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Abstract: Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a
serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search
for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have
attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance
the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via
random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random
immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the
elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation
scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current
population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes
of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that
are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are
carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants
scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic
algorithms in dynamic environments.
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1 Introduction

Genetic algorithms (GAs) are a class of stochastic meta-
heuristic optimization methods that model the biological
principles of Darwinian theory of evolution and Mendelian
principles of inheritance [1, 2]. Due to their ease of use,
GAs have been widely applied for solving many optimiza-
tion problems with promising results. Most of the opti-
mization problems studied so far by the GA community are
stationary problems where it is assumed that the problems
are given in advance and are not subject to changes over
time. However, many real world problems are dynamic op-
timization problems (DOPs) where change may occur over
time with respect to all aspects of the problem being solved.
For example, the problem-specific fitness evaluation func-
tion and constraints, such as the design variables and en-
vironmental conditions, may change over time due to all
kinds of reasons, e.g., machine breakdown, resource avail-
ability and economic factors.

Addressing DOPs has been a challenging task for the GA
community since the early days. There were some prelim-
inary works appeared in this area in the early days of GA
research [3]. However, due to the difficulty of DOPs, only
in recent years, with the growing interest of studying GAs
for real world problems, there has been a growing interest
in studying GAs for DOPs[4−7].

For stationary optimization problems, our goal is to de-
velop GAs that can quickly and precisely locate the op-
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tima of the fitness landscape. However, for DOPs quickly
and precisely locating the optimum solution(s) of a snap-
shot optimization problem is no longer the unique goal. In-
stead, tracking the changing environment becomes a more
important issue. This challenges traditional GAs due to the
convergence problem because, once converged, GAs cannot
adapt well to the changing environment.

The simplest approach to deal with DOPs is to re-start
GAs whenever a change in the problem is detected. This re-
optimization process, however, generally requires substan-
tial computational time and effort. If the new problem is
related to the previous one, which is usually true, knowl-
edge obtained during the search for the solution for the old
problem can be used to search for a new solution for the
new problem in order to save processing time [8]. Over the
years, several approaches have been developed into GAs to
address DOPs, such as maintaining diversity via random
immigrants [9, 10], increasing diversity after a change via
hypermutation [11, 12], memory schemes [13−18] and multi-
population and species schemes [19, 20].

Among the approaches devised for GAs for DOPs, the
random immigrants scheme has proved beneficial for GAs
for many DOPs. It works by maintaining the diversity of
the population by replacing individuals from the population
with randomly created individuals. Recently, a hybrid ran-
dom immigrants and elitism approach, called elitism-based

immigrants, has been proposed for GAs in dynamic environ-
ments with some promising results [21]. In the elitism-based
immigrants scheme, the elite from the previous generation
is retrieved as the base to create immigrants via mutation
to replace the worst individuals in the current population.
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This paper further investigates the performance of the
elitism-based immigrants scheme for GAs in dynamic en-
vironments. Inspired by the dualism and complementary
principle in nature, this paper also proposes a hybrid im-
migrants scheme, which combines the elitism-based immi-
grants scheme, the traditional random immigrants scheme,
and dualism, for GAs to deal with DOPs. In this hybrid im-
migrants scheme, the best individual, i.e., the elite, from the
previous generation and its dual individual are retrieved as
the bases to create immigrants via the traditional mutation
scheme. These elitism-based and dualism-based immigrants
together with some random immigrants are substituted into
the current population, replacing the worst individuals in
the population. These three kinds of immigrants aim to ad-
dress environmental changes of slight, medium and signif-
icant degrees respectively and hence efficiently adapt GAs
to dynamic environments that may be subject to different
severities of changes.

Based on the DOP generator proposed in [22, 23], a series
of dynamic test problems are constructed from several sta-
tionary functions and experiments are carried out to com-
pare the performance of several GA variants with different
immigrants schemes. Based on the experimental results,
we analyze the performance of GAs regarding the weakness
and strength of different immigrants schemes for GAs in
dynamic environments. The experiment results show that
the proposed hybrid immigrants scheme efficiently improves
the performance of GAs in dynamic environments.

The rest of this paper is organized as follows. Section 2
briefly reviews the traditional random immigrants scheme
for GAs in dynamic environments. Section 3 presents the
proposed hybrid immigrants scheme for GAs in dynamic en-
vironments. The dynamic test environments used for this
study are described in section 4. The experimental results
and relevant analysis are presented in section 5. Finally,
section 6 concludes this paper with discussions on relevant
future work.

2 The Random Immigrants Scheme

The standard GA, denoted SGA in this paper, maintains
and evolves a population of candidate solutions through se-
lection and variation. New populations are generated by
first selecting relatively fitter individuals from the current
population and then recombining them via crossover and
mutation to create new off-spring. This process continues
until some stop condition is met, e.g., the maximum allow-
able number of generations tmax is reached. The pseudo-
code for SGA is shown as follows, where pc and pm are the
probability of crossover and mutation respectively.

Pseudo-code for SGA and RIGA. Here, elitism of size one is
used in both SGA and RIGA

begin

t := 0 and initializePopulation(P (0), n)
evaluatePopulation(P (0))
repeat

t := t + 1
E(t − 1) := extractElite(P (t − 1))
replace the worst individual in P (t) by E(t − 1)

if random immigrants used then // for RIGA
generate a set Sri(t) of ni random immigrants

evaluateImmigrants(Sri(t))
replace the worst individuals in P (t) with the

generated immigrants in Sri(t)
end if

P ′(t) := selectForReproduction(P (t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)
evaluatePopulation(P ′(t))
P (t + 1) := P ′(t)

until a stop condition is met // e.g., t > tmax

end

Usually, with the iteration of SGA, individuals in the
population will eventually converge to optimum or near op-
timum solutions in stationary environments due to the se-
lection pressure. For stationary optimization problems, the
convergence of the population, at a proper pace instead of
pre-mature, is usually beneficial for GAs to search for op-
timum or near optimum solutions. However, convergence
becomes a big problem for GAs in dynamic environments.
When a change occurs in the problem, the solution given
by GAs before the change may no longer be effective and a
new solution should be found. But, because GAs may have
already converged when a change occurs, it is hard for them
to search for a new solution in the new environment. Hence,
dynamic environments require GAs to remain a certain level
of population diversity to maintain their adaptability.

In order to avoid convergence, several approaches have
been proposed in the literature over recent years. Typical
examples are the random immigrants scheme [9], sharing or
crowding mechanisms [24], thermodynamic GA [25, 26], and
hypermutation [11]. The random immigrants approach is
quite simple and natural. It was proposed by Grefenstette
with the inspiration from the flux of immigrants that wan-
der in and out of a population between two generations in
nature [9]. It maintains the diversity level of the population
through substituting a portion of individuals in the cur-
rent population with randomly generated individuals, called
random immigrants, every generation. As to which individ-
uals in the population should be replaced, there are two
strategies: replacing random individuals or replacing the
worst ones [10]. In order to avoid that random immigrants
disrupt the ongoing search progress too much, especially
during the period when the environment does not change,
the ratio of the number of random immigrants ni to the
population size n is usually set to a small value.

The pseudo-code of the GA with the traditional random
immigrants scheme with replacement of the worst individ-
uals, denoted RIGA in this paper, is also shown with the
pseudo-code of SGA. RIGA differs from SGA only in that
in each generation, a set of ni worst individuals in the pop-
ulation are replaced by random immigrants.

3 The Hybrid Immigrants Scheme

As discussed above, the traditional random immigrants
scheme works by replacing random individuals into the pop-
ulation. This may increase the diversity level of the pop-
ulation and hence benefit the performance of GAs in dy-
namic environments. However, in a slowly changing en-
vironment, the introduced random immigrants may divert
the searching force of GAs during each environment before a
change occurs and hence may degrade the performance. On
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the other hand, if the environment only changes slightly in
terms of the severity of changes, random immigrants may
have no actual effect even when a change occurs because
individuals in the previous environment may still be quite
fitter than random immigrants in the new environment.

Based on the above consideration, an elitism-based im-
migrants scheme has been recently proposed for GAs to ad-
dress DOPs. The pseudo-code for the GA with the elitism-
based immigrants scheme, denoted EIGA in this paper, is
shown as follows.

Pseudo-code for EIGA, ERIGA, and HIGA

begin

t := 0 and initializePopulation(P (0), n)
evaluatePopulation(P (0))
repeat

t := t + 1
// generate elitism-based immigrants
E(t − 1) := extractElite(P (t − 1))
generate a set Sei(t) of nei(t) immigrants by

mutating E(t − 1) with pi
m

evaluateImmigrants(Sei(t))

// generate random immigrants for ERIGA & HIGA
if random immigrants used then

generate a set Sri(t) of nri(t) random immigrants
evaluateImmigrants(Sri(t))

end if

// generate dualism-based immigrants for HIGA
if dualism based immigrants used then

generate a set Sdi(t) of ndi(t) immigrants by
mutating the dual of E(t − 1) with pdi

m

evaluateImmigrants(Sdi(t))
end if

replace the worst individuals in P (t) with the
generated immigrants in Sri(t), Sei(t) and Sdi(t)

P ′(t) := selectForReproduction(P (t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)
evaluatePopulation(P ′(t))
P (t + 1) := P ′(t)

until a stop condition is met // e.g., t > tmax

end

Within EIGA, for each generation t, before the normal
genetic operations (i.e., selection and recombination), the
elite E(t−1) from previous generation is used as the base to
create immigrants. From E(t−1), a set Sei of nei(t) individ-
uals are iteratively generated by mutating E(t− 1) bitwise
with a probability pei

m. The generated individuals then act
as immigrants and replace the worst individuals in the cur-
rent population. It can be seen that the elitism-based im-
migrants scheme combines the idea of elitism with the tra-
ditional random immigrants scheme. It uses the elite from
the previous population to guide the immigrants toward the
current environment. The elitism-based immigrants scheme
has shown some promising results in improving the perfor-
mance of GAs in dynamic environments, especially when
the environment involves slight degree of changes [21].

In order to address higher degree of changes, the elitism-
based immigrants scheme can be combined with the tra-
ditional random immigrants scheme for GAs to deal with
DOPs. The pseudo-code for the GA with elitism-based im-
migrants and random immigrants, denoted ERIGA, is also
shown with the pseudo-code of EIGA. Within ERIGA, in

addition to the set of nei(t) immigrants created from the
elite of the previous generation, a set Sri(t) of nri(t) im-
migrants are also randomly generated at each generation t.
These two sets of immigrants then replace the worst individ-
uals in the current population. Within ERIGA, in order to
give the immigrants scheme that performs better (in terms
of whose best immigrant generated has a higher fitness)
more chance to generate immigrants, the sizes of the two im-
migrants schemes are adaptively adjusted according to their
relative performance within the range of [nmin, ni − nmin],
where nmin is the minimum number of immigrants of one
type per generation and ni is the fixed total number of im-
migrants per generation, i.e., ni = nei(t) + nri(t). If one
immigrants scheme performs worse than the other, its im-
migrants size nxi(t) (i.e., nei(t) or nri(t)) will be reduced
by nxi(t) − max{nmin, nxi(t) − α}, where α is a constant
value, while the immigrants size of the winner is increased
by a corresponding value. If the two immigrants schemes
tie, there is no change to the immigrants sizes.

Dualism and complementary principle are widely existent
mechanisms in nature. For example, in biology the DNA
molecule consists of two complementary strands that are
twisted together into a duplex chain. In order to address
DOPs with significant or extremely high degree of environ-
mental changes, a dualism-based immigrants scheme is also
proposed in this paper for GAs with the inspiration from
the dualism and complementary principle in nature. For
the convenience of description, we first introduce the defi-
nition of dualism here. Given a binary-encoded individual
~x = (x1, · · · , xl) ∈ I = {0, 1}l of length l, its dual individual
~xd is defined as:

~xd = dual(~x) = (xd
1, · · · , xd

l ) ∈ I, (1)

where xd
i = 1 − xi (i = 1, · · · , l). That is, an individ-

ual’s dual individual is the one that is symmetric to it with
respect to the central point of the search space. With this
definition, the dualism-based immigrants scheme can be de-
scribed as follows. The dual individual of the elite E(t− 1)
from the previous generation is used as the base to gener-
ate a set Sdi(t) of ndi(t) immigrants every generation via
the traditional mutation scheme with a probability pdi

m to
replace the worst individuals in the population.

The dualism-based immigrants scheme together with the
elitism-based immigrants scheme and the traditional ran-
dom immigrants scheme form the hybrid immigrants scheme
and the corresponding GA is denoted HIGA. The pseudo-
code of HIGA is also shown together with the pseudo-code
of EIGA and ERIGA. As in ERIGA, the sizes of the three
kinds of immigrants schemes are adaptively adjusted based
on their relative performance. Each immigrants scheme
generates immigrants within the range of [nmin, ni−2nmin].
For the worst two immigrants schemes, their immigrants
size nxi(t) (i.e., nei(t), nri(t) or ndi(t)) will be reduced by
nxi(t) − max{nmin, nxi(t) − α} while the immigrants size
of the winner immigrants scheme will be increased accord-
ingly to make the total number of immigrants for the next
generation fixed to ni = nei(t)+nri(t)+ndi(t). If the three
immigrants schemes tie, there is no change to the immi-
grants sizes.

In summary, the key idea behind the hybrid immigrants
scheme is to address dynamic environments with different
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degrees of changes. The elitism-based immigrants aim to
address slight changes or stationary environments in be-
tween changes. The random immigrants aim to deal with
medium degree of changes while the dualism-based immi-
grants aim to handle significant changes. Together, these
three kinds of immigrants are expected to improve the per-
formance of GAs in different kinds of dynamic environ-
ments. This will be tested in the experimental study pre-
sented below.

4 Dynamic Test Environments

In order to study the performance of GAs in dynamic en-
vironments, researchers have developed a number of DOP
generators to create dynamic test environments over the
years, see [4, 8, 23, 27]. Generally speaking, DOPs are con-
structed via changing stationary base problem(s). Through
properly tuning some parameters of the DOP generators,
different dynamic environments can be constructed from
the stationary base problem(s) regarding the characteris-
tics of the environmental dynamics, such as the frequency
(or speed) and severity of environmental changes.

In this paper, in order to compare different immigrants
schemes for GAs in dynamic environments, a set of four
well studied stationary problems is selected as the test suite,
which is presented in section 4.1. A series of dynamic op-
timization problems are constructed from these stationary
problems using the DOP generator proposed in [22, 23],
which is briefly described in section 4.2.

4.1 Stationary Test Problems

4.1.1 The OneMax Function

The OneMax function is a well-studied simple benchmark
problem in the GA community. It aims to maximize the
number of ones in a binary string. In this paper, we use a
OneMax problem with 100-bit encoding, defined as follows:

max f(~x) =
i=100
X

i=1

xi, (2)

where f(~x) is the fitness of a bit string ~x = (x1, · · · , x100) ∈
I = {0, 1}100 .

4.1.2 The Royal Road Function

This function is similar to the royal road function in-
troduced by Mitchell et al. [28]. It is defined on a 100-bit
string that consists of 25 contiguous building blocks, each
of which is 4-bit long and contributes ci = 4 (i = 1, ..., 25)
to the total fitness only if all of the four bits are set to one.
The fitness of a bit string ~x is computed by summing the
coefficients ci corresponding to each given building block or
schema si, of which ~x is an instance (denoted by ~x ∈ si).
That is, the royal road function is defined as follows:

max f(~x) =
i=25
X

i=1

ciδi(~x), (3)

where

δi(~x) =

(

1, if ~x ∈ si

0, otherwise
(4)

4.1.3 The Deceptive Function

Deceptive functions are devised as difficult test functions
for GAs [29]. They are a family of functions where there ex-
ist low-order building blocks that do not combine to form
higher-order building blocks: instead they form building
blocks resulting in a solution, called deceptive attractor [30],
which is sub-optimal itself or near a sub-optimal solution.
It is even claimed that the only challenging problems for
GAs are problems that involve some degree of deception. A
4-bit fully deceptive problem can be defined based on the
unitation function as follows:

f(~x) =

(

4, if u(~x) = 4

3 − u(~x), otherwise
(5)

where u(~x) is the unitation function, which returns the
number of ones in the string ~x.

In this study, we construct a deceptive function that con-
sists of 25 copies of the above 4-bit fully deceptive function
(order-4 subproblem). The fitness of a bit string is the sum
of contributions from all the subproblems. The maximum
fitness is 100 for the deceptive function as well as for the
OneMax and Royal Road functions studied in this paper.

4.1.4 The 0-1 Knapsack Problem

The 0-1 knapsack problem, a well known NP-complete
combinatorial optimization problem, aims to select items
from a set of items with varying weights and profits to fill
in a knapsack without exceeding its limited weight capacity
in order to yield the maximal summed profit. Given a set
of m items and a knapsack, the 0-1 knapsack problem can
be described as follows:

max p(~x) =
i=m
X

i=1

pixi (6)

subject to the weight constraint

i=m
X

i=1

wixi ≤ C, (7)

where ~x=(x1, · · · , xm), xi ={0, 1}, wi and pi are the weight
and profit of item i respectively, and C is the knapsack’s
capacity. If xi = 1, the ith item is selected for the knapsack.

In this paper, a 0-1 knapsack problem with 100 items is
constructed as follows:

wi = uniformly distributed random integer in [1, 30] (8)

pi = uniformly distributed random integer in [1, 30] (9)

C = 0.5
i=100
X

i=1

wi (10)

Given a solution ~x, its fitness f(~x) is evaluated as follows.
If the sum of the weights of the selected items is within the
capacity of the knapsack, the sum of the profits of the se-
lected items is used as the fitness. If a solution overfills the
knapsack, its fitness is set to the difference between the to-
tal weight of all items and the weight of the selected items,
multiplied by a small factor 10−5 to make it in-competitive



S. Yang and R. Tinós / A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments 5

with those solutions that do not overfill the knapsack. To-
gether, the fitness of a solution ~x is defined as:

f(~x) =

8

<

:

Pi=100
i=1 pixi, if

Pi=100
i=1 wixi ≤ C

10−5(
Pi=100

i=1 wi−
Pi=100

i=1 wixi), otherwise
(11)

4.2 Constructing Dynamic Test Problems

The DOP generator proposed in [22, 23] can construct
dynamic environments from any binary-encoded stationary
function f(~x) (~x ∈ {0, 1}l) by a bitwise exclusive-or (XOR)
operator. The environment is changed every τ generations.
For each environmental period k, an XOR mask ~M(k) is
incrementally generated as follows:

~M(k) = ~M(k − 1) ⊕ ~T (k), (12)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,

0⊕0 = 0) and ~T (k) is an intermediate binary template ran-
domly created with ρ × l ones for the k-th environmental
period. For the first period k = 1, ~M(1) = ~0. Then, the
population at generation t is evaluated as below:

f(~x, t) = f(~x ⊕ ~M(k)), (13)

where k = ⌈t/τ⌉ is the environmental index.
With this generator, the parameter τ controls the speed

of changes while ρ ∈ (0.0, 1.0) controls the severity of
changes. A bigger ρ means severer changes while a smaller
τ means faster changes. Using this DOP generator, we can
study the performance of GAs on the dynamic version of
many benchmark problems well studied in the GA commu-
nity. For example, we can construct DOPs from the four
stationary problems described in section 4.1 as dynamic test
environments for the experimental study in this paper. The
dynamic test environments are constructed as follows.

The fitness landscape of each stationary problem is pe-
riodically changed every τ generations during the run of
algorithms. In order to study each algorithm’s capability of
adapting to dynamic environment under different degree of
convergence or searching stage, the environmental change
speed parameter τ is set to 10, 50 and 100 respectively.
The parameter τ is set to these values because on the sta-
tionary problems all algorithms are sort of consistently on
different search stages at generations of these values. For
example, on the stationary problems almost all algorithms
are at a quite early searching stage at generation 10, at
a medium searching stage at generation 50, and at a late
or converged stage at generation 100. In order to test the
effect of the degree of environmental changes on the perfor-
mance of algorithms, the value of ρ is set to 0.05, 0.2, 0.5,
0.6, 0.95, and 1.0 respectively for each run of an algorithm
on a problem. These values represent different severities of
environmental changes, from very light shifting (ρ = 0.05)
to medium variation (ρ = 0.2, 0.5, 0.6) to significant change
(ρ = 0.95, 1.0).

Totally, we systematically construct a series of 18 DOPs,
3 values of τ combined with 6 values of ρ, from each sta-
tionary test problem.

5 Experimental Study

5.1 Experimental Design

In the experiments, five GAs were investigated on the
above constructed DOPs. They are SGA, RIGA, EIGA,
ERIGA, and HIGA. All GAs are set with typical generators
and parameters as follows: generational, 2-point crossover
with pc = 0.7, flip mutation with pm = 0.01, and tourna-
ment selection with tournament size 2 and elitism of size
1. In order to have fair comparisons among GAs, the pop-
ulation size n and the number of immigrants are set such
that each GA has 130 fitness evaluations per generation
as follows: n = 130 for SGA and n = 100 for other GAs
and the total number of immigrants ni = 30 for RIGA,
EIGA, ERIGA and HIGA. For EIGA, nei(t) = ni = 30.
For ERIGA, nei and nri are initialized to 15 respectively
and then adjusted adaptively later on in the range of
[nmin, ni − nmin] = [4, 26]. Similarly, for HIGA, nei, nri,
and ndi are initialized to 10 respectively and then adjusted
adaptively later on in the range of [nmin, ni − 2nmin] =
[4, 22]. For ERIGA and HIGA, α is set to 2. For EIGA,
ERIGA, and HIGA, pei

m and/or pdi
m are set to 0.01.

For each GA on a DOP, 30 independent runs were ex-
ecuted with the same set of random seeds. For each run
of a GA on a DOP, 50 environmental changes were allowed
and the best-of-generation fitness was recorded every gener-
ation. The offline performance of a GA on a DOP is defined
as the best-of-generation fitness averaged over 30 runs and
over the data gathering period, as formulated below:

F BOG =
1

G

G
X

i=1

(
1

N

N
X

j=1

FBOGij
), (14)

where G = 50τ is the total number of generations for a
run, N = 30 is the total number of runs, and FBOGij

is the
best-of-generation fitness of generation i of run j.

5.2 Basic Experimental Results

The experimental results of investigated GAs on the
DOPs are plotted in Fig. 1. The statistical results of com-
paring GAs by one-tailed t-test with 58 degrees of freedom
at a 0.05 level of significance are given in Table 1. In Table
1, the t-test result regarding algorithm 1 − algorithm 2 is
shown as “s+”, “s−”, “+”, “−”, or “=” when algorithm 1 is
significantly better than, significantly worse than, insignif-
icantly better than, insignificantly worse than, or statisti-
cally equivalent to algorithm 2 respectively. The dynamic
performance of GAs for the first 10 environments with re-
spect to the best-of-generation fitness against generation on
the DOPs with τ = 50 and ρ = 0.05, 0.5, and 0.95 is plotted
in Figs. 2, 3, and 4 respectively, where the data were aver-
aged over 30 runs. From the figures and Table 1, several
results can be observed and are analyzed as follows.

First, RIGA significantly outperforms SGA on many dy-
namic test problems, see the t-test results regarding RIGA
- SGA in Table 1. This result validates the benefit of intro-
ducing random immigrants into GAs for DOPs. However,
RIGA is beaten by SGA on most DOPs with ρ = 0.05 and
0.2. This confirms our prediction made in section 3: when
the environment changes slightly, random immigrants may
not be beneficial. It happens because under slightly chang-
ing environments, random immigrants may divert the major
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Fig. 1 Experimental results of GAs on dynamic test problems

searching force of the GA. This result can be further ob-
served from the dynamic performance of SGA and RIGA.
When ρ = 0.05 RIGA maintains a lower fitness level than
SGA (see Fig. 2) while when ρ = 0.5 and 0.95, RIGA main-
tains a higher fitness level (see Figs. 3 and 4).

Second, EIGA outperforms SGA and RIGA on most
DOPs with ρ = 0.05 and 0.2, see the t-test results regard-
ing EIGA − SGA and EIGA − RIGA in Table 1. This
result confirms our expectation of the elitism-based immi-
grants for GAs in dynamic environments. When the envi-
ronment changes slightly, it would be better to introduce
immigrants guided toward the environment via the elite.
However, when the environment changes significantly, e.g.,
ρ = 0.95 and 1.0, EIGA is beaten by SGA and RIGA on
some DOPs. This is because whenever the environment
changes significantly, the elite from the previous generation
may become significantly unfit in the new environment and
hence will guide the immigrants to unfit area. This can be
observed from the sharp drop of the dynamic performance
of EIGA on dynamic OneMax and Knapsack problems with
ρ = 0.95 when a change occurs in Fig. 4.

Third, regarding the effect of combining the elitism-based
immigrants and random immigrants schemes to GAs, it can
be seen that ERIGA outperforms SGA and RIGA on many

DOPs, see the t-test results regarding ERIGA − RIGA in
Table 1. When comparing the performance of ERIGA over
EIGA, it can be seen that ERIGA beats EIGA on DOPs
with ρ set to bigger values 0.6, 0.95 and 1.0 while is beaten
by EIGA on DOPs with ρ = 0.05 and 0.2. The random im-
migrants scheme improves the performance of ERIGA over
EIGA in significantly changing environments at the price
of degrading the performance in slightly changing environ-
ments. This result can be more clearly observed from the
dynamic performance of ERIGA and EIGA in Fig. 6. The
random immigrants added in ERIGA prevent the perfor-
mance of ERIGA from a sharp drop when the environment
significantly changes with ρ = 0.95.

Fourth, now consider the effect of the hybrid immigrants
scheme for GAs for DOPs. It can be seen that HIGA now
outperforms SGA and RIGA on most DOPs, see the t-test
results regarding HIGA − RIGA in Table 1. When com-
paring the performance of HIGA over ERIGA and EIGA,
it can be seen that HIGA beats ERIGA and EIGA on al-
most all DOPs with ρ set to 0.5, 0.6, 0.95 and 1.0 while
is beaten on dynamic OneMax, Royal Road, and Knapsack
problems with ρ = 0.05 and 0.2. The dualism-based immi-
grants scheme further improves the performance of HIGA
over ERIGA and EIGA in significantly changing environ-
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Table 1 The t-test results of comparing GAs on random DOPs.

t-test Result OneMax Royal Road Deceptive Knapsack

τ = 10, ρ ⇒ 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0

RIGA − SGA s− s− s+ s+ s+ s+ s− + s+ s+ s− s− s− s+ s+ s+ s− − s− + s+ s+ s+ s+

EIGA − SGA s+ s+ s− s− s− s− s+ s+ s− s− s+ − s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s−

EIGA − RIGA s+ s+ s− s− s− s− s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− s− s− s−

ERIGA − RIGA s+ s+ s− s− s− s− s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− s− s− s−

ERIGA − EIGA s− s− s+ s+ s+ s+ − + s+ s+ s− − − + s+ s+ s− + s− s+ s+ s+ s+ s+

HIGA − RIGA s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+

HIGA − EIGA s− s− s+ s+ s+ s+ s− − s+ s+ s+ s+ s+ + s+ s+ s− s+ s− + s+ s+ s+ s+

HIGA − ERIGA s− s− s+ s+ s+ s+ − s− s+ s+ s+ s+ s+ + + + s+ s+ s− − s+ s+ s+ s+

τ = 50, ρ ⇒ 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0

RIGA − SGA s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− s− s+ s+ s− − s− s− s+ s+ s+ s+

EIGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ − s− s− s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
EIGA − RIGA s+ s+ s− s− s− s− s+ s+ s− s− s− s− s− s− s− s+ s+ s+ s+ s+ s− s− s− s−

ERIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s− s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

ERIGA − EIGA s− s− s+ s+ s+ s+ − − s+ s+ s+ s+ + − s+ s+ s− − − − s+ s+ s+ s+

HIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA − EIGA s− s− s+ s+ s+ s+ − s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s+

HIGA − ERIGA s− s− + s+ s+ s+ − − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− + s+ s+ s+

τ = 100, ρ ⇒ 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0 0.05 0.2 0.5 0.6 0.95 1.0

RIGA − SGA s− s− s+ s+ s+ s+ s− s− s+ s+ s+ s+ s− + s+ s+ s− s+ s− s− s+ s+ s+ s+

EIGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s− s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

EIGA − RIGA s+ s+ s− s− s− s− s+ s+ s− s− s− s− s− s− s− s− s+ s+ s+ s+ s+ s− s− s−

ERIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s− s− s− s− s− s+ s+ s+ s+ s+ s+ s+ s+
ERIGA − EIGA s− s− s+ s+ s+ s+ + = s+ s+ s+ s+ s+ s+ s+ s+ s− − s− − s+ s+ s+ s+

HIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA − EIGA s− s− s+ s+ s+ s+ − − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s+

HIGA − ERIGA s− s− + s+ s+ s+ − − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s+
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Fig. 2 Dynamic performance of GAs on DOPs with τ = 50 and ρ = 0.05 for the first 10 environments

ments. This result can be more clearly observed from the
dynamic performance of HIGA on DOPs with ρ = 0.95 in
Fig. 4, where the dualism-based immigrants added in HIGA
prevent its performance from a sharp drop when the envi-
ronment changes.

Finally, in order to understand the effect of investi-
gated immigrants schemes on the population diversity, we
recorded the diversity of the population every generation
for each run of a GA on a DOP. The mean population di-
versity of a GA on a DOP at generation t over 30 runs is
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Fig. 3 Dynamic performance of GAs on DOPs with τ = 50 and ρ = 0.5 for the first 10 environments
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Fig. 4 Dynamic performance of GAs on DOPs with τ = 50 and ρ = 0.95 for the first 10 environments

calculated according to the following formula:

Div(t) =
1

30

30
X

k=1

(
1

ln(n − 1)

n
X

i=1

n
X

j 6=i

HDij(k, t)), (15)

where l = 100 is the encoding length and HDij(k, t) is the
Hamming distance between the i-th and j-th individuals at
generation t of the k-th run. The diversity dynamics over

generation for GAs on DOPs with τ = 50 and ρ = 0.2 is
shown in Fig. 5. From Fig. 5, it can be seen that RIGA does
maintain the highest diversity level in the population while
EIGA maintains the lowest diversity level. This interest-
ing result shows that approaches that aim at maintaining a
high diversity level in the population, though usually use-
ful, do not naturally achieve better performance than other
approaches for GAs in dynamic environments.
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Fig. 5 Diversity dynamics of GAs on DOPs with τ = 50 and ρ = 0.2 for the first 10 environments

Table 2 The experimental results of GAs on DOPs with ρ randomly set for each change.

Function OneMax Royal Road Deceptive Knapsack

ρ = rand(0.0, 1.0), τ ⇒ 10 50 100 10 50 100 10 50 100 10 50 100

SGA 65.9 81.9 90.1 32.0 56.3 70.1 59.5 76.9 81.8 943.9 1093.3 1174.9
RIGA 73.0 89.1 94.4 37.7 67.8 80.1 61.1 77.6 82.3 1008.0 1158.4 1215.2

EIGA 65.3 84.7 92.3 32.1 55.7 68.8 61.3 79.4 82.1 929.9 1120.0 1200.2

ERIGA 71.8 91.2 95.5 34.9 64.6 78.2 62.0 79.7 82.3 993.0 1181.1 1235.2

HIGA 76.1 94.0 96.8 40.5 73.8 84.5 62.4 82.4 87.0 1027.3 1205.6 1248.6

t-test Result

ρ = rand(0.0, 1.0), τ ⇒ 10 50 100 10 50 100 10 50 100 10 50 100

RIGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

EIGA − SGA s− s+ s+ + − s− s+ s+ + s− s+ s+

EIGA − RIGA s− s− s− s− s− s− + s+ s− s− s− s−

ERIGA − RIGA s− s+ s+ s− s− s− s+ s+ − s− s+ s+

ERIGA − EIGA s+ s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+

HIGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA − EIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA − ERIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

5.3 Experimental Results under Dynamic

Environments with Random Severities

of Changes

The above basic experimental results show that the
three kinds of immigrants schemes, i.e., random immi-
grants, elitism-based immigrants, and dualism-based im-
migrants, have different but complementary effects regard-
ing the severity of environmental changes on improving the
performance of GAs in dynamic environments. In the real
world problems, it would be expected that the environment
may be subject to different degrees of changes over time.
In order to study the performance of GAs in dynamic en-
vironments with random degrees of changes, experiments
are further carried out on the DOPs where the value of ρ is

randomly generated with a uniform distribution in [0.0, 1.0]
(i.e., ρ = rand(0.0, 1.0)) for each environmental change.
Here, the experimental settings, including generators and
parameters for GAs and the performance measure, are the
same as those for the basic experiments.

The experimental results of GAs on the DOPs are pre-
sented in Table 2. The statistical results of comparing GAs
by one-tailed t-test with 58 degrees of freedom at a 0.05 level
of significance are also given in Table 2. The dynamic per-
formance of a typical run of GAs on the dynamic knapsack
problem with τ = 50 and ρ = rand(0.0, 1.0) for the first 20
environments is plotted in Fig. 6(a). The value of ρ for each
environmental change and the number of immigrants of the
three kinds of immigrants schemes within HIGA over gen-
eration (i.e., nri(t), nei(t), and ndi(t)) for this typical run
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Fig. 6 Dynamic behaviour of a typical run of GAs on the dynamic knapsack problem with τ = 50 and ρ = rand(0.0, 1.0) for the first
20 environments: (a) dynamic performance, (b) the value of ρ for each environmental change, and (c) the number of immigrants of
the three kinds of immigrants schemes within HIGA over generation, i.e., nri(t), nei(t), and ndi(t)

are shown in Fig. 6(b) and Fig. 6(c) respectively. From Ta-
ble 2 and Fig. 6, several results regarding the performance
of GAs in dynamic environments with random degrees of
changes can be observed.

First, the addition of random immigrants significantly
improves the performance of RIGA over SGA and ERIGA
over EIGA respectively, see the corresponding t-test results.
On the contrast, the effect of elitism-based immigrants is
mixed, see the t-test results regarding EIGA - SGA and
ERIGA - RIGA. And the elitism-based immigrants scheme
seems less efficient than the random immigrants scheme, see
the t-test results regarding EIGA - RIGA.

Second, HIGA significantly outperforms all other GAs
on the DOPs, see the t-test results regarding HIGA - SGA,
HIGA - RIGA, HIGA - EIGA, and HIGA - ERIGA in Table
2. This result further validates the efficiency of the hybrid
immigrants scheme for GAs in dynamic environments. The

good performance of HIGA can be further understood by
observing the dynamic behaviour of a typical run of GAs
shown in Fig. 6.

From Fig. 6, it can be seen that when the environment
incurs a significant change, the performance of SGA and
EIGA usually drops significantly while the performance of
RIGA and ERIGA also drops with a great degree though
less significantly. On the contrast, the performance of
HIGA only drops slightly due to the added dualism-based
immigrants scheme.

Third, Fig. 6(c) shows an interesting result regarding the
number of immigrants for the three kinds of immigrants
schemes within HIGA. The number of elitism-based immi-
grants nei remains at the maximum value 22 while nri and
ndi remain at the minimum value 4 for each environment
in between two changes and when the environment changes
slightly. Only when the environment incurs a significant
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change can we see the jump up of the value of nri and/or
ndi for a few generations, which signals the working of the
dualism-based immigrants and/or random immigrants. In
other words, the dualism-based immigrants and random im-
migrants in the hybrid immigrants scheme only take effect
for a short time when significant changes occur. However,
they do improve the performance of HIGA significantly in
dynamic environments with random degrees of changes.

6 Conclusions

Using immigrants to replace individuals in the popula-
tion is one of several approaches developed into GAs to
address DOPs. This paper proposes a hybrid immigrants
scheme for GAs in dynamic environments. In this hybrid
scheme, the elite from the previous generation and its dual
are used as the bases to create immigrants via a normal
bitwise mutation operator. The generated immigrants to-
gether with some random immigrants replace the worst in-
dividuals in the population. These three kinds of immi-
grants work together to deal with different degrees of en-
vironmental changes and hence efficiently improve the per-
formance of GAs in dynamic environments.

From the experiment results on a series of dynamic prob-
lems, the following conclusions can be drawn on the test
DOPs. First, traditional random immigrants are benefi-
cial for GAs for many DOPs but may be harmful when the
environment changes slightly. Second, the elitism-based im-
migrants scheme combines the principles of random immi-
grants and elitism and improves the performance of GAs
in slightly changing dynamic environments. Third, the hy-
brid immigrants scheme combines the principles of random
immigrants, elitism, and dualism and the adaptive adjust-
ment of the immigrants size effectively balances the compu-
tation effort among the three kinds of immigrants schemes.
Finally, a high diversity level of the population does not
always lead to a better performance of GAs in dynamic en-
vironments. Generally speaking, the experiment results in-
dicates that the hybrid immigrants scheme is a good choice
for GAs to address DOPs.

There are several future researches relevant to this paper.
First, it is interesting to compare and combine the hybrid
immigrants scheme with other approaches, e.g., diversity
and memory hybrid schemes [15, 17], for GAs in dynamic
environments. Another interesting work is to further inte-
grate the idea of elitism, dualism, and immigrants into other
approaches, e.g., multi-population and speciation schemes
[19, 20], to develop advanced diversity schemes for GAs in
dynamic environments.
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