total cholesterol (mmol/L) 5.1 ± 1.0 
LDL (mmol/L) 3.1 ± 0.9 
HDL (mmol/L) 1.4 (0.4) 
Triglycerides (mmol/L) 1.3 (0.7) 
Ethnicity 
White European 
South Asian 
Other 

 
473 (92.9) 
33 (6.5) 
3 (0.6) 

Cardiovascular disease* 176 (34.6) 
Accelerometer variables (time in minutes per day) 
Wear-time 853.4 ± 84 
<500cpm 704.3 (127.4) 
500-999cpm 73.3 (40.8) 
1000-1499cpm 29.8 (26.5) 
1500-1999cpm 13.2 (15) 
2000-2499cpm 6.8 (8.66) 
2500-2999cpm 4.0 (5.5) 
3000-3499cpm 2.5 (4.9) 
3500-3999cpm 1.2 (3.8) 
4000-4499cpm 0.3 (2.3) 
>4500cpm 0 (1.5) 
Average steps per day 6581 ± 3143 
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Figures 624 

 625 

Figure 1a. Forest plot displaying the percentage difference in HDL subclass 626 
concentrations with a 10 minute increase in time spent in bands of 500 counts per minute 627 
of physical activity intensities.  628 

 629 

 630 
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Figure 1b. Forest plot displaying the percentage difference in VLDL subclass 631 
concentrations with a 10 minute increase in time spent in bands of 500 counts per minute 632 
of physical activity intensities.  633 

 634 

  635 

 636 
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Figure 1c. Forest plot displaying the percentage difference in VLDL subclass 637 
concentrations with a 10 minute increase in time spent in bands of 500 counts per minute 638 
of physical activity intensities.  639 

 640 
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 642 
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Figure 1d. Forest plot displaying the percentage difference in IDL and LDL subclass 644 
concentrations with a 10 minute increase in time spent in bands of 500 counts per minute 645 
of physical activity intensities.  646 

  647 

 648 

 649 
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Figure 2. Forest plot displaying the percentage difference in apolipoproteins with a 10 651 
minute increase in time spent in bands of 500 counts per minute of physical activity 652 
intensities.  653 

 654 

 655 
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 657 
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Figure 3. Forest plot displaying the percentage difference in lipoprotein particle size 658 
with a 10 minute increase in time spent in bands of 500 counts per minute of physical 659 
activity intensities.  660 

 661 

Colours broadly represent commonly used accelerometer cut points for low levels of physical 662 
activity, which includes sedentary behaviour (red) (<500cpm), light (blue) (≥500-<2000cpm) 663 
and MVPA (green) (≥2000 counts per minute). 664 

 665 
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