Supplementary data

Journal of Bacteriology JB00370-19

Methylation warfare: interaction of pneumococcal bacteriophages with their host

Leonardo Furi¹, Liam A. Crawford¹, Guillermo Rangel-Pineros¹, Ana Sousa Manso¹, Megan De Ste Croix¹, Richard D. Haigh¹, Min J Kwun², Kristine Engelsen Fjelland^{3&}, Gregor Duncan Gilfillan³, Stephen D. Bentley⁴, Nicholas J. Croucher², Martha R. Clokie¹, Marco R. Oggioni^{1,*}

¹ Department of Genetics and Genome Biology, University of Leicester, Leicester, UK

² MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.

³ Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway

⁴ Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.

*Correspondence to: Marco R Oggioni. Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK. Phone. +44 (0)116 252 2261, Email: <u>mro5@leicester.ac.uk</u>

Name	Background	Knock out	Relevant properties ^a	Reference
D39	-	-	Type 2 Avery's strain	(3, 27)
DP1004	Rx1	-	D39 unencapsulated derivative; Sm ^r	(27, 59)
FP486	D39	SPD_0449-455	spnD39III deleted mutant; Spr	This work
FP470	DP1004	SPD_0449-455	spnDP1004III deleted mutant; Spr; Smr	This work
FP422	DP1004	SPD_0450-452	spnDP1004IIIB locked mutant; Sp ^r ; Sm ^r	This work
FP423	DP1004	SPD_0450-452	spnDP1004IIIC locked mutant; Sp ^r ; Sm ^r	This work
FP424	DP1004	SPD_0450-452	spnDP1004IIIA locked mutant; Sp ^r ; Sm ^r	This work
FP425	DP1004	SPD_0450-452	spnDP1004IIID locked mutant; Sp ^r ; Sm ^r	This work
MRO557	DP1004	SPD_0450-452	spnDP1004IIIE locked mutant; Sp ^r ; Sm ^r	This work
MRO558	DP1004	SPD_0450-452	spnDP1004IIIF locked mutant; Sp ^r ; Sm ^r	This work
MRO587	FP470	-	SpSL1 prophage carrying strain	This work
MRO575	FP424	SPD_0450-452; SPD_455	<i>spnDP1004IIIA</i> locked:: <i>hsdR</i> frameshifted; Sp ^r ; Sm ^r	This work
MRO594	FP424	SPD_0450-452; SPD_0930-1	<i>spnDP1004IIIA</i> locked:: <i>pezAT</i> deleted mutant; Sp ^r ; Km ^r	This work
MRO598	FP424	SPD_0450-452; SPD_1081-2	spnDP1004IIIA locked::reIBE2 deleted mutant; Sp ^r ; Cm ^r	This work
MRO602	FP424	SPD_0450-452; SPD_1550-1	<i>spnDP1004IIIA</i> locked:: <i>yetM-yoeB</i> deleted mutant; Sp ^r ; Km ^r	This work
MRO589	FP422	SPD_0450-452; SPD_1108-9	spnDP1004IIIB locked::spnDP1004mcrBC deleted mutant; Sp ^r ; Sm ^s ; Km ^r	This work
MRO590	FP424	SPD_0450-452; SPD_1108-9	spnDP1004IIIA locked::spnDP1004mcrBC deleted mutant; Sp ^r ; Sm ^s ; Km ^r	This work
MRO628	FP424	SPD_0450-452; SPD_1737	<i>spnDP1004IIIA</i> locked:: <i>lytA</i> deleted mutant; Sp ^r ; Sm ^s ; Km ^r	This work
MRO629	FP470	SPD_0449-445; SPD1259-60	spnDP1004III deleted mutant::spnDP1004I deleted mutant; Sp ^r ; Sm ^s ; Km ^r	This work
R6x <i>∆ivr</i> tvr::Janus	R6x	-	R6x Δivr tvr::Janus; Km ^r	(38)
R6x ∆ivr hsds∷tvr _{R-} _{MV5} ∆tvrR	R6x	-	R6x <i>Δivr hsdS::tvr</i> _{R-MV5} ΔtvR	(38)
	Target	Template GenBank ID	Sequence (5' - 3')	
IF100	Sp cassette	KJ955483	GCTCTAGAACTAGTGGATC	(46)
IF101	Sp cassette	KJ955483	TTCCCTTCAAGAGCGATAC	(46)
LG70	spnD39III	NC_008533	GCAGTCTAAGCCATCAAATAC	(46)
LG71	spnD39III	NC_008533	GATCCACTAGTTCTAGAGCTTTCTGCCTGTAATTGTT CATC	(46)
ASM	spnD39III	NC_008533	GTATCGCTCTTGAAGGGAAGCCATCGTTTGGTCTACT AAGATGT	This work
ASM	spnD39III	NC_008533	AGCATATCGCTTACGAAGAATACTT	This work
LF83	SpSL1	KM882824	GTCACAACACAAAAACTTTCCAGAGT	This work
LF84	SpSL1	KM882824	ACCATATCGAGCCAACTTCTCCT	This work
LF88	SpSL1	KM882824	ACGGGCTATACTGCATCTTAGAGA	This work
LF89	SpSL1	KM882824	CTACTTTGACCAGTCAGGCGAAAT	This work
LF90	csRNA3	NC_008533	AGTAGGTCCTGGTCGTGAACAA	This work
LF91	csRNA5	NC_008533	AGGAACTGCACCTGTTATGAAGGT	This work
LF92	csRNA2	NC_008533	GTATAGGGATGACTTGGATGAATCGT	This work
LF93	csRNA4	NC_008533	CAGTTGGACTGCGCTTGAATGA	This work
LF94	csRNA3	NC_008533	GAGCAATCTCAGCCTCTCTCAAA	This work
LF94	csRNA5	NC_008533	GCGCGACCAATCGTGTTAAAC	This work
LF96	csRNA2	NC_008533	GATTAAGAGAACGTTAGGGATTCTATCA	This work
LF97	csRNA4	NC_008533	CTCTACTTCCACAGCCTTATCTTTC	This work
LF106	spnMcrBC	NC_008533	CTTGTATCCGCTTCTGCACG	This work

Table S1. Bacterial strains and primers

LF107	spnMcrBC	NC_008533	ATCAAACGGATCCCCAGCTTGTGAGATAGGAAACCTA GCAGGT	This work
LF108	spnMcrBC	NC_008533	CGCCTACGAGGAATTTGTATCCCCAGTGTTAGGAGCT TTAATATC	This work
LF109	spnMcrBC	NC_008533	ATCCTTCCTTGGAAACCAGAAG	This work
LF149	lytA	NC_008533	CTTAAATCCATTCGTGATATTCC	This work
LF150	lytA	NC_008533	ATATCACATTATCCATTAAAAATCAAACTTTCCTTCA ATGTTTGCTACTATATT	This work
LF151	lytA	NC_008533	GCATAAGGAAAGGGGCCATCCAGAACCAGAAACTCCT	This work
LF152	lytA	NC_008533	TCTTATCTGGGTTGCCATGA	This work
hsdRU2	hsdR	NC_008533	CAAAATTAGAAAACATGCCTAGCG	This work
janus- hsdRR	hsdR	NC_008533	ATCAAACGGTCATATTGAACCCTCCGCATTC	This work
hsdrD	hsdR	NC_008533	CAAACCAGCTTTTCGAAGGCG	This work
janus- hsdRF	hsdR	NC_008533	AGGGATCCCGAGAAAGAAATGAGTGAGGAGG	This work
hsdRfram eF	hsdR	NC_008533	TTGAGTTTATAAGTCTAAGAAAGAAATGAGTG	This work
hsdRfram eR	hsdR	NC_008533	CTTTCTTAGACTTATAAACTCAACCATATTGAACC	This work
hsdR- janusF	kan-rpsL	(71)	GTTCAATATGACCGTTTGATTTTTAATGGATAATGTG	This work
hsdR- janusR	kan-rpsL	(71)	ATTTCTTTCTCGGGATCCCTTTCCTTATGC	This work

^a Sm, streptomycin; Sp, spectinomycin; Km, kanamycin, Cm, chloramphenicol.

Pahge CDS	Function	GenBank ID	Molecular weight (kDa)	Total unique peptide count*
Cds32	portal protein	723007184	44	14
Cds33	prohead maturation protease	723007185	20	3
Cds34	capsid protein	723007186	47	17
Cds35	hypothetical protein	723007187	13	2
Cds36	head-tail adapter protein	723007188	12	3
Cds37	hypothetical protein	723007189	14	4
Cds39	major tail protein	723007191	24	20
Cds42	tail length tape-measure protein	723007194	98	16
Cds43	tail protein	723007231	27	10
Cds44	tail fiber PbIB-like protein	723007195	179	43
Cds47	holin	723007198	11	3
Cds49	N-acetylmuramoyl-L-alanine amidase	723007200	36	3
Cds21	hypothetical protein	723007222	28	12
Cds24	hypothetical protein	723007225	10	2

Table S2. Phage and host proteins identified with LC-MS/MS

* Total number of different amino acid sequences that are associated only with this protein. Scaffold's calculated probability of correct protein identification threshold was set to >95%. With these settings the probability that a protein is correctly identified with a single peptide is of ~50%, while it increases with more uniquely associated peptides (e.g. to ~99.75% with two unique peptides).

Gene		Fold change ^b		e ^b			
D39 ^a	Name	10	50	90	Function	Lowes q- value	
SPD_0001	dnaA	1.33	2.28	2.72	chromosomal replication initiator protein DnaA	2.20E-22	
SPD_0039		0.66	0.90	0.48	conserved hypothetical protein	4.86E-27	
SPD_0063	strH	1.15	0.13	0.06	beta-N-acetylhexosaminidase	0.00E+00	
SPD_0066		1.46	0.51	0.46	PTS system, IIB component	1.03E-43	
SPD_0068		1.86	0.52	0.47	PTS system, IID component	1.37E-83	
SPD_0069		1.95	0.41	0.60	PTS system, IIA component	6.02E-140	
SPD_0070	agas	2.09	0.55	0.52	sugar isomerase domain protein Agas	6.00E-107	
SPD_0071	galivi	2.48	0.52	0.57	aldose 1-epimerase	3.22E-124	
SPD_0081		1.01	0.58	0.47	APC transporter, permoase protein	4.01E-22	
SPD_0088		1.04	0.34	0.22	ABC transporter, permease protein	0.00E+00	
SPD_0089		2.32	0.34	0.19	ABC transporter, permease protein	0.00E+00	
SPD_0089		2.32	0.34	0.19	ABC transporter, permease protein	0.00E+00	
SPD 0090		1.90	0.24	0.12	ABC transporter, substrate-binding protein	0.00E+00	
SPD_0092		1.38	0.45	0.33	conserved hypothetical protein	0.00E+00	
SPD_0092		1.38	0.45	0.33	conserved hypothetical protein	0.00E+00	
SPD_0104		0.73	0.43	0.31	LysM domain protein	6.83E-76	
SPD_0118		1.82	2.00	1.00	conserved hypothetical protein	5.50E-06	
SPD_0138		1.49	0.20	0.15	glycosyl transferase, group 1 family protein	0.00E+00	
SPD_0139		1.60	0.16	0.14	glycosyl transferase, group 2 family protein	0.00E+00	
SPD_0140		2.29	0.19	0.25	ABC transporter, ATP-binding protein	0.00E+00	
SPD_0140	_	2.29	0.19	0.25	ABC transporter, ATP-binding protein	0.00E+00	
SPD_0187	nrdD	1.77	18.23	42.50	anaerobic ribonucleoside-triphosphate reductase	0.00E+00	
SPD_0188		1.81	20.28	44.72	conserved hypothetical protein	0.00E+00	
SPD_0189		1.//	17.15	35.92	acetyltransferase, GNAT family protein anaerobic ribonucleoside-triphosphate reductase activating	0.00E+00	
SPD_0190	nrdG	1.92	18.31	47.31	protein	0.00E+00	
SPD_0191		1.71	16.10	43.05	conserved hypothetical protein	0.00E+00	
SPD_0247		1.27	0.25	0.17	glycosyl hydrolase, family protein 1	0.00E+00	
SPD_0249		1.00	0.61	0.48	conserved hypothetical protein	3.32E-10	
SPD_0261	рерС	0.62	0.69	0.49	aminopeptidase C S-ribosylhomocysteine lyase (autoinducer-2 production	6.13E-33	
SPD_0309	luxS	0.44	0.60	0.42	protein luxS) (AI-2 synthesis protein	7.14E-29	
SPD_0310		0.66	0.63	0.46	conserved hypothetical protein	1.92E-51	
SPD_0375	serS	0.74	0.54	0.48	seryl-tRNA synthetase	4.35E-18	
SPD_0381	асрР	0.58	0.46	0.33	acyl carrier protein	2.94E-69	
SPD_0386	ассВ	1.15	1.36	0.95	acetyl-CoA carboxylase, biotin carboxyl carrier protein	1.63E-04	
SPD_0388	accC	1.20	1.36	1.03	acetyl-CoA carboxylase, biotin carboxylase	3.09E-04	
SPD_0389	accD	1.12	1.37	0.82	acetyl-CoA carboxylase, carboxyl transferase, beta subunit	1.18E-14	
SPD_0390	ULLA	1.12	1.37	1.23	acetyl-COA Carboxylase, Carboxyl transferase, alpha subunit	1.05E-11 1 19E 17	
SPD_0391	nvrG	0.61	0.32	0.29	CTP synthase	4.18L-17	
SPD_0442	pyrd	1 77	0.52	0.25	endo-beta-N-acetylglucosaminidase nutative	0.00F+00	
SPD 0473	blpY	2.83	1.22	1.33	immunity protein BlpY	1.27E-21	
SPD 0474		2.53	1.13	1.19	conserved hypothetical protein	7.85E-19	
SPD_0546	brnQ	1.08	0.45	0.29	branched-chain amino acid transport system II carrier protein	3.51E-72	
		0.68	0.63	0.39	sensor histidine kinase, putative	7.03E-27	
SPD_0594		1.02	0.66	0.49	conserved hypothetical protein	8.22E-14	
SPD_0608	pyrF	0.16	0.62	0.38	orotidine 5'-phosphate decarboxylase	9.31E-100	
SPD_0609	pyrE	0.17	0.62	0.42	orotate phosphoribosyltransferase	2.48E-91	
SPD_0612		2.50	3.36	2.71	lipoprotein, putative	1.32E-39	
SPD_0614		2.07	2.43	2.36	ABC transporter, ATP-binding protein	4.12E-17	
SPD_0632	thiD	0.71	0.55	0.49	phosphomethylpyrimidine kinase	8.96E-16	
SPD_0636	spxB	0.70	0.44	0.23	pyruvate oxidase	2.57E-94	
SPD_0637		0.55	0.43	0.26	glyoxalase tamily protein	3.02E-97	
SPD_0641	manA	1.08	0.37	0.36	mannose-6-phosphate isomerase, class l	/.19E-222	
SPD_050/	sodA	0.52	0.48	0.31	superoxide dismutase, manganese-dependent	1.24E-78	
26/0731		0.19	0.56	0.49	DNA topology modulation protein Flak, putative	1.10E-267	

 Table S3. Time course of host differentially regulated genes during SpSL1 lytic infection

SPD_0732	rpsT	0.37	0.73	0.47	ribosomal protein S20	1.65E-42
SPD_0739		0.49	0.47	0.49	probable membrane lipoprotein TmpC precursor	1.86E-12
SPD_0762	sufC	0.72	0.52	0.45	FeS assembly ATPase SufC	5.73E-33
SPD_0763	sufD	0.79	0.56	0.46	FeS assembly protein SufD	7.07E-32
SPD_0764	sufS	0.91	0.56	0.43	cysteine desulfurases, SufS subfamily protein	1.47E-37
SPD_0765		0.97	0.49	0.41	SUF system FeS assembly protein, NifU family protein	4.48E-30
SPD_0799		0.63	0.67	0.43	conserved hypothetical protein	5.41E-10
SPD_0851	pyrK	0.20	0.60	0.30	dihydroorotate dehydrogenase electron transfer subunit	2.31E-97
SPD_0852	pyrDb	0.20	0.56	0.32	dihydroorotate dehydrogenase, catalytic subunit	1.01E-75
SPD_0853	lytB	0.48	0.68	0.49	endo-beta-N-acetylglucosaminidase precursor, putative	1.17E-10
SPD_0895	hemH	2.33	4.11	4.44	ferrochelatase	9.02E-86
SPD_0896	mscL	0.38	0.38	0.40	large conductance mechanosensitive channel protein MscL	4.15E-55
SPD_0898		0.63	0.35	0.32	membrane protein, putative	2.94E-44
SPD_0902	trmE	0.54	0.52	0.48	tRNA modification GTPase TrmE	2.09E-23
SPD_0903	xylH	0.45	1.13	0.56	4-oxalocrotonate tautomerase	3.59E-12
SPD_0913		0.52	0.35	0.34	conserved hypothetical protein	2.47E-66
SPD_0987		0.66	0.64	0.48	conserved hypothetical protein TIGR00103	8.84E-14
SPD_1027		0.54	0.28	0.31	acetoin dehydrogenase, E1 component, beta subunit, putative	1.31E-60
SPD_1028	асоА	0.71	0.48	0.41	TPP-dependent acetoin dehydrogenase alpha-subunit	2.09E-23
SPD_1041	nrdH	0.89	4.17	6.35	glutaredoxin-like protein NrdH	7.95E-297
SPD_1042	nrdE	1.10	3.96	6.41	ribonucleoside-diphosphate reductase, alpha subunit	5.98E-159
SPD_1043	nrdF	1.10	3.56	6.91	ribonucleoside-diphosphate reductase, beta subunit	8.98E-252
SPD_1051	lac C	0.87	0.73	0.50	tagatose-6-phosphate kinase	1.19E-17
SPD_1052	lacB	0.79	0.63	0.38	galactose-6-phosphate isomerase, LacB subunit	6.28E-47
SPD_1053	lacA	0.79	0.61	0.48	galactose-6-phosphate isomerase, LacA subunit	1.83E-20
SPD_1075		2.26	2.04	2.61	transporter, FNT family protein, putative	5.08E-23
SPD_1078	ldh	0.53	0.50	0.26	L-lactate dehydrogenase	1.98E-135
SPD_1100	zwf	0.74	0.76	0.50	glucose-6-phosphate 1-dehydrogenase	7.32E-26
SPD_1107	guaC	0.45	0.60	0.86	guanosine monophosphate reductase	5.85E-28
SPD_1131	carB	0.24	0.83	0.59	carbamoyl-phosphate synthase, large subunit	2.82E-26
SPD_1132	carA	0.25	0.76	0.54	carbamoyl-phosphate synthase, small subunit	1.66E-29
SPD_1133	pyrB	0.21	0.65	0.45	aspartate carbamoyltransferase	2.56E-37
					pyrimidine operon regulatory protein/uracil	
SPD_1134	pyrR	0.20	0.52	0.41	phosphoribosyltransferase	1.48E-68
SPD_1141	uraA	0.19	0.35	0.24	uracil-xanthine permease	3.86E-152
SPD_1158	gdhA	0.81	0.74	0.40	NADP-specific glutamate dehydrogenase	3.87E-35
SPD_1217		0.44	0.54	0.67	conserved hypothetical protein	7.15E-23
SPD_1242		0.83	0.78	0.50	conserved hypothetical protein	2.67E-20
SPD_1286		0.47	0.63	0.63	TrmH family RNA methyltransferase group 3	3.30E-25
SPD_1318	tuf	0.66	0.57	0.45	translation elongation factor Tu	1.19E-14
SPD_1327	bta	0.53	0.55	0.31	bacterocin transport accessory protein	1.37E-52
SPD_1334	atpC	1.15	0.72	0.38	ATP synthase F1, epsilon subunit	8.93E-45
SPD_1337	atpA	1.01	0.66	0.48	ATP synthase F1, alpha subunit	4.88E-29
SPD_1338	atpH	0.84	0.51	0.42	ATP synthase F1, delta subunit	1.05E-23
SPD_1340	atpB	0.80	0.71	0.49	ATP synthase F0, A subunit	2.67E-26
SPD_1360		0.60	0.55	0.34	conserved hypothetical protein	7.91E-43
SPD_1378		0.50	0.71	0.65	conserved hypothetical protein	1.01E-13
SPD_1402		0.78	0.43	0.38	non-heme iron-containing ferritin	1.63E-53
SPD_1413		0.95	0.44	0.82	ATP-dependent RNA helicase, putative	1.33E-30
SPD_1415		0.46	0.39	0.17	oxidoreductase, pyridine nucleotide-disulfide, class I	2.06E-164
SPD_1418	pepQ	0.59	0.54	0.32	proline dipeptidase PepQ	7.81E-75
SPD_1419		0.44	0.43	0.32	conserved hypothetical protein	5.92E-19
SPD_1439	rpsO	0.63	0.65	0.49	ribosomal protein S15	3.03E-17
SPD_1461	psaB	0.51	0.40	0.24	manganese ABC transporter, ATP-binding protein	6.36E-87
SPD_1462	psaC	0.67	0.45	0.29	manganese ABC transporter, permease protein, putative	1.51E-53
SPD_1463		0.70	0.51	0.40	ABC transporter, substrate binding lipoprotein	1.10E-46
SPD_1464	psaD	0.60	0.31	0.18	thiol peroxidase	8.68E-200
SPD_1467		0.31	0.79	0.54	conserved hypothetical protein	1.59E-19
		0.88	0.36	0.29	transcriptional regulator, GntR family protein	1.23E-53
SPD_1525		0.91	0.32	0.31	ABC transporter, ATP-binding protein	1.87E-71
SPD_1526		1.03	0.32	0.29	membrane protein, putative	5.69E-74
		1.06	0.73	0.50	membrane protein, putative	1.53E-33
SPD_1531	scrK	1.18	0.27	0.11	fructokinase	0.00E+00

SPD 1588		1.02	0.46	0.31	conserved hypothetical protein	2.03E-53
SPD 1589		0.89	0.38	0.27	lipoprotein, putative	1.83E-53
SPD 1590		1.07	0.57	0.33	general stress protein 24, putative	1.26E-59
SPD 1591		1.02	0.73	0.37	conserved hypothetical protein	1.41E-40
SPD 1594		0.80	2.16	4.16	transcriptional regulator	0.00E+00
SPD_1595		0.66	2.64	4.11	conserved hypothetical protein	0.00E+00
_					choline transporter (glycine betaine transport system	
SPD_1642	proW	1.10	0.68	0.43	permease protein)	2.06E-32
SPD_1643	proV	0.88	0.59	0.39	choline transporter	2.61E-32
SPD_1644		0.84	0.53	0.40	conserved hypothetical protein	1.52E-27
SPD_1645		0.78	0.54	0.41	transcriptional regulator, MarR family protein	4.75E-17
SPD_1789		0.27	0.84	0.82	cell wall surface anchor family protein	1.92E-83
SPD_1795		0.15	0.44	0.43	conserved hypothetical protein	3.82E-111
SPD_1799		1.58	1.83	2.50	sensor histidine kinase, putative	3.31E-18
SPD_1823	gap	0.79	0.63	0.46	glyceraldehyde-3-phosphate dehydrogenase, type I	6.08E-16
SPD_1830		2.81	0.48	0.30	glycosyl hydrolase, family protein 1	0.00E+00
SPD_1830		2.81	0.48	0.30	glycosyl hydrolase, family protein 1	0.00E+00
SPD_1831		4.13	0.58	0.29	PTS system, IIC component	0.00E+00
SPD_1831		4.13	0.58	0.29	PTS system, IIC component	0.00E+00
SPD_1832		4.93	0.77	0.63	PTS system, IIB component	6.30E-215
SPD_1833		4.08	0.92	0.56	PTS system, IIA component	2.52E-136
SPD_1838	yajC2	0.48	0.90	0.66	preprotein translocase, YajC subunit	2.67E-13
SPD_1839	tkt	0.61	0.64	0.47	transketolase	2.20E-28
SPD_1865		2.09	1.98	1.31	alcohol dehydrogenase, zinc-containing	5.67E-27
SPD_1868	tgt	0.61	0.39	0.29	queuine tRNA-ribosyltransferase	4.24E-71
SPD_1874		0.76	0.21	0.17	LysM domain protein	0.00E+00
SPD_1895		0.48	0.78	0.61	cytidine/deoxycytidylate deaminase family protein	1.49E-25
SPD_1896	gltX	0.48	0.67	0.54	glutamyl-tRNA synthetase	6.02E-20
SPD_1968		2.26	0.12	0.08	conserved hypothetical protein	0.00E+00
SPD_1968		2.26	0.12	0.08	conserved hypothetical protein	0.00E+00
SPD_1969		1.39	0.17	0.08	glycosyl hydrolase-related protein	0.00E+00
SPD_1970		1.48	0.17	0.08	ROK family protein	0.00E+00
SPD_1971		1.61	0.17	0.10	glycosyl hydrolase-related protein	0.00E+00
SPD_1972		1.70	0.21	0.11	conserved hypothetical protein	0.00E+00
SPD_1972		1.70	0.21	0.11	conserved hypothetical protein	0.00E+00
SPD_1973		1.07	0.17	0.14	alpha-1,2-mannosidase, putative	0.00E+00
SPD_1974		1.75	0.25	0.11	conserved hypothetical protein	0.00E+00
SPD_2009		1.66	2.84	1.72	conserved hypothetical protein	2.53E-27
SPD_2010	_	1.13	0.40	0.39	conserved hypothetical protein	5.77E-17
SPD_2011	glpF	1.07	0.29	0.32	glycerol uptake facilitator protein	5.63E-97
SPD_2012	glpO	0.77	0.22	0.25	alpha-glycerophosphate oxidase	5.97E-200
SPD_2013	gIpК	0.59	0.33	0.31	glycerol kinase	4.86E-73
SPD_2014		0.87	0.54	0.42	conserved hypothetical protein	7.33E-36
SPD_2015	hslO	0.62	0.50	0.46	chaperonin, 33 kDa	5.16E-30
SPD_2016		0.71	0.47	0.43	HIM-barrel protein, nifR3 family protein, putative	8.68E-31
SPD_2046		2.54	1.69	1.92	cobalt ABC transporter, permease protein	9.75E-19
SPD_2053		0.44	0.85	0.78	conserved hypothetical protein	4.36E-16

^a Gene names refer to *S. pneumoniae* D39 genome (NC_008533). ^b Fold change following gene expression variations after 10, 50, and 90 minutes post phage infection with respect to non-infected cells.

CDS	Protein	Expression
cds30	hypothetical protein	Late
cds31	terminase, large subunit	Late
cds32	portal protein	Late
cds33	prohead maturation protease	Late
cds34	capsid protein	Late
cds35	hypothetical protein	Late
cds36	head-tail adapter protein	Late
cds37	hypothetical protein	Late
cds38	putative tail-component	Late
cds39	major tail protein	Late
cds40	hypothetical protein	Late
cds41	hypothetical protein	Late
cds42	tail length tape-measure protein	Late
cds43	tail protein	Late
cds44	tail fiber PbIB-like protein	Late
cds45	hypothetical protein	Late
cds46	hypothetical protein	Late
cds47	holin	Late
cds48	holin 1	Late
cds49	N-acetylmuramoyl-L-alanine amidase	Late
cds50	hypothetical protein	hypothetical
cds01	integrase	Lysogeny
cds02	hypothetical protein	Lysogeny
cds03	hypothetical protein	Lysogeny
cds04	CI repressor	Lysogeny
cds05	hypothetical protein	Early
cds06	hypothetical protein	Early
cds08	prophage antirepressor protein	Early
cds09	hypothetical protein	Early
cds10	hypothetical protein	Early
cds11	DnaD	Early
cds12	hypothetical protein	Early
cds13	DnaC	Early
cds14	hypothetical protein	Early
cds15	C-5 cytosine-specific DNA methylase	Early
cds16	N-6 adenine-specific DNA methylase	Early
cds17	DNA-binding protein	Early
cds18	hypothetical protein	Early
cds19	hypothetical protein	Early
cds20	hypothetical protein	Early
cds21	hypothetical protein	Early
cds22	hypothetical protein	Early
cds23	hypothetical protein	Early
cds24	hypothetical protein	Early
cds25	Cro repressor	Early
cds26	hypothetical protein	Early
cds27	site-specific recombinase	Early
cds28	hypothetical protein	Very Late
cds29	endonuclease	Very Late

 Table S4. Operon structure of the SpSL1 bacteriophage highlighting the CDSs and their predicted product expression time based upon RNA-Seq data.

Figure S1. Plaques produced by SpSL1 on CAT-Galactose agar plates using a *spnDP1004III* deletion mutant as bacterial cell lawn (panel A). Electron micrographs of purified SpSL1 showing *Siphoviridae* structure; arrow indicates the tail fiber. Bar 200 nm (panel B). Adsorption of SpSL1 to whole *spnDP1004III* deleted mutant cells (panel C).

SpSL1 attP CTTTTCATAATAATCTCCCT csRNA3 24014 TTCTTTTTCATAATAATCTCCCTTA 24038 csRNA5 212373 AACTTTTTCATAATAATCTCCCTTA 21397 csRNA4 233748 AACTTTTTCATAATAATCTCCCTTA 233702 csRNA4 233748 AACTTTTTCATAATAATCTCCCTTA 233772 csRNA4 233748 AACTTTTTCATAATAATCTCCCTTA 233772 csRNA4 233748 AACTTTTTCATAATAATCTCCCTTA 60 f16R4 CTTTTTCATAATAATCTCCCTTAACTCCACCAATCAGGTGGAGTTTTTTAGCTCCATATT 60 spsl1 CTTTTTCATAATAATCTCCCTTAACTCCACCAATCAGGTGGAGTTTTTTAGCTCCATATT 60 f39 CAGGCTTTTGGGGACTATTCTAACTCCACCAAATCAGGTGGAGTTTTTTAGCTCTATT 60 spsl1 CAGGCTTTTGGGGACTATTCTAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGATT 120 spsl1 CAGGCTTTTGGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGAATAT 120 spsl1 CAGGCTTTTGGGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGAATAT 120 spsl1 CAGGCTTTTGGGGGACATTCTAAAAATACTTTTTCGATATTTTTCGGTATTTTTCGGAATAT 180 spsl1 TTGGTCGGGGAATTGCCGGGGACTTTTT TTAGCCGGGAATTGCCGGGGACTTTTT 180 s			
D39 CTTTTCATAATAATCTCCCTTaactccaccCAATCAggtggagttTTTAGCTCTATTT 60 TIGR4 CTTTTCATAATAATCTCCCTTaactccaccGAATCAggtggagttTTTAGCTCTATTT 60 \$\mathbf{S}\mathbf{S}\mathbf{L}1 CTTTTCATAATAATCTCCCTTAACTCCACCCAATCAGGTGGAGTTTTTAGCTCTATTT 60 \$\mathbf{S}\mathbf{S}\mathbf{L}1 CTTTTCATAATAATCTCCCTTAACTCCACCCAATCAGGTGGAGTTTTTAGCTCTATTT 60 \$\mathbf{S}\mathbf{S}\mathbf{L}1 CTTTTCATAATAATCTCCCTTAACTCCACCAAATCAGGTGGAGTTTTTTGGCTCTATTT 60 D39 CAGGCTTTTGGGGACTATTCTAAAATAATTTTTCGATATTTTCGGTATTTTTCGGTATTTTCGGAATT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 CAGGCTTTTGGGACTATTCTAAAAATAATTTTCCGATATTTTCGGTATTTTTCGGTATTTTCCGGATT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 CAGGCTTTTGGGGACTATTCTAAAAATAATTTTCCGATATTTTCCGGTATTTTCCGGATT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 CAGGCTTTTGGGGACTATTCTAAAAATAATTTTCCGATATTTTCCGGTATTTTTCCGGATT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 CAGGCTTTTGGGGACTTTTCTAAAAATAATTTTCCGATATTTTTCCGGTATTTTTCCGGATAT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 CAGGCTTTTGGGGGGACTTTTTCAAAAATCATTTTTCCGATATTTTTCCGATATT 120 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 TGGTCGGGGAATTGGCGGGGGCCTTTTTGACATTTTTTCGGGGGGATTTTTTACCGAATAT 180 \$\mathbf{S}\mathbf{S}\mathbf{N}=\mathbf{H}1 TTGGTCGGGGAATTGGCGGGGGCCTTCTT	SpSL1 att csRNA3 csRNA5 csRNA2 csRNA4	:P CTTTTTCATAATAATCTCCCT 24014 TTCTTTTTCATAATAATCTCCCTAT 24038 212373 AACTTTTTCATAATAATCTCCCTTCA 212397 231376 TTCTTTTTCATAATAATCTCCCCTAT 231400 233748 AACTTTTTCATAATAATCTCCCCTAT 233772 ***********************************	
D39CAGGCTTTTGGGGACTATTCTAAAAATAATTTTTCGATATTTTCGGTATTTTCGGATT120TIGR4CAGGATTTTTGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGATT120\$psn_H_1CAGGCTTTTGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGATT120psl1CAGGCTTTTGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGATT120psl1CAGGCTTTTGGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGATT120psl1CAGGCTTTTGGGGACTATTCTAAAAATCATTTTCGATATTTTCGGTATTTTTCGGATT120psl1TTGGTCGGGGAATTGGCGGGGGCTTTTT120pspl4TTGGTCGGGGAATTGGCGGGGGCCTTTTGAGGATTTTGCGGGGATTTTTTAGCGAATAT180\$psn_H_1TTGGTCGGGGAATTGGCGGGGCCTTTTGGAGATTTTGGCGGGGATTTTTAGCGAATAT180pspl4AACTAAGAAATAGGTCTGTGGTCGCTTCAGCTAGTTCAAACTCAATTTGATGTAA214TIGR4GACTAAGAAATAGGTCTGTGGTCGCTTCAGCAAGTTCAAACTCAATTTGATGATAAAAAAAA	D39 TIGR4 ¢Spn_H_1 SpSL1	CTTTTCATAATAATCTCCCTTaactccaccCAATCAggtggagttTTTTAGCTCTATTT CTTTTCATAATAATCTCCCCTTaactccaccGAATCAggtggagttTTTTAGCTCTATTT CTTTTTCATAATAATCTCCCCTTAACTCCACCAATCAGGTGGAGTTTTTTAGCTCTATTT CTTTTCATAATAATCTCCCCTTAACTCCACCAATCAGGTGGAGTTTTTTGGCTCTATTT *******************************	60 60 60 60
D39TTGGTCGGGGAATTGGCGGGGACTTTTTTAGCGGATAT158TIGR4TTGGTCGGGGAATTGGCGGGGACTTTTTGAGGATTTTGGCGGGGATTTTTTAGCGAATAT180\$\phi_H_1\$TTGGTCGGGGAATTGGTGGGGGATTTTTTTAGCGGGGATTTTTAGCGAATAT158\$\phi_S11TTAGTCGGGGAATTGGCGGGACTTTTGAGGAGATTTTGGCGGGGGATTTTTAGCGAATAT180***********************************	D39 TIGR4 ¢Spn_H_1 SpSL1	CAGGCTTTTGGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGAT CAGGATTTTTGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGAT CAGGCTTTTGGGGACTATTCTAAAAATAATTTTTCGATATTTTTCGGTATTTTTCGGAAT CAGGCTTTTGGGGACTATTCTAAAAATCATTTTTCGATATTTTTCGGTATTTTTCGGAAT **** **** ***************	120 120 120 120
D39 AACTAAGAAATAGGTCTGTGGTCGCTTCAGCTAGTTCAAACTCAATTTGATTGTAA 214 TIGR4 GACTAAGAAATAGGTCTGTGGTCGCTTCAGCTAGTTCAAACTCAATTTGATTGTAA 236 \$spn_H_1 GACTAAGAAATAGGTCTGTTGTCGCCTTCAGCAAGTTCGTCCTCAACTTGGTTAAACGAT 218 \$spsl1 GACTAAGAAATAGGTCTGTTGTGCGCTCAGCTCAGGTCGCTCACTTGGTTATAACGAT 240 ************************************	D39 TIGR4 ¢Spn_H_1 SpSL1	TTGGTCGGGGAATTGGCGGGGACTTTTTTAGCGAATAT TTGGTCGGGGAATTGGCGGGGACTTTTTGAGATTTTGGCGGGGATTTTTTAGCGAATAT TTGGTCGGGGAATTGGTGGGGATTTTT	158 180 158 180
	D39 TIGR4 ¢Spn_H_1 SpSL1	AACTAAGAAATAGGTCTGTGGTCGCTTCAGCTAGTTCAAACTCAATTTGATTGTAA GACTAAGAAATAGGTCTGTGGTCGCTTCAGCTAGTTCAAACTCAATTTGATTGTAA GACTAAGAAATAGGTCTGTTGTCGCTTCAGCAAGTTCGTCCTCAACTTGGTTATAACGAT GACTAAGAAATAGGTCTGTTGTCGCTTCAGCGAGTTCGTCCTCTACTTGATTATAACGAT ************************************	214 236 218 240

Figure S2. Attachment site analysis. Alignment of phage att sequence and complementary regions in the S. pneumoniae genome (panel A). The positions of the sequences belonging to the four csRNAs are reported based on D39 genome sequence (GenBank accession number NC_008533). Comparison between the S. pneumoniae genome sequence following csRNA2 coding region and the sequence downstream of the attP in bacteriophages (panel B). The attL sequence is highlighted in bold. The final portion of the csRNA2 coding region is underlined and nucleotides forming the stem of the transcriptional terminator hairpin are shown in lowercase. The 5' phage integrase coding region is italicized. D39 and TIGR4 are representative of phage-free S. pneumoniae genome sequences, while ♦Spn H 1 is one of the two prophages of Hungary19A-6 strain. Panel C shows the schematic map of lysogenic SpSL1. Internal cos site (red), integrase gene (grey), duplicated attachment sites (cyan) and a generic csRNA (orange) are showed. Primers marked 1-8 in the picture correspond to LF90-97 (Table S1), which are designed to specifically amplify the S. pneumoniae genome region around csRNA2, 3, 4, and 5. Primers labelled 9-12 coincide with LF89, 88, 83, and 84 (Table S1) respectively. Panel D shows PCR amplification of the four predicted attachment sites of a SpSL1 lysogenic (MRO587 mutant), with and without the integrated phage (well 1-8). Control PCRs for the identification of excised phage

Δ

DNA and phage in the lysogenic form are in wells 9 and 10 respectively. Predicted band sizes from left to right are the following: 775, 319, 880, 408, 953, 692, 895, 469, 680, and 1638 base pairs. Note that the third (well 3) and fourth (well 7) samples are negative with the latter showing amplified fragments that are not of the expected size. DNA ladder sizes are reported in base pairs.

Figure S3: Abortive infection associated phenotypes. Data show the killing (left panels) in comparison to the culture turbidity (right panels; for comparative analysis panels of Fig.7 are reproduced here [Fig.S5B is Fig.7A and Fig.5D is Fig.7B]) of *spnDP1004IIIA* (panel A and B) and *spnDP1004IIIB* (panel C and D) locked mutants following infection with SpnIIIA-methylated (blue) and SpnIIIB-methylated (orange) SpSL1 phage (MOI=2). CFUs of survived bacteria were measured at 20, 40, and 55 minutes after the infection (panel A and C). OD₅₉₀ was red for 5 hours, with green line representing the non-infected controls (panel B and D). Panel E shows lack of any *spnIII* allele selection upon SpnIIIA-methylated phage infection (MOI=0.25). In the central panel CFU counts of the *wt* strain are shown (circles, phage infected strain; squares, negative control). Alleles in life bacteria were quantified for *s.spnDP1004III* variants after overnight incubation of an agar plate for each time point. SpnIII variants composition in the non-infected controls are shown above and of the infected cells below the growth curve. The patterns represent each allele conformation (*s.spnDP1004IIIA* black, *s.spnDP1004IIIB* dots, *s.spnDP1004IIIF* horizontal stripes, *s.spnDP1004IIIE* white, *s.spnDP1004IIIF* horizontal stripes).

Figure S4: The Abi mechanism requires the *de novo* synthesis of cellular constituents to produce cell death. Control experiments, using *spnDP1004IIIA* (panel A) and *spnDP1004IIIB* (panel B) locked mutants, demonstrate the inhibition of cell replication in the presence of 4 mg/L (straight black line), 16 mg/L (dashed black line), and 64 mg/L (dotted black line) of chloramphenicol (Cm). The *spnDP1004IIIA* locked mutant was infected with SpnIIIA-methylated SpSL1 phage (MOI=2.5) in presence of similar Cm concentrations (panel C). Bacteriophage lytic cycle was delayed with 4 mg/L of Cm and was blocked at 16 mg/L (dashed line). When the *spnDP1004IIIB* locked mutant was infected with SpnIIIA-methylated SpSL1 phage (MOI=2.5) the Abi phenotype was slower with 4 and 16 mg/L Cm and arrested in the presence of 64 mg/L Cm.

Figure S5. Zoomed in alignment of RNA-Seq of the lysogen at the hypothetical protein (*cds50*) in the centre, *cds49* (left) and *cds01* (right) highlighting the high degree of antisense RNA at *cds50* and throughout this region.