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ABSTRACT
We consider the alignment torque between a spinning black hole and an accretion disc whose
angular momenta are misaligned. This situation must hold initially in almost all gas accretion
events on to supermassive black holes, and may occur in binaries where the black hole receives
a natal supernova kick. We show that the torque always acts to align the hole’s spin with the
total angular momentum without changing its magnitude. The torque acts dissipatively on the
disc, reducing its angular momentum, and aligning it with the hole if and only if the angle θ

between the angular momenta Jd of the disc and Jh of the hole satisfy the inequality cos θ >

−J d/2J h. If this condition fails, which requires both θ > π/2 and J d < 2J h, the disc coun-
teraligns.
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1 I N T RO D U C T I O N

In a recent paper, Volonteri et al. (2005, see also Madau 2004) con-
sider how the spins of supermassive black holes in galaxies change
as the holes grow through both mergers with other holes and gas ac-
cretion. Mergers occur at random angles, and when integrated over
the mass distribution expected in hierarchical models lead neither to
systematic spin-up nor spin-down. Gas accretion, driven for exam-
ple by minor mergers with satellite galaxies, is likely also to occur
at random angles, and thus to be initially retrograde wrt the current
hole spin in half of all cases. However, Volonteri et al. argue that gas
accretion nevertheless produces systematic spin-up, because a black
hole tends to align with the angular momentum of an outer accre-
tion disc on a time-scale typically much shorter than the accretion
time-scale for mass and angular momentum (Scheuer & Feiler 1996,
hereafter SF96; Natarajan & Pringle 1998). Volonteri et al. (2005)
note that this conclusion holds only if most of the accretion takes
place through a thin accretion disc. If, instead, accretion is largely
via a geometrically thick disc (as happens if most mass accretes at
super-Eddington rates), alignment occurs only on the mass accre-
tion time-scale. In this case there would be no net long-term spin-up,
assuming successive accretion events were randomly oriented.

Here we address the uncertainties in our current understanding
of the evolution of warped accretion discs, and the resulting uncer-
tainties in the alignment mechanisms and time-scales for discs and
black holes.

We stress that throughout the paper we neglect the change of
the black hole spin as it gains mass from the disc, i.e. we consider
time-scales shorter than that for increasing the black hole mass sig-
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nificantly. Thus all the torques we consider arise from the Lense–
Thirring effect on a misaligned disc. (These torques are dissipative,
and can cause changes in the local accretion rate in the disc. How-
ever, these changes are at most by factors of ∼2.)

We find that under some conditions counteralignment occurs,
contrary to what is usually thought. As mentioned above, initial
misalignment must characterize most gas accretion events on to
supermassive holes. Stellar-mass black holes accreting from a binary
companion may also be misaligned in cases where the hole received
a supernova kick at formation. We begin by summarizing briefly
what is currently known in various cases.

2 DY NA M I C S O F A L I G N M E N T

2.1 High-viscosity discs

The dynamics of the process of alignment of black hole and accretion
disc is not fully worked out. The best-understood case is when the
viscosity is sufficiently high and/or the disc sufficiently thin that
its tilt or warp diffuses through it in the way envisaged by Pringle
(1992). This is also the most likely case for black hole discs in active
galactic nuclei (AGN) and binary systems (Wijers & Pringle 1999;
Pringle 1999). SF96 consider the case where a thin, high-viscosity
disc is misaligned by a small fixed angle θ , and linearize in θ . In this
approximation, the diffusion equation governing the time evolution
of the disc surface density remains unchanged to first order, and
the analysis assumes that the disc has reached a steady state. In
practice this requires that we consider time-scales longer than the
inflow time-scale at (and within) some relevant radius Rwarp. SF96
(see also Rees 1978) find that

Rwarp ∼ ωp/ν. (1)

C© 2005 RAS



50 A. R. King et al.

Here ωp = 2GJ/c2, where J = acM(GM/c2) is the angular momen-
tum of the hole (with −1 < a < 1), and ν is the kinematic viscosity
in the disc.1

At radii R � Rwarp the spins of the disc elements are aligned
with the spin of the hole J h. At radii R � Rwarp, the spins of the
disc elements make an angle θ � 1 to J h. A spinning black hole
induces Lense–Thirring precession in the misaligned disc elements,
and the precession rate falls off rapidly with radius (∝ R−3). Thus
this induced precessional torque acts mainly in the region around
radius Rwarp. In Cartesian coordinates, let J h define the z-axis and
consider an elemental annulus of the disc with spin �J d, which is
not parallel to J h. Then each such disc annulus feels a torque that
tries to induce precession about the z-axis. Integrating over all these
torques to get the net torque on the disc (and by Newton’s third
law the net torque on the hole), we conclude that the net torque can
only have components in the (x , y)-plane. In the analysis of SF96,
they assume that the disc extends to infinite radius, and thus that the
angular momentum of the disc, J d, dominates that of the hole. If
we assume that the disc is tilted such that J d lies in the (x , z)-plane,
then the conclusion of SF96 is that the x- and y-components of the
torque are equal in magnitude. The sign of the y-component, which
gives rise to precession, depends on the sign of the z-component
of J d. The x-component affects the degree of misalignment of the
disc. It is negative both when the disc and hole are nearly aligned (as
above) and also when the disc and hole are nearly counteraligned
(i.e. when Jh · Jd < 0). This implies that the net result is to try
to align the spins of the disc and the hole. Thus the prediction of
the SF96 analysis appears to be that eventually J h and J d should
end up parallel. We see below that this conclusion does not hold in
general.

2.2 Low-viscosity discs with small-a black holes

If the disc is thick and/or its viscosity low, so that α < H/R, then its
tilt or warp propagates as a wave rather than diffusing (Papaloizou
& Lin 1995). If such a disc is nearly aligned, relativistic precession
effects do not align its inner regions with the symmetry plane of
the black hole, in contrast to the viscous disc (α >H/R). Instead,
the disc tilt oscillates (Ivanov & Illarionov 1997; Lubow, Ogilvie &
Pringle 2002) with an amplitude proportional to R1/8/(�H )1/2. In
the inner regions of black hole accretion discs, this quantity typically
increases with decreasing radius (Shakura & Sunyaev 1973; Collin-
Souffrin & Dumont 1990). Thus even if the degree of misalignment
is small in the outer disc, it can be large in the inner disc, and the
angular momentum vector of the matter actually accreted at the
horizon can make a large angle to the hole’s spin. If the disc and
hole are close to being counteraligned, Lubow et al. (2002) show
that the inner disc and the hole align.

What interests us here are the disc torques on the hole. In
Appendix A we summarize the particular analytic solution for the
zero-viscosity case presented in Lubow et al. (2002) and give ex-
plicit expressions for the torques both when the disc and hole spins
are nearly aligned, and when they are nearly counteraligned. In the
absence of viscosity, the torques result in mutual precession of the
disc and the hole. In Appendix B we show how this analysis can
be modified to take account of a small viscosity, and we investigate
the modified torques when this has been introduced. In the nearly
aligned case, we find that the magnitudes of the torques are sensitive

1 SF96 assume that the effective viscosities in the disc, ν1 and ν2 (Pringle
1992), are comparable.

functions of the exact disc parameters, because of the oscillatory na-
ture of the disc tilt in the inner regions. However, while the effect of
this is to introduce great uncertainty into the direction of the compo-
nent of the torque that gives rise to precession, we find that the sign
of the component of the torque that affects the angle between the
spins of the hole and the disc is exactly the same as in the viscous
case analysis by SF96. We note that in practice this small-viscosity
case is most unlikely to hold for the alignment process in most black
hole discs in AGN or X-ray binaries (Wijers & Pringle 1999; Pringle
1999) but that warp waves may be important in the centres of these
discs, where H/R ∼ 1.

3 G E N E R A L I Z AT I O N

Both sets of analyses reported above assumed that the degree of
misalignment was small (that is, the hole and disc were either nearly
aligned or nearly counteraligned) and that the disc tilt remained fixed
at large radius (that is, the angular momentum of the disc dominates
that of the hole). We now consider the physics of the general case
where the angle of misalignment is not assumed to be small, and
the disc tilt is not assumed to be fixed. The angular momentum of
the hole J h is well defined. We shall denote the angular momentum
of the disc as J d, but note that this is not a well-defined quantity. We
discuss the exact meaning of J d in this context below (Section 4.1).
From these we construct a third vector representing the total angular
momentum, J t = J h +J d, which is therefore a constant vector. The
torques in which we are interested come about solely because there
is a misalignment. We now define the misalignment angle θ by

cos θ = Ĵd · Ĵh, (2)

where the ‘hat’ indicates a unit vector. We define θ so that 0 � θ � π,
with θ = 0 corresponding to full alignment and θ = π corresponding
to full counteralignment. The degree of misalignment is measured
by the vector J d ∧ J h, and so any torques (which are vectors) must
depend on this quantity. Note that this vector is zero both for θ = 0
and for θ = π. Then in the above discussion (Section 2.1), the y-axis
is in the direction of J h ∧ J d, and the x-axis is in the direction of
J h ∧ (J h ∧ J d).

We have argued above, and indeed the analyses of both the high-
and low-viscosity cases confirm, that the torque on the hole cannot
have a component in the direction of J h. Thus the torque must have
the form

dJh

dt
= −K1[Jh ∧ Jd] − K2[Jh ∧ (Jh ∧ Jd)]. (3)

Here the first term through the quantity K1 gives the magnitude
and sign of the torque that induces precession. It does not lead to
a change in θ . The second term describes the torque that changes
the alignment angle θ . Both sets of analyses in the high- and low-
viscosity cases show that K2 is a positive quantity whose magnitude
is dependent on the properties of the disc and the hole. Indeed, we
show below equation (10) quite generally that K2 must be positive
in the presence of dissipation. In general, of course, K2 is likely to
be a function of θ as well.

If we take the scalar product of this equation with J h, we see that
dJ 2

h/dt = 0, so that the magnitude of the spin of the hole remains
constant, i.e. Jh = constant. Thus the tip of the J h vector moves on
a sphere. The total angular momentum J t = J h + J d is of course a
constant vector, representing a fixed direction in space. Using this,
and the fact that J h · dJ h/dt = 0, we see that

d

dt
(Jh · J t) = J t · dJh

dt
= Jd · dJh

dt
. (4)
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Using (3) this leads to

d

dt
(Jh · J t) = K2

[
J 2

d J 2
h − (Jd · Jh)2

] ≡ A � 0. (5)

Now since both Jh and J t are constant, this means that

d

dt
(cos θh) � 0, (6)

where θ h is the angle between J h and the fixed direction J t. Thus
cos θ h always increases, implying that θ h always decreases. This
means that the angular momentum vector of the hole always aligns
with the fixed direction corresponding to the total angular momen-
tum vector J t.

To see how J d behaves during this process, we consider the quan-
tity A defined above (equation 5). We have, using the definition of
J t and the fact that Jh = constant, that

A = d

dt
(Jh · J t) = d

dt

(
J 2

h + Jh · Jd

) = d

dt
(Jh · Jd). (7)

Thus

d

dt
(Jh · Jd) = A � 0. (8)

We have also that

0 = d

dt
J 2

t = d

dt

(
J 2

h + 2Jh · Jd + J 2
d

)
, (9)

which implies that

d

dt
J 2

d = −2Jd · dJh

dt
= −2A � 0. (10)

From this we conclude that the magnitude of the disc angular
momentum J 2

d decreases as J h aligns with J t. This is to be expected
since, although of course the total angular momentum of the sys-
tem (hole plus disc) is conserved, the alignment process requires
dissipation. Since the magnitude of the spin of the hole remains un-
changed, the dissipation must imply a reduction in (the magnitude
of) the disc angular momentum. This justifies our statement above
that K 2 > 0, as a negative K2 would require energy fed into the disc
rotation. Since we consider time-scales short compared with that for
accretion, this is not possible.

It is now straightforward to discover when the dissipative torque
leads to alignment or to counteralignment of J h and J d. Since the
angle between J h and J d is θ , the cosine theorem gives

J 2
t = J 2

h + J 2
d − 2Jh Jd cos(π − θ ). (11)

Evidently counteralignment (θ → π) occurs if and only if J 2
h > J 2

t .
This is equivalent to

cos θ < − Jd

2Jh
. (12)

Thus counteralignment is a possible outcome and requires

θ > π/2, Jd < 2Jh. (13)

So why did the analysis of SF96, and also that given in the
Appendices, imply that the disc and hole always ended up aligned?
The reason is that both sets of calculations made the assumption
that the outer disc was fixed, that is, that J d � J h. In this case we
see that counteralignment is forbidden, and alignment must result.

If, instead, J d < 2J h, then for J h and J d in random directions,
counteralignment occurs in a fraction

f = 1

2

(
1 − Jd

2Jh

)
(14)

of cases. The disc spin is given by the relevant root of (11), i.e.

Jd = −Jh cos θ + (
J 2

t − J 2
h sin2 θ

)1/2
(15)

for alignment, and

Jd = −Jh cos θ − (
J 2

t − J 2
h sin2 θ

)1/2
(16)

for counteralignment. In both cases Jd decreases monotonically in
time, reaching the final values J t − J h and J h − J t, respectively.

We can now derive the equation governing the change of θ . From
(8) we have

A = Jh
d

dt
(Jd cos θ ) = Jh Jd

d

dt
(cos θ ) − A

Jh

Jd
cos θ (17)

where we have used (10) to write dJ d/dt = −A/Jd. Collecting
terms and noting that A = K 2 J 2

h J 2
d sin2θ we have

d

dt
(cos θ ) = K2 Jh sin2 θ (Jd + Jh cos θ ) (18)

and from (15) and (16) we get

d

dt
(cos θ ) = ±K2 Jh sin2 θ

(
J 2

t − J 2
h sin2 θ

)1/2
, (19)

where +/− corresponds to alignment/counteralignment, respec-
tively. Expanding these two equations about θ = 0, π respectively
shows that these equilibria are stable in the two cases. Note that there
is no contradiction between the global alignment criterion (12) and
the local equation (18): θ does not always decrease monotonically
for alignment or increase monotonically for counteralignment.

3.1 A geometrical picture

Although in terms of the algebra given above the alignment pro-
cess looks somewhat complicated, in terms of the geometry of the
situation it is quite simple.

In Fig. 1(a) the initial vector J d is represented by the line OA,
and the initial vector J h by the line OB. Then the total angular
momentum J t is represented by the line OC, where OACB forms
a parallelogram. Thus throughout the subsequent evolution the line
OC remains fixed. Since we are just interested in the alignment
process, rather than any precession around J t, we need only consider
what happens in the plane defined by OACB. In this plane we have
seen that Jh remains constant, and that the effect of the evolution
is to align J h with J t. Thus, as shown in the figure, the tip B of
the vector OB describes the arc of a circle centred on O and ending
up on B′. Once full alignment has occurred, the final vector J h lies
along OB′. Then in order that total angular momentum be conserved,
the tip A of the vector J d must move along a corresponding arc,
centred on C, and ending at A′. Note that, as this occurs, Jd decreases
monotonically. We see that in this case (Fig. 1a) the final vector J d

lies along OA′, and the disc and hole end up aligned.
In Fig. 1(b) we show exactly the same procedure, but with differ-

ent initial values for J d and J h. As before, the vector J h moves from
the initial position OB along an arc centred on O to a final, aligned
position, OB′. The total angular momentum J t, represented by OC,
remains fixed. The disc angular momentum vector OA moves along
an arc, centred on C, to its final position OA′. However, now, be-
cause of the initial values of J d and J h, the disc and the hole end
up counteraligned.

In Figs 1(c) and 1(d) we show the same evolution, but in the case
J d � J h considered in the analytic calculations of SF96 and in the
Appendix. We can see here that both disc and hole always end up
aligned, independent of the initial alignment of the hole relative to
the disc.
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Figure 1. The evolution of hole and disc angular momenta J h (OB) and J d

(OA) under the alignment torque, viewed in the plane they define. This plane
precesses around the fixed total angular momentum vector J t (OC). (a) A
case where the initial angle θ between J h and J d satisfies cos θ > −J d/2J h:
the two angular momenta align. (b) A case where cos θ < −J d/2J h: the an-
gular momenta counteralign. (c,d) Two cases where J d � J h as considered
by SF96 for which alignment always occurs.

3.2 Variation of θ with time

Fig. 2 illustrates the evolution of misalignment angle θ for a par-
ticular evolution rate, namely for K2 constant in equation (18). The
general behaviour of the solutions is independent of the detailed
form of K2, provided that K2 is positive (i.e. dJ d/dt < 0).

The highest and lowest curves in Fig. 2 show a monotonic ap-
proach to misalignment and alignment, respectively. The middle
two curves are close to the bifurcation between the two end states.
From equation (18), it follows that non-monotonic behaviour in time
can occur for the case of a misaligned disc that begins an approach
towards alignment, but in the end becomes misaligned (as seen in
the second highest curve of Fig. 2). This situation is realized for an
initial state having J d < −2J h cos θ < 2J d. In such cases, however,
the disc never gets close to alignment; that is, θ never drops below
π/2. A bifurcation between end states of alignment/misalignment
occurs for cases where initially J d = −2J hcos θ . A misaligned disc
that changes its sense of evolution (i.e. the sign of θ̇ ) from heading
towards alignment to heading towards misalignment does so once Jd

has been sufficiently reduced. The extent of the required reduction

2 4 6 8 10
t

45

90

135

180
angle

Figure 2. The time evolution of the disc–black hole misalignment angle θ

in degrees as a function of dimensionless time, which is normalized by τ ,
the disc spin-down time-scale for θ = 90◦. The evolution is determined by
equation (18) with an assumed constant value of K 2 = 1/(τ J 2

h). Initial mis-
alignment angles are θ = 135◦ for the uppermost three curves and 90◦ for the
lowest curve. The initial angular momentum ratios from the highest to lowest
curves are J d/J h = 0.5, 1.40, 1.42 and 0.5, respectively. The curves, from
the highest down, correspond to the cases (a), (b), (d) and (c), respectively in
Fig. 1. For initial misalignment angle 135◦, equation (12) predicts that the
transition between long-term alignment and counteralignment occurs when
initially Jd/Jh = √

2 ≈ 1.414, as displayed in the middle two curves, which
are on opposite sides of the transition. Notice that the second highest curve
shows non-monotonic behaviour in time.

is larger for initial values of J d/J h closer to the bifurcation value
−2 cos θ , for which misalignment is achieved at a time when J d(t)
is zero.

Fig. 3 illustrates the critical case of bifurcation, according to the
geometrical picture of the previous subsection. Since J h = J t in
this case, we see that, as J h aligns with J t, J d approaches zero.

Non-monotonic behaviour in the opposite sense from what is
discussed above, i.e. starting with an evolution towards alignment
and ending with misalignment, is only possible if Jd increases in
time. As described in Section 4.2, this can happen because of the
uncertainty of what is meant by Jd in a real disc. Examples of
such cases are described in Section 4.2. These cases involve the
complication that J t also changes in time.

3.3 Comparison with numerical simulations

To date there are two numerical simulations in the literature that
have J h > J d/2 and thus potentially allow the counteralignment

Figure 3. A geometrical picture of the critical case at the boundary between
alignment and misalignment, following the notation of Fig. 1. In this case,
we have J t = J h, with initially J d = −2J h cos θ . The end state has J h =
J d and J d = 0.
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we predict. Nelson & Papaloizou (2000) perform a quasi-Newtonian
three-dimensional smoothed particle hydrodynamic (3D SPH) sim-
ulation in which J h � J d. They show that an initially prograde
disc does align with the hole, effectively also demonstrating again
that K 2 > 0 in the presence of dissipation. However, they do not
consider any cases with an initially retrograde spin (θ > π/2).

Fragile & Anninos (2005) give fully relativistic 3D grid-based
simulations, again with J h � J d. However, there is no explicit dis-
sipation in their code (K 2  0), so any (counter)alignment can only
occur on a long time-scale associated with numerical dissipation.
There is indeed a hint of counteralignment in the near-retrograde
case they discuss.

4 D I S C U S S I O N

We have considered the interaction between a misaligned accretion
disc and a rotating black hole. We have argued that the torque be-
tween them must have the form (3). The net result is two-fold. First,
there is a component (K 1) that causes the disc and hole to precess
around the direction of the total angular momentum vector. The
direction and rate of precession can depend in a complicated way
on the properties of the disc. Secondly, there is a torque (K 2) that,
since K 2 > 0, acts to align the hole with the total angular momentum
without changing its spin rate. This torque acts dissipatively on the
disc, and counteraligns or aligns it with the hole according as the
conditions (13) hold.

In the high-viscosity case most relevant for black hole discs, the
steady disc shape is relatively simple (SF96). In both the co- and
counterrotating cases the disc is flat but inclined to the hole at large
radii, and flat but aligned with the hole at small radii. The change
between the two (the warp) occurs at a radius Rwarp given by (1),
where the rate at which the disc is twisted, i.e. the Lense–Thirring
precession rate ωp/R3, is balanced by the rate ∼ν/R2 at which vis-
cous torques can propagate the twist away. Here ν is the viscosity
relevant to the process of smoothing disc warp. It corresponds to
the viscosity ν 2, introduced by Pringle (1992), which measures
the viscosity corresponding to the (R, z)-component of the stress
tensor.

The actual dynamics of the various alignment processes are likely
to be complicated and need further investigation. As we have seen
in Section 3, the torque acts dissipatively on the disc, reducing its
angular momentum. If the total disc angular momentum is J d, then
the disc eventually aligns with the hole if and only if the angle θ

between the angular momenta J d of the disc and J h of the hole
satisfy cos θ > −J d/2J h. If this condition fails, which requires
θ > π/2 and J d < 2J h, the disc eventually counteraligns. This
result just follows from the physical nature of the torques, together
with the fact that the process is dissipative, so that K 2 > 0. Based
on these simple physical ideas, we were able to sketch the evolution
of the two vectors J h and J d. However, what we are not able to do,
without further consideration of the detailed properties of the disc in
the form of the coefficient K2, is to predict the time-scale on which
this happens.

4.1 The meaning of Jd

So far we have been deliberately vague on the precise meaning
of the disc angular momentum J d. For an accretion disc we may
define the angular momentum vector J d(R) of the material inside
some radius, R. As an example, we consider the disc model for AGN
discs given by Collin-Souffrin & Dumont (1990). For this disc model
we are interested in the innermost region [called Regime A, which

corresponds to region (b) in the disc models of Shakura & Sunyaev
(1973)]. In this regime, if we define the radius inside which the
angular momentum of the disc equals that of the hole as RJ , so that
J d(RJ) = J h, then it is given in terms of the Schwarzschild radius
of the hole, RS, as

RJ

RS
= 3.9 × 103

(
ε

0.1

)6/19 (
L

0.1LE

)−6/19

× M−12/19
8

(
α

0.03

)8/19

a10/19. (20)

Here ε is the efficiency of the accretion process (i.e. L = εṀc2), L
is the accretion luminosity, LE is the Eddington limit, M8 is the mass
of the black hole in units of 108 M�, α is the Shakura & Sunyaev
(1973) viscosity parameter, and a is the (dimensionless) spin of the
black hole.

The time-scale on which this disc radius can communicate with
the central disc regions is the viscous time-scale at this radius and
is given by

tν(RJ ) = 1.65 × 108

(
ε

0.1

)16/19 (
L

0.1LE

)−16/19

× M6/19
8

(
α

0.03

)58/65

a14/19 yr. (21)

Thus on time-scales longer than this we expect the effective
angular momentum of the disc to dominate that of the hole and
therefore that on long time-scales the spin of the hole ultimately
aligns with that of the disc as in Figs 1(c) and (d).

However, on time-scales less than this, the angular momentum
of those parts of the disc which are able to interact with the hole
is much less that that of the hole. On these shorter time-scales we
might expect the disc evolution to resemble the evolution shown
in Figs 1(a) and (b). Thus we have the apparently contradictory
possible scenario in which on short time-scales the disc tries to
counteralign with the hole, but on long time-scales t � t ν(RJ) it
ends up co-aligning with the hole. This means that the actual disc
evolution depends crucially on how the warp is propagated radially
by the disc. In other words, we need to be able to predict the nature
of the (R, z)-stress denoted by the second viscosity ν 2.

4.2 Warp propagation

If the degree of warping is very small compared to the disc thick-
ness H/R, then Papaloizou & Pringle (1983) showed that, because
of resonant effects, the warp stress is much larger than the usual
azimuthal stress. If the warp stress is parametrized by α2 and the
usual viscosity by α1, then they found that α2 = 1/(2 α1). In this
case the warp radius can be quite small, i.e. Rwarp/RS ∼ 10–100
(Natarajan & Pringle 1998). However, once the warp becomes sig-
nificant, the approximations made in this analysis break down. One
possibility then is that the resonant flows become unstable (Gammie,
Goodman & Ogilvie 2000), the flow becomes turbulent, and α2 is
reduced significantly until perhaps α2 ∼ α1. If α1 = α2, which is
the assumption made by SF96, we find that

Rwarp

RS
= 990

(
ε

0.1

)1/4 (
L

0.1LE

)−1/4

M1/8
8

×
(

α1

0.03

)1/8(
α2

0.03

)−5/8

a5/8. (22)
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In reality, it is expected that disc viscosity is generated by
magnetohydrodynamic (MHD) turbulence, instigated by the mag-
netorotational instability (Balbus & Hawley 1991). How this tur-
bulence interacts with a rate of strain in the (R, z)-direction has
yet to be fully determined (see, for example, Torkelsson et al.
2000). It is evident that, for finite-amplitude warps and misalign-
ments, in order to estimate the time-scales and mechanisms for
warp propagation it will be necessary to undertake numerical
simulations.

One of the first goals for such simulations will be to determine
whether the simple picture of two viscosities is adequate to a first
approximation (cf. Ogilvie 2000). Even in this picture it is clear that
a simple α prescription is inadequate. For example, Larwood et al.
(1996) show that, when a disc is subject to strong forced precession
(as is likely to occur in the inner regions of a tilted disc around a Kerr
black hole), the disc may break in the sense that the disc tilt shows
a sharp jump at some radius. This can only happen in the diffusive
picture if the diffusion coefficient (ν 2) is a function of the (gradient
of the) disc tilt angle. However, if this does happen, it enhances the
possibility, discussed above, of the inner disc regions being able to
counteralign on short time-scales, before eventually co-aligning at
later times. If this happened, then accretion on to the hole would
act initially [on time-scales t � t ν(RJ)] to spin the hole down, in
contradiction of the assumption made by Volonteri et al. (2005).

4.3 Black holes in X-ray binaries

Maccarone (2002) reports that in at least two soft X-ray transient
(SXT) binaries (GRO J 1655−40 and SAX J 1819−2525) the ob-
served relativistic jets appear not to be perpendicular to the orbital
plane. If the jet directions are indicative of the direction of the spin
of the hole, then the most likely explanation is that the misalignment
occurred during the formation process of the black hole, and that
subsequent evolution has not had time to bring about alignment. This
interpretation is interesting in that it points to black hole formation
in a (presumably anisotropic) supernova explosion.

From (20) we see that for an M ∼ 10 M� black hole relevant for
such binary systems, the radius RJ is typically much larger than the
binary separation. Thus in these systems J d � J h. However, the
angular momentum in the binary orbit is much larger than that of
the hole. Thus the crucial time-scale in these systems is the time-
scale on which tidal effects can transfer angular momentum from
the binary orbit to the disc. On time-scales shorter than this, the
evolution of the disc tilt follows that shown in Figs 1(a) and (b),
with the possibility that the disc can counteralign with the hole.
Again, numerical simulations are required to provide estimates of
the tidal torques for strongly misaligned discs.

Estimates of time-scales from stellar evolution theory can thus
give lower limits to the alignment time-scales in SXT binaries.
Maccarone (2002) concludes that current theoretical estimates indi-
cate that alignment time-scales are likely to be at least a substantial
fraction of the lifetimes of these systems. In any case the long quies-
cent intervals (10–50 yr or more) in SXT binaries strongly suggest
that the inner regions of the disc are either absent or very tenuous.
This means that virtually all of the disc mass is far outside the warp
radius (∼ a few Schwarzschild radii) and so the alignment torque
must be very weak.
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A P P E N D I X A : Z E RO - V I S C O S I T Y D I S C S
W I T H S M A L L - a B L AC K H O L E S

Lubow et al. (2002) consider the torque exerted between the central
black hole and a disc for the case of zero viscosity. They use the
same linearized approximation as SF96, with the disc again assumed
steady. At each radius the disc angular momentum is in the direction
of the unit vector l(R) ≈ (lx, ly, 1), where lx, ly � 1. They then use
the complex quantity W (R, t) = lx + ily to describe the shape of
the disc. They consider explicitly a simple example in which the
amplitude of oscillations is independent of radius, and for which
there is a simple analytic solution for a2 � r = R/(GM/c2). They
take the disc thickness to vary as

H/R = εr h−1, (A1)

and the disc surface density to vary as

� = �0r
1
4 −h, (A2)

where we require h > −(1/8).
In this case, we set

x =
(

24|a|
ε2

)1/2
r−[h+(1/4)]

h + (1/4)
, (A3)

where a is the black hole spin parameter with positive (negative) a
corresponding to alignment (counteralignment).

If a > 0, Lubow et al. (2002) find that

W = W∞
cos(xin − x)

cos xin
, (A4)

where W ∞ gives the tilt at large radius, xin corresponds to the inner
boundary where the torque vanishes, i.e. dW/dr = 0, and we need
the proviso that cos x in �= 0.
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If a < 0, it is simple to show that the corresponding expression
is

W = W∞
cosh(xin − x)

cosh xin
. (A5)

If Tx and Ty are the components of the torque on the disc, assuming
as above that the hole spin is aligned along the z-axis, and writing
T = Tx + iTy, we find that

T =
√

6 iπ

3
|a|1/2ε

G2 M2�0

c2

∫ xin

0

W dx . (A6)

Then in the case we are considering, for a > 0

T ∝ i|a|1/2W∞ tan xin, (A7)

and for a < 0

T ∝ −i|a|1/2W∞ tanh xin. (A8)

In both cases the coefficient of proportionality is real and positive.
Thus, in this case with zero disc viscosity the torque causes a mutual
precession on the hole and the disc. However, unlike in the high-
viscosity case, if a > 0 the sign of the precession is determined by
the details of the disc properties.

A P P E N D I X B : L OW- V I S C O S I T Y D I S C S
W I T H S M A L L - a B L AC K H O L E S

It is not possible to introduce a small constant-α viscosity as a small
perturbation of the Lubow et al. (2002) analysis. This is because,
at large radii, the Lense–Thirring effect goes to zero, and so the
small viscous perturbation does not remain small. However, one
can apply perturbation theory for a spatially varying α that takes the
form

α = α0r−1 (B1)

for the case of small viscosity.
If we write

ζ =
√

1 + (1/3)iα0, (B2)

where it is understood that we take the root with positive real part,
then in the particular case considered above the solutions become
for a > 0

W = W∞
cos[ζ (xin − x)]

cos(ζ xin)
, (B3)

and for a < 0

W = W∞
cosh[ζ (xin − x)]

cosh(ζ xin)
. (B4)

The warps acquire a y-component that is out of phase with respect
to W ∞ as a consequence of the viscosity. This phaseshift leads to
a net alignment torque (non-zero x-component of torque) on the
disc. In the a > 0 case, radially oscillatory warped waves can occur
provided that x in > 2π. Such waves are possible for discs that are
sufficiently thin (

√
a/ε sufficiently large). In Fig. B1, we plot W

as a function of r for two sets of disc parameters that differ in the
value of ε. Notice that oscillatory behaviour occurs for the thinner
disc.

The torque on the disc is given by

T =
√

6 iπ

3
a1/2εW∞

G2 M2�0

c2

tan(ζ xin)

ζ
. (B5)

This torque applies to both positive and negative values of a through
analytic continuation. It is straightforward to show that the x-
component (real part) of the torque is negative, independently of
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Figure B1. The real (top) and imaginary (bottom) parts of W (r )/W ∞ as
a function of radius r (in units of GM/c2) for two disc–black hole cases.
In both cases, we adopt a = 0.3 and h = 1. The inner radius r in occurs
at the marginally stable orbit. The oscillatory (wave-like) solutions are for
ε = 0.01, while the non-oscillatory solutions (plotted with the heavier lines)
occur for ε = 0.1. The viscosity parameter α = εr in/r .

the sign of a. This result implies that the degree of misalignment
decreases in time, as will be discussed more fully in the next
subsection.

We consider discs with inner truncation at the radii of the
marginally stable orbits. In the prograde spin case (a > 0), the
alignment torque Re(T) can undergo large variations as a function
of parameters a and ε. However, there is a well-defined average
value.

We determine the a-averaged value of the alignment torque in the
case of a > 0 with a fixed value of ε. For a � ε2 (i.e. x in � 1),
the torque undergoes multiple local peaks in value where x in(a) =
nπ/2 for positive integer n. Near such points,

tan(ζ xin)  (
c1a1/2/ε − (1/2)nπ + ic2nα0

)−1
, (B6)

where ci are real constants of the order of unity and we have ig-
nored variations in the inner disc radius (marginally stable orbit)
as a function of a. Since these peaks are spaced in a by an amount
c3n ε2, the a-averaged value of q(a) = Im(tan[ζ x in(a)]) can then be
expressed as

〈q(a)〉 = −
∫ w

−w

dz

z2 + 1
, (B7)

where

z =
(

c1a1/2/ε − 1

2
nπ

)/
(nα0c2).

Here w is the peak width expressed in terms of z, which is inversely
proportional to α0. For small α0, we can take the integral limits to
infinity and we find that q is independent of ε and α0. Consequently,
we can approximate the average alignment torque for a > 0 by taking
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Figure B2. The negative dimensionless alignment torque (top) and
the dimensionless precession torque (bottom) on the disc as a function
of a > 0. The dimensional torques are recovered by multiplying by
εW ∞G2 M2�0/c2. The disc inner radius r in occurs at the marginally stable
orbit for each a. Parameter h is unity. Two cases of disc–black hole systems
are plotted, corresponding to the two cases in Fig. 3 (but with varying a).
The more strongly fluctuating torques are for ε = 0.01, while the smoother
torques (plotted with the heavier lines) occur for ε = 0.1. The viscosity
parameter α = εr in/r .

the average value of tan (ζ x in)/ζ in equation (B5) to be a constant
of the order of unity that is independent of ε and α0.

For a fixed value of ε such that x in � 1 (so that wave-like be-
haviour occurs), the a-averaged value of the torque from 0 to a is

approximately

〈Re(T )〉 ≈ −a1/2εW∞
G2 M2�0

c2
. (B8)

This average torque is then independent of viscosity parameter α0.
The precessional torque is of similar order.

In Fig. B2, we plot the dimensionless torques on the black hole as
a function of a > 0. Notice that the disc alignment torque is nega-
tive, indicating that alignment occurs. The precession rates undergo
changes in sign as the spin rate a changes.

For the retrograde spin case (a < 0) with x in � 1, the torque
follows from equation (B5),

T = −
√

6 π

3

(
i + 1

6 α0

)
ε|a|1/2W∞

G2 M2�0

c2
. (B9)

In this case, we see that the ratio of the alignment torque to the
precessional torque is α0/6. Furthermore, the precession does not
change direction as a function of a, as was found in the case for
a > 0 (see Fig. B2). Consequently, for low values of the turbulent
viscosity parameter, the alignment time-scale can be much longer
than the precession time-scale. This situation is unlike the case for
a > 0, where the two time-scales are comparable.

For both the prograde and retrograde cases, the torque on the disc
is exerted where x  1. The torque radius in units of GM/c2 is then
given by

rT =
(√

24|a|
ε

)1/[h+(1/4)]

. (B10)

Consequently, for the purposes of computing torques, such as in
equation (B9), the viscosity parameter α0 is related to α = α0/r
by

α0 ≈ α
√|a|
ε

, (B11)

for h ≈ 1.
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