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Abstract 
A theoretical model has been developed to describe the probability of charge transfer 

from helium cations to dopant molecules inside helium nanodroplets following 

electron impact ionization. The location of the initial charge site inside helium 

nanodroplets subject to electron impact has been investigated and is found to play an 

important role in understanding the ionization of dopants inside helium droplets. The 

model is consistent with a charge migration process in small helium droplets that is 

strongly directed by intermolecular forces originating from the dopant, whereas for 

large droplets (tens of thousands of helium atoms and larger) the charge migration 

increasingly takes on the character of a random walk. This suggests a clear droplet 

size limit for the use of electron impact mass spectrometry for detecting molecules in 

helium droplets. 
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1. Introduction 

Helium nanodroplets provide a means of studying molecules and molecular clusters 

inside superfluid liquid helium.  Electron impact mass spectrometry is one of the main 

means of identifying the presence of a molecule or cluster inside a helium nanodroplet 

and so it is important to understand the mechanism for ion formation in this 

environment. The basic mechanism for ion formation in doped helium droplets was 

initially described by Scheidemann et al.  and builds upon the ionization 

mechanism proposed for heavier rare gas clusters [2]. The process starts with an 

electron striking a helium atom somewhere in the helium droplet, causing the 

formation of a He  ion. A resonant charge hopping process then takes place in which 

the positive charge jumps to an adjacent helium atom or, if nearby, to the dopant 

species. This hopping process is terminated either by the formation of  (which 

acts as a nucleation centre for forming larger  cluster ions), or by the irreversible 

formation of the dopant cation. For molecules in small helium droplets the energy 

release on ion formation leads to the complete evaporation of the surrounding helium 

atoms, leaving the bare ion in the gas phase. 

[1]

+

+
2He

+
nHe

 The first detailed experiments designed to explore the charge hopping 

process in helium nanodroplets were carried out by Janda and co-workers. This work 

used mass spectrometry to determine the product ion yield as a function of dopant 

partial pressure and helium droplet size and focused on NO  and rare gases -  

as the dopants. By constructing a simple model of their experimental data, based on 

the variation of the charge transfer probability as a function of droplet size, Janda and 

co-workers were able to deduce that as few as 3-4 charge hops would lead to charge 

localization (self-trapping) on the helium, i.e. formation of  . Consequently, 

according to this interpretation of the experimental data, the dopant molecule would 

need to be close to the site of initial ionization in order for there to be a significant 

probability of charge transfer. 

[2] [4] [6]

+
2He [4]

 Recent work by Lewis et al. has added substantially to the understanding 

of charge transfer processes in helium nanodroplets. In one study, the threshold 

photoelectron-photoion coincidence (TPEPICO) technique was employed to 

investigate the fragmentation mechanism and energetics of helium droplets doped 

with triphenylmethanol after electron impact ionization [7]. In another recent study, 

Lewis and co-workers developed the technique of optically-selected mass 
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spectrometry (OSMS) [8]. This ingenious approach combines conventional mass 

spectrometry with tunable laser excitation of dopant molecules to select the mass 

spectrometric signal from a specific type of molecule or molecular cluster in the 

helium nanodroplets. This is a major step forward since it makes it possible, for 

example, to distinguish droplets doped with a single dopant molecule from those 

droplets containing more than one dopant molecule or with none. This technique was 

used to determine the charge transfer probability for small molecules such as HCN, 

HCCH and HCCCN as a function of mean droplet size [8]. In support of the 

experimental findings, a Monte Carlo simulation of the charge transfer data was 

performed. The model developed was quite sophisticated and included the effect of 

electrostatic forces emanating from the dopant molecule on the direction of charge 

hopping. The variable parameter in these simulations was the number of charge hops 

before self-trapping, and the best agreement with experiment was obtained assuming 

9 hops. 

 In order to fully understand the ion chemistry in helium droplets, it would 

be useful to have a detailed theoretical model of the charge formation and migration 

process in helium nanodroplets. In this work a classical model has been developed in 

order to interpret experimental measurements of the charge transfer probability (CTP) 

in doped helium droplets following electron impact ionization. In contrast to previous 

theoretical models, the initial charge location following electron impact is explicitly 

taken into account leading to a non-uniform charge distribution within the droplet. 

The model also takes into account the likely distribution of nanodroplet sizes, rather 

than treating all droplets as if they have the mean droplet size. Furthermore, the 

competition between charge hopping and self-trapping is described by a fixed 

branching ratio, rather than a fixed number of hops, which leads to the concept of a 

mean free path for positive charge hopping in helium droplets. The resulting model 

has been used to simulate some of the mass spectral data of small molecules in helium 

nanodroplets obtained by Lewis and co-workers using the OSMS technique. As will 

be shown, the agreement between experiment and simulation is good and this leads to 

a number of important conclusions about charge hopping in doped helium droplets. 
  

2. Theoretical model 
 

A. Background  
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If a molecule is present in a helium droplet composed of several thousand helium 

atoms, the chance of direct electron impact ionization of the molecule is very small. 

Consequently, electron impact ionization almost always results initially in the 

formation of He+ ions, which must then transfer their charge to dopant molecules by 

some migration mechanism. 

 It is generally accepted that the charge migration inside helium droplets 

proceeds by resonant charge hopping, a process first suggested by Atkins to account 

for charge migration in bulk liquid helium [9]. Charge hopping can be brought to a 

close by the formation of  in its +
2He 2Σu

+ electronic ground state. However, at the 

relatively large He-He distances found in liquid helium, the separation in energy 

between the 2Σu
+ state and the repulsive 2Σg

+ state, both of which correlate to the same 

He+ + He dissociation limit, is very small. Consequently, charge hopping can continue 

providing the distance between the helium atoms remains sufficiently large. Atkins 

suggested that charge localization (self-trapping to form ) would occur as soon as 

the velocity of hopping excitation slowed to the local velocity of sound. Using this 

criterion, Scheidemann et al. estimated the hopping number to be in excess of 10

+
2He

3 [1]. 

Recently, information derived from experimental charge transfer measurements on 

doped helium nanodroplets has resulted in a sharp downward revision of the hopping 

number. A combination of experimental data and associated models by the groups of 

Janda [2,3] and Miller [8] now suggests that the number of charge hops before self-

trapping is <10.  

 Two distinct ways of treating the charge hopping process have been used 

in modelling experimental charge transfer data.  One approach assumes that the 

hopping between helium atoms has unit probability below some threshold number of 

hops and zero beyond that (self-trapping occurs).  This step-function treatment of the 

hopping probability was employed by Lewis et al. in their modelling of their OSMS 

data [8]. Rather than employing this step function, we choose to treat the charge 

hopping as a stochastic process, i.e., the branching ratio between charge hopping and 

self-trapping is assumed to be constant at each step.  Callicoat and co-workers have 

previously employed the same assumption in modelling the charge migration in 

helium droplets doped with heavier rare gases [4].  The stochastic assumption is 

mathematically convenient and should provide a reasonable description of the mean 

charge hopping length. Underlying this assumption is that the charge hopping is 
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extremely fast such that the nuclear positions remain essentially fixed even after 

several hops. At the average He-He distances in liquid helium of 3.16 Å [1] the  

system is almost at its dissociation limit. A quantum mechanical estimate by 

Halberstadt and Janda found that at this distance each charge hop takes around 20 fs 

[10]. We have performed a CCSD(T)/6-311++G(d,p) calculation of the 

+
2He

2Σu
+ potential 

energy curve of , from which the force between two helium atoms can be 

derived. According to this calculation the He-He

+
2He

+ distance will be altered by no more 

than 0.003 Å in 20 fs assuming two static helium atoms separated initially by 3.16 Å. 

It is therefore reasonable to assume that the charge will hop through an essentially 

fixed nuclear framework where the self-trapping probability per hop is independent of 

time. 

 By ascribing a fixed self-trapping probability to each hop, the competition 

between self-trapping and resonant charge hopping during the charge migration 

process can be expressed as dQ = −(Q/ΓHe) dl, where Q is the total charge inside a 

helium droplet beam in the form of He+, l is the distance traveled by the positive hole, 

and ΓHe is the free mean path of the positive hole inside helium droplets. Over time, 

self-trapping means that the proportion of charge that remains in the form of He+ 

declines exponentially with the distance traveled according to: 

 

 Q(l) = Q0 exp(-l /ΓHe)   (1) 

 

Here Q0 is the total charge before migration begins (and thus l = 0). Note that the 

decline of charge in the form of He+ means that there will be a concomitant decline in 

the charge transfer probability to any dopant in a helium nanodroplet, since self-

trapping eliminates this possibility. This exponential decay of charge transfer 

probability is the starting point of the model developed here. 

  

B. Initial charge location inside helium droplets 
To evaluate the probability of charge transfer from the helium to the dopant molecule, 

it is necessary to know where the positive charge is initially created. In the models 

developed by the groups of Janda [4] and Miller [8], the probability for finding the 

initial charge on a specific helium atom was assumed to be uniform across the droplet. 
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This may be justifiable for small droplets, but it is almost certainly a poor 

approximation for large droplets. We have therefore attempted to account for any 

variation in the charge distribution throughout the helium droplet. 

 To determine the charge distribution, the cross sections for electron-helium 

atom collisions determined by Fursa and Bray have been employed [11]. For an 

electron colliding at an energy of 40 eV, which is the energy used in obtaining the 

experimental data with which we compare our results later, the total collision cross 

section σt is 2.06 × 10-16 cm2, while the ionization cross section is 1.7 × 10-17 cm2. The 

mean free mean path of the electron, Γe, can be calculated as 1/nσt, where n is the 

number density of helium atoms inside helium droplets calculated from the bulk 

liquid helium density of 125 kg m-3 [12]. This gives Γe = 25.9 Å for an electron 

having 40 eV of energy. Assuming a spherical droplet containing N helium atoms, the 

radius of the droplet for 4He is given by [13]. Consequently, taking as 

an example a helium droplet containing 3,000 helium atoms, the radius is 32 Å and 

the probability that the incident electron will reach the center free of collision is 

calculated to be 29% if it is heading initially in the correct direction.  

3/122.2 NR =

 For the sake of simplicity, the path followed by the incoming electron is 

assumed to be a straight line through the helium. For small droplets this is a 

reasonable approximation given that the number of He-e- collisions is expected to be 

low. Even for rather large droplets with a radius of 100 Å (91,400 helium atoms) the 

average He-e- collision number is only five. The result of these collisions will be a 

tendency to create more ions near the surface of the cluster. 

 Consider a positive charge that is created by the incident electron at (r, θ, φ) in 

a polar coordinate system with the origin at the centre of a helium droplet of radius R. 

The z axis is defined as pointing along the direction of travel of the electron. From 

basic geometry, the distance the electron must travel to reach this point in a straight 

line path is θθ cossin 222 rrR −− . Consequently, the electron penetration 

probability at a distance r from the droplet centre can be described as: 

 

  ( ){ } θθθθπ
π

drrRrrf e sin/cossinexp2)(
0

2222 ∫ Γ−−−=  (2) 

 

where Γe is the mean free path of the electron defined above.  
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 Neglecting inelastic scattering, the ionization probability at each location is 

directly proportional to the penetration probability. To see the effect on the charge 

distribution, we show the findings for droplets with radii of 100 Å (91,400 helium 

atoms) and R = 30 Å (containing 2,500 helium atoms) in Figure 1. It is evident that 

even for the smaller helium droplets there is a significant decrease in ionization 

probability in moving from the surface towards the centre. In practice the lower 

density of helium expected in the surface and near-surface layers [14], which is not 

accounted for here but which is discussed again later, may partially counteract this 

fall-off. Consequently, the assumption of a uniform charge distribution for droplets 

with a few hundred or a few thousand helium atoms is probably a reasonable 

approximation. However, for larger droplets there will remain a strong radial 

dependence, which means that the initial positive charge is unlikely to be found 

anywhere near the centre of the helium droplet.  

C. The total charge created in a helium droplet beam 
The charge contained within the droplet beam is a function of the size distribution of 

the helium droplets. To take this into account, we make the standard assumption of a 

log-normal distribution for the droplet sizes, i.e.  

 
( )

2

2

2
)ln(

2
1),( σ

μ

σπ
σ

−
−

=
N

e
N

NP  (3) 

 

where P is the probability that a droplet contains N helium atoms, μ is the mean value 

of ln(N) and σ is the standard deviation of the normal distribution. The log-normal 

distribution has been shown to be valid for helium nanodroplets by Lewerenz et al., 

who used a scattering method for determining the sizes of liquid helium droplets [15]. 

Three sets of cluster size distributions at different temperatures were measured by 

Lewerenz et al., and from the maximum and mean values of each distribution we have 

employed the expressions  and  to 

estimate the standard deviation as σ = 0.65. This value of σ is assumed in the 

expressions given below.  

)exp( 2
max σ−= μN )2/exp( 2σμ +>=< N

 In terms of the droplet radius, the probability distribution in (3) can be 

converted to  
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where ρ is the droplet radius at the mean droplet size, i.e.  3/122.2 ><= Nρ

 Taking into account both the distribution of nanodroplet sizes and the 

distribution of initial locations of the positive charge following electron impact, the 

total charge Q created in a helium nanodroplet beam with a mean droplet size <N> 

can be expressed as 

 

{ }∫ ∫∫ Γ−−−=
∞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

− R

e

R

rrRe
R

CQ
0 0

222

0
2

2
ln3

1 /)cossin(exp1)( 2

22

π
σ

σ
ρ

θθ
σ

ρ  

  (5) dRdrdr θθsin2

 

Here C1 is a coefficient whose magnitude is proportional to the flux of the helium 

droplets.  

D. The charge transfer probability 
There are two extreme views of the charge transfer process. One assumes that charge 

transfer from helium atom to helium atom is essentially a random walk consisting of a 

fixed number of hops. If the charge reaches the dopant before the maximum number 

of hops is attained then charge transfer can occur. At the other extreme we could 

assume that, with a dopant placed inside the droplet, long-range charge-induced 

dipole interactions will steer the charge hopping such that it follows a direct path from 

the initial site of ionization towards the dopant. We shall, without justification at this 

stage, assume the latter. Furthermore, it will also be assumed that the dopant is fixed 

at the centre of the helium droplet. The credibility of these issues will be discussed 

later.  

From the discussion in section 2A, an exponential decline in the probability 

for transferring charge to the dopant as a function of distance between the positive 

charge and the dopant is expected if we assume a straight-line journey of the charge 

from initial location to dopant. Equation (1) can thus be modified to obtain  
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( HerCrg Γ−= /exp)( 2 )        (6) 

 

In the above expression g(r) represents the charge transfer probability and the 

constant C2 reflects the probability of charge transfer from He+ to the dopant when the 

charge reaches a helium atom in contact with the dopant. 

 Combining equations (2), (4) and (6), the total charge transferred to the dopant 

becomes 

  

{ }∫ ∫∫ Γ−−−=
∞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
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e
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{ } dRdrdrr He θθsin/exp2 Γ−   (7) 

 

The charge transfer possibility, CTP(ρ), is then given by 

 

)(
)()(

ρ
ρ

ρ
Q

QCTP D=   (8) 

where Q(ρ) and QD(ρ) are given by equations (5) and (7), respectively.  

 

3. Simulation procedure 
The expressions described above have been used to simulate the experimental 

findings for HCCCN and HCN obtained using OSMS by Lewis et al. [8]. Analytical 

formulae cannot be derived for the integrals in equations (5) and (7) and so these have 

been evaluated numerically. The NIntegrate routine in Mathematica was used to carry 

out these multidimensional integrations. 

A non-linear fitting program based on the Marquardt least-squares fitting 

algorithm was written in Mathematica®5.2 to perform the simulation. The upper 

integration limit for the helium droplet size in the integrals was set at 20R, which 

means that the largest helium droplets included in the integral evaluation were some 

8,000 times larger than the average helium droplet size under consideration, which 

more than covers all possibilities. This was confirmed by increasing the upper 

integration limit further in trial calculations, which was found to have no significant 
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impact on the outcome of the simulation. Only two parameters have to be fitted in the 

program, C2 and  ΓHe, since C1 disappears through cancellation in equation (8). 

 

4. Results  

Figure 2 presents the simulations for HCN and HCCCN based on the model described 

above. It can be seen that in both cases the agreement between simulation and 

experiment is good. Lewis and co-workers also obtained OSMS data for HCCH [8], 

which in principle could also be simulated in the present work. Unfortunately, fewer 

experimental data points were recorded for HCCH and in particular the absence of 

any data points for droplets with <1800 helium atoms, a region where the charge 

transfer probability declines rather quickly, will make any fit seem inaccurate. 

Consequently, the HCCH data have not been simulated in this work. 

 For HCCCN we obtain C2 = 1.15 ± 0.04 and ΓHe = 35.2 ± 1.9 Å, while for 

HCN the result is C2 = 0.92 ± 0.05 and ΓHe = 32.2 ± 2.7 Å. The dopant is treated as a 

featureless point object in the present model, and thus in this limit the mean free paths 

should be the same in both cases. Within the margin of error of the simulation, this is 

indeed found to be the case. Halberstadt and Janda calculated that the mean hopping 

distance between adjacent helium atoms is close to 3.1 Å [10]. If this is combined 

with the mean free path determined in our simulations, then it implies that the positive 

hole hops from one helium atom to another approximately 11 times before the charge 

becomes self-trapped. Of course in our model there is no maximum hop number, only 

an exponentially decaying probability. 

The constant C2 reflects the probability that charge will transfer to the dopant 

when it reaches an adjacent helium atom. A value of unity implies that charge transfer 

is inevitable. Consequently, the values of 1.15 and 0.92 for HCCCN and HCN 

obtained from the fit come close to the expectation of a high charge transfer 

probability. Within the context of the simple ‘hard sphere’ type of model described 

here, it makes no sense for C2 to be larger than unity, which it clearly is for HCCCN. 

However, given that our model takes no account of the size, structure and charge 

distribution within a dopant molecule, it would be unwise to attach too much 

importance to the value of C2. The larger value of C2 when compared with HCN may 

simply reflect the larger size of the HCCCN molecule, which could allow the positive 
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hole to transfer over to the dopant at distances further from the droplet centre than is 

possible for HCN.  

As described earlier, Janda and co-workers have used standard electron impact 

mass spectrometry to determine charge transfer probabilities for rare gas and NO 

dopants in helium nanodroplets [2-5]. We have also performed simulations of these 

results. This is illustrated by the case of NO [3], for which we derived ΓHe = 7.7 ± 0.6 

Å and C2 = 4.6 ± 0.6. In contrast to the OSMS data for HCN and HCCCN, the C2 

constant is unfeasibly large. We take this to indicate that the charge transfer 

probabilities determined for NO and the rare gases by Janda and co-workers are less 

reliable than those determined from OSMS data. The statistical nature of the pick-up 

process inevitably means that there will be some droplets with no dopant molecules 

while others will have more than one, which complicates the interpretation of charge 

transfer probabilities derived from standard (non-OSMS) electron impact mass 

spectrometry.  

 

5.  Discussion 

 

A. Random walk versus directed charge hopping 

A key assumption in this work is that the dopant resides at the centre of the droplet 

and draws the positive hole towards itself in a straight-line path. Even in the absence 

of the dopant the positive charge will be drawn towards the centre of the droplet, since 

this is the location where solvation by the surrounding helium is at its maximum [16]. 

However, while there are two factors in play to direct the charge hopping motion, it is 

not clear that these are sufficient to enforce an approximately straight line path.  In 

this context it is interesting to note that Lewis and co-workers [8] attempted to 

analyze their OSMS data by carrying out Monte Carlo simulations of the charge 

hopping process. Included in these simulations were explicit potential gradients for 

the ion-dopant interaction derived from ab initio calculations. The direction of charge 

hopping was weighted by a Boltzmann-like factor to take into account more favorable 

and less favorable hopping directions. However, it was found that a Boltzmann 

weighting yielded indistinguishable results from a comparable simulation in which the 

charge travelled directly along the potential gradient towards the dopant [8]. This 
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would seem to suggest that the ion-molecule interactions are strong enough to drive 

the positive charge directly toward the dopant molecule. 

To test this assumption further, the charge transfer probabilities in this work 

have also been calculated assuming a random walk. The random walk means that, on 

a sphere of radius of r, the positive charge has an equal possibility of reaching any 

part of the spherical surface. Consequently, the probability that the positive charge 

reaches the dopant is proportional to 1/4πr2. Thus the effect of a random walk model 

is achieved simply by removing the r2 term from equation (8). 

Two tests have been performed with the r2 term removed: one without the 

term (equivalent to a self-trapping mean free path of Γ)/exp( HeΓ−r He = +∞) and the 

other with ΓHe = 33.65 Å. The effect this has on the simulations is shown in Figure 3 

for HCCCN alongside the results from the directed hopping mechanism. Note that the 

curves (b) and (c), which correspond to ΓHe = +∞ and ΓHe = 33.65 Å, respectively, 

have been rescaled by a factor of 50 and have not been fitted to the data. The reason 

why no fit was attempted will become clear from inspection of the plot. No matter 

what the value of ΓHe, the random walk model leads to a rapid decay in the charge 

transfer probability as the average size of the droplets grows, which is inconsistent 

with the much slower decay observed experimentally. We take this finding as strong 

evidence that the positive hole migration from helium atom to helium atom is strongly 

biased towards the dopant molecule, i.e. the random walk model is not applicable, at 

least for droplets with only a few thousand helium atoms. 

 

B. Uniform versus non-uniform initial charge distributions 

In previous simulations of charge transfer in helium nanodroplets it has been assumed 

that electron impact has an equal probability of creating a positive charge on any 

helium atom in the nanodroplet. This assumption is expected to become less reliable 

as the droplet size increases, as was illustrated by the data shown in Figure 1. If the 

uniform charge distribution is invalid, then simulations based on this assumption will 

overestimate the initial charge distribution near the centre of the helium droplet. This 

effect is probably unimportant for very small droplet sizes when calculating the 

probability of charge transfer to the dopant in small helium droplets but it will become 

an important factor for very large helium droplets. Furthermore, because of the log-
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normal distribution of helium droplet sizes, even for beams with a small mean droplet 

size there will still be some much larger droplets within the beam under consideration.  

The net effect of any model that imposes a uniform charge distribution will be 

to underestimate the number of charge hops. This may in part account for the slightly 

smaller hopping numbers found in the work of Lewis et al. [8] and Janda and co-

workers [4], although of course there are also other differences between our model 

and theirs. A test run of the fitting programme assuming a uniform charge distribution 

has been carried out in order to compare the results with the non-uniform charge 

distribution. This can be easily achieved by setting Γe = +∞ . This calculation gives C2 

= 1.18 ± 0.04 and ΓHe = 32.9 ± 1.9 Å for HCCCN and C2 = 0.94 ± 0.05 and ΓHe = 30.4 

± 2.7 Å for HCN, which indicates that ∼10 hops are required for He+ to become self-

trapped. The smaller hopping number obtained from these simulations is consistent 

with the hopping number derived by Lewis and co-workers from their own 

simulations [8]. 

  If we accept a hopping time of ∼20 ps [10], 11 hops corresponds to 220 ps.  

Although the phenomenological model employed in the current study does not 

explicitly consider the mechanism by which  forms, we note that the timescale 

for self-trapping calculated in the present work is not inconsistent with models for 

 formation.  For example, Scifoni et al. have employed quantum mechanical 

calculations to determine the 3-body relaxation time to form  following direct 

electron impact ionization of a helium atom in a helium trimer at the number density 

of liquid helium [17].  The total relaxation time was estimated to be on the order of 1 

ps, with initial quenching to the highest vibrational states of  taking several 

hundred fs.  As soon as  begins to form the charge hopping process is irreversibly 

terminated.  In view of the approximations involved in the calculations performed by 

Scifoni et al. and in the present phenomenological model, the agreement between 

timescales is quite good.  

+
2He

+
2He

+
2He

+
2He

+
2He

 

C. Charge transfer in large helium droplets 

In the limit of very large helium droplets the probability of charge transfer to the 

dopant, assuming it is located somewhere near the centre of the droplet, will become 

vanishingly small. In their investigation of triphenylmethanol in helium droplets, 
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Miller and co-workers claimed that this point was reached when the helium droplets 

achieved an average size of approximately 40,000 helium atoms, as evidenced by the 

very small dopant signal in the mass spectrum [7]. This concurs roughly with our own 

experimental findings, although in our laboratory we have managed to obtain mass 

spectra with droplets with an estimated mean size of up to 60,000 atoms [18]. 

Any conclusion about the charge transfer behavior for large droplet sizes 

based on the present study is difficult to make with confidence because the 

simulations presented here are derived from comparison with experimental data for 

mean droplet sizes of <10,000 helium atoms. Nevertheless, we cautiously note that 

extrapolation of the simulated curves gives a very slow fall-off in charge transfer 

probability such that, even for a droplet with 50,000 helium atoms, the probability 

remains as high as 12% for HCN and 17% for HCCCN. Consequently, something else 

must be happening to curtail the charge transfer process. 

As the droplet size increases, the probability distribution for the site of initial 

ionization by electron impact becomes increasingly skewed towards distances further 

from the droplet center. At large distances the potential gradient generated by the 

dopant will be weaker and therefore less effective at steering the direction of charge 

hopping. In effect what will happen is a gradual switch from directed charge hopping 

to a random walk as the droplet size increases. As discussed earlier, this results in a 

much more rapid decay in the charge transfer probability with helium nanodroplet 

size, which could account for the difference between the experimental findings and 

the extrapolation of the simulated data. 

Of course there are other factors that might also be significant. For example, in 

large helium droplets the energy released on charge transfer to the dopant might not 

be sufficient to evaporate away all the helium atoms. In such circumstances it would 

not be possible to observe the dopant ion in the mass spectrum because of the large 

number of attached helium atoms, even though charge transfer may still have 

occurred. Thus at this stage, without additional experimental data on the charge 

transfer probability for droplet sizes >10,000 helium atoms, we cannot be sure of the 

reason why the charge transfer probability declines so rapidly for larger droplets, 

 

D. Limitations of the current model 

Lehmann has described an effective Hamiltonian for the motion of neutral impurities 

inside helium droplets [19] which includes both long-range electrostatic interaction 
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between the dopant and atomic helium, and hydrodynamic contributions. It was found 

that the effective potential for motion of the dopant is determined by the long-range 

part of the dopant-helium interaction, which contains both isotropic and anisotropic 

terms. The isotropic term will confine the impurity near the centre of the clusters, 

while the weaker anisotropic term couples the translational motion with the rotation of 

the dopant molecule and can drive the molecule off centre. For a helium droplet of 3 

nm radius (consisting of 2,500 helium atoms) and containing a HCN molecule, the 

location of maximum probability was found to be 1.2 nm from the centre of the 

droplet. Of course this distribution is spherically symmetric and so the mean position 

of the dopant for a large collection of doped droplets would be at the centre of a 

droplet. 

 In principle it is possible to take the distribution of dopant positions into 

account in our calculations. Assuming the site where the charge first appears is 

located at (r1, θ1, φ1) and the dopant is at position (r2, θ2, φ2), the distance between the 

charge and the dopant d can be calculated using basic trigonometry as: 
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We denote the distribution function along the radial direction as P(R, r2), and thus the 

charge transferred to the dopants can be derived by modifying equation (7) to obtain: 
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Lehmann [19] derived the distribution function (equivalent to P(R, r2) in equation 

(10) ) for a neutral species inside liquid helium droplets using a quantum mechanical 

model. The larger the droplet the flatter the confining potential energy well over the 

central region of the droplet, with the result that the dopant distribution function 

becomes broader as the droplet size increases.  However, because this distribution is 

isotropic the average effect over a large collection of nanodroplets will be equivalent 

to a dopant located at the centre of the droplet.  Consequently, it should be acceptable 
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in the current model to ignore the substantial variation in dopant positions inside a 

helium droplet. Lewis and co-workers reached a similar conclusion in their simulation 

of their OSMS data, finding that simulations that included the off-centre dopant 

distribution did not differ significantly from those carried out with the dopant fixed at 

the centre of the droplet [8]. 

Another simplification we have employed is to assume that the density of the 

helium throughout the droplets is the same as that of bulk liquid helium. However, in 

practice it is known that there is a sheath of low-density helium near the surface 

where the density falls from 90% of its bulk value down to 10% over a distance in the 

region of 6 Å [15]. We have not attempted to explicitly allow for this effect, which 

will tend to underestimate the degree of electron penetration into the droplet.  

However, its effect will only be significant for the smallest droplets considered in the 

present work.  Furthermore, we note that its impact will partly be offset by the neglect 

of electron scattering by the helium, which has the consequence of overestimating the 

degree of electron penetration.  Although these two approximations will not cancel 

fully, the residual effect is not expected to be large.  
 

6. Conclusions 

A classical model based on a constant branching ratio between positive hole hopping 

and charge self-trapping (to irreversibly form ) in helium nanodroplets has been 

described. This has been used to simulate charge transfer probabilities in doped 

helium nanodroplets measured by optically selected mass spectrometry. The fit 

between theory and experiment is good and makes it possible to draw a number of 

conclusions. First, we calculate a mean free path of 34 Å for the charge hopping in 

helium, which corresponds to approximately 11 hops before charge self-trapping 

occurs. This is similar to the hopping numbers deduced by other research groups 

using different models. 

+
2He

It has been shown for droplets containing < 104 helium atoms that the charge 

transfer probabilities are inconsistent with charge migration by a random walk. 

Instead the direction of charge migration is strongly biased in a direction pointing 

directly towards the dopant species. However, an extrapolation of our model to 

droplet sizes in excess of 104 helium atoms suggests a slower decay with <N> than 

observed experimentally. As the droplet size increases, the initial positive charge is 

more likely to be produced in a region far from the droplet centre, and thus the 
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interaction between the charge and the dopant molecule will be weaker. In the limit of 

a large separation the guiding force experienced by the positive hole due to the dopant 

will be negligible and the charge hopping will instead show the characteristics of a 

random walk. The lack of measured charge transfer probabilities for droplets with > 

104 helium atoms makes it difficult to assess when the switchover from directed 

hopping to a random walk occurs. However, a combination of the experimental 

observations and simulations suggests that this crossover occurs at between 104 and 5 

× 104 helium atoms. This switch to random walk behavior means that for droplets 

with >>5 × 105 helium atoms the probability of charge transfer to a dopant molecule 

becomes negligibly small.    
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Figure 1 Variation of the electron radial penetration probability as a function of the distance, r, 

from the centre of the helium droplet. The calculation was carried out assuming an 

electron impact energy of 40 eV.  
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Figure 2 Comparison of the simulated charge transfer probability with the experimental values 

for HCN and HCCCN [10]. The solid lines represent the simulation while the 

individual points have been extracted from experiment. 
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Figure 3  (a) Comparison of the simulation obtained for HCCN with random hopping models 

derived for (b) ΓHe = +∞ and (c) ΓHe = 33.7 Å. 
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