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Here we report the diversity of uncultured environmental viruses harbouring photosynthetic 

genes (psbA and psbD) in samples from cold sea water (latitude above 60o).  The viral 

community in coastal Norwegian waters was separated according to genome size using pulse 

field gel electrophoresis.  Viral populations within a wide genome size range (31 to 380 kb) 

were investigated for the presence of the psbA and psbD genes using PCR, combined with 

cloning and sequencing. The results show the presence of photosynthetic genes in viral 

populations from all size ranges.  Thus we are able to obtain valuable information about the 

size class to which viral particles that encode photosynthesis genes belong.  The wide 

genomic size range detected implies that we have observed a different cyanophage profile 

than has previously been reported. Thus, the method of phage gene detection applied here 

may represent a truer picture of phage diversity in general or that there is a larger range of 

size profile for viruses with psbA and psbD in higher latitudes than for the better studied 

lower latitudes.  Alternatively we may be observing a picture of diversity based on a different 

set of biases than that from either isolation-based research, or from conventional 

metagenomic approaches.   
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The main prokaryotic component of the picophytoplankton in the photic zone of the world´s 

oceans consist of marine unicellular cyanobacteria from the genera Synechococcus and 

Prochlorococcus. Together they contribute to up to 89 % of the primary production in the 

oligotrophic regions of the oceans (Li, 1995, Liu, et al., 1997, Partensky, et al., 1999). 

Cyanophages are viruses that infect cyanobacteria and are, like their hosts, ubiquitous in 

marine environments. They are found in concentrations up to 106 particles/ml in coastal 

waters during the summer period and are considered a significant factor in determining the 

dynamics of cyanobacterial populations (Suttle & Chan, 1993, Waterbury & Valois, 1993, 

Suttle & Chan, 1994).   

Genes involved in photosynthesis have recently been detected in cyanophages (Mann, 

2003). These genes (psbA and psbD) codes for two proteins, D1 and D2, that form the 

reaction centre dimer of photosystem II (PSII).  DI is common to all oxygenic phototrophs 

and has a high turnover rate as a result of photo-damage (Aro, et al., 1993) .  Both psbA and 

psbD genes have been reported in cyanophages infecting Synechococcus  (Mann, 2003, 

Millard, et al., 2004, Mann, et al., 2005, Sullivan, et al., 2006),  Prochlorococcus (Lindell, et 

al., 2005, Sullivan, et al., 2005, Sullivan, et al., 2006)  and identified in BAC clones and 

amplicons from environmental samples (Zeidner, et al., 2005).  Studies have shown that these 

phage-encoded photosynthetic genes are expressed in the host after infection (Lindell, et al., 

2005, Clokie, et al., 2006a). The expression of these genes may increase the fitness of the 

phage by ensuring the provision of energy for extended viral replication.  

Prochlorococcus is essentially ubiquitous between 40oN and 40oS, but is not found in 

water where the temperature is less than 10oC (Olson, et al., 1990). This contrasts to 

Synechococcus, which is somewhat broader distributed in that it tolerates a wider range of 

temperature. Prochlorococcus is normally about 10-fold more abundant than Synechococcus 

in the oligotrophic regions of the open oceans (Vaulot, et al., 1995), while Synechococcus 

populations are most abundant both in coastal and colder waters (Reviewed in Partensky, et 

al., 1999). Most Synechococcus phage research has been carried out in low-latitude temperate 

and tropical waters and there is a lack of knowledge about the diversity of these phages in 

waters of latitudes above 60o.  

The fact that most viral hosts have not been cultured has severely limited studies of viral 

diversity. One characteristic of viruses, which varies over a wide range and is readily 
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determined, is the genome size. Reported viral genomes range from a few to 1200 kb (Raoult, 

et al., 2004, Cann, 2005). Pulsed field gel electrophoresis (PFGE) is a method that provides a 

separation over the full range of intact viral genome sizes. Lately, this approach has been used 

in several studies to explore the dynamics in the communities of dsDNA viruses in the marine 

environment (Wommack, et al., 1999, Steward, et al., 2000, Castberg, et al., 2001, Larsen, et 

al., 2001, Riemann & Middelboe, 2002, Jiang, et al., 2003, Ovreas, et al., 2003, Larsen, et al., 

2004, Sandaa & Larsen, 2006). These studies have shown that the viral assemblage in the 

marine environment is distributed in a genome size range from approximately 20 to 560 kb. 

The most dominant populations have genome sizes between 20 and 100 kb (Wommack, et al., 

1999, Steward, et al., 2000, Ovreas, et al., 2003, Larsen, et al., 2004, Sandaa & Larsen, 

2006), which is also the size range of most isolated marine bacteriophages with dsDNA 

genomes (Ackermann & DuBow, 1987, Jiang, et al., 2003). Infections by cyanophages were 

first reported in 1990 (Proctor & Fuhrman, 1990, Suttle, et al., 1990)  and isolates of these 

cyanoviruses have recently been characterised and sequenced (Suttle & Chan, 1993, 

Waterbury & Valois, 1993, Wilson, et al., 1993, Chen & Lu, 2002, Mann, et al., 2005). Most 

of the Synechococcus phages are tailed phages with dsDNA genomes mostly with genomes in 

the range 100-200 kb belonging to the family Myoviridae (Mann, 2003).   
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The objective of this study was to investigate the diversity of photosynthetic genes in 

uncultured cyanophages from Norwegian costal waters.  All previous studies of 

photosynthetic viral genes have been either on isolated viruses (Lindell, et al., 2004, Millard, 

et al., 2004, Lindell, et al., 2005, Sullivan, et al., 2005, Sullivan, et al., 2006) or using whole 

viral fractions (Zeidner, et al., 2005, Sullivan, et al., 2006). The approach described here is 

unique as it allows us to investigate the presence of photosynthesis genes in non-cultured 

viruses, but where the genome size of the virus is known.  This type of information can not be 

obtained from standard metagenomic data sets.  To do this, viral PFGE bands within a wide 

genomic size range were investigated for the presence of the photosynthetic genes, psbA and 

psbD. PCR products with amplicons of these two genes were cloned, sequenced, and 

phylogenetic analyses were performed.  
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2. Material and Methods 1 
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2.1. Sample collection 

Coastal water samples were collected at a station in Raunefjorden (60°16.2’N, 5°12.5’E), 

south of Bergen, Norway at nine different time points between 13th of April, to 2nd of 

November 2004 (Table 2). A total volume of 30 l was collected from the 2-meter depth. The 

samples were collected using a hand pump connected to a flask. Temperature was measured 

using a STD SAIV a/s SD 204 with a Sea Point fluorometer (SAIV A/S, Environmental 

Sensors & Systems, Bergen, Norway).  

 
2.2. Concentration of viral communities. 

 

Natural viral communities were concentrated from 25 l of seawater by ultrafiltration. The 

samples were filtrated through a 0.45 µm pore-size low-protein-binding Durapore membrane 

filters of 142 mm in diameter (Millipore) to remove zooplankton, phytoplankton and some 

bacteria. The filtered samples were then concentrated down to a final volume of around 150 to 

250 ml, using a 30 000 MW cuttoff spiral-wound Millipore ultrafiltration cartidge 

(Regenerated Cellulose, PLTK Prep/scale TFF 1 ft2, Millipore). One hundred and forty ml of 

this concentrate was concentrated further by ultracentifugation (Beckman L8-M with SW-28 

rotor, Beckman GmbH, Germany) for 2 h at 25 000 rpm at 10 oC. The viral pellet was 

dissolved in 400 µl of SM buffer (0.1 M NaCl, 8 mM MgSO4
.7H2O, 50 mM Tris-HCl (pH 

8.0), 0.005% (w/v) glycerine). 200 µl was stored at –20ºC for quantitative Real-Time PCR 

analysis, while 200 µl was used for PFGE analysis 

 

2.3. Pulse field gel electrophoresis (PFGE) 

 

Four virioplankton agarose plugs were made from the 200 µl concentrate. The samples were 

separated on a 1%w/v SeaKem GTG agarose (FMC, Rockland, Maine) gel in 1 X TBE gel 

buffer using a Bio-Rad DR-II CHEF Cell (Bio-Rad, Richmond Ca, USA) electrophoresis unit 

(Wommack, et al., 1999). From each sample point three of the plugs were used, each at a 

different pulse ramp condition in order to separate the large range of viral genome sizes: i): 1-

5 s switch time with 20 h run time for separation of small genome sizes (0-130 kb); ii) 8-30 s 

switch time with 20 h run time for separation of medium genome sizes (130-300 kb); iii) 20-

40 s switch time with 22 h run time for separation of large genome sizes (300-600 kb). A 
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molecular size standard (lambda ladder and 5 kb ladder (Bio-Rad, Richmond, California)) 

was run on each side of the gel.  Further details of the procedure are found in (Larsen, et al., 

2001). The gels were visualized and saved as computer files using the Fujifilm imaging 

system, LAS-3000.  

  

2.4. PCRs, cloning and DNA sequencing.   

 

PFGE bands to be investigated for the presence of photosynthetic genes were excised from 

the gel and frozen at –20Co. The DNA was extracted from the gel by use of the GeneClean 

Turbo kit (BIO101) for extraction of large DNA fragments from agarose gel, following the 

manufacturer’s instructions yielding approximately 10 ng/µl of DNA (total 30 µl). The 

genomic DNA required for sequencing and PCR were produced by the GenomiPhi DNA 

amplification kit (Amersham Biosciences) according to the manufacturer’s instructions 

yielding approximately 1µg/µl of DNA. This DNA was used in a PCR with both the primer 

sets targeting a section of the photosynthetic genes psbA and psbD (Table 1).  PCRs were 

carried out in a total volume of 50 µl containing: sterile distilled water, PCR buffer (10 x PCR 

buffer B, Promega, Madison, WI), dNTPs (each 200 nM), primers (each 0.5 μM), 1.5 mM 

MgCl, 2.5 U Taq DNA polymerase (Promega) and template amplicon (1-2 ng). Amplification 

conditions using the psbA primers were as follows: 94°C for 5 min, 10 cycles of 94°C for 30 

sec, 64°C (-1°C per cycle) for 30 sec, and 72°C for 1 min. There was then an extension of 2 

min at 72°C, followed by 25 cycles of 94°C for 30 sec, 56.5°C for 30 sec, and 72°C for 1 min. 

The final extension was at 72°C for 10 min. Furthermore, the amplification conditions for the 

psbD primers were: 94°C for 5 min, 35 cycles of 94°C for 1 min, 50°C 1 min, and 72°C for 1 

min, and a final extension at 72°C for 10 min.  The PCR products were cloned with the TOPO 

PCR cloning kit (Invitrogen, Paisley, UK) following the manufacturer’s description. The 

resulting reactions were used to transform competent Escherichia coli TOP10 (Invitrogen). 

Fifteen positive clones (white colonies) from each library were picked randomly and 

transferred by streaking onto agar plates. Positive clones were confirmed by PCR using the 

M13 primers according to the protocol (Invitrogen). Positive PCR products were purified 

using the DNA Clean & Concentrator-5 kit (Genetix Limited, New Milton, UK).  Five 

positive PCR products from each cloning reaction were sequenced by cycle sequencing 

according to the protocol from Perkin Elmer (Foster City, USA) using the cloning  primer 

M13f (Invitrogen) as sequencing primer.  Sequences were obtained on the ABI PRISM 3700 

sequence analyser (Perkin-Elmer Applied Biosystem, USA).  
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2.5. Phylogenetic analysis. 

Between two and five clones resulted in sequences of good quality and were used in the 

phylogenetic analysis. Analysis of DNA sequences was carried out by alignment to the closest 

relative in the GenBank database using BLASTX (Altschul, et al., 1990).  Alignments were 

performed using CLUSTALX (Thompson, et al., 1997). Sequences were initially aligned 

based on protein sequences.  The protein alignment was then used to align the corresponding 

DNA sequences. Maximum parsimony and neighbor-joining (NJ) analysis were conducted on 

nucleotide dataset by using the test version of  PAUP* 4.0 beta10 (Swofford, 2000). Supports 

for clades was estimated by means of bootstrap analysis, as implemented in PAUP* using 

1000 replicates. The trees were viewed using the TreeView program and rooted with either 

the psbA or psbD gene of Synechocystis PCC 6803. The nucleotide sequences reported in this 

paper has been submitted to GenBank and assigned the accession numbers: psbD, DQ787206-

DQ787235 and psbA, DQ787236-DQ787256. 
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3. Results and Discussion. 1 
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Here we report the first study to investigate the diversity of uncultured environmental 

viruses harbouring photosynthetic genes (psbA and psbD) in samples from cold sea water.  

The study was performed by investigating nineteen PFGE bands in a broad size range (31-380 

kb) from samples taken at different time periods (Fig. 1) based on information on the viral 

diversity and cyanophage seasonal dynamics in Raunefjorden (Sandaa & Larsen, 2006). The 

bands which were chosen represented the brightest bands in each of the different size classes. 

The viral community in Raunefjorden have shown a pronounced seasonal dynamic that 

correlates with changes in the abundance of possible hosts (Sandaa & Larsen, 2006). Most of 

the bands examined in the present study were from samples collected between late September 

and early November. This is at the same time there is a bloom in the Synechococcus 

population in the fjord (Sandaa & Larsen, 2006). The bloom is followed by a peak in the 

cyanophage numbers, and is accompanied by a major change in the viral community structure 

(Sandaa & Larsen, 2006). The water temperature in Raunefjorden, at the sampling times was 

between 5,3 and 13,3°C (Table 2). Over a 10 months period, the water temperature at the 

sampling depth in Raunefjorden may vary between 5,2 to 15,4°C (Sandaa & Larsen, 2006). 

As Prochlorococcus has not been reported in water with temperatures below 10°C (Olson, et 

al., 1990) it is reasonable to conclude that the putative uncultured cyanophages presented in 

this study infect Synechococcus strains.  

Eleven out of 19 investigated PFGE bands in this study contained detectable 

photosynthetic genes. The genes were detected in PFGE bands with genomic sizes from 31 to 

380 kb (Table 2). Although the size range of genomes containing psbA and psbD is larger 

than has been described before, it may be even larger than we report, as bands smaller or 

larger than this size range were not investigated. Eight of the PFGE bands contained both the 

psbA and psbD genes, while three of the PFGE bands had only one of the genes (Table 2). 

The psbA and psbD genes are highly conserved (Lindell, et al., 2004, Millard, et al., 2004, 

Sullivan, et al., 2006), suggesting that they encode functional proteins that may be involved in 

maintaining host photosynthesis during infections (Clokie, et al., 2006a).  Most cultured 

cyanophages carry both the psbA and psbD genes (Lindell, et al., 2004, Millard, et al., 2004, 

Sullivan, et al., 2006), however, some only contain psbA (Millard, et al., 2004, Sullivan, et 

al., 2006). Two of the PFGE bands in this study contained only the  psbA gene. However, in 

contrast to earlier published findings, we amplified only the psbD gene from one of the PFGE 

bands (Table 2).  This is the first observation of cyanophages carrying the psbD gene, only. 

These observations, along with the fact that psbD and psbA are very far apart from each other 
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in Synechococcus genomes, implies that the genes have been acquired independently from 

their hosts. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

 Our present knowledge on the occurrence and diversity of the photosynthetic genes in 

cyanophages is mainly based on isolated phages, belonging to two viral families, Myoviridae 

and Podoviridae (Mann, 2003, Lindell, et al., 2004, Millard, et al., 2004, Sullivan, et al., 

2005, Sullivan, et al., 2006) and from their abundance in metagenomic data sets (Zeidner, et 

al., 2005, Sullivan, et al., 2006).  Metagenomic data sets have been very valuable in raising 

our awareness of the widespread nature of phage encoded photosynthesis genes but do not 

provide further information about the phage biology.  Although whole and partial genome 

sequencing of cultured cyanophages has revealed psbA and psbD genes in Synechococcus 

myoviruses, none have been shown to be in any Synechococcus podoviruses (Sullivan, et al., 

2006), however it should be noted that very few Podoviridae infecting Synechococcus have 

been isolated or sequenced. The genome size in cultured cyanophages varies from 

approximately 48-200 kb and the trend is for myoviral genomes (normally in the size range 

100-200 kb) to be larger than podoviral genomes which normally range from 38-48 kb 

(Wichels, et al., 1998, Mann, 2003). Forty-five percent of the observed PFGE bands with 

photosynthetic genes, had genome sizes in this range (95-200 kb), however, 55 % fell outside 

this normal size range. Three of the populations (S9, S12 and S13) were in the genomic size 

range 31 to 67 kb, which according to size suggests they might belong to the Podo- or 

Siphoviridae.  So far, there is no report of Synechococcus phages from Siphoviridae, and only 

few isolates reported belonging to Podoviridae (Waterbury & Valois, 1993, Fuller, et al., 

1998, Chen & Lu, 2002, Sullivan, et al., 2005, Sullivan, et al., 2006).  On the other hand, if 

these viral populations belong to Myoviridae, this is also interesting as it suggests that the size 

range of this taxonomic group must be much broader that earlier reported. The other viral 

populations (3b, 5b, and S1) were in the genomic size range of 240 to 380 kb. Although it is 

most likely that these are from Myoviridae, they are much bigger than any reported thus far.  

Another plausible explanation is that these photosynthetic genes are from viral populations 

infecting photosynthetic picoeukariotes, as viruses infecting algae do have genome sizes in 

this size range (Sandaa, et al., 2001, Castberg, et al., 2002,Van Etten & Meints, 1999). These 

psbA and D genes, however, exhibited highest similarity to other cyanophage and 

Synechococcus sequences in GenBank, not to photosynthetic genes in picoeukariotes. We 

therefore believe that these genes are present in cyanophages infecting Synechococcus.  It 

should though be stressed that these observations are based on genome size alone, and that 
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physiological properties of the phage, e.g. viral morphology, is essential for correct definition 

of phage taxonomy. 

 Phylogenetic analysis of the psbA and psbD was carried out in PAUP* using both 

maximum parsimony and a neighbour-joining analysis (NJ).  The two methods gave 

congruent results and those presented here are from the NJ analysis (Fig 2a and b). Most of 

the clusters of the environmental sequences from this study lack sequences from cultured 

cyanophage or hosts, which suggests that these sequences may belong to phages that infects 

as-yet uncultured Synechococcus hosts.  This is a common observation when using culture- 

independent approaches for investigation of environmental viruses.  The psbA sequences fell 

into several distinct groups.  From the top of the tree and downwards, one clade of 7 psbA 

sequences  has 87% bootstrap support and consists only of environmental sequences 

determined in this study.  There is then an interesting group (with 76% bootstrap support) 

which contains both a new psbA sequences from this study, an environmental clone from the 

Monterey Bay, California (Zeidner, et al., 2003) and a known Synechococcus myophage S-

RSM2.  Two smaller clades again contain 2 and 3 new environmental psbA sequences, 

respectively.  The two Synechococcus strains included in this analysis form a clade with an 

environmental psbA sequence from the Monterey Bay, California (Zeidner, et al., 2003).  

There is one final large group which contains the remainder of the environmental psbA 

sequenced from Raunefjorden and which at its higher level contains 2 environmental 

sequences, one from the Red Sea (BAC9D04) and the other from the Mediterranean Sea 

(V141) (Zeidner, et al., 2005).  The sequence BAC9DO4 is from a putative podophage based 

on the fact that genes upstream of it are podophage like (Zeidner & Béjà, 2004), but the phage 

has not been isolated so the actual morphology has not been confirmed. Thirty eight percent 

of the psbA sequences from this study clustered in this large clade. If these viral populations 

are podophages, infecting Synechococcus, this is in contrasts to what has been shown using 

different methods in other environments. Therefore it may be that the method of phage gene 

detection employed here may represent a truer picture of phage diversity in general, or that 

phage diversity in high latitudes has a different profile to that from better studied lower 

latitudes.  It may alternatively be that the method used in this study simply has a different set 

of biases than isolation-based or strict metagenomic approaches. Although the phage psbA 

sequences isolated here cluster with the sequence in BAC9D4, it should be emphasised that 

there is significant variation at the nucleotide level, as there were a sequence differences of 

approximately 25 %.  
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 The environmental psbD sequences obtained in this study fell into several distinct 

groups (Fig 2b), showing greatest similarity to three Synechococcus myophages, syn1, syn10 

and S-RSM2 (Millard, et al., 2004, Sullivan, et al., 2006).  It is worth mentioning that the 

psbD gene has only been detected in cyanophage isolates belonging to Myoviridae (Sullivan, 

et al., 2006).  The isolate, S-RSM2 was isolated from the Gulf of Aquaba (Millard, et al., 

2004). PsbD appears to be a much better phylogenetic marker than psbA as all of these new 

psbD sequences were distinguishable from their host psbD genes, in contrast to the phage-

encoded psbA genes that form a clade together with their host genes (Fig 2a and b). Thus, 

compared to the phage encoded psbA genes, these new psbD genes might have had a longer 

purifying selection time resulting in a clear divergence of the viral and host psbD genes.  It 

may alternatively be the case that there is less evolutionary constraint on psbD than psbA 

genes and thus the phage-encoded versions can evolve more freely than phage-encoded psbA. 
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 Interestingly, the psbD genes from the different clones partly cluster according to their 

original PFGE band.  In contrast, the psbA genes did not show any such relationship.  Thus, it 

seems that the level of diversity observed in the psbD gene is less than that observed in psbA 

where multiple very closely related genes were recovered from a single band. This might 

imply that the genes are moving or evolving (or both) independently, with different selection 

pressures that also would result in phylogenetic differences.  Indeed, it may be that a specific 

phage ‘population’ may have multiple versions of psbA.  Alternatively, differences between 

the trees may also be attributed to the fact that each PFGE band may consist of more than one 

viral population, with a similar genome sizes and so the clone library of one viral band can 

thus contain photosynthetic genes from different, but genetically similar cyanophages. 

Although, some of the photosynthetic genes in this study might originate from host genes, the 

fact that all the psbD sequences from Raunefjorden displayed greatest similarity to isolated 

cyanophages, and not to their hosts, is inconsistent with this assumption, confirming the 

reliability of both the viral concentration step and the PFGE analysis. In summary the psbD 

analysis shows a clear diversity of phage encoded photosynthetic gene, whilst the psbA 

analysis appears to suffer from homoplasy, despite this, it is still useful as it has hinted at the 

family affiliation to which 8 of the newly sequenced phage populations may belong. 

 Using PFGE for studies of the viral community, it is possible to detect between 105 -

106 viral particles per ml (Wommack, et al., 1999, Steward, 2001). One important issue is the 

size of the viral genome that will influence the sensitivity of the method. For viruses with 

larger genome sizes, the detection limit will be lower, e.g. a viral genome of 300 kb might be 

detected down to 105 particles per ml (Steward, 2001). In our analysis we collected 25 l of 
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sample that was concentrated by a factor of approximately 100.  If we assume a detection 

limit of 10
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5, we need to have 103 particles per ml of one population to result in a signal on the 

PFGE gel.  

In order to produce sufficient DNA from the different PFGE bands, we applied a 

technique based on whole genome amplification, using the enzyme φ 29 DNA polymerase. 

The φ 29 DNA polymerase is an enzyme which is widely used for rolling-circle amplification 

of plasmids and circular DNA templates (Dean, et al., 2002, Detter, et al., 2002). The strand-

displacing enzyme has proofreading activity, is extremely sensitive, and has been shown to 

amplify DNA of up to 70 kb (Blanco, et al., 1989). This polymerase has also been used for 

environmental whole-genome amplification of bacterial and viral communities(Abulencia, et 

al., 2006, Angly, 2006) and for a variety of genetical applications including sequencing and 

microsatellite marker and single nucleotide polymorphism (SNP) analysis of single 

individuals (Jiang, et al., 2005). These results have demonstrated that the introduction of bias 

may be due to the sizes of DNA templates (possibly sheared during extraction and mixing), 

random primer availability, and stochastic effects of amplifying from very low concentrations 

of template (Jiang, et al., 2005, Abulencia, et al., 2006). Another bias may be the differential 

cloning efficiency of amplified DNA compared to un-amplified DNA (Abulencia, et al., 

2006). Most of these biases will not be valid in our study as we used the multiple 

displacement amplification (MDA) approach to produce DNA that were used in a second 

PCR with specific primers. However, as our technique does apply several amplification steps, 

we should be aware of errors in the PCR product that might place clones from the same viral 

population at different positions in the tree. 

  Our objective with this study was to describe the distribution and diversity of 

photosynthetic genes in different genomic size ranges of viral populations, using a culture-

independent approach such as PFGE in combination with cloning and sequencing. With PFGE 

it is possible to gain information about the dominant and presumably the most active viral 

populations in the samples, without the need for a cultureable host.  So far, most knowledge on 

photosynthetic genes in phages is based on cultured cyanophages isolated using two 

cyanobacterial strains; Synechococcus WH7803 and Prochlorococcus Med4 as hosts.  Recent 

estimates have shown that more than 99 % of marine bacteria (potential phage hosts) are 

unculturable (Rappé & Giovannoni, 2003), supporting the importance of a culture- independent 

approach for studies of genetically and functional viral diversity in environmental samples. 

Compared to other culture-independent approaches, e.g. metagenome cloning (Zeidner, et al., 

2005), PFGE also provides us information about the genome size of the viruses.  Such 
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information can be used to suggest the likely family that these viruses belong to. Using this 

approach we discovered a much higher diversity in viral populations with photosynthetic genes 

than previously reported. Our results document the naturally occurring genetic diversity among 

uncultured environmental viruses in samples from cold sea water.  Furthermore, the interesting 

findings that viral populations of different sizes harbour photosynthetic genes that were 

phylogenetically similar supports the idea of promiscuous horizontal gene transfer of gene 

modules within a common cyanophage gene pool. Thus, it might be hypothesized that marine 

cyanophages could have played a vital role in the evolution of photosynthetic gene diversity by 

providing an accessible pool of portable genes and facilitating the reshuffling, acquisition and 

exchange of such genetic material. 
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Table 1.  
Primers targeting the photosynthetic genes psbA and psbD. 
Primer 
name 

Sequence 5’-3’ Approximate 
product size (bp) 

References 

psbAf GTNGAYATHGAYGGNATHMGNGARCC 800 (Millard, et al., 2004) 
psbAr GGRAARTTRTGNGC   
psbDf GGNTTYATGCTNMGNCARTT 380 (Clokie, et al., 2006b) 
psbDr CKRTTNGCNGTVAYCAT   
 3 

4  

 15



Table 2. Information about size range and sampling dates of investigated PFGE bands for the 

presence of the photosynthetic genes psbA and psbD, water temperature and number of 

cyanophages in the samples.  The number of  cyanophages was determined by real-time PCR, 

respectively (Sandaa & Larsen, 2006).   

1 

2 

3 

4 
Viral 

bands 
Date of 

sampling 
Genome 

size 
(Kb) 

psbA 
gene 

psbD
gene 

Water 
temperature 

(Co) 

Cyanophages
Particles 
(103/ml)a

2b 29.jun 300 - nd 7,8 2 

3b 29.jun 255 + - 7,8 2 

4b 29.jun 192 + + 7,8 2 

5b 19.aug 380 + + 9,2 17 

6b 10.aug 140 + + 8,0 nd 

7b 11.may 140 + - 6,1 11 

8b 11.may 200 - - 6,1 11 

1C2 13.apr 75 - nd 5,3 3 

S1 02.nov 240 + + 13,3 21 

S2 02.nov 200 + + 13,3 21 

S5 02.nov 165 - - 13,2 21 

S6 02.nov 145 - nd 13,2 21 

S7 02.nov 139 - nd 13,2 21 

S8 02.nov 95 + + 13,2 21 

S9 02.nov 67 + + 13,2 21 

S10 06.oct 64 - nd 11,3 30 

S11 06.oct 46 - nd 11,3 30 

S12 12.oct 44 + + 11,6 72 

S13 28.sep 31 - + 11,5 21 

5 
6 
7 

nd= not determined 
a Data published in (Sandaa & Larsen, 2006). 
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Fig.1 

Schematic outline of viral populations determined by PFGE. Viral populations are defined by 

genome size, and the outline is based on three different electrophoresis runs for each viral 

concentrate. Numbers indicate bands that have sliced out and tested for the presence of psbA 

and psbD genes by PCR. Red dots: presence of both the psbA and psbD genes, Green dots: 

presence of  the psbA gene, Blue dots: presence of the psbD gene.  

 

Fig. 2. 

Phylogenetic affiliation of the psbA (a) and psbD (b) sequences from the clones isolated from 

PFGE bands (the first number indicates the PFGE band of origin (Table 2) and the second 

number indicates the clone number), and representative psbA and psbD sequences from six 

marine cyanomyoviruses; P-SSM4, S-RSM2, S-RSM28, S-WHM1, S-PM2, S-RM88,  

(GenBank accession no: NC006884, AJ628768, AJ629221, AJ628769, AJ630128, 

AJ629075), and the psbA gene from a putative podovirus BAC9D04 (a) (GenBank accession 

no: AY456121).  PsbA genes from three clones; eBAC65-3, RED-132-6-6 and V141 were 

also included (a) (GenBank accession no: AY176623, AY176632, AY713429), and psbD 

genes from three marine cyanomyoviruses; syn1, syn10 and syn30 (DQ473702, DQ473703, 

DQ473700). Both psbA and psbD genes from the cyanobacteria Prochlorococcus MED4, 

Synechococcus sp. WH7803 and Synechococcus sp. WH8103 were included in the analysis 

(GenBank accession no: NC 005072 and DQ473718, AF156980, DQ473687, DQ473716, 

respectively). Trees were rooted with either the psbA or psbD gene from the freshwater 

cyanobacterium Synechocystis sp. PCC 6803 (GenBank accession no: X58825, NC 000911, 

respectively). Text in bold and colour indicates the clones from this study retrieved from 

PFGE bands in the size range; Blue: < 100 kb, Black: 100-199 kb, Green: 200-299 kb, Red: 

>300 kb. Bootstrap values were generated with 1000 replicates; values < 75 is not shown. 

Scale bar represents 0.1 substitutions per site.  
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