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ABSTRACT.  Payoff dominance, a criterion for choosing between equilibrium points in 

games, is intuitively compelling, especially in matching games and other games of common 

interests, but it has not been justified from standard game-theoretic rationality assumptions.  

A psychological explanation of it is offered in terms of a form of reasoning that we call the 

Stackelberg heuristic in which players assume that their strategic thinking will be anticipated 

by their co-player(s).  Two-person games are called Stackelberg-soluble if the players' 

strategies that maximize against their co-players' best replies intersect in a Nash equilibrium. 

 Proofs are given that every game of common interests is Stackelberg-soluble, that a 

Stackelberg solution is always a payoff-dominant outcome, and that in every game with 

multiple Nash equilibria a Stackelberg solution is a payoff-dominant equilibrium point.  It is 

argued that the Stackelberg heuristic may be justified by evidentialist reasoning. 

 

Keywords: coordination games, evidentialism, games of common interests, payoff 

dominance, simulation heuristic, Stackelberg heuristic 
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 1. INTRODUCTION 

The concept of payoff dominance is widely accepted in non-cooperative game theory as a 

criterion for choosing between Nash equilibria.  A simple example in a 2 × 2 game is shown 

n Table 1. i 

 

  Table 1 about here 

 

 Player 1 and Player 2 both prefer the pure-strategy equilibrium A1A2, which yields 

payoffs of (2, 2), to the other pure-strategy equilibrium BB1B2B , which yields payoffs of (1, 1).  

The mixed-strategy equilibrium, with probabilities of 1/3 assigned to A1 and A2 and 2/3 to BB1 

and B2B , yields even lower payoffs of (2/3, 2/3).  The equilibrium A1A2 is said to payoff 

dominate BB1B2B  because each player receives a greater payoff if the outcome is A1A2 than if it 

is BB1B2B .  The matrix in Table 1 is an example of a pure coordination game (e.g., Colman, 

1995, chap. 3; Schelling, 1960, chap. 3), or more specifically a unanimity game (Kalai and 

Samet, 1985) or a matching game (Bacharach and Bernasconi, 1994), because (a) the players 

have the same strategy sets, and (b) the payoffs are positive if the players choose the same 

strategy and zero otherwise.  Games of this type are the simplest possible exemplars of games 

of common interests - the class of games in which one outcome Pareto-dominates all other 

outcomes (Aumann and Sorin, 1989). 

 Intuitively, it seems obvious in the simple example of Table 1 that rational players will 

choose A rather than B and that the payoff-dominant equilibrium point A1A2 will therefore be 

the outcome, and there is general agreement in the game theory literature with this intuition 

(Bacharach, 1993; Crawford and Haller, 1990; Farrell, 1988; Gauthier, 1975; Harsanyi and 

Selten, 1988; Lewis, 1969; Sugden, 1995).  In fact, payoff dominance is so obvious in games 

of this type that no experimental tests of it appear to have been published. 

 Formally, in any game Γ = 〈N, Si, Hi〉, where N = {1, 2, ..., n} is a set of players, n ≥ 2, Si 

(i ∈ N) is Player i's strategy set, ⏐Si⏐ ≥ 2, and Hi (i ∈ N) is a real-valued payoff function 

defined on the set S = S1 × S2 × ... × Sn, if e and f are two Nash equilibria, e payoff-dominates 
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f iff Hi(e) > Hi(f) for every player i ∈ N. 

 The payoff dominance principle is the assumption that if one equilibrium point e payoff-

dominates all others, then rational players will play their parts in e.  Harsanyi and Selten 

(1988) incorporated this principle (together with a secondary criterion called risk dominance) 

into their general theory of equilibrium selection in games, though apparently only 

provisionally and with some reluctance (see their comments on pp. 355-363), and others have 

used it in diverse branches of game theory.  For example, Bacharach's (1993) variable-frame 

theory, when applied to matching games, provides determinate solutions only with the help of 

payoff dominance. 

 Granted that, as Harsanyi and Selten (1988) claim, rational players know that they should 

play their parts in some equilibrium point, each player is still faced with a problem of 

equilibrium selection.  A player has no reason to choose a payoff-dominant equilibrium point 

unless there is some reason to believe that the other player(s) will do likewise; but the other 

player(s) face exactly the same quandary.  Indeed, it seems that the underlying difficulty in 

justifying the claim that rational players will play their part in some equilibrium point has 

raised its head again at the level of equilibrium selection.  No one has provided a convincing 

justification of the principle of payoff dominance or even of the weaker principle that in a 

game of common interests players should play their parts in the Pareto-optimal profile.  All 

plausible attempts in the literature to rationalize A1A2 in the game shown in Table 1 have 

involved essential changes in the specification of the game, introducing either repetitions 

(e.g., Aumann and Sorin, 1989) or a “cheap talk” stage in which one or more players can 

choose to make a costless announcement before choosing between A and B (e.g., Anderlini, 

1990; Farrell, 1988). 

 It seems from the record of failure to tease a justification of A out of the classical 

principles of game theory that there is none to be found in that quarter.  But there are three 

avenues that offer some hope of explaining A as rational, either in some nonstandard sense or 

in a closely related game.  The first would involve bounding Player 2's rationality: for 

instance, even a tiny probability that Player 2 is a “level 0” player (Stahl and Wilson, 1994) 
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induces A choices in all “level n” and “level n worldly Nash” players for n > 0.  Closely 

related to this rationalization are “equiprobability” arguments for A (Hurley, 1991).  Second, 

A can be explained as the product of cooperative reasoning or team thinking (Bacharach, 

1995; Hurley, 1991; Sugden, 1993). 

 In this article we offer a third possible explanation of the intuition that it is rational to 

choose A.  We hypothesize that players are influenced by a form of reasoning that we call the 

Stackelberg heuristic.  The basic idea is that the players believe that their co-players can 

“read their minds”.  We show first that the Stackelberg heuristic yields maximin choices in 

strictly competitive games and A choices in the game shown in Table 1 and throughout the 

family of games that includes it; second that it is in equilibrium with itself in these games; 

and third that it may be rationalized by “evidentialist” reasoning.  The validity of evidentialist 

reasoning is controversial, and we shall remain neutral on the question of the rationality of 

the Stackelberg heuristic.  But in view of the fact that it is undoubtedly appealing in other 

cases, such as Newcomb's problem (Nozick, 1969), we suggest that, whatever its validity, it 

may underlie our intuitions of the rationality of choosing A. 

 

 2. RATIONALITY ASSUMPTIONS 

A proposition is common knowledge among a set of players if every player knows it to be 

true, knows that the other players know it to be true, knows that the other players know that 

the other players know it to be true, and so on.  The standard knowledge assumptions of game 

theory are called complete information.  Complete information comprises the following pair 

of assumptions (see, e.g., Sugden, 1991, p. 765): 

 1.  The specification of the game, including the rules, the players' strategy sets and payoff 

functions, and every proposition that can be proved about the game by valid reasoning, is 

common knowledge; 

 2.  The players are rational in the sense of acting to maximize their individual expected 

utilities, and this is common knowledge in the game. 

 Complete information logically implies a further characteristic of game-theoretic 
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reasoning that Bacharach (1987) has called the transparency of reason.  This is the property 

that if a player has reached some conclusion on the basis of complete information, for 

example about which strategy it would be best to choose, then the fact that the player has 

reached it must be known to the other player(s) – in fact, the conclusion itself must be 

common knowledge. 

 

 3. STRICTLY COMPETITIVE GAMES 

Perhaps surprisingly, the argument used by von Neumann and Morgenstern (1944, section 

14.4.1, pp. 100-104) to provide an a priori rational justification for selecting maximin 

strategies in finite, strictly competitive (two-person, zero-sum) games can be adapted to 

provide a psychological explanation for selecting payoff-dominant Nash equilibria in 

matching games and other games of common interests. 

 Von Neumann and Morgenstern approached the solution of strictly competitive games 

obliquely via the construction of two auxiliary models, slightly different from the basic game, 

which were later to be called metagames (Howard, 1971, 1974, 1987).  For our purposes – 

for the argument on payoff dominance that follows – only “strictly determined” games whose 

payoff matrices have saddle points need to be considered, although the argument generalizes 

to non-saddle-point games.  According to von Neumann and Morgenstern, Player 1 chooses 

as if playing in a first-level metagame in which Player 2 chooses second with the benefit of 

knowing which strategy Player 1 has chosen.  In the extensive form of this metagame, 

rational choice is well defined: Player 2, moving second with perfect information of Player 

1's earlier move, faces a straightforward decision under certainty and, being rational, chooses 

a payoff-maximizing reply to any of Player 1's moves, and because the game is zero-sum, 

Player 2's reply always minimizes Player 1's payoff.  Player 1, knowing that Player 2 is 

rational and will invariably respond in this way with a best reply, therefore also chooses 

under certainty in the extensive form of the metagame. 

 Back in the basic normal-form game, according to this argument, Player 1, as if moving 

first in the metagame, ignores all elements of the payoff matrix [aij] except the row minima 
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minj aij and chooses a row containing the maximum of these minima, namely maxi minj aij (a 

maximin row).  Because the game is zero-sum, the payoffs in the matrix [aij] represent Player 

1's gains and Player 2's losses; therefore Player 2, choosing as if playing in a metagame in 

which Player 1 moves second with foreknowledge of Player 2's move, chooses a column 

containing the minimum of the column maxima, namely minj maxi aij (a minimax column).  

Von Neumann and Morgenstern proved that, in every strictly determined game, these 

maximin and minimax strategies necessarily intersect in an equilibrium point.  This 

equilibrium point, if it is unique, is generally accepted as the rational solution of the game. 

 

 4. EXTENSION TO NON-ZERO-SUM GAMES 

In von Neumann and Morgenstern's (1944) classic treatment of strictly competitive games, 

the players choose as their strategies those that would maximize their payoffs in hypothetical 

metagames in which their co-players are assumed to respond with payoff-minimizing 

counter-strategies.  This assumption, perfectly reasonable in the metagames but apparently 

ultra-pessimistic in the basic game, is justified on the ground that what is good for Player 1 is 

correspondingly bad for Player 2, and vice versa.  In every two-person or n-person game of 

common interests, on the other hand, if i and j are any two players, what is good for Player i 

is correspondingly good for Player j, and vice versa, so the players have an analogous 

justification for assuming that their co-players will invariably respond with payoff-

maximizing counter-strategies.  In fact, the justification is stronger in this case, because in 

strictly competitive games the best that a player can hope to achieve through metagame 

rationality is to limit the damage by ensuring the best of the worst possible outcomes, and 

this motive may clash with more positive ambitions of obtaining the best possible outcome, 

whereas in non-zero-sum games of common interests such a conflict of motives is absent. 

 We give the name “Stackelberg heuristic” to the general method of reasoning that von 

Neumann and Morgenstern proposed for the particular case of strictly competitive games.  

Players use the Stackelberg heuristic if they choose strategies that would maximize their 

individual payoffs in hypothetical metagames in which their co-players are assumed to 
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respond with best replies to any choices that they might make. 

 A game in normal form is a triple 〈N, Si, Hi〉, where N = {1, 2, ..., n} is a set of players, n 

≥ 2, Si (i ∈ N) is Player i's strategy set, ⏐Si⏐ ≥ 2, and Hi (i ∈ N) is a real-valued payoff 

function defined on the set S = S1 × S2 × ... × Sn.  Howard (1971) defined a metagame 

formally as follows.  If Γ is a game in normal form, and if k is a player in Γ, then the (first-

level) metagame kΓ is the normal-form game that would be played if Player k's strategy 

choice in Γ occurred after those of the other players and with knowledge of the other players' 

strategy choices in Γ.  This concept generalizes by recursion: if j, k are players, then the 

second-level metagame jkΓ is the game that would be played if j chose a strategy in the first-

level metagame kΓ with knowledge of the other players' strategies in kΓ; and this can be 

continued up to k1 . . . knΓ, where each ki ∈ N is a player and n ≥ 1, but for our purposes only 

irst-level metagames need to be considered. f 

 

  Table 2 about here 

 

 Consider once again the game shown in Table 1 and compare it with the normal form of 

its 2Γ metagame shown in Table 2.  In the 2Γ metagame, Player 2's strategies are replaced by 

the set of all functions F: S1 → S2, where f(A1) = x, f(BB1) = y is written x/y, x, y ∈ {A2, B2B }.  

The strategies A2/A2, A2/BB2, B2B /A2, and BB2/B2B  are Player 2's pure strategies in the normal-form 

metagame 2Γ derived from the basic matching game Γ shown in Table 1.  Thus if Player 1 

chooses BB1 and Player 2 chooses A2/B2B , for example, this means that Player 1 chooses BB1 and 

Player 2 chooses “If Player 1 chooses A1 choose A2, and if Player 1 chooses B1B  choose BB2”; 

these choices could be handed before the game to a referee who would determine that the net 

effect in the basic game is that Player 1 chooses B1B  and Player 2 chooses BB2.  (In this respect 

metagame strategies function like ordinary strategies in sequential games with more than one 

move per player.)  In this metagame, it is clear that Player 2, who is assumed to be rational, 

will choose the strategy A2/B2B , because it is a weakly dominant strategy.  It is also clear that 

Player 1 will anticipate this and will therefore choose the payoff-maximizing counter-strategy 
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A1.  In other words, by iterated deletion of weakly dominated strategies, the solution of the 

metagame 2Γ is the outcome (A1, A2/BB2), which corresponds to the payoff-dominant outcome 

(A1, A2) in the basic game Γ, with payoffs (2, 2). 

 

THEOREM 1.  The first-level metagame jΓ of every finite two-person game Γ is soluble by 

iterated deletion of weakly dominated strategies.  If Γ is a game of common interests, the 

resulting solution corresponds to the Pareto-optimal outcome. 

 Proof.  In the first-level metagame jΓ of every finite two-person game Γ, Player j's 

strategy set includes a weakly dominant strategy s.  This must be so, because Player j's 

strategy set is the set F of all functions f: Si → Sj (i ≠ j, i, j ∈ {1, 2}).  Player j's strategy set in 

the jΓ metagame thus includes a strategy f′ such that for each strategy si of Player i, f′(si) is a 

best reply of Player j.  Thus 

 Hj(si, f′) ≥ Hj(s)   ∀ s ∈ S. 

Ignoring the degenerate case in which Hj(r) is constant for all r ∈ Si × F, f′ is a weakly 

dominant strategy.   Player i, who knows that Player j has a weakly dominant strategy f′, can 

choose a counter-strategy for which maxi Hi(si, f′(si)) is attained.  This shows that jΓ is 

soluble by iterated deletion of weakly dominated strategies.  If Γ is a game of common 

interests, the solution corresponds to the Pareto-optimal outcome, because the payoffs pairs 

of jΓ are elements of the set of payoff pairs of Γ, and since the game is one of common 

interests, 

 ∃ (s*, s*): Hi(s*, s*) > Hi(s1, s2)   ∀ i ∈ {1, 2}, ∀ (s1, s2) ≠ (s*, s*). 

Therefore f′(s*) = s*, and the si for which maxi Hi(si, f′(si)) is attained is s*, which shows that 

the solution is the Pareto-optimal outcome.  
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 5. TRANSPARENCY OF DELIBERATION 

The logic of the Stackelberg heuristic is essentially as follows.  Common knowledge of 

rationality implies that each player knows the reasoning of the other, hence Player 2 knows 

Player 1's reasoning and Player 1 knows that Player 2 knows it.  Now let C1s1 denote “Player 

1 chooses strategy s1”, and let us assume what we shall call the transparency of deliberation: 

 ∀s1∈S1, C1s1 ⇒ Player 2 knows that C1s1, 

and the analogous version, mutatis mutandis, with the players' roles reversed.  The 

transparency of deliberation is a stronger assumption than the transparency of reason, which 

applies only to players' strictly rational reasoning processes, but it is grounded in the same 

basic hypothesis, namely that human decision makers tend to be like-minded.  Psychological 

investigations of stereotypes (see, e.g., Mackie and Hamilton, 1993; Oakes, Haslam, and 

Turner, 1994) have revealed a remarkable degree of consensus in people's understanding of 

their social environment, and research into attribution processes and social cognition (see, 

e.g., Fiske and Taylor, 1991; Hewstone, 1989; Schneider, 1995) has shown that the same 

basic cognitive processes underlie people's predictions and explanations of their own 

behaviour and that of others.  The transparency of deliberation may be thought of as a 

psychological counterpart of the purely logical transparency of reason. 

 Mental processes of this type, underlying the Stackelberg heuristic, belong to a broader 

class of simulation heuristics, first identified by Kahneman and Tversky (1982), whereby 

people answer questions of various kinds about events through an operation resembling the 

running of a simulation model.  The ease with which a mental model reaches a particular 

state may help a decision maker to judge the propensity of the actual situation to reach that 

outcome.  Kahneman and Tversky provided empirical evidence that human decision makers 

use this heuristic to predict the behaviour of others in given circumstances and to answer 

questions involving counterfactual propositions by mentally “undoing” events that have 

occurred and then running mental simulations of the events with the corresponding input 

parameters of the model altered.  In hypothetical metagames simulation plays two possible 

roles: simulation carried out by Player 2 may be the cognitive route by which Player 1's 
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deliberation becomes transparent to Player 2; and Player 1 may also use simulation to predict 

what would transpire if – counterfactually – the game were one of perfect information. 

 When appended to the assumptions of complete information, the transparency of 

deliberation implies that, in the basic game Γ, Player 2 effectively chooses as though playing 

in the metagame 2Γ.  Because Player 1 knows this, and knows that Player 2 is rational, and 

because Player 1 is rational, the outcome is the payoff-dominant equilibrium.  By symmetry, 

Player 1 effectively chooses as though playing in the metagame 1Γ, and because Player 2 

knows this, the outcome is once again the payoff-dominant equilibrium. 

 

 6. STACKELBERG SOLUBILITY 

Consider a game in normal form.  We define the following best reply mapping β, which 

assigns a set of strategies for Player i to each strategy of the co-player j: 

 β(sj) = argmax (si) Hi(si, sj). 

That is, the members of β(sj) are the strategies that maximize Player i's payoff given that 

Player j chooses the strategy sj.  In general, the best reply set β(⋅) may not be a singleton.  But 

in the rest of this article we shall assume that it is, as indeed it is in every matching game.  

Henceforth, then, β is a function. 

 Following the work of Heinrich von Stackelberg (1934) on asymmetric duopoly games, 

we define Player 1's Stackelberg payoff for s1, symbolized by h(s1), as 

 h(s1) = H1(s1, β(s1)), 

and Player 2's Stackelberg payoff h(s2) for s2 as 

 h(s2) = H2(β(s2), s2). 

 We shall assume that there is a unique strategy si for Player i (i = 1, 2) that maximizes 

Player i's Stackelberg payoff.  We call this strategy Player i's Stackelberg strategy s.  That is, 

 h(si) has a unique maximizer s. 

We make this assumption even though it does not hold for all matching games, because it 

avoids complications that are inessential to our argument.  If (s, s) is a Nash equilibrium in 

the basic game Γ, then Γ will be called Stackelberg-soluble (or h-soluble) and (s, s) will be 



 Payoff Dominance   12 

called its Stackelberg solution (or h solution).  This will be the case if and only if iterated 

deletion of weakly dominated strategies in the jΓ metagame yields an equilibrium point that 

corresponds to an equilibrium point in the basic game. 

 

THEOREM 2.  Every game of common interests is h-soluble, and its Pareto-optimal outcome 

is its h solution. 

Proof.  Let the Pareto-optimal outcome be (s*, s*).  Because it is Pareto-optimal, s* is a 

best reply to s*.  It follows that H1(s*, s*) = H1(s*, β(s*)) = h(s*).  But because (s*, s*) is 

Pareto-optimal, H1(s*, s*) is the greatest payoff to Player 1 over all pairs of strategies, so 

h(s*) is the maximum of h(s1) over all s1; that is, s* maximizes h(s1).  Similarly, s* 

maximizes h(s2).  Therefore, in view of the fact that (s*, s*) is a Nash equilibrium, it is the h-

solution (s, s) of the game.  

 

THEOREM 3.  In every game with more than one Nash equilibrium, a Stackelberg solution is 

a payoff-dominant Nash equilibrium. 

Proof.  If (s1, s2) is any Nash equilibrium, then s2 = β(s1), and therefore H1(s1, s2) = h(s1), 

Player 1's Stackelberg payoff for s1.  Similarly, H2(s1, s2) = h(s2), Player 2's Stackelberg 

payoff for s2.  Now suppose that (s, s) is a Stackelberg solution and (s1, s2) is any other Nash 

equilibrium.  Because Player 1's Stackelberg strategy s uniquely maximizes h(s1), h(s) > 

h(s1).  Similarly h(s) > h(s2).  Therefore (s, s) payoff-dominates (s1, s2).  

Remark.  Theorem 3 implies that the payoff-dominance principle of equilibrium selection 

is a corollary of the Stackelberg heuristic, restricted to games in which this heuristic is in 

equilibrium with itself.  That is, in any game with multiple equilibria that is Stackelberg-

soluble, players who follow the heuristic play their parts in the payoff-dominant equilibrium 

point. 

 

 The next two theorems show that h solubility is a broader property than common interests 

and a narrower one than payoff dominance.   
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THEOREM 4.  There are h-soluble games that are not games of common interests. 

Proof.  The game shown in Table 3 has Stackelberg payoffs as follows: h(A1) = 2, h(BB1) = 

1, h(A2) = 2, h(B2B ) = 0.  There is a Nash equilibrium at (A1, A2), and it is evidently a 

Stackelberg solution because if both players choose strategies that maximize the Stackelberg 

payoffs, giving max (s1) h(s1) and max (s2) h(s2), the outcome is (A1, A2), but the game is not 

ne of common interests.  o 

 

  Table 3 about here 

 

THEOREM 5.  There are games with payoff-dominant Nash equilibria that are not h 

solutions. 

 Proof.  The game shown in Table 4 has the following Stackelberg payoffs: h(A1) = 2, 

h(BB1) = 3, h(C1) = 1, h(A2) = 2, h(B2B ) = 0, h(C2) = 1.  There are two pure-strategy Nash 

equilibria at (A1, A2) and (C1, C2).  The equilibrium (A1, A2) payoff-dominates (C1, C2), but 

the Stackelberg strategies are s = BB1 and s = A2, and (s, s) = (B1B , A2) is not a Nash equilibrium 

nd therefore not a Stackelberg solution.  a 

 

  Table 4 about here 

 

 7. DISCUSSION 

Payoff dominance seems a highly plausible criterion for equilibrium selection, especially in 

matching games and other games of common interests.  In this article we have presented an 

explanation of its plausibility in terms of a form of reasoning that we have called the 

Stackelberg heuristic.  The Stackelberg heuristic does not explain payoff dominance for 

games in general, or even for two-person games in general because, as we have shown, there 

are games with payoff-dominant Nash equilibria that are not Stackelberg-soluble.  The 
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explanation applies primarily to games of common interests, although we have shown that 

there are other games with Stackelberg solutions apart from games of common interests. 

 Underlying the heart of the explanation is the assumption that Player j will try to predict 

Player i's strategy choice and that Player i will expect this to happen and will try to maximize 

utility in the light of this expectation.  In effect, the players will use a type of simulation 

heuristic, which has been studied in a different context by Kahneman and Tversky (1982).  It 

is widely accepted (see, e.g., Bacharach, 1987) that given certain standard game-theoretic 

rationality assumptions, if there is a logically valid argument for Player i to choose a strategy, 

then Player j will predict it and Player i will expect that to happen.  This arises from the 

transparency of reason, which in turn derives from the fact that human decision makers share 

the same reason.  But the argument for payoff dominance presented in this article rests on a 

stronger assumption, which we call the transparency of deliberation, namely that, whatever is 

Player i's reasoning path to a strategy choice, whether logically valid or not, Player j will 

“discover” it. 

 The full or at least partial transparency of deliberation seems a reasonable assumption, 

and it rests on a hypothesis similar to that of the transparency of reason: that human decision 

makers share largely the same underlying cognitive structures and dispositions.  The 

evidence from research into attribution processes and social cognition has already been 

alluded to.  In addition, empirical evidence from experiments on matching games has shown 

that people, to their mutual benefit, are able to coordinate their strategies remarkably easily in 

practice.  For example, when pairs of experimental subjects were invited to choose “heads” 

or “tails” independently, knowing that they will both win only if they both choose “heads” or 

both choose “tails”, Schelling (1960, chap. 3) found in the United States that 86 per cent 

chose “heads”, and Mehta, Starmer, and Sugden (1994) found in England that 87 per cent 

chose “heads”.  Even more remarkably, Schelling reported that pairs of subjects who 

imagined that they had to meet each other at a particular place, but knew that neither had 

been given a time for the meeting, virtually all chose 12 noon, thus correctly anticipating 

each other's choices through the transparency of deliberation. 
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 We have argued that the Stackelberg heuristic may explain payoff-dominant choices, but 

so far we have offered no serious defence for using it.  We turn now to the question of 

whether it is justified. 

 At first sight it may seem not to be.  Its application to strictly competitive games by von 

Neumann and Morgenstern (1944, section 14.4.1) met early criticism on the simple ground 

that Player i's premiss that any strategy choice will be discovered by Player j – that is, that the 

game is one of perfect information – is false, by definition, in a simultaneous-play game 

(Ellsberg, 1956).  But this objection is unsound, because all that the definition excludes is 

that the rules of the game prescribe that Player i's choice will be conveyed to Player j before j 

chooses a strategy.  The definition does not exclude the possibility that Player j might 

discover Player i's choice by “mind-reading”; indeed it is an essential assumption of rational 

game theory that valid reasoning is transparent, so why should not all reasoning, whether 

valid or invalid, be similarly transparent? 

 A more serious objection is that Player i reasons that any choice will be discovered by 

Player j.  In one sense this may be true: Player i may indeed justifiably believe, before 

deliberating, that “whatever I come up with by deliberating, Player j will have anticipated it”. 

 But it does not follow that whatever choice Player i were to make, Player j would in fact 

anticipate it.  Player j would not, for example, anticipate a choice that was quite unreasonable 

or capricious.  Yet Player i's choice ranges over all strategies permitted by the rules. 

 The key question is whether the evidence that an arbitrary decision by Player i provides 

of how Player j will decide may be used by i to formulate a choice.  There is no doubt, if we 

grant transparency and Player j's best-reply rationality, that a decision by Player i to do si, 

arrived at by the sort of process that makes it transparent to j, is evidence for j's choosing 

β(si).  Whether such evidence may legitimately be used by Player i is the issue that divides 

“evidentialists” and “causalists” in decision theory (Eells, 1985; Gibbard and Harper, 1978; 

Nozick, 1969). 

 Underlying the Stackelberg heuristic is evidentialist reasoning.  Player i evaluates each 

act si according to conditional expected utility given the hypothesis that the choice is si.  So 



 Payoff Dominance   16 

the evaluation of si is 

 E(u ⏐ si) = Σ(sj) Pr(sj ⏐ si) Hi(si, sj) = Hi(si, β(si)) = h(si), 

because by transparency Pr(β(si) ⏐ si) = 1.  Against this way of evaluating actions, 

“causalists” claim that si should be judged by its probable consequences, and Player i's choice 

is causally independent of Player j's, so Player i cannot validly use a strategy choice si as a 

basis on which to reach any conclusion about the likely outcome of the game.  It is interesting 

to note that this evidentialist justification of payoff dominance differs from another possible 

evidentialist justification, discussed by Lewis (1979), for playing cooperatively in the 

Prisoner's Dilemma game.  In Lewis's argument, si provides evidence about sj, and the 

evidence rests on the similarity of the way the two players reason and the symmetry of their 

joint situation.  In the present argument the evidence rests on the transparency to Player j of 

Player i's reasoning.  This argument is therefore of much wider scope, because it depends 

only on similarity of reasoning (the basis of transparency) and not on the symmetry of the 

situation. 

 Von Neumann and Morgenstern (1944, section 14.4.1) struggled to find a serious 

argument for their advocacy of the Stackelberg heuristic.  We have suggested one.  Valid or 

not, our evidentialist argument for the Stackelberg heuristic is what von Neumann and 

Morgenstern called a “direct argument”.  It is to be distinguished from the “indirect 

argument” that they used to show that the correct solution concept for a class of games must 

be an equilibrium (section 17.3.3).  The indirect argument provides a test of the validity of a 

direct argument.  Applied to the Stackelberg heuristic, the indirect argument shows that it 

provides a correct solution only in the subclass of games that are Stackelberg-soluble.  It is 

precisely for that subclass that we hypothesize that it is used. 

 The Stackelberg heuristic is a form of the simulation heuristic in which people try to 

predict one another's behaviour in strategic interactions and to choose their own best 

strategies on the basis of these predictions.  In these cases, they may appear to be acting as 

though their merely evidential actions were causal.  Quattrone and Tversky (1984) showed 

experimentally that people tend to select actions that are associated with desired outcomes 
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even when they know that these actions are merely evidential or diagnostic of the outcomes 

and not causally connected with them.  In the key experiment, subjects expressed a greater 

willingness to vote in an election when they believed that the outcome would depend on the 

proportion of like-minded voters who turned out on polling day rather than on the behaviour 

of non-aligned voters, even though the effect of one person's vote would be negligible (and 

equal) in both cases.  The subjects thus behaved as though their own actions could somehow 

“induce” like-minded people to exercise their right to vote.  Furthermore, subjects predicted 

that their preferred candidate would be significantly more likely to win the election if they 

themselves voted, and the strength of this perceived association correlated substantially (r = 

.32, p < .001) with their willingness to vote.  These findings show that, in some 

circumstances at least, people behave as though their actions are causal even when they know 

them to be merely diagnostic or evidential. 

 Although it is clearly irrational to believe that an action that is merely evidential can be 

causal, it is not obviously foolish to behave in such a way that, if other people were to behave 

similarly, a mutually desirable outcome would result.  In strategic interactions, a common-

sense way of choosing a strategy often involves first predicting what the other players are 

likely to do, assuming that they will expect others to do likewise, and so forth, and then 

selecting the optimal reply in the light of these predictions and assumptions.  This seems 

especially justifiable when other reasons for choice are lacking.  In matching games and other 

games of common interests, at least, this approach may be implemented by choosing 

Stackelberg strategies.  If players in such games do not use the Stackelberg heuristic, then it 

is not obvious what better method they have for choosing.  We have proved that every 

Stackelberg solution is a payoff-dominant Nash equilibrium.  Payoff-dominant Nash 

equilibria are intuitively obvious choices, and there must be some reason for this.  Our 

suggestion of the Stackelberg heuristic is an attempt to clarify this essentially psychological 

phenomenon and to explain how experimental subjects manage to choose payoff-dominant 

equilibria in games in which there is no basis for rational choice according to standard game-

theoretic assumptions. 
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Table 1 
 
A Simple 2 × 2 Game Illustrating Payoff Dominance 
 
   2 

   A2  B2

 A1  2, 2  0, 0 
 1 

 B1  0, 0  1, 1 
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Table 2 
The 2Γ Metagame of the Game in Table 1. 
 

  2 

  A2/A2 A2/BB2 BB2/A2 BB2/B2B

A1 2, 2 2, 2 0, 0 0, 0 
1 

BB1 0, 0 1, 1 0, 0 1, 1 

 

Note.  Player 2 chooses after Player 1 with the benefit of knowing which strategy Player 1 

has chosen.  Player 2's conditional strategy x/y means “if Player 1 chooses A1, choose x; if 

Player 1 chooses B1, choose y”, where x, y ∈ {A2, BB2}. 
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Table 3 
 
A Game that is h-Soluble but is Not a Game of Common Interests 

  

 2 

 A2 BB2

A1 2, 2 3, 1 
1 

BB1 1, 3 4, 0 
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Table 4 
 
A Game with a Payoff-Dominant Nash Equilibrium that is Not a Stackelberg 
 
Solution 
 
   2 

   A2  B2  C2

  A1  2,  2  1,  1  0,  0 

 1  B1  1, -1  3,  0  0, -1 

  C1  1,  0  4,  0  1,  1 
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