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Abstract 

A genetic algorithm incorporating mutation and crossing-over was used to investigate the evolution of 
social behaviour in repeated Prisoner’s Dilemma, Chicken (Hawk-Dove), Battle of the Sexes, and Leader 
games. The results show that the strategic structure of an interaction has a crucial determining effect on the type 
of social behaviour that evolves. In particular, simulations using repeated Prisoner’s Dilemma and Chicken 
(Hawk-Dove) games lead to the emergence of genes coding for symmetric reciprocity and the evolution of 
mutual cooperation, whereas simulations using repeated Battle of the Sexes and Leader games lead to near-
fixation of genes coding for asymmetric strategic choices and the evolution of coordinated alternating 
reciprocity. A mechanism is suggested whereby, in games with asymmetric equilibrium points, coordinated 
alternating reciprocity might evolve without insight or communication between players.  
___________________________________________________________________________ 
 
1. Introduction 
 

The introduction of genetic algorithms (Goldberg, 1989; Holland, 1975; Riolo, 1992) 
enabled researchers to investigate the natural selection of social behaviour using simulations 
incorporating mutation and crossing-over. This research has focused almost exclusively on 
the repeated Prisoner’s Dilemma game (e.g., Axelrod, 1987; Axelrod and Dion, 1988; Bendor 
et al., 1991; Boerlijst et al., 1997; Kraines and Kraines, 1989, 1995; Lindgren, 1991; Nowak 
and May, 1992; Nowak et al., 1995; Nowak and Sigmund, 1992, 1993, 1998; Wu and 
Axelrod, 1995). Among the few who have studied the evolution of behaviour in other games 
are Binmore and Samuelson (1992); Crowley (2001); Friedman (1996); Lipman (1986); 
Posch (1999); and Roth and Erev (1995). However, even among the simplest strategic games, 
namely dyadic (two-player) games in which each player has just two strategies, there are 12 
ordinally distinct, symmetric 2 × 2 games (Rapoport and Guyer, 1966). 

Rapoport (1967) showed that, after excluding games that are strategically trivial in the 
sense of having equilibrium points that are uniquely Pareto-efficient, there remain four 
archetypal 2 × 2 games: Prisoner’s Dilemma, Chicken (Hawk-Dove), Battle of the Sexes, and 
Leader, but there is no reason to suppose that the Prisoner’s Dilemma game is more 
characteristic of naturally occurring strategic interaction than any other.  
 
2. Strategic Structures 
 

The findings reported in this article are based on simulations using the four archetypal 
games, with the payoffs shown in Fig. 1. The Prisoner’s Dilemma game (Fig. 1A), defined by 
the inequalities T > R > P > S (Fig. 1E), has a unique equilibrium point at (D, D), 
corresponding to joint defection, and the D strategy is dominant for both players, in the sense 
that it yields a higher payoff than the C strategy irrespective of the co-player’s choice, but 
each player receives a higher payoff if both choose C than if both choose D. The game was 
discovered at the RAND Corporation in 1950 and popularized by Luce and Raiffa (1957, pp. 
94-102). A typical interaction in which the game is often believed to arise in nature involves 
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a pair of conspecifics that can either groom each other (C), to their mutual advantage, or 
defect (D) by declining to groom each other. The outcome is better for each player if both 
cooperate than if both defect, but a player receives the best possible payoff by defecting 
while the co-player cooperates, in which case the cooperative player receives the worst 
payoff, because the cooperator expends time and energy grooming but receives nothing in 
return.  
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Fig. 1.  Payoff values for simulations using the four archetypal 2 × 2 games. Shaded cells are Nash equilibrium 
points 
 

The other three games lack dominant strategies and have dual, asymmetric equilibrium 
points in pure strategies – we ignore mixed-strategy equilibria that become available only if 
players can choose probability distributions over their pure strategies, which requires the use 
of randomizing devices. Games with asymmetric equilibria, when iterated, turn out to have 
interesting evolutionary properties that are lacking in the iterated Prisoner’s Dilemma game. 

Chicken (Fig. 1B), defined by T > R > S > P, is the prototypic dangerous game, because 
a player has to risk the lowest payoff to have a chance of the highest, and it has equilibrium 
points at (D, C) and (C, D), Player I preferring (D, C) and Player II (C, D). This game was 
first described by Russell (1959, p. 30). The classic biological example, introduced by 
Maynard Smith and Price (1973) and later named the Hawk-Dove game (Maynard Smith, 
1982), occurs when a pair of organisms contesting a resource can engage in conventional 
fighting (C) or can defect by engaging in escalated fighting (D). Under reasonable 
assumptions, the outcome is best for a player that defects while the co-player cooperates; 
second-best for each if both cooperate; third-best for a player that cooperates while the co-
player defects; and worst for each if both defect, because then the fighting is both escalated 
and protracted. 
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Battle of the Sexes (Fig. 1C), defined by S > T > R > P, also has equilibrium points at (D, 
C) and (C, D), but in this game Player I prefers (C, D) and Player II (D, C). The game was 
introduced by Luce and Raiffa (1957, p. 91). A typical biological interaction with this 
strategic structure might occur if two predators feeding on a kill are being harassed by 
scavengers. (Although we continue to use the symbols C and D for convenience, their 
interpretation in terms of cooperation and defection are hardly applicable to this game or to 
the game of Leader below.) Each can either ignore the scavengers (C), or temporarily 
abandon the kill to chase the scavengers (D). We may assume that the payoff is best for a 
player who ignores the scavengers and continues feeding while the co-player chases the 
scavengers; second-best for a player who unilaterally stops feeding to chase the scavengers 
and thus loses a little feeding time; third-best for each player if both ignore the scavengers 
and therefore lose some of the kill; and worst for each if both simultaneously abandon the kill 
to chase the scavengers, because in that case they run the risk of losing the whole kill. 

Leader (Fig. 1D), defined by T > S > R > P, has equilibrium points at (D, C) and (C, D) 
and, as in Chicken, Player I prefers (D, C) and Player II (C, D). This game was first identified 
and named by Rapoport (1967). It might occur in nature if two organisms need to escape 
from a predator through an escape route that is wide enough for only one of them at a time. 
Each player can either bolt for the opening (D) or wait for the co-player to bolt, with the 
intention of following immediately after (C). We may assume that the chances of escape are 
best for a player who bolts while the co-player waits; second-best for a player who waits and 
then follows after the co-player bolts; third-best for players who both wait for each other and 
thus fail to bolt; and worst for players who bolt simultaneously and thus run the risk of 
injuring each other or getting stuck, thus becoming easy prey. 

In the repeated Prisoner’s Dilemma game, the simple reciprocal strategy Tit for Tat (TFT) 
cooperates on round 1, then on every subsequent round t copies the co-player’s choice from 
round t – 1. The strategy pair (TFT, TFT) is an equilibrium point (Binmore, 1992, pp. 368-
369), corresponding to the (C, C) outcome, and so is (ALL D, ALL D), corresponding to the 
(D, D) outcome, which is the unique equilibrium point of the one-shot stage game. 
Mathematically, (TFT, TFT) corresponds to the point (3, 3) and (ALL D, ALL D) to the point 
(1, 1) in the basic outcomes of the one-shot Prisoner’s Dilemma stage game.  

Mathematically, the average payoffs per round that are possible in an indefinitely 
repeated Prisoner’s Dilemma game lie in a cooperative payoff region defined by the convex 
hull of points representing the four outcomes of the one-shot game, namely (3, 3), (0, 5), (5, 
0), and (1, 1). For example, if Player I adopts an unconditionally cooperative strategy and 
Player II simply alternates between cooperation and defection, then it is clear from an 
examination of Fig. 1A that Player I earns an average payoff of 1.5 per round, mid-way 
between R and S, while Player II earns an average payoff of 4, mid-way between R and T, 
and the point (1.5, 4) lies in the interior of the cooperative payoff region. The so-called folk 
theorem of indefinitely repeated games establishes that equilibrium points are densely 
scattered throughout the part of the cooperative payoff region where the players’ payoffs are 
at least as high as the payoffs they can guarantee for themselves by choosing a best reply to 
each of the co-player’s strategies (for a straightforward proof, see Binmore, 1992, pp. 373-
377).  

An evolutionarily stable strategy or ESS (Maynard Smith, 1982; Maynard Smith and 
Price, 1973) is a strategy with the property that if most members of the population adopt it, 
no alternative strategy has a higher Darwinian fitness, and therefore none can invade the 
population by natural selection. Suppose a population consists mostly of individuals adopting 
some arbitrary strategy I, but a small fraction p of mutants adopt strategy J. An individual 
adopting strategy I receives a payoff of E(I, I) with probability 1 – p and a payoff of E(I, J) 
with probability p. An individual adopting strategy J receives a payoff of E(J, I) with 
probability 1 – p and E(J, J) with probability p. If the Darwinian fitness of each member of 
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the population before a series of contests is C, then after the contests the fitness of an 
individual adopting Strategy I, denoted by W(I), is 
 

W(I) = C + (1 – p)E(I, I) + pE(I, J), 
 

and the fitness of an individual adopting strategy J, denoted by W(J), is 
 

W(J) = C + (1 – p)E(J, I) + pE(J, J). 
 

If I is an ESS, then W(I) > W(J) by definition. Because p is assumed to be small, either 
 
 E(I, I) > E(J, I), (1) 
or 
 E(I, I) = E(J, I) and E(I, J) > E(J, J). (2) 
 
Conditions (1) and (2) are Maynard Smith’s (1982) definition of an ESS, and it is the strategy 
that should normally be found in nature.  

An ESS is invariably an equilibrium point, but not every equilibrium point is an ESS 
(Hofbauer and Sigmund, 1998, pp. 62-65; Samuelson, 1998, pp. 38-40). Neither (TFT, TFT) 
nor (ALL D, ALL D) is an ESS (Lorberbaum, 1994). The PAVLOV (Win-Stay, Lose-
Change) strategy (Kraines and Kraines, 1989, 1995; Nowak and Sigmund, 1993), cooperates 
on round 1, then repeats its own previous-round strategy whenever its payoff is sufficiently 
high (usually 3 or 5 in Fig. 1A), or switches strategies otherwise. The strategy pair 
(PAVLOV, PAVLOV), corresponding to (C, C), is an equilibrium point but not an ESS. 

In repeated Chicken (Fig. 1B), strategies corresponding to the stage game’s (C, D) and 
(D, C) equilibrium points remain in equilibrium, together with (TFT, TFT) and (PAVLOV, 
PAVLOV), both corresponding to (C, C). In repeated Battle of the Sexes and Leader, 
strategies corresponding to the stage game’s (C, D) and (D, C) equilibrium points remain in 
equilibrium, but (TFT, TFT) and (PAVLOV, PAVLOV) are out of equilibrium and are 
therefore not ESSs. In Battle of the Sexes and Leader, coordinated alternating reciprocity is 
more profitable to each player, yielding the payoff stream ..., (4, 3), (3, 4), (4, 3), ..., than 
joint cooperation, yielding ..., (2, 2), (2, 2), (2, 2), ..., and this raises interesting evolutionary 
problems, whereas in the version of Chicken used in this research, the payoffs from joint 
cooperation are as good as those from coordinated alternating reciprocity, because 2R = S + 
T.  
 
3. Genetic Algorithm 
 

Axelrod (1987) ran his original genetic algorithm over 50 generations, and TFT-like 
strategies evolved; but a later Prisoner’s Dilemma study (Lindgren, 1991), using different 
primordial strategies, reported alternating periods of stable reciprocity and instability. Several 
researchers have investigated patterns that emerge only after many generations (Kraines and 
Kraines, 1995; Leimar, 1997; Lorberbaum, 1994; Nowak and May, 1992; Nowak et al., 
1995; Posch, 1999). Wu and Axelrod (1995) found TFT to be evolutionarily successful in a 
2000-generation replication incorporating noise. Noise has a radical effect on the course of 
evolution. See, for example, Kraines and Kraines (1995), Nowak et al. (1995), Posch (1999), 
and Wu and Axelrod (1995). The simulation described below was run over 1000 generations, 
with noise modelled via random mutations, and evolving strategies were paired against one 
another, as occurs in dyadic strategic interactions in nature.  

The payoff values for the Prisoner’s Dilemma game have been used by Axelrod (1987) 
and many other researchers. For the games of Chicken, Battle of the Sexes, and Leader, 
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payoffs were taken from Colman (1995). The procedure followed Axelrod (1987) and Wu 
and Axelrod (1995). Each simulation was started with 20 random strategies, a strategy being 
represented by a 70-digit binary string. The total number of strategies that can be represented 
in this form is 270 ≈ 1021. Each strategy was essentially a Moore machine designed to 
generate a move on the basis of any possible three-move history. For each outcome, a player 
receives one of four payoffs labelled T, R, S, or P in Fig. 1E, thus there are 43 = 64 different 
three-move histories. A string of 64 binary digits therefore suffices to specify a choice for 
every three-move history, with 0 denoting a D choice and 1 a C choice. For example, if the 
digit associated with a three-move history RRR is 1, then after three consecutive R payoffs – 
three consecutive (C, C) outcomes – the strategy responds by playing C. A hypothetical 
three-move history was also necessary to get each game started. For this, six additional 
binary digits, named the premise genes, were added, making a total genome of 70 binary 
digits.  

The offspring strategies that played in each subsequent generation were formed from the 
most successful strategies of the previous generation, using a genetic algorithm. The 
algorithm, designed along the lines of Holland (1975), implemented the following nine steps. 

(1) The payoff values were assigned according to one of the four archetypal games shown 
in Fig. 1. 

(2) The population size was set to x (2 ≤ x ≤ 20); the number of repetitions to be played 
by each pair of strategies in each generation to i (i = 1, 2, ...); and the number of generations 
to g (1 ≤ g ≤ 1000). In the simulations reported here, x = 20, i = 151, g = 1000. 

(3) An initial population was created by generating a pseudo-random 70-digit binary 
number for each of the x strategies. 

(4) In each generation, each of the x strategies was paired with each of the others for i 
repetitions, until every strategy had played i repetitions with every other strategy in the 
population. Payoffs were assigned according to the values shown in the corresponding payoff 
matrix (Fig. 1) and were averaged over the i repetitions of each pair. 

(5) At the end of each generation, after each strategy had played i repetitions with each of 
the others, each strategy’s mean payoff over its x – 1 pairwise interactions was computed, and 
it was assigned a mating probability proportional to its score. 

(6) For each offspring strategy, two strategies were randomly selected as parents, 
selection being proportional to mating probability scores. Each new generation consisted 
exclusively of the x offspring strategies. 

(7) Genetic crossing-over was simulated by randomly selecting a number from 3 through 
67 as the crossover point and breaking the 70-digit parent strategy’s binary code at this point. 
The code before the crossover point from parent A and after the crossover point from parent 
B combined to form the offspring strategy for the next generation. 

(8) For each offspring strategy, genetic mutation was simulated by randomly flipping one 
of the 70 binary digits of its genome from 0 to 1 or from 1 to 0. This mutation rate (1.4 per 
cent), artificially high in comparison with naturally occurring mutation, was chosen to 
facilitate rapid evolution of new strategies.  

(9) Offspring strategies replaced parent strategies at each new generation, and the 
algorithm looped back to repeat steps 4 to 8 until g generations had been completed. 

Each simulation used a population of 20 strategies, paired with each other for 151 
repetitions (rounds). The simulation was continued for 1000 generations. The Prisoner’s 
Dilemma simulation was replicated 10 times to check the reproducibility of the findings, and 
simulations of the other games were replicated five times. 
 
4. Results 
 
For each game, the pattern of results was very similar across replications. Fig. 2 therefore 
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displays mean payoffs per round for one typical simulation of each game structure, but the 
numerical data discussed below are averaged across replications. In the repeated Prisoner’s 
Dilemma simulations (Fig. 2A), the mean payoff per round oscillated between equilibria 
close to 3.00 and 1.00, corresponding approximately to the payoffs for joint cooperation (C, 
C) and joint defection (D, D) respectively. In the repeated game, strategies leading to (D, D) 
outcomes, yielding payoffs of (1, 1), are in equilibrium, and TFT, leading to payoffs of (3, 3), 
corresponds to one of the many additional equilibrium points in the repeated game (Binmore, 
1992, pp. 360-382). The data in Table 1 confirm across replications what is apparent by 
inspection of Fig. 2, that the jointly cooperative equilibrium tended to be more stable and 
persistent than joint defection. But it is clear that the Prisoner’s Dilemma simulations did not 
stabilize fully, even after 1000 generations. 
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Fig. 2.  Mean payoffs per round for 151 rounds over 1000 generations of representative examples of each of the 
four archetypal 2 × 2 games. 

 
Table 1 
Percentages of joint cooperative (C, C), asymmetric (C, D) and (D, C), and joint defecting (D, D) outcomes 
across 1000 generations of each simulation, averaged across replications 

 
Game (C, C) (C, D) (D, C) (D, D) Reciprocity 
Prisoner’s Dilemma  61.88  8.31  8.31  21.50  80.95 
Chicken  66.72  12.90  12.90  7.48  87.60 
Battle of the Sexes  10.32  41.76  41.76  6.16  88.60 
Leader  9.17  40.90  40.90  9.13  81.65 

 
Note: figures in the (C, D) and (D, C) columns are identical, because a (C, D) outcome for one player always 
corresponds to a (D, C) outcome for the co-player. The right-hand column shows, for the last 100 generations 
only, the reciprocity index, defined as the percentage of occasions on which players copied the strategy chosen 
by the co-player on the previous round, whether the co-player’s strategy was C or D. The reciprocity index can 
be high not only when players repeatedly reciprocate co-players’ cooperative strategy choices, as in sequences 
such as ..., (C, C), (C, C), (C, C), ..., but also in sequences of coordinated alternation such as ..., (C, D), (D, C), 
(C, D), ..., where it is also the case that each player copies the co-player’s strategy from the previous round. 

 
In the repeated Prisoner’s Dilemma simulations, evolving strategies displayed some of 

the characteristics of TFT and PAVLOV. Perfect TFT or PAVLOV strategies would 
cooperate consistently against cooperative co-players, and many of the loci in their genetic 
algorithms would not be subject to selection pressures, because the corresponding three-move 
sequences would never occur. However, the sequence RRR (Fig. 1E), resulting from three 
successive joint cooperative outcomes, would be likely to occur repeatedly, and a TFT or 
PAVLOV strategy would respond with a cooperative C move, therefore the digital code at 
the RRR gene locus would invariably be 1 (coding for a C choice). During the last 100 
generations, after 900 generations of evolution had occurred, the code at the RRR locus was 1 
(coding for a C choice) in 79.78 per cent of population members. More directly suggestive of 
TFT is the value of the reciprocity index (Table 1), indicating a strong propensity of 
strategies to choose C in response to C or D in response to D. 

None of the gene loci approached complete fixity and uniformity. A fixed gene, whether 
coded 0 (defect) or 1 (cooperate), should approach a relative frequency of 100 per cent in the 
population, although it cannot attain these values exactly because of variability arising from 
mutation in the genetic algorithm, resulting in approximately 1.4 per cent bit variability per 
strategy per generation. However, even during the last 100 generations, at no gene locus was 
the relative frequency of the 0 allele more than 76.34 per cent (PTP) or of the 1 allele more 
than 79.78 per cent (RRR). 

For repeated Chicken (Fig. 2B), the mean payoff per round rose rapidly to around 3.00 
(the expected payoff for joint cooperation) and remained close to that figure except for 
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relatively brief periods. The proportions of each of the four outcomes across 1000 
generations, and the reciprocity index for the final 100 generations, are shown in Table 1. 
The equilibrium points of the stage game, (C, D) and (D, C), are hard to achieve, because 
defection risks the lowest possible payoff. In the repeated game, joint cooperation, 
corresponding to payoffs of (3, 3), is one of the new equilibria to emerge. During the last 100 
generations, the RRR gene approached fixity, being coded 1 (cooperate) in 96.98 per cent of 
the population, and the reciprocity index was high (Table 1). No other gene approached fixity 
at either 0 or 1, the next nearest being the SRP locus, which was coded 0 (defect) in 87.44 per 
cent of the population. 

For repeated Battle of the Sexes (Fig. 2C), the mean payoff rose over 120 generations to 
around 3.30 per round, not far short of the expected payoff from alternating (C, D) and (D, C) 
outcomes, and hovered there for the remaining 880 generations. The proportions of each of 
the four outcomes (Table 1) show the most frequent outcomes to have been the asymmetric 
(C, D) and (D, C) equilibrium points of the stage game. By the last 100 generations, fixation 
had tended to occur at just two gene loci, namely TST (virtually fixated at 97.94 per cent 
cooperation) and STS (99.08 defection). These data reveal the evolution of a form of 
asymmetric reciprocity through coordinated strategic alternation. Some evidence for this has 
already been reported by Crowley (2001), but Crowley focused on a different form of 
asymmetry, namely asymmetry in resource-holding power (RHP) or body size in Generalized 
Hawk-Dove games, and his data were based on strategies with only one-move memories. 
With certain payoff values, his classifier-system analysis provided suggestive evidence for 
the evolution of ‘complementarity’ in the form of alternating strategies, but these strategies 
did not evolve to high prevalence as in the present study, and he did not present any evidence 
for phase coordination between players.  

In the Battle of the Sexes game reported in this article, the reciprocity index during the 
last 100 generations (Table 1) was high. It would be close to 100 per cent if the alternating 
strategies were invariably phase-coordinated, because in phase-coordinated alternation, each 
player simply repeats the co-player’s previous strategy choice. But it is reasonable to assume 
that a certain amount of manoeuvring was required in each dyadic interaction to lock phases 
into the mutually profitable (C, D), (D, C), (C, D), ... cycle, and this may explain the shortfall 
in reciprocity. 

Results for repeated Leader (Fig. 2D) show the mean payoff per round climbing to a 
relatively stable value close to 3.30, once again not far short of the payoff from alternating 
(C, D) and (D, C) outcomes. Over 1000 generations, the most frequent outcomes were (C, D) 
and (D, C) (Table 1), corresponding to the asymmetric equilibrium points of the stage game. 
By the last 100 generations, just one gene locus, STS, approached fixation at 93.94 per cent 
defection, and the next nearest to fixation was TST at 86.88 per cent cooperation. The 
reciprocity index was high, and the data are generally similar to those for the Battle of the 
Sexes, indicating once again the evolution of a form of coordinated alternating reciprocity.  

Table 2 shows the percentages, at Generations 1, 500 and 1000, of three-move histories 
xyP, xyR, xyS, and xyT, where x and y stand for arbitrary payoffs P, R, S, or T in Fig. 1E. 
These figures show that, at the start, the percentages are evenly distributed in all four games, 
but after hundreds of generations of evolution, three-move histories terminating in R, 
representing mutually cooperative (C, C) outcomes, come to predominate in the Prisoner’s 
Dilemma and Chicken simulations, whereas three-move histories terminating in S or T, 
representing asymmetric (C, D) and (D, C) outcomes, come to predominate in the Battle of 
the Sexes and Leader simulations. 
 
Table 2 
Percentages of three-move histories xyP, xyR, xyS and xyT, where x and y stand for P, R, S or T (see Fig. 1E) at 
Generations 1, 500 and 1000 
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Game Generation xyP xyR xyS xyT 
1 28.61 22.83 24.30 24.26 

500 5.73 78.82 7.66 7.79 Prisoner’s Dilemma 
1000 15.54 63.10 10.60 10.76 

1 26.32 26.50 23.58 23.60 
500 9.38 63.29 13.58 13.74 Chicken 

1000 2.60 87.80 4.94 4.66 
1 28.16 22.51 24.63 24.71 

500 4.94 6.89 44.07 44.09 Battle of the Sexes 
1000 4.14 7.79 44.11 43.96 

1 28.58 22.35 24.52 24.54 
500 7.67 8.29 41.97 42.08 Leader 

1000 5.24 6.96 43.82 43.99 
 

Supplementary analyses were performed for the Battle of the Sexes and Leader games, to 
remove any doubt that coordinated alternating reciprocity evolved in these two games. In five 
replications of the Battle of the Sexes simulation, the relative frequencies with which each of 
the 64 possible three-move histories occurred was counted directly in selected generations. 
The pattern of results was very similar in all five replications, and the following results are 
averages. In Generation 1, activity was distributed fairly evenly across the 64 three-move 
histories, and as evolution progressed over subsequent generations, certain three-move 
histories began to occur with greater relative frequency than others. In particular, in 
Generations 1, 10, 100, 300, 500, and 1000, the average percentages of the STS three-move 
history that occurred were 1.89, 9.51, 25.84, 33.12, 41.46, and 41.50 per cent respectively. 
The relative frequencies for TST were the same. This can be explained by the fact that TST 
always corresponds to a history of STS for the co-player. In Generation 1000, none of the 
other 64 possible three-move histories occurred with relative frequencies above chance level 
(1.56 per cent). Data from Generation 1000 show that STS and TST evolved to a joint relative 
frequency of 83 per cent of possible three-move histories. This confirms the data given above 
and indicates directly the relative frequency of coordinated alternating reciprocity that 
evolved in the Battle of the Sexes simulations. In the Leader game, the five replications led to 
very similar results once again, and the averaged relative frequencies of STS (and TST) in 
Generations 1, 10, 100, 300, 500, and 1000 were 2.53, 18.75, 30.20, 36.19, 35.71, and 40.28 
per cent respectively.The only other three-move history that occurred above chance level in 
Generation 1000 was RRR (2.84 per cent). These findings suggest that coordinated 
alternating reciprocity in the Leader game evolved to more than 80 per cent of possible three-
move histories in Generation 1000.  
 
5. Discussion 
 

The results show that the evolution of social behaviour depends in an interesting way on 
strategic properties of the underlying interactions. Evolution in the repeated Prisoner’s 
Dilemma game, on which attention has overwhelmingly been focused in earlier research, 
differs radically from evolution in other archetypal games. In particular, the well known 
phenomenon of rapid evolution of symmetric cooperation through simple reciprocity was 
evident in the Prisoner’s Dilemma and Chicken simulations, but in the other two games a 
more complex form of coordinated alternating reciprocity evolved.  

In the Prisoner’s Dilemma simulation, symmetric reciprocity evolved only imperfectly. 
After 900 generations of evolution, none of the gene loci approached fixation, although a 
majority of strategies had evolved a strong propensity to reciprocate, as would be predicted 
from both TFT and PAVLOV strategies. The gene locus for responding to a three-move 
history of joint cooperation (RRR) was coded for a cooperative response in 79.78 per cent of 
the population, far short of the almost invariable cooperation that would have been observed 
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had TFT or PAVLOV evolved perfectly. The reciprocity index also indicated a strong but by 
no means uniform TFT-like propensity to reciprocate cooperation and defection. The 
Chicken simulation resulted in greater symmetric reciprocity, with the RRR gene locus 
approaching cooperative fixation after 900 generations. But the pattern of results in the Battle 
of the Sexes and Leader games was quite different, with fixation of genes for defection 
following STS and cooperation following TST, indicating the evolution of coordinated 
alternating reciprocity. 

The evidence for coordinated alternating reciprocity in the Battle of the Sexes and Leader 
is compelling. Nothing like this has been reported in evolutionary simulations of the 
Prisoner’s Dilemma, and it is not difficult to see why this should be so. In the repeated 
Prisoner’s Dilemma game, efficient reciprocity involves straightforward cooperation in 
response to cooperation and defection in response to defection, and the TFT strategy 
implements this efficiently. But in the repeated Battle of the Sexes and Leader games, 
reciprocity presents a more complicated and subtle challenge, and (TFT, TFT) is not in 
equilibrium. In these games, in order improve on the expected payoffs of (2, 2) from mutual 
cooperation, the players need to evolve a form of reciprocity involving coordinated 
alternation between C and D in order to capitalize on the asymmetric (C, D) and (D, C) 
equilibrium points. 

Genes encoding for defection following STS and cooperation following TST implement 
this type of alternating reciprocity efficiently. The STS three-move history implies that the 
player first cooperated while the co-player defected, then defected while the co-player 
cooperated, and then cooperated once again while the co-player defected, yielding a payoff 
stream of (4, 3), (3, 4), (4, 3), ... in Battle of the Sexes, or of (3, 4), (4, 3), (3, 4), .... in Leader. 
These payoffs are better for both players than those resulting from joint cooperation, namely 
(2, 2), (2, 2), (2, 2), ..., and in order to continue the more profitable payoff stream, Player I 
must defect on the next round. The same argument applies in reverse to the TST history. In 
this case, in order to continue the profitable payoff stream, Player I must cooperate on the 
following round.  

Asymmetric alternation requires phase coordination to lock into the higher payoff streams 
in Battle of the Sexes or Leader. In human and animal social interaction, this is achieved by 
language and communication, facilitating a variety of coordination and turn-taking 
conventions. The data reported in this article appear to show, somewhat surprisingly, that it 
can evolve without the benefit of language or any other form of communication and without 
any insight on the part of the players into the strategic properties of the interaction. It is not 
obvious how this was achieved, but it is possible to envisage a plausible mechanism that 
could implement coordinated alternating reciprocity among players who lack insight and 
cannot communicate with each other.  

The simplest implementation mechanism, similar to the ‘CAD’ mechanism suggested by 
Crowley (2001), is as follows. Consider first the situation that arises after an asymmetric (C, 
D) or (D, C) outcome. If every member of the population plays TFT, then, after an 
asymmetric outcome, the two players lock into coordinated alternating reciprocity and 
continue the alternating outcome sequence (C, D), (D, C), (C, D), (D, C), ... indefinitely. 
However, after a symmetric (C, C) or (D, D) outcome, TFT players repeat that symmetric 
outcome indefinitely. In neither case do they ever tap into the alternating outcome sequence, 
which is more profitable in certain games. If mixed strategies were possible, then the (C, C) 
lock-in could be avoided if, after every symmetric outcome, the players chose C with 
probability 1/2 and D with probability 1/2. In that case, after a symmetric (C, C) or (D, D) 
outcome, the probability of an asymmetric (C, D) or (D, C) outcome on the next round would 
be 1/2, and the pair would immediately enter the alternating outcome sequence. The 
probability of a symmetric (C, C) or (D, D) outcome on the following round would also be 
1/2. After a symmetric outcome on round t, the players would lock into coordinated 



11 

alternating reciprocity with probability 1/2 on round t + 1, with probability 3/4 on round t + 
2, and with probability 7/8 on round t + 2. The mixed strategy that chooses C and D with 
equal probability maximizes these probabilities – any bias toward C or D reduces the 
probabilities of successful coordination.  

Mixed strategies are not possible in a model such as the one described in this article, but 
the stochastic element required for this solution could arise at the population level. The 
population could evolve so that, after an asymmetric (C, D) or (D, C) outcome, all members 
of the population play TFT, but after a symmetric (C, C) or (D, D) outcome, 50 per cent of 
the population play C and 50 per cent play D. If these genes were distributed across the 
genomes independently for all loci associated with attainable three-move histories 
terminating in either (C, C) or (D, D), then almost 90 per cent of pairs selected from the 
population at random would lock into coordinated alternating reciprocity within three rounds. 

The analysis above shows that coordinated alternating reciprocity cannot evolve in a 
uniform population, but it can evolve in a population in which genomes uniformly code for 
TFT after asymmetric outcomes and are maximally diverse after symmetric outcomes. If the 
payoff structure of the game favours coordinated alternating reciprocity, then the simplest 
population capable of evolving such interactive behaviour appears to be one whose members 
all play like TFT after asymmetric outcomes, half cooperating and half defecting after each 
attainable three-move history terminating in a symmetric outcome. This is probably how the 
coordinated alternating reciprocity evolved in the Battle of the Sexes and Leader simulations 
reported above. During the last 100 generations, the relative frequencies of genes coding for 
C choices were indeed close to 1/2 for all three-move histories terminating in S or T (xyS or 
xyT).  

Evolution was more stable in Battle of the Sexes and Leader than in the other games (Fig. 
2). The explanation for this may lie in the strategic properties of the games and, more 
specifically, the degree to which the basic equilibrium points of the stage games satisfy the 
players’ motivations. In Battle of the Sexes and Leader, there is no non-equilibrium outcome 
that either player prefers to the two equilibrium points. In the Prisoner’s Dilemma game, on 
the other hand, each player prefers the out-of-equilibrium (C, C) outcome and one of the 
asymmetric outcomes to the (D, D) equilibrium point, and in Chicken, each player prefers the 
out-of-equilibrium (C, C) outcome to one of the equilibrium points. This may explain the 
greater evolutionary stability of Battle of the Sexes and Leader. 

It is worth commenting, finally, on the fact that the Chicken simulation resulted in the 
evolution of symmetric reciprocity in spite of the fact that, like Battle of the Sexes and 
Leader, the basic Chicken stage game has only asymmetric equilibrium points in pure 
strategies. Chicken has equilibrium points at (C, D) and (D, C), but evolution tended to 
favour TFT-like strategies that cooperated most of the time. This was probably because joint 
cooperation is one of the additional equilibrium points that emerge in the repeated 
supergame, and with the payoff values that were used, it yields the same long-run expected 
payoff as coordinated alternation between (C, D) and (D, C). Considering the difficulty of 
evolving coordinated strategic alternation without the benefit of language, the evolution of 
strategies tending to generate (C, C) outcomes seems more likely a priori. The Chicken game 
is defined by the inequalities T > R > S > P (Fig. 1E). Evolution of cooperation through 
coordinated alternating reciprocity might occur in a version of Chicken with 2R < S + T 
rather than 2R = S + T, as in the version that was used. This is a problem for further research. 
The definitions of Battle of the Sexes (S > T > R > P) and Leader (T > S > R > P) imply 2R < 
S + T, and coordinated alternating reciprocity is therefore always more profitable in the 
corresponding repeated supergames in these cases. 
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