
An observation-based estimate of the strength of rainfall-vegetation

interactions in the Sahel

S. O. Los,1 G. P. Weedon,1 P. R. J. North,1 J. D. Kaduk,2 C. M. Taylor,3

and P. M. Cox4

Received 31 March 2006; revised 29 June 2006; accepted 6 July 2006; published 16 August 2006.

[1] Over the course of the twentieth century the African
Sahel experienced large variations in annual precipitation;
including the wet period during the 1950s and 1960s and
the long-term drought during the 1970s and 1980s.
Feedbacks between the land surface and atmosphere can
affect rainfall variability at monthly, annual and decadal
time scales. However, the strength of the coupling between
the land surface and precipitation is still highly uncertain,
with climate-model derived estimates differing by an order
of magnitude. Here a statistical model of vegetation
greenness is used to estimate the vegetation-rainfall
coupling strength in the Sahel, based on monthly satellite-
derived vegetation index and meteorological data. Evidence
is found for a positive feedback between vegetation and
rainfall at the monthly time scale, and for a vegetation
memory operating at the annual time scale. These
vegetation-rainfall interactions increase the interannual
variation in Sahelian precipitation; accounting for as much
as 30% of the variability in annual precipitation in some hot
spot regions between 15� and 20�N.Citation: Los, S. O., G. P.

Weedon, P. R. J. North, J. D. Kaduk, C. M. Taylor, and P. M. Cox

(2006), An observation-based estimate of the strength of rainfall-

vegetation interactions in the Sahel, Geophys. Res. Lett., 33,

L16402, doi:10.1029/2006GL027065.

1. Introduction

[2] Several factors contribute to the year-to-year variabil-
ity in precipitation in the Sahel [Nicholson, 2000], used here
to indicate the region south of the Sahara that also includes
the Sudanese zone. Models and observations show that
regional and global sea surface temperature patterns force
substantial interannual and interdecadal variability in Sahel
rainfall [Lamb and Peppler, 1992; Folland et al., 1991;
Ward, 1998; Giannini et al., 2003]. The land surface, in
particular vegetation cover and soil moisture, feeds back on
precipitation via fluxes of sensible and latent heat and
thereby modulates rainfall variability in the Sahel [Charney,
1975; Taylor and Lebel, 1998; Taylor and Ellis, 2006; Xue
and Shukla, 1993; Zeng et al., 1999]. An alternative
mechanism, affecting precipitation at annual time scales,
is the suppression of rainfall following a drought year; this

suppression is associated with enhanced dust generation and
subsequent radiative feedbacks in the lower atmosphere
[Tegen et al., 1996; Prospero and Nees, 1986]. The sug-
gestion that desertification in the Sahel, i.e., the gradual and
irreversible degradation of vegetation caused by livestock
and humans, is a major contributing factor to persistent
anomalous rainfall [Lamprey, 1988] was not confirmed by
the analysis of movements of the desert boundary from
satellite data for the 1980s and 1990s [Tucker et al., 1991;
Helldén, 1991; Prince et al., 1998] or the analysis of
changes in tree density from aerial photographs of 1943–
1994 [Schlesinger and Gramenopoulos, 1996]. At present
large uncertainties surround the strength of land-surface
memory effects and of feedbacks between the land surface
and atmosphere [Koster et al., 2004]. Knowledge of these is
essential to understand the causes of temporal variability in
precipitation and in particular of the occurrence of drought
in the Sahel.
[3] This paper involves constructing a statistical vegeta-

tion index simulation at half-degree spatial resolution via
least angle regressions of meteorological and satellite obser-
vations. The model is constructed with and without vege-
tation interactions to allow assessments of the impacts of
vegetation feedbacks and memory on variability in precip-
itation and vegetation greenness in the Sahel.

2. Data

[4] We analyse monthly satellite-based normalized dif-
ference vegetation index (NDVI) data collected by the
Advanced Very High Resolution Radiometer (AVHRR)
for 1982–1999 sampled to 0.5� � 0.5� resolution [Hall et
al., 2005; S. O. Los et al., Uncertainty analysis of global
vegetation, precipitation and temperature data sets with a
statistical vegetation index simulation model, in preparation,
2006, hereinafter referred to as Los et al., in preparation,
2006] and monthly ground-based precipitation and temper-
ature data at the same spatial resolution provided by the
Climate Research Unit (CRU) for 1901–2000 [Mitchell and
Jones, 2005]. The NDVI data (Los et al., in preparation,
2006) are a quantitative measure of vegetation greenness in
the Sahel [Tucker et al., 1991]. The version of AVHRR
NDVI data we use in the current study is the Fourier Ad-
justed, Solar and sensor zenith angle corrected, Interpolated
and Reconstructed (FASIR) NDVI data (Los et al., in prep-
aration, 2006). This data set is derived from the Pathfinder
Advanced Very High Resolution Radiometer (AVHRR)
Land (PAL) channel 1 and 2 data that were corrected for
Rayleigh scattering and ozone absorption by the atmosphere
and sensor degradation and inter-calibration differences in
respective AVHRRs aboard the NOAA 7, 9, 11 and 14 sat-
ellites [James and Kalluri, 1994]. The additional FASIR
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corrections address problems related to residual calibration
differences between satellites [Los, 1998], variations in
sensor zenith angle and solar zenith angle at time of
observation [Los et al., 2005], volcanic aerosols [Los et
al., 2000], and short term (�2 months) atmospheric and
cloud interferences [Los et al., 2000]. The FASIR NDVI
data span a period of 18 years; this period is sufficiently
long for the detection of feedbacks and memory effects on
monthly to annual time scales with the statistical vegetation
index model (see below).
[5] The CRU monthly precipitation and temperature data

sets provide global, spatially continuous coverage at 0.5� �
0.5� resolution for 1901–2000 [Mitchell and Jones, 2005].
Missing data are estimated by interpolating climatological
mean values with reference to 1961–1990 and by adding to
these anomalies, i.e., the departures from the climatological
mean, interpolated from neighboring stations. Interpolation
is limited to areas within the ‘‘correlation decay distance’’
from a station; this distance is 1200 km for temperature data
and 450 km for precipitation data [Mitchell and Jones,
2005]. Grid cells outside the correlation decay distance
are represented by the climatological mean. The number
of stations per grid cell is provided as an indication of data
quality [Mitchell and Jones, 2005].

3. Method

[6] We use an extended version of the statistical vegeta-
tion index simulation (SVIS) model (Los et al., in prepara-
tion, 2006) to investigate associations between vegetation
greenness on the one hand and feedback and memory ef-
fects on the other. We compare two scenarios, one, the
‘‘passive vegetation scenario’’, assumes no effect of vege-
tation on precipitation and temperature; and the other, the
‘‘interactive vegetation scenario’’, allows for the possibility
that vegetation affects precipitation and temperature; this
scenario also incorporates an annual memory. The passive
vegetation scenario is given by:

Vt ¼ aþ
X0

i¼�2

bt;2þiPtþi þ
X0

i¼�2

ct;2þiTtþi

þ
X�1

m¼�2

dt;2þmVtþm ð1Þ

This scenario takes into account a) the precipitation, P, of
the current and two previous months t + i; b) the surface air
temperature, T, of the current and previous two months; and
c) the NDVI, V, of the two previous months. Coefficients are

estimated by month, thus year-to-year changes in NDVI for
a particular month are linearly related to year-to-year
changes in the explanatory variables (NDVI, T, P) relevant
for that month. To distinguish between observations and
simulations we further refer to the simulated NDVI, Vt, as
the reconstructed vegetation index, or RVI.
[7] Incorporation of fewer than two previous months in

the model resulted in lower correlations between observa-
tions and simulations (Table 1); Incorporation of more
months resulted in smaller improvements than those
obtained by the interactive model discussed below (Table 1).
[8] The interactive vegetation scenario incorporates three

additional variables compared to the passive vegetation
scenario: a) a feedback between vegetation and climate
(precipitation and temperature) and b) an annual memory
where the previous year’s vegetation growth affects green-
ness in the following year.
[9] To extract information on feedbacks that resides in

the data we introduce the next month’s precipitation Pt+1

and the next month’s temperature Tt+1 into the equation as
explanatory variables and see if this improves the model.
Note, however, that for these two feedback terms the causal
dependencies are reversed. In other words, we assume that a
change in vegetation has a measurable effect on the next
month’s precipitation and temperature and that this effect in
turn can be used to improve estimates of vegetation green-
ness of the current month.
[10] For the annual memory term, further referred to as

memory, we use the maximum NDVI of the previous year,
max(Vy�1). The feedback terms are incorporated by chang-
ing the upper limit of the counter i for the precipitation and
temperature terms in equation (2)

Vt ¼ aþ
X1

I¼�2

bt;2þiPtþi þ
X1

i¼�2

ct;2þiTtþi

þ
X�1

m¼�2

dt;2þmVtþm þ emax Vy�1

� �
ð2Þ

[11] The coefficients for the interactive and passive
vegetation scenarios are estimated per 0.5� � 0.5� cell for
each month (8 or 11 coefficients �12 months +1 offset)
from 18 years of data. To train the model on a larger number
of samples from a wider range of climate and vegetation
conditions, the time series of each grid cell was extended
with the time series of the two neighboring cells to the
North and South; the time series of a 0.5� by 2.5� area were
thus used to train the model for the central 0.5� by 0.5� cell.

Table 1. Evaluation of Statistical Vegetation Index Simulation Model Against NOAA-AVHRR FASIR NDVI Dataa

RMS Fit RMS Skill r Fit r Skill

Passive 0.020 0.021 0.59 0.53
Interactive 0.018 0.019 0.75 0.71
Passive 1 0.023 0.022 0.53 0.51
Passive 3 0.019 0.021 0.64 0.057

aMedian of root-mean-square (RMS) errors between modelled mean annual NDVI and observed mean annual FASIR NDVI for the area between 10 N
and 15 N and 15 W and 30 E. The interactive and passive vegetation simulations represented by equations (1) and (2) are shown in bold type face and are
discussed in the text. The interactive vegetation model shows better fit (higher r, lower RMS) and improved skill over the passive vegetation model. The
simulations in normal type face show alternatives that were run to establish the optimum number of months to be incorporated in the passive vegetation
model. The ‘‘Passive 1’’ simulation is similar to the passive vegetation model but with only one month previous considered; the ‘‘Passive 3’’ simulation
considers up to three previous months.
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The boundary months at the start of the time series, January
and February 1982, use the 1982–1999 mean for November
and December as estimates for the preceding year. The
boundary months at the end of the time series use the 1982–
1999 mean for the first month of the year. The memory term
for the first year also uses the 1982–1999 mean. The error
introduced by this simplification is small because the (co-)
variance among precipitation, temperature and vegetation
during the dormant season is small.
[12] Model coefficients were estimated with least angle

regression (LARS), an automatic model-building algorithm
that selects a parsimonious set from a group of explanatory
variables [Efron et al., 2004]. We base selection of the
explanatory variables on the minimum Cp criterion, a
measure of the maximum variance explained for a minimum
amount of explanatory variables included [Draper and
Smith, 1998]. Parameters that do not contribute significantly
to explained variance in the NDVI are thus removed.
Therefore equations (1) and (2) represent the upper bound
to the number of variables that are incorporated in the
model; for most cases fewer than the maximum number
of variables will be selected by LARS to predict the NDVI.
The model is flexible and adapts itself to a wide range of
conditions, e.g., in areas where the response of vegetation to
precipitation is shorter than a month (e.g., grasslands),
precipitation of the current month will have the largest
impact on in vegetation greenness; in areas where the
response is delayed or where a large soil reservoir provides
water, precipitation from antecedent months will have a
relatively large impact. The number of variables incorpo-
rated in the model can vary by month as well. The
coefficients selected with LARS are adjusted using a
canonical correlation analysis to take into account the effect
of errors in both the explanatory and response variables
[Draper and Smith, 1998].
[13] Estimating the regression coefficients for each 0.5�

by 2.5� region allows for a region-specific response of
vegetation to climate. A region-specific response could be
caused by factors such as topography, slope, aspect, hy-
drology, land management and nutrient availability. Esti-
mating the regression coefficients by month allows the
model to predict a different response of vegetation to
changes in precipitation and temperature dependent on the
average phenological stage for a particular month of the
year.
[14] We use the same optimisation for the interactive

vegetation scenario and for the passive vegetation scenario.
Note that the passive and active vegetation scenarios would
yield similar results in cases where the memory and
feedback effects do not improve the model in terms of the
minimum Cp criterion.

4. Results and Discussion

[15] Our analysis shows that the interactive vegetation
scenario explains more of the variance in the NDVI and has
better predictive skill than the passive vegetation scenario
(Table 1). We therefore infer that memory effects at annual
time scales and feedback effects at monthly time scales play
a rôle in explaining seasonal and interannual variability in
vegetation greenness. This rôle becomes clearer when the
reconstructed vegetation index, RVI, is calculated for the

entire 20th century using the CRU temperature and precip-
itation data as input to the passive and active vegetation
model scenarios. The interactive RVI has larger variability
over the 20th century than the passive RVI; especially
prominent is the enhanced greening during the 1950s and
1960s in the interactive RVI (Figure 1a). The interactive
RVI shows the decline in vegetation reported for the 1970s
[Lamprey, 1988] that led to the early hypothesis of desert-
ification in the Sahel; this decline continues until the 1980s
after which a partial recovery is shown similar to the NDVI
variations detected in satellite data [Tucker et al., 1991].
This recovery was proof that an irreversible southward
expansion of the desert did not occur. The 1950s and
1960s appear as an unusually green period during the
twentieth century; the subsequent decline to dry conditions
was thus unusually severe and this may have contributed to
the perceptions of desertification in the 1970s [Lamprey,
1988].
[16] We explore the effects of memory and feedback

effects on the seasonality in vegetation greenness for the
West African Sahel (Figure 1b; see Figure 2c for location).
Here, both effects are of similar magnitude, the maximum
for both effects being about 20% to 25% of the seasonal
range in NDVI. During June and July the memory effect on
vegetation slightly exceeds the feedback effect whereas in
August and later in the year the effects of the feedbacks
become larger.
[17] We estimate the amount of precipitation involved in

the feedbacks by comparing two scenarios analogous to
the estimation of feedback effects in vegetation with
equations (1) and (2). The first scenario does not incor-

Figure 1. (a) Simulation of mean annual reconstructed
vegetation index (RVI) over the 20th century by the passive
(light brown solid line, equation (1)) and interactive (green
solid line, equation (2)) vegetation scenarios for the area
between 14� and 17�N and 15.5�Wand 10�E (see Figure 2c
for location). The observed mean annual NDVI (solid black
line) for 1982 until 1999 is shown for comparison. (b) Mean
seasonal cycle of the observed normalised difference
vegetation index (NDVI) over the period 1982–1999
averaged over the same area as Figure 1a. Shaded brown
region represents ±3 � s introduced by memory effects
alone and the shaded yellow region represents ±3 � s
introduced by memory plus feedback effects combined.
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porate a feedback between vegetation and precipitation
and is given by:

Pt ¼ aþ bPy�1 þ c0Pt�2 þ c1Pt�1 ð3Þ

Equation (3) considers the effects on precipitation of the
current month, Pt of short term moisture variations in the
atmosphere and the soil by incorporating the precipitation of
the past two months, Pt�2 and Pt�1, and of climate
oscillators by incorporating the annual rainfall of the
previous year, Py�1. The second model incorporates the
same variables and in addition the observed NDVI of
the previous month, Vt�1:

Pt ¼ aþ bPy�1 þ c0Pt�2 þ c1Pt�1 þ dVt�1 ð4Þ

Coefficients for equations (3) and (4) are estimated with the
same optimisation procedure used for the passive and
interactive vegetation scenarios. The difference between
precipitation calculated with and without vegetation feed-
backs, in other words, the difference between precipitation
modelled with equations (3) and (4), corresponds to the
vegetation-precipitation feedback from the interactive vege-
tation model. The inclusion of the NDVI in equation (4)
increases the variance in annual precipitation by about 30%
(Figure 2a). Previous studies provide evidence for both
positive and negative feedbacks between the land surface and
atmosphere in the Sahel [Taylor and Lebel, 1998; Taylor
and Ellis, 2006; Charney, 1975]. Our model simulations
indicate both more severe droughts and increased wetness
when vegetation feedbacks are incorporated; this implies
that for monthly time scales a positive rather than a

negative feedback affects rainfall in the (West African)
Sahel.
[18] The seasonal variability of vegetation feedback

effects on precipitation is shown in Figure 2b; an effect is
apparent for the entire growing season but the largest effect
occurs in July and August when the inter tropical conver-
gence zone (ITCZ) moves northward. During these months
the variability in rainfall related to vegetation feedbacks is
large and is a substantial proportion of the mean rainfall for
these months.
[19] The spatial distribution of vegetation feedback

effects expressed as a percentage of the annual precipitation
is shown in Figure 2c. Several areas in the Sahel are
indicated where the vegetation feedback increases the
variance in annual precipitation by at least 30%.
[20] Our study has several limitations. Firstly, our sim-

ulations do not account for changes in water use efficiency
as a result of increased atmospheric CO2 concentrations
over the course of the twentieth century; incorporating this
effect is likely to lead to decreased estimates of vegetation
greenness during the beginning of the 20th century. This
decrease should, however, be similar for both the passive
and interactive vegetation scenarios; increases in water use
efficiency are therefore unlikely to affect the relative size
of our estimates of feedback and memory effects. Secondly,
our analysis of feedbacks relies on precipitation estimates
from a sparse observation network. Climatological means
and interpolations of anomalies are used to estimate
missing values [Mitchell and Jones, 2005]. This could
affect the detection of linkages between precipitation and
vegetation and explain the absence of feedbacks in the
central parts of the Sahel east of Lake Chad (Figure 2c).

Figure 2. (a) Observed total annual precipitation (PPN; solid black line) for the area between 14� and 17�N and 15.5�W
and 10�E (see Figure 2c for location) with the total annual precipitation estimated with equation (3) (solid blue line; no
vegetation feedbacks assumed) and equation (4) (solid green line; vegetation feedback scenario). (b) Mean seasonal cycle
of precipitation over the period 1982–1999 averaged over the same area as (a). Shaded region shows the increased variance
as ±3 � s introduced by vegetation feedbacks. (c) Effect of vegetation on precipitation; the difference in variance explained
between equations (3) and (4) is expressed as a percentage of the mean annual precipitation. Dotted shading indicates areas
with sparse rain gauge coverage (on average less than 50% of the cells in a 3 � 3 window surrounding the area has at least
one rain gauge operating every month during 1982–1999).
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Therefore, we are more confident in our results for the
western Sahel where a denser station network exists
(Figure 2c). Thirdly, we cannot estimate feedbacks be-
tween vegetation and precipitation that occur in the same
month because we cannot separate the response of
vegetation to rainfall from the change in rainfall resulting
from vegetation. Consequently, we are likely to be under-
estimating the feedback between vegetation and precipi-
tation. A similar analysis on data with a shorter time step
would lead to improved and likely to larger estimates of
feedback effects.
[21] A possible explanation for the annual memory

detected in the interactive vegetation scenario, is an
investment by plants in roots, shoots and seeds during a
wet year and, as a result, an increase in plant productivity
during the next. Our interactive scenario predicts that
vegetation tends to be greener the year following a year
with above average rainfall. It is likely that this enhanced
greenness in the interactive RVI during and after periods
of increased rainfall reflects a strategy by vegetation to
increase productivity when conditions are favorable. The
rôle of land-surface memory and feedbacks in explaining
increased vegetation greenness and increased precipitation
implies that adverse land management practices will de-
crease rainfall, but not to the extent assumed by the early
studies of desertification [Lamprey, 1988] because rainfall
clearly depends on other antecedent conditions as well
(Figure 2a).
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