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Markov chain Monte Carlo (McMC) methods have provided an
enormous breakthrough in the analysis of large complex problems
such as those which frequently arise in genetic applications. The
richness of the inference and the flexibility of an McMC Bayesian
approach in terms of design, data structure that can be analysed,
and models that can be posed, is indisputable. However, despite the
strengths of the Bayesian approach, it is important to acknowledge
that there are other, often easier, ways of tackling a problem. This
is so, especially when simpler, qualitative answers are sought, such
as presence or absence of a quantitative trait locus. We critically
evaluate the behaviour of a Bayesian McMC block sampler for the
detection of a quantitative trait locus by linkage with marker data, and
compare it with a traditional least squares method. Some practical
issues are illustrated by discussing the pros and cons of a Bayesian
block updating sampling scheme versus the least squares method in
the context of a simple genetic mapping problem. Depending on the
focus of analysis, we show that the McMC sampler does not always
outperform the simpler approach from a frequentist perspective, and,
more to the point, may not always perform appropriately in any
particular replication.
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1 INTRODUCTION

It is well known that algorithms for performing exact probability and likelihood
computations, such as the statistical genetics peeling method for pedigree
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applications (Elston & Stewart 1971, Cannings, Thompson & Skolnick 1978,
Lander & Green 1987), and the more general local computation algorithms
(Lauritzen & Spiegelhalter 1988, Cowell, Dawid, Lauritzen & Spiegelhalter
1999) developed by the expert systems community for calculations on Bayesian
networks, all break down in practice when the underlying graph becomes too
complex. Such complexity arises when the graph has too many interconnecting
undirected cycles or loops forcing large cutsets in a peeling sequence, or large
cliques in the corresponding triangulated graph, both of which can lead to
insupportable storage requirements (Thompson 2000, Lauritzen & Sheehan 2003).
In genetic applications, exact calculations are computationally intensive, either
when the pedigree graph itself is complex or when the graphical model induced
by both the structure and genetic model under consideration is complex. When
exact methods fail, probabilities and likelihoods of interest must be approximated.
Sometimes, pedigree information is sacrificed completely and exact analyses
carried out on a simple structure extracted from the original, such as the half-
sib design we will discuss below. Sometimes likelihoods can be approximated
by numerical integration (Knott & Haley 1992) or iterative peeling methods
(Janss, Van Arendonk & Van der Werf 1995). Sometimes the original structure
is simplified less drastically by cutting a sufficient number of loops to facilitate
computation (Wang, Fernando, Stricker & Elston 1996). Alternatively, the
complexity of the problem is preserved and Markov chain Monte Carlo (McMC)
methods (Hastings 1970, Metropolis, Rosenbluth, Rosenbluth & Teller 1953)
employed to provide estimates of the required quantities. (See Thompson (2001)
for an overview.)

Although McMC methods are not generally restricted by the complexity of the
underlying graph, the estimates they yield are often unreliable. In particular, the
Markov chain defined by the popular single-site Gibbs sampler (Geman & Geman
1984) may be reducible in discrete genetics applications (Sheehan 1992, Sheehan
& Thomas 1993) and some relaxation of the probability model is then required
which may considerably enlarge the state space of the sampler (Gilks, Clayton,
Spiegelhalter, Best, McNeil, Sharples & Kirby 1993). This, in turn, can lead
to inefficiency due to large amounts of sampling time being spent in illegal
states. Even when the chain is theoretically irreducible, some parts of the search
space may be separated by configurations of extremely low probability and thus
communication between these states, or mixing, can be poor. Single-site updating
schemes can perform particularly badly in such cases. Indeed, fear of using heated
or relaxed samplers has led to some confusion in the literature over whether
a particular application defines an irreducible chain for the single-site Gibbs
sampler or not (Cannings & Sheehan 2002). The main problem, however, is that
these sampling methods have not been sufficiently well tested on large complex
problems and are thus viewed with some suspicion in practice (Hoeschele, Uimari,
Grignola, Zhang & Gage 1997). Despite the abundance of McMC convergence
diagnostics (Cowles & Carlin 1996) there is no certainty as to when the equilibrium
distribution has been reached and how long the chain must be in order to get a
representative sample.
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The main thrust of this paper is to critically evaluate the behaviour of a
Bayesian McMC block sampling scheme for the detection of a quantitative trait
locus by linkage with marker data when a few specific aspects of the problem
change. McMC applications do not have to be Bayesian (see Thompson (1994)
for example) but they frequently are in animal genetics applications (Hoeschele
& VanRaden 1993, Thaller & Hoeschele 1996, Sillanpää & Arjas 1998, George,
Mengersen & Davis 2000, Yi & Xu 2000). We have restricted our investigations
to the simple pedigree structure of the half-sib design, and to a trivial mapping
scenario in order to properly assess sampler behaviour. Nonetheless, the problem
is sufficiently complicated that exact methods no longer apply and hence correct
answers on a real data set are unavailable for comparison. Simulated data are
consequently required in order to properly assess the efficiency of the sampler
and we have carried out a study on a suite of simulated datasets. One question
that is rarely asked in these complex applications but which should always be
pertinent is whether a full Bayesian McMC analysis is sufficiently better than a
simpler approximation as to make it worth the extra computational effort required.
When, for example, is the approximation afforded by a traditional least squares
method such as that described in Haley & Knott (1992), almost as good as the full
McMC analysis and when is it considerably worse? There is currently a tendency
to use the heaviest computational tools available for all applications, regardless
of whether they are really necessary or not. The underlying assumption is that
the complex analysis will always be at least as good as the simpler one. This
is known not to be the case in many other areas of applied statistics where an
overly complex analysis can sometimes be itself misleading. Our findings serve as
a warning that the same may be true for McMC methods—and not just for genetic
applications. In particular, depending on the focus of the analysis, we show that
our seemingly “perfect” sampler does not always outperform the simpler approach
from a frequentist perspective and, more to the point, may not always perform
appropriately in any particular situation.

In the interests of readability, Section 2 will provide a brief review of the
basic genetic terminology required for this paper (a more rigorous treatment can
be found in Thompson (2000) or Sham (1998), for example) and the mapping
problem. Section 3 will outline the Bayesian block updating sampling scheme
described in fuller detail in Sheehan, Guldbrandtsen, Lund & Sorensen (2002).

2 THE GENETIC MAPPING PROBLEM

The motivating example for this paper is the problem of detecting the location
of an autosomal quantitative trait locus by linkage with marker data. We will
follow Falconer & Mackay (1996) and refer to quantitative traits as traits that are
determined by the combined effects of genes at many loci (polygenic variation)
superimposed with some additional non-genetic continuous variation. We define
a quantitative trait locus (QTL) to be a segment of chromosome which affects a
quantitative trait but not on such a scale as to cause an observable discontinuity
and which is hence not detectable using methods for Mendelian traits. By
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phenotype we will mean any observable characteristic, be it the actual genotype
itself, a disease state (e.g. affected or normal) or some value for a continuous
quantity. We will also use the common partitioning of a phenotype, y, into a
genetic and a non-genetic component, y = g + e, where g is the effect due to the
actual genotype of the individual at the locus (or loci) affecting the trait (the
genotypic value) and e is an environmental deviation from this effect (Falconer &
Mackay 1996, Lynch & Walsh 1998). It is assumed that E(e) = 0 implying that
the expected phenotype (for a given genotype) is the relevant genotypic value:
E(y|g) = g.

For a single diallelic locus with alleles A1 and A2, suppose that the homozygote
genotype A1A1 confers a genotypic value µ + a, the other homozygote genotype
A2A2 confers µ−a and the heterozygote genotype A1A2 confers a genotypic value
µ+d, where µ is an intercept parameter (see Figure 1). The dominance effect d is
the deviation between the average genotypic value of the homozygote genotypes,
and statistically, measures interaction between alleles within the locus. If A1 and
A2 act in a completely additive fashion, d = 0 and the heterozygote genotype is
equal to µ. Allele A1 is dominant if d > 0 (in which case, A2 is the recessive allele),
while d < 0 implies that A2 is dominant over A1 (and A1 is the recessive allele).
We say that we have complete dominance if d = −a or d = a, over-dominance if
d > a and under-dominance if d < −a.

FIGURE 1 ABOUT HERE
The focus of a linkage analysis is the recombination fraction, r, which is the

probability of a recombination event. There is a one-to-one correspondence (Ott
1999) between the recombination fraction and the genetic map distance, defined
as the expected number of crossovers to occur between two loci in a gamete and
measured in units called Morgans, or centiMorgans (Haldane 1919). We will use
Haldane’s mapping function to relate the two. While it is natural to work with
recombination rates when taking account of linkage, map distances are often more
straightforward measures. We will refer to map distances (as differences between
map positions) throughout this paper but note that the terms are interchangeable.

2.1 THE DESIGN, MODEL AND NOTATION

FIGURE 2 ABOUT HERE
In animal breeding applications, data are frequently collected on simple

structures despite the common availability of more detailed pedigree information.
Although animal breeders have had decades of experience with fairly complex
pedigrees, existing methods cannot cope with analyses of complex genetics models,
such as we are considering here, on the large complex pedigrees which often
feature in animal populations. Even though current McMC methods are very
flexible with regard to the structure of the problem, the computational intensity
and perceived unreliability of these methods are obstacles to their widespread
acceptance as standard methods for general pedigrees. In practice, in human,
animal and plant applications, analyses are still routinely carried out on simple
structures such as nuclear families, sib-pairs and inbred line cross designs. For
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this reason, although our methods are entirely general, we will follow Sheehan et
al. (2002) and concentrate on the half-sib design as it enables comparison with
the commonly used regression method of Section 4 and is simple enough to permit
investigation into the behaviour of our McMC sampling scheme.

In many managed populations, especially those in which artificial insemination
is practised, one male individual can have an enormous number of offspring with
potentially as many different females. The population then contains large families
of these half-siblings who share the same father, or sire. In a typical half-sib design,
there are 10 to 15 sires, each with up to 100 offspring. For a QTL analysis, we
would expect to have marker data on the sire and his offspring (although in
practice, some of this could be incomplete) and records for the trait, deemed
to be partly determined by the QTL, on offspring only. Detecting a QTL for
milk yield in dairy cattle would be an example of such an analysis. Note that
detection of a recombination event between the two markers requires that the
parent individual be heterozygous at both loci. In this case, we say that the
individual is informative for linkage at these loci. Figure 2 shows a half-sib design
for a case with one sire and four offspring. As indicated, the mothers, or dams, of
the offspring are all assumed to be unobserved and are represented as founders of
the pedigree. This is in accordance with the assumptions of the half-sib design:
the dams are all distinct, unrelated and assumed to be uninformative for the trait.
Genetic inference is therefore centred on segregation from the common sire.

FIGURE 3 ABOUT HERE
For our purposes, we will assume that in addition to an effect from the

polygenes, there is a single QTL coding for our continuous trait and our interest
is on whether or not this QTL is located between two particular markers. For
greater transparency, the markers are held to be diallelic with alleles M,m at
the “M-locus” and N, n at the “N-locus” with corresponding population allele
frequencies pM , pm = 1 − pM and pN , pn = 1 − pN , respectively. We note that
this assumption is not required for either of our methods and actually makes the
mapping problem more difficult (Knott & Haley 1992) as marker heterozygosity,
and hence informativeness, increases with the number of alleles in the system.
Furthermore, as is consistent with a model where only one allele is believed to
influence the trait, we will assume the QTL to be diallelic with alleles Q and q
and allele frequencies, pQ and pq = 1− pQ. For the half-sib design, it is common
to presume that the population from which sires have been sampled is in both
Hardy-Weinberg and linkage equilibrium at the three loci. By the first, we mean
that given two alleles at a locus with frequencies p1 and p2, the three genotype
frequencies are p2

1, 2p1p2 and p2
2. By the second, we mean that the haplotype

frequencies are a product of the relevant locus allele frequencies e.g. for the Mqn
haplotype in our example,

P (Mqn) = pMpqpn.

These are strong assumptions for what is in reality a non-random mating
population with strong selection but they are commonly made for any analysis
on such a design. The map locations of the marker loci, λM and λN (with
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λM < λQ < λN) are known so we know the genetic distance and thus the
recombination fraction between them. The QTL location, λQ, is unknown and has
to be estimated or, equivalently, the recombination fractions between the QTL and
each marker have to be estimated. If recombinations in non-overlapping intervals
are held to be independent (i.e. there is no genetic interference), only one of the
two is required to parameterise the problem. This simple mapping scenario is
illustrated in Figure 3.

We will use the notation of Sheehan et al. (2002) for fitting a normal linear
mixed model (Gelfand, Hills, Racine-Poon & Smith 1990) to this QTL-mapping
problem on a half-sib design and incorporating linkage with marker data. We
denote the phenotypic record for the trait on offspring j of sire i by yij where
i = 1, 2, . . . , k, j = 1, 2, . . . , ni and the full phenotype record vector by y of
dimension n = n1 +n2 + . . .+nk. LetMi denote the (known) marker information
at both marker loci for sire i, i = 1, . . . , k, whileMij gives the marker information
for his jth offspring, j = 1, . . . , ni. We let Qi and Qij denote the (unobserved)
QTL genotypes for the ith sire and ijth offspring, respectively where these can be
any of the three distinct unordered types {QQ,Qq,qq}. The normal linear mixed
model will be written as

yij = si + qij + eij (1)

with

qij =





µ1 ≡ µ+ a if Qij = QQ

µ2 ≡ µ+ d if Qij = Qq

µ3 ≡ µ− a if Qij = qq

acting as the “fixed effects” describing the effect of the QTL genotype on the
trait phenotype as consistent with Figure 1. In addition to the QTL effect, we
must account for the effect due to the polygenes which are also segregating from
the sire. These are the random effects, or sire effects, s = (s1, . . . , sk)

′, where si
denotes the average additive genetic effect of the ith sire on the phenotypes of his
offspring and which cannot be explained by the QTL. It is assumed that these
are normally and independently distributed with common variance, σ2

s , the sire
variance component:

s|σ2
s ∼ N(0, Iσ2

s), σ
2
s ∈ R+.

The polygenic variance, σ2
u, is defined as the total additive genetic variance

unexplained by the QTL. We have that σ2
s = 1

4
σ2
u since half the genes of an

offspring are shared with its sire. Finally,

eij ∼ N(0, σ2
res)

where σ2
res ∈ R+ is the residual variance component and accounts for all the

variation in the data which cannot be explained either by the sire effect or the
QTL. In terms of the above, σ2

res = 3
4
σ2
u + σ2

e where σ2
e is the environmental

variance component. We note that the above model (1) is the same as that for
full sibs described by Knott & Haley (1992).

A fully Bayesian approach to modelling the above problem requires that we
assign prior distributions on the allele frequencies, QTL map position, QTL
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genotype effects, sire effects and sire and residual variance components. These
are as follows. Allele frequencies are all taken to derive from a Beta distribution
with known parameters. Thus, for example

π(pQ) ∼ Beta(pQ|a, b) where a and b are known.

The map location for the QTL, λQ, is assumed to have a uniform distribution
over the interval (λN − λM) while the “fixed” effects µ = (µ1, µ2, µ3)′ are taken
to have an improper prior distribution

π(µ) ∝ constant.

As a prior distribution on the sire variance component σ2
s we assume a scaled

inverted chi-square distribution with νs degrees of freedom and scale factor Ss,
both known:

π(σ2
s) ∝ (σ2

s)
−( νs

2
+1)exp(

−νsSs
2σ2

s

) . (2)

The residual variance component σ2
res is also assumed to have a scaled inverted

chi-square prior distribution with known degrees of freedom νres and scale factor
Sres. (See Sheehan et al. (2002) for further details.)

3 AN MCMC BLOCK UPDATING SAMPLING
SCHEME

Even without the Bayesian interpretation and despite the simplicity of both the
pedigree and the mapping problem, the model described above is too complicated
for an exact likelihood approach to estimating the parameters of interest. In
addition to having to sum over all possible QTL genotypes and marker phases, an
industrial-sized half-sib design induces correlations amongst up to 100 offspring
of a sire via the shared random effect si thus creating loops in the underlying
graphical model representing the problem, even though the corresponding pedigree
is unlooped (Sheehan et al. 2002). Local computation and peeling algorithms
all fail when there are too many loops in the relevant graph. Thus, we are
already in a situation where alternative methods for estimating the quantities
of interest, such as McMC methods, must be entertained. With the full Bayesian
approach, such alternatives are even more essential. It is well known that the single
site Gibbs sampler (Geman & Geman 1984) popularly used in many Bayesian
applications can mix very slowly in these complex models involving both discrete
and continuous nodes, even when the sampler is theoretically irreducible (Janss,
Thompson & Van Arendonk 1995, Heath 1997, Jensen & Kong 1999, Lund &
Jensen 1999). Some kind of blocking or joint updating of variables is hence
required in order to sample more efficiently.

Jensen, Kjærulff & Kong (1995) were the first to call up a peeling calculation
on a set of discrete genotypes on a large complex pedigree from within a Gibbs
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sampling framework. Their sampler repeatedly updates large, overlapping pre-
defined blocks of genotypes conditionally on the current values of the usually small
number of remaining genotypes. Mixing has been shown to be fast but the sampler
is not necessarily irreducible. Other blocking samplers include the “L-sampler” of
Heath (1997) which permits multipoint linkage analysis by updating all genotypes
at each locus conditionally on the current values at all other loci. This requires
that the pedigree can be peeled at a single locus. The “M-sampler” of Thompson
& Heath (2000), on the other hand, peels along the chromosome rather than the
pedigree and updates all the meioses in a single individual in one block. The L-
sampler is restricted by pedigree complexity whereas the M-sampler is restricted
by the number of loci involved. Various methods for alternating between the two
have been shown to greatly improve mixing (Thompson 2000, Thomas, Gutin,
Abkevich & Bansal 2000).

FIGURE 4 ABOUT HERE
We now briefly review the blocking sampler of Sheehan et al. (2002) but first

introduce some further notation. Information on phase is required for linkage so
it is convenient to use meiosis or segregation indicators (Thompson 1994, Sobel
& Lange 1996, Thompson 2001) to indicate which of the two parental gametes
is transmitted to the offspring. The segregation indicators are binary variables
taking the value 0 if a copy of the maternal gamete is inherited from the parent
and 1 if the paternal gamete is copied. Note that this labelling is random for the
sires as the parental origins of the sire gametes are unspecified. Thus, for example,
SMij describes the transmission of gametes from sire i to his jth offspring at the
“M-locus” and in the absence of any other information, we assume that it takes
the value 0 or 1 with probability 0.5 i.e. inheritance is Mendelian at the first
locus. Let M(ij,1) denote the actual gamete inherited by individual ij from its sire
i. Its allelic value depends on both alleles in i and on the value of the segregation
indicator determining which one is inherited. The corresponding maternal allele,
M(ij,0) is drawn randomly from the population according to our assumptions about
allele frequencies. The observed marker genotype, Mij, is determined by the values
of these two. Gametes and segregation indicators for the other loci are defined
similarly for individuals i and ij with the one difference being that subsequent
segregation indicator values depend on the preceding segregation indicator because
of linkage. This dependency is a function of the recombination fraction between
the two loci, or equivalently, of the QTL map location λQ.

The graph describing the full Bayesian analysis on the simple mapping problem
of Section 2 is displayed in Figure 4 for a single sire and two of his offspring. The
computational complexity is clearly illustrated indicating why linkage calculations
are challenging. Although there are no loops in the pedigree of Figure 2 there are
many loops in the corresponding Bayesian network for this three-locus mapping
problem. The block updating McMC sampling scheme proceeds as follows. All
the discrete nodes in the graph comprising all genes, unobserved genotypes and
segregation indicators (i.e. the grey nodes in Figure 4) are jointly sampled,
conditionally on the current values at the remaining nodes. QTL genotype effects,
µi, i = 1, 2, 3 and sire effects si, i = 1, . . . , k are block sampled from their full joint
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conditional distribution, given values elsewhere. The variance components, σ2
s and

σ2
res, and allele frequencies pM , pq and pN are each sampled from their respective

full conditional distributions using a single-site Gibbs sampler. The QTL map
location parameter, λQ, is updated using a Metropolis-Hastings algorithm as
its full conditional distribution does not have a standard form. Further details
including full derivation of all the relevant conditional distributions and sampling
steps are given in Sheehan et al. (2002).

We should emphasise at this point that, as McMC samplers go, this is a very
sophisticated one. It jointly carries out the “L”and ”M” steps (i.e locus and
meiosis peeling), as described above, automatically deals with variation between
families and with its elegant handling of the problem of unknown phase, it is
essentially “perfect” in its exact treatment of the discrete part of the model. Of
course, this is only possible because of the simplicity of the problem (i.e. simple
pedigree and small number of loci) but we emphasise that, as a result, mixing
problems with respect to the genotypic configuration should not be an issue in
this application. The actual implementation of the sampler was via a graphical
model representation and invoked the random propagate algorithm (Andersen,
Olesen, Jensen & Jensen 1989) of the HUGIN package (http://www.hugin.com)
to jointly update all the discrete variables. We note that the particular choice of
representation is independent of our discussion here.

4 A REGRESSION APPROACH

A much simpler approach to the mapping problem of Section 2 is provided by
a method based on the least squares principle (Haley & Knott 1992, Martinez
& Curnow 1992, Haley, Knott & Elsen 1994). It only applies to simple designs
like the half-sib design, does not use all the information in the data, does not
deal with random polygenic effects and does not provide estimates of many of the
parameters of interest other than the QTL position. Nonetheless, such methods
are frequently used in practice as they are computationally straightforward and
quite robust to violations of the assumptions (Knott 2005). If all that is required
is whether or not the data provide evidence for a QTL affecting a particular trait,
an approximate regression analysis may be just as efficient as an McMC approach
in certain circumstances. It would certainly be a lot quicker. It is therefore
important to ask the question: when can we really expect to gain from the full
McMC analysis? Although least squares methods are standard in the animal
breeding literature, the details of the method pertaining to this particular design
are not easily found and so we will derive them here.

Consider our QTL with alleles Q and q and corresponding allele frequencies
pQ and pq = 1 − pQ. The three genotypes are QQ, Qq and qq with genotypic
effects µ + a, µ+ d and µ− a as given above in Equation 1. As before, we let si
denote the expected additive polygenic contribution of the ith sire to his offspring
excluding the effect of the QTL. Ignoring the marker data and the polygenes for
now, consider the expected genotypic effect of offspring which inherit a Q allele
from their sire. These offspring can be of only two possible genotypes, QQ and
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Qq, and have inherited the other allele from the dam. By the design assumptions,
inheritance from the dams is equivalent to drawing an allele at random from the
general population. Hence, we have

E(yij|Q from sire i) = E(yij|Qij = QQ) Pr(Qij = QQ|Q from sire i)

+ E(yij|Qij = Qq) Pr(Qij = Qq|Q from sire i)

= (µ+ a)pQ + (µ+ d)pq

= µ+ (apQ + dpq).

Likewise, the expected effect in an individual receiving a q allele from its sire is:

E(yij|q from sire i) = (µ+ d)pQ + (µ− a)pq

= µ+ (dpQ − apq).

In the absence of marker data and conditional on the sire’s polygenic effect
and QTL genotype, the expected value of an offspring of sire i is the sum of
the expected additive polygenic contribution from sire i and the average of the
expected genotypic effects due to inheritance of the different possible alleles at
the QTL. Specifically,

E(yij|Qi, si) =





si + µ+ (apQ + dpq) if Qi = QQ

si + µ+ 1
2
(a(pQ − pq) + d) if Qi = Qq

si + µ+ (dpQ − apq) if Qi = qq

. (3)

Now, without loss of generality, we arbitrarily label the two QTL alleles
carried by the ith sire as Q1 and Q2, each of which can be either Q or q.
Given the marker information on sire i and on his j th offspring, (Mi,Mij),
we can calculate the probability that the Q1 allele is transmitted to offspring
ij. This probability is a function of the marker gene frequencies, of the marker
phase in the sire, of the recombination rate between the marker loci and of the
recombination rate between the marker locus and the putative QTL. (See Haley
et al. (1994), for example, for a full derivation.) We denote this probability
πij ≡ P (Q1 transmitted|Qi,Mi,Mij). The probability that the Q2 allele is
transmitted to offspring ij is 1− πij. If the sire is homozygous at the QTL such
that Q1 = Q2 then the offspring receives the same version of the QTL regardless of
whether Q1 or Q2 is transmitted. Therefore the conditional expectation of yij does
not depend on this transmission. Marker information only affects the expectation
of the offspring’s phenotype by providing information about transmission of Q1

andQ2. Hence, if the sire is homozygous at the QTL, markers carry no information
about the expectation of the offspring’s phenotype. In contrast, for heterozygous
sires (i.e. Q1 6= Q2) the expectation of yij does depend on the segregation at
the QTL and hence on the marker information. Specifically, when Q1 = Q and
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Q2 = q, we deduce from (3) that

E(yij|si,Qi = Qq,Mi,Mij) = si + πijE(yij|Q from sire i))

+ (1− πij)E(yij|q from sire i)

= si + πij (µ+ (apQ + dpq))

+ (1− πij) (µ+ (dpQ − apq))
= si + µ+ (dpQ − apq) + πij (a + d(pq − pQ))

− E(yij|Qi = Qq, si) + E(yij|Qi = Qq, si)

= αi + (2πij − 1)βi (4)

where αi = si +µ+ 1
2
(a(pQ− pq) + d) and βi = 1

2
(a+ d(pq − pQ)). For the reverse

labelling with Q1 = q and Q2 = Q:

E(yij|si,Qi = qQ,Mi,Mij) = si + µ+ (pQa+ pqd)− πij(a+ d(pQ − pq))
= αi + (2πij − 1)(−βi) (5)

Note that the difference in sign between (4) and (5) above is entirely due to the
arbitrary labelling of the QTL alleles. Furthermore, the distinction between the
genotypes Qq and qQ in the conditioning is only to highlight this labelling as
genotypes are, by definition, unordered.

A regression approach for detecting a QTL thought to affect a continuous trait
from marker data on a half-sib design therefore involves regressing the observed
offspring phenotypes for the trait onto the conditional probabilities, πij. As
mentioned above, this is only informative when the sires are heterozygous at
the QTL. If sire i is homozygous at both marker loci, then the markers carry
no information about whether Q1 or Q2 is transmitted to the offspring. Hence,
πij is equal to 1/2 for all offspring of sire i. When only one of the markers is
heterozygous it can be shown that QTL position and QTL effect are confounded,
such that it is not possible to distinguish a nearby QTL of small effect from a
QTL of larger effect at a position further away.

For estimation purposes, this approach only yields estimates for specific
functions of the parameters of interest, and not the parameters themselves. In
the fully informative case, for example, we obtain a least squares estimate for the
expected offspring genotypic value si + µ + 1

2
(a(2pQ − 1) + d) from the intercept

term and ±1
2

(a + d(1− 2pQ)) from the slope term (which is peculiar to each sire).
In the absence of dominance (i.e. when d = 0), the absolute value of the slope
provides an unbiased estimate of the average effect of substituting a Q for a q
allele for heterozygous sires, and thus estimates the increase in genotypic value
due to the Q allele. For homozygous sires, the slope is an estimate of zero. Thus,
a standard test for significance of a regression slope coefficient provides a test for
a segregating sire. The sire polygenic effect is always confounded with the mean
genotypic value in the intercept term.
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5 SIMULATION STUDY RESULTS

A simulation study was conducted in which we attempted to compare the
performance of the McMC block-updating analysis with the performance of the
regression-type analysis described in Section 4. A number of different datasets
were generated, all comprising ten sires each with one hundred offspring. Marker
data at two diallelic marker loci 10cM apart were recorded for each sire and
each offspring. The QTL was placed in the centre of the interval. Without loss
of generality, we can assume that the “first” marker is at the beginning of the
chromosome, so λM = 0 cM, λQ = 5 cM and λN = 10 cM. To produce the
marker and QTL genotypes, chromosomes were sampled from a population in
linkage equilibrium. Phenotypic values were generated for each of the half-sib
offspring assuming the model described by equation (1) of Section 2.1 so we have
one thousand phenotype records for each dataset. The following parameter values
were used to simulate the data: σ2

s = 7.5, σ2
res = 92.5, pQ = 0.3, pM = pN = 0.5

and µ = 0.

Five different scenarios were investigated and the genetic models underlying
these are shown in Table 1. The models reflect no QTL (a = 0.0), additive QTL
of small (a = 2.5), intermediate (a = 5.0) and large (a = 10.0) effects as well as
dominant gene-action and intermediate QTL effect (a = d = 5.0). As a measure
of the relative size of the QTL effect, we define the genetic variance explained by
the QTL to be σ2

qtl and express this as a proportion of the overall phenotypic or
marginal variance, σ2, which is the sum of the sire variance, variance due to the
QTL and the residual variance. In the notation of Section 2, σ2 = σ2

s +σ2
qtl +σ2

res.
In terms of the fixed effects and the allele frequencies, it can be shown (Falconer
& Mackay 1996) that

σ2
qtl = 2pQpq (a+ d(pq − pQ))2 + (2pQpqd)2 .

One hundred replicate data sets were simulated for each scenario in Table 1. All
datasets were analysed with both methods.

TABLE 1 ABOUT HERE

5.1 REGRESSION ANALYSIS

The first step of the regression analysis involves estimation of marker allele
frequencies. Allele frequencies are used to compute the conditional probabilities
πij and to reconstruct the most probable linkage phase in the sires. The second
step of the analysis is the estimation of the slope and the intercept of the regression
equation for each sire, conditional on the estimated allele frequencies and phase.
At the family level, a pseudo F-statistic is calculated for a sire family and the
significance level of the regression slope assessed via a permutation test (Churchill
& Doerge 1994) by repeatedly permuting offspring phenotypes within sire families.
This is the test that was used to generate the results in Table 2 below. All sires
corresponding to significant slope coefficients at the 5% level are classified as
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heterozygous at the QTL locus and hence deemed to be segregating for a QTL.
The remaining sires are classified as either QQ or qq homozygotes. Note that
the regression method ignores uninformative sires (i.e. those homozygous at both
markers) by giving them zero-weighting in the analysis. In practice, inferences are
usually made at the dataset level (i.e. across all sire families) whereby a pseudo
F-statistic is obtained by computing the ratio of the model mean square to the
residual mean square. Significance is assessed via an appropriate permutation
test. The test for the slope for each sire reveals whether the sire is segregating
for the QTL. The overall test reveals whether there is a QTL segregating in
the population. Results from this dataset level test are displayed in Table 5 in
Section 5.2.

TABLE 2 ABOUT HERE
Table 2 shows the test-based classification rates (i.e. homozygous versus

heterozygous) alongside the “true” simulated types. The individual sire
acceptance and rejection probabilities have been averaged across families in each
dataset and then across datasets. The probability of correctly rejecting the null
hypothesis that the true slope coefficient is zero and thus detecting a segregating
sire, increases on average with increasing genotypic effect, a, at the QTL from
3.2% to 64.4%. As we would expect, in the absence of any QTL effect, or when
that effect is small, detection probabilities are very low. The power of detection
for the dominance scenario 5-5 is slightly better (42.9%) than the power for the
scenario 5-0 with same additive effect (32.7%).

We have seen in Section 4 that a point estimate of the increase in QTL
genotypic value a due to the Q allele can be obtained from the slope term,
This estimate is unbiased for the additive model (i.e. when d = 0) but is
confounded with the dominance effect and allele frequencies otherwise. Because
of the difference in signs caused by the arbitrary labelling of the QTL alleles
(equations 4 and 5), we have recorded the absolute value of this coefficient for each
sire and taken averages and standard deviations of these values across families and
datasets. The results are shown in Table 3.

TABLE 3 ABOUT HERE
A distinction has been made between sires which were classified as

homozygotes by the permutation test (i.e. where the null hypothesis could not
be rejected) and those which were classified as heterozygous. If the classification
were perfect, the expected values should be close to zero for all the sires for which
H0 was not rejected since homozygotes provide no information about this effect.
Values should be close to 0, 2.5, 5 and 10, respectively, in the additive scenarios for
those classified as heterozygous at the QTL. (Note that these expected values are
not exactly 0, 2.5, 5 and 10 due to the fact that we are looking at absolute values.)
As one might expect, the estimates for the sires classified as homozygotes are not
really meaningful and are similar across the different scenarios. The estimates
for the presumed heterozygous sires tend to be too high. This is because of the
selection bias introduced by the testing criterion: only sires with very strong
evidence for heterozygosity were categorised as such.

In summary the regression approach provides a qualitatively satisfactory
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analysis for the presence/absence of a QTL. However, QTL effects are not well
estimated and in the presence of dominance, QTL effects are confounded with
gene frequencies (see Section 4).

5.2 MCMC ANALYSIS

The degrees of freedom and scale parameters of the scaled inverted chi squared
prior distributions on the sire and residual variance components were arbitrarily
set to νs = νres = 5 and Ss = 7.5 and Sres = 92.5, respectively. These settings
give modal values for the residual and sire variances, σ2

res and σ2
s , of 66.1 and 5.36,

respectively. (Recall from the beginning of Section 5 that the actual values for σ2
res

and σ2
s chosen for the simulated datasets were 92.5 and 7.5). Prior distributions

for allele frequencies were uniform on the interval [0, 1], and improper uniform
priors were assigned to the QTL effects, µ1, µ2 and µ3 (Section 2.1). As we are
really interested in the magnitude of the additive effect a and the dominance
effect d (Figure 1), rather than the individual combined genotype effects µ1, µ2, µ3

themselves, we define the following functions of µi, ∆a = 1
2
|µ1 − µ3| ≡ |a| and

∆d = µ2 − (µ1 + µ3)/2 ≡ d (Section 2.1) and monitor these quantities instead.
For each simulated dataset, the sampler was implemented with a single long chain
of length 100, 200. After a nominal burn-in period of 200, every tenth value was
stored for each chosen parameter in the model giving a chain length of 10, 000
for the resulting estimates. A little preliminary experimentation confirmed that
this size of chain resulted in Monte Carlo coefficients of variation of estimates of
posterior means of the chosen parameters ranging from 0.7 to 1.4%.

We report results in two sections. In section 5.2.1, the presentation is in the
form of analyses explicitly constructed to produce output directly comparable to
that of the regression analysis. In the following section (5.2.2), results are not
directly comparable. In both sections, we report frequentist behaviour of chosen
parameters (i.e. averaging across simulated datasets) and also various features of
posterior distributions for a specific dataset.

5.2.1 QTL GENOTYPE CLASSIFICATION AND EFFECT SIZE VIA MCMC

Table 4 shows the posterior probabilities of the sire QTL genotypes corresponding
to the underlying simulated values. For each scenario and for each of the three
possible simulated sire types, an average posterior probability distribution of QTL
genotypes is calculated as the proportion of samples assigned to each possibility,
averaged over sires within a dataset and then across datasets. Also shown are the
probabilities that each QTL genotype is classified as homozygote (QQ/qq). For
instance in the 5-5 scenario, sires simulated as qq had on average a posterior
probability of .297 of being qq and a posterior probability of .597 of being
homozygous at the QTL.

TABLE 4 ABOUT HERE
In the 0-0 scenario where the QTL has no effect on the phenotype, the

posterior probabilities of qq,Qq and QQ genotypes are very close to 1
4
, 1

2
, 1

4
,

independently of the simulated value, as would be expected. Things are not very
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different in the 2.5-0 scenario where the QTL effect is small but, with increasing
effect size, the posterior probability of correctly identifying a QTL heterozygote
individual as such increases from .517 to .851. However, the posterior probability
of the correct QTL genotype was low if the simulated value was homozygous. This
remained true even in the 10-0 scenario where the QTL has a large effect on the
phenotype explaining almost 30% of the variability (Table 1). On the other hand
the posterior probability of identifying a sire as homozygote (i.e. either qq or QQ)
did in fact increase with increasing effect size from 0.530 to 0.770 for qq and from
0.523 to 0.823 for QQ.

Although not directly comparable, these findings are broadly similar to those
from the regression classification in Table 2: a large effect size is required in
order to get reasonable classification rates. This is reflected in the posterior
distributions of QTL genotype for each of the ten sires in a single dataset simulated
for each of the three scenarios with a non-zero additive QTL effect. The general
pattern in Figure 5 is very clear: as the size of the QTL effect increases, the
marginal posterior distributions of QTL effects of the individual sires become
more distinguishable. However, we also noted that genotypes can sometimes be
poorly inferred, even in cases where the QTL effect is large as can be seen in
subfigure (c) of Figure 5 where the marginal posterior distributions for some sires
are relatively flat and uninformative. In this case, poor inference seemed to be
caused by the fact that the sire effects happened to be extreme for the individuals
in question and so the sampler is correctly reflecting the fact that information
about the genotype effect has been dampened.

FIGURE 5 ABOUT HERE
Although the Bayesian approach is not directly comparable with the least

squares analysis of Section 5.1, it can be viewed as so when the focus is on the same
parameter and features across replicated datasets are of interest. In particular, for
determination of sire QTL genotypes and effect sizes it is reasonable, and indeed
practical, to ask if it is worth the extra computational effort. This question cannot
be answered without making some kind of formal comparative statement and so
we propose the following. As noted above, due to the non-identifiability of the
sign of the difference between the effects of the homozygous QTL genotypes, we
chose to study the absolute value of the difference, ∆a = 1

2
|µ1 − µ3|. To detect

a QTL, the posterior distribution of ∆a would have to be well separated from
0. A hypothesis test for such a separation would give us results that are more
comparable with those obtained from the pseudo dataset level F-test referred to in
Section 5.1. From Sheehan et al. (2002), it can be seen that the marginal posterior
distribution of genotype effects for this model is multivariate normal. Hence we
expect the effect difference a to be univariate normal and its absolute value to
look like a normal mixture random variable. In particular, if

a ∼ N(µa, σ
2
a), (6)

then ∆a should have the density

1√
2πσa

{
exp

(
−(∆a − µa)2

2σ2
a

)
+ exp

(
−(−∆a − µa)2

2σ2
a

)}
. (7)
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From the output of a single McMC analysis on any particular dataset, we fitted the
distribution in (7) to the 10, 000 ∆a samples using an EM-algorithm (Dempster,
Laird & Rubin 1977) and estimated µa and σ2

a. The posterior distribution for a
simulated data set was judged to be well separated from 0 (at the 5% level) if

z ≡ µ̂a√
σ̂2
a

≥ 1.96.

The parameter and test statistic values were then averaged across the 100
simulated datasets and the proportion of tests that rejected the null hypothesis of
∆a = 0 was recorded for each scenario. These are displayed in Table 5 alongside
the proportion of datasets in which the analogous test on the slope coefficient was
rejected by the regression method of Section 5.1. We note that the similarity of
the rejection rates from the two approaches is remarkable.

TABLE 5 ABOUT HERE

5.2.2 BAYESIAN ANALYSIS TREATED MORE APPROPRIATELY

TABLE 6 ABOUT HERE
A Bayesian analysis produces posterior distributions of all model parameters,

including those that cannot be estimated from simpler approaches such as the
regression method. However, due to paucity of information, inferences about
specific parameters may be associated with high uncertainty. Here we present
averages of relevant quantities over the 100 simulated datasets and we also look
at the behaviour of the McMC approach on particular datasets. Table 6 gives
various summary statistics of the Monte Carlo output for eight model parameter
posterior distributions. 2.5% and 97.5% percentile values were obtained from
the McMC sampler on each dataset along with the mean and variance for each
parameter. These quantities were then averaged over the 100 simulated datasets
and sample standard deviations calculated. We can see at once that the QTL allele
frequency is poorly estimated in all cases with an over-estimated posterior mean.
The ambiguity in the labelling of the respective alleles makes these quantities
unidentifiable and the uniform prior on the interval [0, 1] takes over. The sire
variance component tended to have a positively skewed posterior distribution
(not shown). Estimates of both variance components display high variability.
Estimation of the dominance effect in the 5-5 scenario is poor and the presence
of dominance appears to affect the estimate of the additive effect by comparison
with the 5-0 scenario where the signal appears to be stronger and less variable.

FIGURE 6 ABOUT HERE
Poor mixing behaviour can usually be detected from trace plots of the sampled

values for each parameter separately. Figure 6 shows trace plots for ∆a, ∆d, the
two variance components and the QTL map position for one particular dataset
simulated under the 5-0 scenario. The 5 parameters are all shown to mix well,
as we expected, and the sampled values are spread around the true values used
in the simulations. It looks though as if there could be some serial correlation
for the map position of the QTL, λQ, and the sampled values are spread over
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the whole range of the allowed interval. This is not surprising as linkage analysis
of complex diseases can only identify large chromosomal regions of typically tens
of cMs (Roberts, MacLean, Neale, Eaves & Kendler 1999). There is not enough
information in the design to pinpoint the QTL location within a 10 cM interval
so statistics on λQ are meaningless and should ideally not be produced at all. We
placed the QTL in the centre of the interval for this reason but the trace plot of
Figure 6 looks similar for other placings of the QTL.

FIGURE 7 ABOUT HERE
FIGURE 8 ABOUT HERE
As might be expected, our sampler showed very variable behaviour on different

datasets generated from the same parameter values. For instance, Figure 7
shows the posterior distributions of the dominance effect, measured by ∆d, for
two different datasets simulated for the scenario 5-0 (i.e. a scenario without
dominance). In one case, the correct value of 0 for the dominance effect is
fairly certain whereas the second case is vague about this value. Both posterior
distributions are centred around the true value of 0 but there is considerable
difference in the posterior variance of the distributions indicating large differences
in the reliability of the estimated effect. Due to sampling variation, inferences can
vary substantially between data sets and McMC methods are just as influenced by
such variation as any other method. In this case, it would seem that the sampler
is correctly reflecting the lack of information about the dominance effect in the
second data set.

FIGURE 9 ABOUT HERE
Figure 8 shows plots of the dominance effect, ∆d, versus (µ1 − µ3)/2, the

signed QTL genotype effect size, from the McMC output for sampler runs on
each of 9 distinct datasets (those numbered 31 − 39) simulated under the 5-0
scenario. Ideally most of the sampled effect sizes (µ1 − µ3)/2 should lie around
±5.0 and the sampled dominance effects µ2 − (µ1 + µ3)/2 should centre around
0.0. This behaviour is clearly demonstrated in subfigures (b), (d) and (e) with
the difference between (b), on the one hand, and (d) and (e) on the other being
that the sampler manages to flip between +5.0 and −5 in (b) but tends to settle
for one of these in (d) and (e). However, we note that the (absolute) effect size
is heavily over-estimated in (d) with very little uncertainty. In subfigures (a),
(c), (f), (g) and (h), the sampler puts most of the weight on models exhibiting
varying degrees of dominance i.e. where (µ2 − (µ1 + µ3)/2) is non-zero and is in
the interval ±(µ1 − µ3)/2. This is most pronounced for the dataset featured in
subfigure (h) where almost complete dominance seems to be favoured—again with
very little uncertainty. Subfigure (i) presents the interesting situation where the
sampler spends most of the time moving between dominant and over-dominant
models and is fairly sure about a zero effect size.

Figure 9 shows the posterior distributions of ∆a and ∆d for the datasets
corresponding to subfigures (b) and (i) in Figure 8. These histograms clearly
demonstrate the difficulty the sampler has in distinguishing between different
genetic models. For dataset (b), the sampler gives high posterior probabilities to
values of ∆a around 5 (the simulated value) and puts significant probability on
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values of ∆d = 0 (the simulated value) with a posterior mode slightly above 0.
Hence, for dataset (b) the sampler detects the correct simulated genetic model.
The corresponding plots for dataset (i) however, give high posterior probability
to a zero effect size and give a strong indication of a non-zero dominance effect.
The plots in Figure 8 indicate that the sampler is also capable of giving high
posterior probabilities to the wrong values on an individual dataset. Inspection
of the simulated three-locus genotypes for the ten sires in each dataset did not
reveal an obvious explanation as to why this occurred. For instance, subfigures
(d) and (e) both exhibit equivalent certainty about the size of the genotypic
effect but (e) is more or less the correct value whereas (d), as noted above, is
too high. Each dataset happened to have 7 informative sires. Of these, (d)
had three fully informative (i.e. heterozygous also at both markers) whereas (e)
had four. Likewise, the datasets corresponding to subfigures (h) and (i) were
similarly uninformative in terms of segregating sires. One of the ten sires in (h)
was partially informative being heterozygous at the QTL and one marker while
one sire in (i) was fully informative. With this lack of information, we would
expect both datasets to exhibit high uncertainty about parameter estimates via
flat posterior distributions. It is somewhat disquieting to observe such certainty
about the wrong values.

A similar range of behaviour patterns was observed when we looked at ten
different datasets simulated under the dominance 5-5 scenario in that varying
degrees of dominance were detected in some cases whereas additive models of
gene action were fixed upon in others. (Results not shown.) QTL effects are
either poorly inferred or not identifiable in the case of a least squares approach.
In principle, this is not the case for the Bayesian model. However, the McMC
sampler can lead to misleading inferences regarding these parameters in particular
replications of data simulated under the same model.

5.3 GENERAL CONCLUSIONS

If the question of interest is whether there is a QTL segregating in a given
region or not, the regression approach is fast, efficient and surprisingly reliable.
It requires a large QTL effect for reasonable detection rates. However QTL
effect sizes are not well estimated even in the absence of dominance and are
generally confounded with allele and recombination rates. The Bayesian approach
also provides a qualitatively satisfactory analysis for the presence/absence of
a QTL and QTL effect sizes can, in principle, be disentangled even in the
presence of dominance. However, large QTL effects are still required for sound
inference. The Bayesian model uses the information contained in the variation
within families allowing inferences to be drawn even in families where the sire is
homozygous at the markers. The regression method cannot infer anything in this
case but as such sires are truly uninformative for segregation at the QTL, these
Bayesian estimates should be regarded critically. Clearly, a better quantitative
analysis is possible using the Bayesian McMC approach. In particular, estimates
of posterior distributions can be obtained for any model parameter, and plots
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such as those presented in Figures 5, 6, 7 and 9 should all be inspected before
drawing conclusions. The power of the Bayesian approach is in providing posterior
probabilistic statements about parameters rather than point estimates. We
have seen that such inferences can be vague when correctly reflecting sampling
variablity and uncertainty. However, on a specific dataset, it is possible for these
posterior distributions to be peaked at the wrong parameter values leading to
misleading inferences. In general, however, the unified approach of the Bayesian
analysis accounting for all levels of uncertainty is undeniably attractive. Linkage
phase, in particular, is inferred jointly with all the other parameters of the
model whereas the regression method requires that this must be estimated before
estimating the other parameters, conditionally on the inferred phase, and no
account is taken of the uncertainty associated with the initial estimate. However,
the advantages of the Bayesian approach come at a substantial computational
cost. For this example, a Bayesian analysis takes approximately 30 cpu hours. In
contrast, the corresponding regression analysis, including 1000 permutations for
the permutation test, takes approximately 15 cpu minutes.

6 DISCUSSION

In the current climate of rapid development in genetics research, routine
systematic analyses are required on increasingly complicated problems. Exact
probability and likelihood calculations are frequently intractable and approximate
methods must be used. Many of these perform standard calculations on a
simplified version of the problem. For example, the least squares approach
of Section 4, extracts a half-sib structure from a more complicated pedigree,
ignores all the other relationships between these individuals and imposes the
usual regression assumptions on the trait phenotypes. McMC methods are
computationally intensive but provide a powerful alternative whereby much of
the complexity of the problem can be preserved. They also have the advantage
of being able to deal with missing marker data, highly polymorphic loci and non-
informative sires in our example. The accuracy of the resulting estimates will
depend heavily on the efficiency of the sampling scheme and the informativeness
of the data. Point estimates for any parameters of interest will always be provided,
but these should always be considered alongside their posterior distributions.
Poor inferences can arise in the form of the usual uncertainty due to random
sampling variation. More disturbingly, we found that posterior distributions
occasionally peaked around the wrong values in particular cases, even when the
data appeared to be completely uninformative, leading to misleading conclusions.
Also, McMC methods can be easily misused to extract more information from
the data than is actually available. Because of the pressure on investigators to
deliver believable results quickly and the perceived unreliability of these methods,
there is a general reluctance in practice to resort to McMC analysis on big
complex genetics problems. In contrast, on the methodological side, proponents
of McMC methods tend to advocate this approach to any problem, regardless of
the practicalities involved. The aim of this paper was to highlight the need for
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compromise between the theoretical and applied communities. We clearly need
McMC methods but we also need to think more carefully about when we need
them and how to determine if they are behaving properly.

We chose to focus on the “toy” QTL mapping problem of Sheehan et al.
(2002) in order to illustrate our point, and we used simulated data to assess the
sampler’s performance. Human or animal genetic mapping problems do not get
any simpler than this one. A real problem would involve multiple markers with
multiple alleles, multiple QTL and a complex pedigree structure. Our blocking
scheme was perfectly designed to avoid the poor mixing problems encountered
with single-site updating approaches. While we would not expect it to compete
with a simple custom-built approach in terms of time, it is not unreasonable to
demand that it deal with this problem easily and consistently. Otherwise, we can
have very little confidence in recommending it for a real problem to which the
true solution is unknown. Our results speak for themselves. In no situation did it
seem that McMC had an advantage over the Least Squares approach in detecting
the presence of a QTL besides the neater inferences clearly afforded by permitting
probabilistic statements. When smaller, less informative sibships of size 10 were
considered, both methods were adversely affected by the drop in information with
the regression method faring slightly worse. For example, the hypothesis test
results analogous to those in Table 5 indicated that the power of detection for the
additive model with a large QTL effect (the 10-0 scenario) was reduced from 98%
to 26% for the Bayesian method and from 95% to 12% for the regression method.
There was no evidence, however, of an increase in false positives on the smaller
sibships with regression. Overall, the regression approach is surprisingly good at
what it purports to do and if a simple qualitative analysis is all that is required
(i.e. is there a QTL with reasonable effect in this area or not?), it is difficult to sell
the idea of a full McMC approach. The drawback is that regression is designed for
and restricted to simple designs, requires large datasets and ignores information
from homozygous sires.

Of course, we often do want more than a qualitative analysis. Estimates of
sire variance components, or QTL effects in the presence of dominance, cannot
be obtained from simple approaches. The regression method is not a competitor
to the fully Bayesian McMC sampler on these terms. Nonetheless, we argue that
it is important to a practitioner to be able to say whether McMC is “better”, or
at least “necessary” for a particular application. Despite the perceived strengths
of the Bayesian approach, it is important to acknowledge that there are other,
often easier, ways of tackling the problem, and a formal comparison is essential
to address such issues. We justify our frequentist interpretation of the Bayesian
output in Section 5.2.1 on these grounds and argue that more comparisons of this
type should be made. Haley & Knott (1992) compare regression with maximum
likelihood methods which are also computationally intensive and conclude, as we
do, that regression is fast and surprisingly good at doing what it claims to do.
There are not very many instances in the literature where McMC methods are
compared with simple alternative approaches to a problem.

Our example was motivated by applications in animal breeding, but our
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message is far more general. McMC methods are frequently used for complex high-
dimensional problems on which their performance cannot be properly assessed.
Comparison with other methods is rarely, if ever, carried out. The flexibility of
the McMC approach in terms of design, models and inference is indisputable.
However, care should be taken in interpreting the results of such an analysis as
estimates can be unreliable, especially if the sampler is mixing badly and the
data are poor. In our case, for example, previous results from a single run of
this particular blocking sampler yielded reasonable estimates of both variance
components (Sheehan et al. 2002) and implied that dominant models of gene
action could be identified (Guldbrandtsen, Sheehan & Sorensen 2002), but as
demonstrated above, these findings were far from consistent when the sampler was
tested over many datasets. At the risk of stating the obvious, McMC methods
cannot compensate for lack of information in the data or poor study design, but
they will always produce estimates of anything of interest. Further investigations
of the kind we have embarked on here are essential before these methods can be
exploited to their full potential in complex applications.
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8 TABLES

Table 1: Scenarios for which data sets were simulated. The last column shows
the expected percentage of the total phenotypic variance, σ2, that is explained by
variation at the QTL.

Name a d λQ
σ2
qtl

σ2

0–0 0.0 0.0 5.0 cM 0.0%
2.5–0 2.5 0.0 5.0 cM 2.6%

5–0 5.0 0.0 5.0 cM 9.5%
10–0 10.0 0.0 5.0 cM 29.6%
5–5 5.0 5.0 5.0 cM 20.0%

Table 2: Test-based classification rates for individual sires alongside the “true”
simulated classifications for each of the five scenarios.

Scenario True QTL Regression Classification
qq or QQ Qq

0-0 qq,QQ 96.3% 3.7%
Qq 96.8% 3.2%

2.5-0 qq,QQ 96.8% 3.2%
Qq 88.5% 11.5%

5-0 qq,QQ 96.4% 3.6%
Qq 67.3% 32.7%

10-0 qq,QQ 95.3% 4.7%
Qq 35.6% 64.4%

5-5 qq,QQ 98.0% 2.0%
Qq 57.1% 42.9%
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Table 3: Regression estimates of QTL effects. Figures give the mean ± the
standard deviation of the absolute values of the regression estimates of QTL effect
conditional on whether or not the null hypothesis of no QTL segregating in the
interval was rejected in the family.

Scenario H0 not rejected H0 rejected
0-0 1.59±0.76 6.57±0.57

2.5-0 1.67±0.83 6.79±0.75
5-0 1.80±0.94 7.80±0.91

10-0 1.68±0.97 10.70±1.68
5-5 1.98±1.01 8.96±1.18

27



Table 4: Bayesian classification probabilities of sire QTL genotypes.

True QTL Average QTL genotype
posterior probabilities

Scenario 0-0
qq Qq QQ Homozygote

qq 0.261 0.479 0.260 0.521
Qq 0.258 0.486 0.257 0.515
QQ 0.259 0.483 0.257 0.516

Scenario 2.5-0
qq Qq QQ Homozygote

qq 0.266 0.470 0.264 0.530
Qq 0.243 0.517 0.239 0.482
QQ 0.261 0.478 0.262 0.523

Scenario 5-0
qq Qq QQ Homozygote

qq 0.277 0.432 0.291 0.568
Qq 0.185 0.628 0.187 0.372
QQ 0.278 0.430 0.293 0.571

Scenario 10-0
qq Qq QQ Homozygote

qq 0.389 0.230 0.381 0.770
Qq 0.073 0.851 0.076 0.149
QQ 0.381 0.172 0.447 0.823

Scenario 5-5
qq Qq QQ Homozygote

qq 0.297 0.403 0.300 0.597
Qq 0.151 0.695 0.154 0.305
QQ 0.382 0.293 0.326 0.706
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Table 5: Bayesian detection of additive QTL effects via hypothesis testing. For
each scenario the estimated mean and variance of the posterior distribution of ∆a

is shown along with the average z-test statistic as well as the proportion of H0’s
rejected at α = 5% within 100 replicate data sets generated for each scenario.
Also shown is the power of detection using the regression method.

Scenario 0-0 2.5-0 5-0 10-0 5-5
µ̄a 1.69 2.09 3.70 8.65 4.85
σ̄2
a 2.76 2.91 3.24 2.91 3.63
z̄ 1.05 1.26 2.28 5.83 2.95
Prop. Rej. H0 7.0% 15.0% 53.0% 98.0% 70.0%
Regression 6.0% 17.0% 51.0% 95.0% 69.0%
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Table 6: Monte Carlo output showing sample mean±standard deviation (across
replicate data sets), correct to three decimal places, of the 2.5% and 97.5%
percentiles, mean and variance of the posterior distributions for 8 parameters
in the model. We omit the scenario with small additive effect (2.5− 0) and give
the “true” values used in the simulations alongside the different parameters.

2.5% Mean Variance 97.5%
Scenario 0-0

σ2
s 7.5 2.877±0.311 8.484±0.621 19.688± 1.271 20.022±0.721
σ2
res 92.5 59.842±1.551 81.812±0.793 109.795±13.662 100.565±1.843
PM 0.5 0.455±0.002 0.503±0.003 0.001± 0.000 0.557±0.007
PQ 0.3 0.457±0.002 0.499±0.001 0.000± 0.000 0.541±0.001
PN 0.5 0.441±0.002 0.499±0.001 0.001± 0.000 0.557±0.001
λQ 0.05 0.004±0.000 0.050±0.001 0.001± 0.000 0.096±0.000
∆a 0 0.083±0.007 2.130±0.168 2.622± 0.371 6.004±0.419
∆d 0 -10.885±0.426 -0.308±0.216 36.008± 3.602 10.616±0.496

Scenario 5-0

σ2
s 7.5 3.137±0.400 9.640±0.686 25.575± 1.970 22.480±0.772
σ2
res 92.5 60.893±1.468 85.262±0.876 118.556±12.916 104.387±1.869
PM 0.5 0.456±0.005 0.504±0.003 0.001± 0.000 0.551±0.002
PQ 0.3 0.458±0.001 0.499±0.001 0.000± 0.000 0.540±0.001
PN 0.5 0.442±0.001 0.498±0.001 0.001± 0.000 0.555±0.001
λQ 0.05 0.004±0.000 0.049±0.001 0.001± 0.000 0.096±0.000
∆a 5 0.232±0.031 3.843±0.307 4.945± 0.628 8.552±0.664
∆d 0 -11.204±0.329 -1.017±0.486 30.676± 2.345 10.714±0.293

Scenario 10-0

σ2
s 7.5 2.928±0.061 9.826±0.620 34.591± 5.253 25.399±1.901
σ2
res 92.5 69.793±0.696 93.419±1.556 156.506±12.127 117.883±2.254
PM 0.5 0.455±0.003 0.502±0.004 0.001± 0.000 0.552±0.005
PQ 0.3 0.460±0.002 0.499±0.001 0.000± 0.000 0.539±0.001
PN 0.5 0.445±0.002 0.499±0.001 0.001± 0.000 0.552±0.001
λQ 0.05 0.003±0.000 0.046±0.001 0.001± 0.000 0.095±0.001
∆a 10 2.477±1.331 8.466±0.544 6.540± 1.243 12.450±0.217
∆d 0 -7.810±1.155 -0.762±0.289 9.917± 1.820 5.988±1.102

Scenario 5-5

σ2
s 7.5 2.922±0.026 8.938±0.246 24.211± 1.915 21.867±0.746
σ2
res 92.5 59.228±0.949 85.370±1.748 162.887±14.654 110.283±3.499
PM 0.5 0.451±0.001 0.500±0.000 0.001± 0.000 0.552±0.001
PQ 0.3 0.459±0.000 0.500±0.000 0.000± 0.000 0.541±0.000
PN 0.5 0.443±0.001 0.500±0.000 0.001± 0.000 0.557±0.000
λQ 0.05 0.003±0.000 0.050±0.000 0.001± 0.000 0.096±0.000
∆a 5 0.105±0.015 2.881±0.396 5.103± 1.062 8.267±0.715
∆d 5 -11.204±0.061 0.229±0.252 37.383± 1.155 11.220±0.113
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9 FIGURES

PSfrag replacements
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Genotypic Value: µ− a µ+ d µ+ a

Figure 1: A representation of genotypic value for a diallelic locus adapted from
Falconer & Mackay (1996).

PSfrag replacements

Sire
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Figure 2: A marriage node graph of a half-sib design comprising a sire with 4
offspring. Individual nodes are represented by squares for males and circles for
females while marriages (i.e. fertile matings) are represented by small black dots.
The nodes corresponding to observed individuals are depicted in black.
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Figure 3: A very simple mapping problem in which the hypothesis of interest is
that there is a single diallelic QTL coding for our continuous trait somewhere
between two diallelic markers. The marker positions λM and λN are known so
only the QTL location λQ has to be estimated.
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Figure 4: The graphical model taken from Sheehan et al. (2002) for the full
Bayesian analysis on a half-sib design with one sire i and two daughters, ij and
ij ′. The black nodes are observed. Arrows connecting the nodes representing the
segregation indicators SMij and SQij , for example, denote the linkage between the
loci, and dependency on the map location, λQ, is reflected by further arrows.
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Figure 5: Distributions of sire QTL genotype effects for three scenarios. Each line
corresponds to the posterior distribution of the effects of the QTL in one of the
10 sires in the simulation. (a): a = 2.50, d = 0 (b): a = 5.0, d = 0 (c): a = 10.0,
d = 0.
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Figure 6: Trace plots for 5 parameters for one dataset simulated under scenario
5-0. The dataset shown is the same as shown in dataset (b) in figure 8.
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Figure 7: Comparison of distributions of ∆d for two different data sets generated
with the same parameters (a = 5.0 and d = 0.0).
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Figure 8: Nine examples of the behaviour of the sampler with respect to (µ1−µ3)/2
on the x-axis vs. ∆d = µ2 − (µ1 + µ3)/2 on the y-axis. Each subplot corresponds
to the output of the Gibbs sampler for a distinct dataset simulated under the
scenario 5-0. All subfigures are on the same scale, the x-axis runs from -15 to
+15 while the y-axis runs from -12 to +12.

35



 0

 0.1

 0.2

 0.3

 0    4    8  12

(a) ∆a for (b)

 0

 0.1

 0.2

-10  0  10

(b) ∆d for (b)

 0

 0.1

 0.2

 0.3

 0    4    8  12

(c) ∆a for (i)

 0

 0.05

 0.1

-10  0    10

(d) ∆d for (i)

Figure 9: Plots of the posterior densities for ∆a and ∆d for two selected datasets
simulated under the scenario 5-0. The top two figures correspond to subfigure
(b) in figure 8, while the bottom two correspond to subfigure (i) in figure 8.
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