
Nonequilibrium entropy limitersin lattie Boltzmann methods 1R. A. Brownlee, A. N. Gorban �, J. LevesleyDepartment of Mathematis, University of Leiester, LE1 7RH, UKAbstratWe onstrut a system of nonequilibrium entropy limiters for the lattie Boltz-mann methods (LBM). These limiters erase spurious osillations without blurringof shoks, and do not a�et smooth solutions. In general, they do the same workfor LBM as ux limiters do for �nite di�erenes, �nite volumes and �nite elementsmethods, but for LBM the main idea behind the onstrution of nonequilibrium en-tropy limiter shemes is to transform a �eld of a salar quantity | nonequilibriumentropy. There are two families of limiters: (i) based on restrition of nonequilibriumentropy (entropy \trimming") and (ii) based on �ltering of nonequilibrium entropy(entropy �ltering). The physial properties of LBM provide some additional bene-�ts: the ontrol of entropy prodution and aurate estimate of introdued arti�ialdissipation are possible. The onstruted limiters are tested on lassial numerialexamples: 1D athermal shok tubes with an initial density ratio 1:2 and the 2D lid-driven avity for Reynolds numbers Re between 2000 and 7500 on a oarse 100�100grid. All limiter onstrutions are appliable both for entropi and for non-entropiequilibria.Key words: lattie Boltzmann method, numerial regularisation, entropyPACS: 47.11.Qr, 47.20.-k, 47.11.-j, 51.10.+y
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The idea of ux limiters an be illustrated by omputation of the ux F0;1 of the onservedquantity u between a ell marked by 0 and one of two its neighbour ells marked by �1:F0;1 = (1� �(r))f low0;1 + �(r)fhigh0;1 ;where f low0; 1 , fhigh0; 1 are low and high resolution sheme uxes, respetively, r = (u0 �u�1)=(u1 � u0), and �(r) � 0 is a ux limiter funtion. For r lose to 1, the ux lim-iter funtion �(r) should be also lose to 1.Many ux limiter shemes have been invented during the last two deades [43℄. No par-tiular limiter works well for all problems, and a hoie is usually made on a trial anderror basis.Below are several examples of ux limiter funtions:�mm(r) = max [0;min (r; 1)℄ (minmod, [36℄);�os(r) = max [0;min (r; �)℄ ; (1 � � � 2) (Osher, [12℄);�m(r) = max [0;min (2r; 0:5(1 + r); 2)℄ (monotonised entral [42℄);�sb(r) = max [0;min (2r; 1) ;min (r; 2)℄ (superbee, [36℄);�sw(r) = max [0;min (�r; 1) ; (r; �)℄ ; (1 � � � 2) (Sweby, [39℄):The lattie Boltzmann method has been proposed as a disretization of Boltzmann'skineti equation and is now in wide use in uid dynamis and beyond (for an introdutionand review see [37℄). Instead of �elds of moments M , the lattie Boltzmann methodoperates with �elds of disrete distributions f . This allows us to onstrut very simplelimiters that do not depend on slopes or gradients.All the limiters we onstrut are based on the representation of distributions f in theform: f = f � + kf � f �k f � f �kf � f �k ;where f � is the orrespondent quasiequilibrium (onditional equilibrium) for given mo-ments M , f � f � is the nonequilibrium \part" of the distribution, whih is representedin the form \norm�diretion" and kf � f �k is the norm of that nonequilibrium ompo-nent (usually this is the entropi norm). Limiters hange the norm of the nonequilibriumomponent f � f �, but do not touh its diretion or the quasiequilibrium. In partiular,limiters do not hange the marosopi variables, beause moments for f and f � oinide.All limiters we use are transformations of the formf 7! f � + �� (f � f �) (1)with � > 0. If f � f � is too big, then the limiter should derease its norm.The outline of the paper is as follows. In Se. 2 we introdue the notions and notationsfrom lattie Boltzmann theory we need, in Se. 3 we elaborate the idea of entropi limitersin more detail and onstrut several nonequilibrium entropy limiters for LBM, in Se. 4some numerial experiments are desribed: 2



(1) 1D athermal shok tube examples;(2) steady state vortex entre loations and observation of �rst Hopf bifuration in 2Dlid-driven avity ow.In Se. 5 we disuss some pratial onsequenes of our tests and estimate additionalentropy prodution and additional visosity for several ases. Conluding remarks aregiven in Se. 6.2 BakgroundThe essene of lattie Boltzmann methods was formulated by S. Sui in the followingmaxim: \Nonlinearity is loal, non-loality is linear" 2 . We should even strengthen thisstatement. Non-loality (a) is linear; (b) is exatly and expliitly solvable for all timesteps; () spae disretization is an exat operation.The lattie Boltzmann method is a disrete veloity method. The �nite set of veloityvetors fvig (i = 1; :::m) is seleted, and a uid is desribed by assoiating, with eahveloity vi, a single-partile distribution funtion fi = fi(x; t) whih is evolved by adve-tion and interation (ollision) on a �xed omputational lattie. The values fi are namedpopulations. If we look at all lattie Boltzmann models, one �nds that there are two steps:free ight for time Æt and a loal ollision operation.The free ight transformation for ontinuous spae isfi(x; t + Æt) = fi(x� viÆt; t):After the free ight step the ollision step follows:fi(x) 7! Fi(ffj(x)g); (2)or in the vetor form f(x) 7! F (f(x)):Here, the ollision operator F is the set of funtions Fi(ffjg) (i = 1; :::m). Eah funtionFi depends on all fj (j = 1; :::m): new values of the populations fi at a point x are knownfuntions of all previous population values at the same point.The lattie Boltzmann hain \free ight ! ollision ! free ight ! ollision � � � " anbe exatly restrited onto any spae lattie whih is invariant with respet to spae shiftsof the vetors viÆt (i = 1; : : : ; m). Indeed, free ight transforms the population values atsites of the lattie into the population values at sites of the same lattie. The ollisionoperator (2) ats pointwise at eah lattie site separately. Muh e�ort has been applied toanswer the questions: \how does the lattie Boltzmann hain approximate the transport2 S. Sui, \Lattie Boltzmann at all-sales: from turbulene to DNA transloation", Math-ematial Modelling Centre Distinguished Leture, University of Leiester, Leiester UK, 15thNovember 2006. 3



equation for the momentsM?", and \how does one onstrut the lattie Boltzmann modelfor a given marosopi transport phenomenon?" (a review is presented in book [37℄).In our paper we propose a universal onstrution of limiters for all possible ollisionoperators, and the detailed onstrution of Fi(ffjg) is not important for this purpose.The only part of this onstrution we use is the loal equilibria (sometimes these statesare named onditional equilibria, quasiequilibria, or even simpler, equilibria).The lattie Boltzmann models should desribe the marosopi dynami, i.e., the dynamiof marosopi variables. The marosopi variables M`(x) are some linear funtions ofthe population values at the same point: M`(x) = Pim`ifi(x), or in the vetor form,M(x) = m(f(x)). The marosopi variables are invariants of ollisions:Xi m`ifi =Xi m`iFi(ffjg) (or m(f) = m(F (f))).The standard example of the marosopi variables are hydrodynami �elds (density{veloity{energy density): fn; nu; Eg(x) := Pif1; vi; v2i =2gfi(x). But this is not an obliga-tory hoie. On the other hand, the athermal lattie Boltzmann models with a shortenedlist of marosopi variables fn; nug are very popular.The quasiequilibrium is the positive �xed point of the ollision operator for the givenmarosopi variablesM . We assume that this point exists, is unique and depends smoothlyon M . For the quasiequilibrium population vetor for given M we use the notation f �M ,or simply f �, if the orrespondent value of M is obvious. We use �� to denote the equili-bration projetion operation of a distribution f into the orresponding quasiequilibriumstate: ��(f) = f �m(f):For some of the ollision models an entropi desription of quasiequilibrium is possible: anentropy density funtion S(f) is de�ned and the quasiequilibrium point f �M is the entropymaximiser for given M [25,38℄.Let the entropy S(f) be de�ned for eah positive population vetor f = (fi) (below weuse the same letter S for the loal in spae entropy and hope that the ontext will alwaysmake this notation lear). We assume that the global entropy on a grid is a sum of loalentropies for all sites.The notion of quasiequilibrium is most general and desribes onditional equilibria for anyhoie of marosopi variables. If the marosopi variables are the usual hydrodynami�elds, then for ontinuous veloity spae the quasiequilibria are loal Maxwellian, i.e.,loal equilibria. The same term, loal equilibria, is suitable for lattie Boltzmann modelstoo.As a basi example we onsider the lattie Bhatnagar{Gross{Krook (LBGK) model withoverrelaxation (see, e.g., [4,13,22,27,37℄). The LBGK ollision operator isF (f) := ��(f) + (2� � 1)(��(f)� f); (3)where � 2 [0; 1℄. For � = 0, LBGK ollisions do not hange f , for � = 1=2 these ollisions4



at as equilibration (this orresponds to the Ehrenfests' oarse graining [16℄ further de-veloped in [15,20,21℄), and for � = 1, LBGK ollisions at as a point reetion with theenter at the equilibrium ��(f).It is shown [9℄ that under some stability onditions and after an initial period of relaxation,the simplest LBGK ollision with overrelaxation [22,37℄ provides seond order aurateapproximation for the marosopi transport equation with visosity proportional to Æt(1��)=�.Entropi LBGK (ELBM) methods [6,21,25,38℄ di�er in the de�nition of (3):� the quasiequilibrium should be the point of onditional entropy maximum: S(f)! maxunder the ondition m(f) =M ;� for � = 1 the ollision operator should onserve the entropy, and in general has thefollowing form: F (f) := (1� �)f + � ~f; (4)where ~f = (1 � �)f + ���(f). The number � = �(f) at eah spae point is hosenso that the loal onstant entropy ondition is satis�ed: S(f) = S( ~f). For LBGK (3),� = 2.In the low-visosity regime, LBGK su�ers from numerial instabilities whih readily man-ifest themselves as loal blow-ups and spurious osillations.The LBM experienes the same spurious osillation problems near sharp gradients as highorder shemes do. The physial properties of the LBM shemes allows one to onstrutnew types of limiters: the nonequilibrium entropy limiters. In general, they do the samework for LBM as ux limiters do for �nite di�erene, �nite volume and �nite elementmethods, but for LBM the main idea behind the onstrution of nonequilibrium entropylimiter shemes is to limit a salar quantity | nonequilibrium entropy (and not the vetorsor tensors of spatial derivatives, as it is for ux limiters). These limiters introdue someadditional dissipation, but all this dissipation ould easily be evaluated through analysisof nonequilibrium entropy prodution.Two examples of suh limiters have been reently proposed: the positivity rule [7,31,41℄and the Ehrenfests' regularisation [8℄. The positivity rule just provides positivity of distri-butions: if a ollision step produes negative populations, then the positivity rule returnsthem to the boundary of positivity. In the Ehrenfests' regularisation, one selets the ksites with highest nonequilibrium entropy (the di�erene between entropy of the state fand entropy of the orresponding quasiequilibrium state f � at a given spae point) thatexeed a given threshold and equilibrates the state at these sites.The positivity rule and Ehrenfests' regularisation provide rare, intense and loalised or-retions. It is easy and also omputationally heap to organise more gentle transfor-mation with smooth shift of highly nonequilibrium states to equilibrium. The followingregularisation transformation distributes its ation smoothly: we an just hoose in (1)� = �(�S(f)) with suÆiently smooth funtion �(�S(f)). Here f is the state at some site,f � is the orresponding quasiequilibrium state, S is entropy, and �S(f) := S(f �)�S(f).5



The next step in the development of the nonequilibrium entropy limiters is in the usage ofloal entropy �lters. The �lter of hoie here is the median �lter: it does not erase sharpfronts, and is muh more robust than onvolution �lters.Not all lattie Boltzmann models are entropi, and an important question arises: \howto reate nonequilibrium entropy limiters for LBM with non-entropi (quasi)equilibria?".We propose a solution of this problem based on the disrete Kullbak entropy [29℄:SK(f) = �Xi fi ln fif �i !: (5)For entropi quasiequilibria with perfet entropy the disrete Kullbak entropy gives thesame �S: �SK(f) = �S(f). Let the disrete entropy have the standard form for an ideal(perfet) mixture [26℄: S(f) = �Xi fi ln fiWi!:In quadrati approximation,�SK(f) =Xi fi ln fif �i ! �Xi (fi � f �i )2f �i : (6)If we de�ne f � as the onditional entropy maximum for given Mj = Pkmjkfk, thenln f �k =Xj �jmjk;where �j(M) are the Lagrange multipliers (or \potentials"). For this entropy and ondi-tional equilibrium we �nd�S = S(f �)� S(f) =Xi fi ln fif �i ! = �SK(f); (7)if f and f � have the same moments, m(f) = m(f �).In what follows, �S is the Kullbak distane �SK(f) (7) for general (positive) quasiequi-libria f �, or simply S(f �) � S(f) for entropi quasiequilibria (or seond approximationsfor these quantities (6)).In thermodynamis, the Kullbak entropy belongs to the family of Massieu{Plank{Kramers funtions (anonial or grandanonial potentials). There is another sense ofthis quantity: SK is the relative entropy of f with respet to f � [19,35℄. We should stressthat even in ases when the employed quasiequilibrium is a lose approximation of theentropi quasiequilibrium but does not realise the onditional entropy maximum exatly,we have to use the Kullbak entropi distane (7) instead of S(f �)�S(f). The hange ofde�nition of �S is neessary to provide positivity of �S: f � always realises the maximumof the Kullbak entropy (5) for the given marosopi variables M = m(f).6
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Positivity domain Fig. 1. Positivity rule in ation. The motions stops at the positivity boundary.3 Nonequilibrium entropy limiters for LBM3.1 Positivity ruleThere is a simple reipe for positivity preservation [7,31,41℄: to substitute nonpositiveF (f)(x) (3) by the losest nonnegative state that belongs to the straight line��f(x) + (1� �)��(f(x))j � 2 R� (8)de�ned by the two points, f(x) and the orresponding quasiequilibrium. This operation isto be applied pointwise, at points of the lattie where positivity is violated. The oeÆient� depends on x too. Let us all this reipe the positivity rule (Fig. 1). This reipe preservespositivity of populations and probabilities, but an a�et auray of approximation. Thesame rule is neessary for ELBM (4) when the positive \mirror state" ~f with the sameentropy as f does not exists on the straight line (8).3.2 Ehrenfests' regularisationTo disuss methods with additional dissipation, the entropi approah is very onvenient.The loal nonequilibrium entropy for eah site is�S(f) := S(f �)� S(f); (9)where f � is the orresponding quasiequilibrium at the same point.The Ehrenfests' regularisation [7,8℄ provides \entropy trimming": we monitor loal de-viation of f from the orresponding quasiequilibrium, and when �S(f)(x) exeeds apre-spei�ed threshold value Æ, perform loal Ehrenfests' steps to the orresponding equi-librium: f 7! f � at those points.So that the Ehrenfests' steps are not allowed to degrade the auray of LBGK it ispertinent to selet the k sites with highest �S > Æ. The a posteriori estimates of addeddissipation ould easily be performed by analysis of entropy prodution in Ehrenfests'steps. Numerial experiments show (see, e.g., [7,8℄) that even a small number of suhsteps drastially improves stability. 7



To avoid the hange of auray order \on average", the number of sites with this stepshould be � O(Nh=L) where N is the total number of sites, h is the step of the spaedisretization and L is the marosopi harateristi length. But this rough estimate ofauray in average might be destroyed by onentration of Ehrenfests' steps in the mostnonequilibrium areas, for example, in boundary layers. In that ase, instead of the totalnumber of sites N in O(Nh=L) we should take the number of sites in a spei� region.The e�ets of onentration ould be easily analysed a posteriori.3.3 Smooth limiters of nonequilibrium entropyThe positivity rule and Ehrenfests' regularisation provide rare, intense and loalised or-retions. Of ourse, it is easy and also omputationally heap to organise more gentletransformations with a smooth shift of highly nonequilibrium states to quasiequilibrium.The following regularisation transformation distributes its ation smoothly:f 7! f � + �(�S(f))(f � f �): (10)The hoie of funtion � is highly ambiguous, for example, � = 1=(1 + ��Sk) for some� > 0 and k > 0. There are two signi�antly di�erent hoies: (i) ensemble-independent� (i.e., the value of � depends on loal value of �S only) and (ii) ensemble-dependent �,for example �(�S) = 1 + (�S=(�E(�S)))k�1=21 + (�S=(�E(�S)))k ; (11)where E(�S) is the average value of �S in the omputational area, k � 1, and � & 1.For small �S, �(�S) � 1 and for �S � �E(�S) it tends to q�E(�S)=�S. It is easyto selet an ensemble-dependent � with ontrol of total additional dissipation.3.4 Monitoring of total dissipationFor given �, the entropy prodution in one LBGK step in quadrati approximation for�S is: ÆLBGKS � [1� (2� � 1)2℄Xx �S(x);where x is the grid point, �S(x) is nonequilibrium entropy (9) at point x, ÆLBGKS is thetotal entropy prodution in a single LBGK step. It would be desirable if the total entropyprodution for the limiter ÆlimS was small relative to ÆLBGKS:ÆlimS < Æ0ÆLBGKS: (12)A simple ensemble-dependent limiter (perhaps, the simplest one) for a given Æ0 operatesas follows. Let us ollet the histogram of the �S(x) distribution, and estimate thedistribution density, p(�S). We have to estimate a value �S0 that satis�es the following8



equation: Z 1�S0 p(�S)(�S ��S0) d�S = Æ0[1� (2� � 1)2℄ Z 10 p(�S)�S d�S: (13)In order not to a�et distributions with small expetation of �S, we hoose a threshold�St = maxf�S0; Æg, where Æ is some prede�ned value (as in the Ehrenfests' regularisa-tion). For states at sites with �S � �St we provide homothety with equilibrium enterf � and oeÆient q�St=�S (in quadrati approximation for nonequilibrium entropy):f(x) 7! f �(x) +s�St�S (f(x)� f �(x)): (14)3.5 Median entropy �lterThe limiters desribed above provide pointwise orretion of nonequilibrium entropy atthe \most nonequilibrium" points. Due to the pointwise nature, the tehnique does notintrodue any nonisotropi e�ets, and provides some other bene�ts. But if we involve theloal struture, we an orret loal non-monotone irregularities without touhing regularfragments. For example, we an disuss monotone inrease or derease of nonequilibriumentropy as regular fragments and onentrate our e�orts on redution of \spekle noise" or\salt and pepper noise". This approah allows us to use the aessible resoure of entropyhange (12) more thriftily. Salt and pepper noise is a form of noise typially observed inimages. It represents itself as randomly ourring white (maximal brightness) and blakpixels. For this kind of noise, onventional low-pass �ltering, e.g., mean �ltering or Gaus-sian smoothing is unsuessful beause the perturbed pixel value an vary signi�antlyboth from the original and mean value. For this type of noise, median �ltering is a om-mon and e�etive noise redution method. Median �ltering is a ommon step in imageproessing [34℄ for the smoothing of signals and the suppression of impulse noise withpreservation of edges.The median is a more robust average than the mean (or the weighted mean) and so asingle very unrepresentative value in a neighborhood will not a�et the median valuesigni�antly. Hene, we suppose that the median entropy �lter will work better thanentropy onvolution �lters.For the nonequilibrium entropy �eld, the median �lter onsiders eah site in turn andlooks at its nearby neighbours. It replaes the nonequilibrium entropy value �S at thepoint with the median of those values �Smed, then updates f by the transformation (14)with the homothety oeÆient q�Smed=�S. The median, �Smed, is alulated by �rstsorting all the values from the surrounding neighbourhood into numerial order and thenreplaing that being onsidered with the middle value. For example, if a point has 3 nearestneighbors inluding itself, then after sorting we have 3 values �S: �S1 � �S2 � �S3.The median value is �Smed = �S2. For 9 nearest neighbors (inluding itself) we haveafter sorting �Smed = �S5. For 27 nearest neighbors �Smed = �S14.We aept only dissipative orretions (those resulting in a derease of �S, �Smed < �S)9



beause of the seond law of thermodynamis. The analogue of (13) is also useful foraeptane of the most signi�ant orretions. In \salt and pepper" terms, we orret thesalt (where �S exeeds the median value) and do not touh the pepper.3.6 Monotoni and double monotoni limitersTwo monotoniity properties are important in the theory of nonequilibrium entropy lim-iters:(1) a limiter should move the distribution to equilibrium: in all ases of (1) 0 � � � 1.This is the dissipativity ondition whih means that limiters never produe negativeentropy.(2) a limiter should not hange the order of states on the line: if for two distributionswith the same moments, f and f 0, f 0 � f � = x(f � f �) and �S(f) > �S(f 0)before the limiter transformation, then the same inequality should hold after thelimiter transformation too. For example, for the limiter (10) it means that �S(f � +x�(�S(f � + x(f � f �)))(f � f �)) is a monotonially inreasing funtion of x > 0.In quadrati approximation, �S(f � + x(f � f �)) = x2�S(f);�S(f � + x�(�S(f � + x(f � f �)))(f � f �)) = x2�2(x2�S(f));and the seond monotoniity ondition transforms into the following requirement: y�(y2s)is a monotonially inreasing (not dereasing) funtion of y > 0 for any s > 0.If a limiter satis�es both monotoniity onditions, we all it \double monotoni". Forexample, Ehrenfests' regularisation satis�es the �rst monotoniity ondition, but violatesthe seond one. The limiter (11) violates the �rst ondition for small �S, but is dissipativeand satis�es the seond one in quadrati approximation for large �S. The limiter with� = 1=(1 + ��Sk) always satis�es the �rst monotoniity ondition, violates the seond ifk > 1=2, and is double monotoni (in quadrati approximation for the seond ondition),if 0 < k � 1=2. The threshold limiter (14) is also double monotoni.For smooth funtions, the ondition of double monotoniity (in quadrati approximation)is equivalent to the system of di�erential inequalities:�(x) + 2x�0(x) � 0;�0(x) � 0:The initial ondition �(0) = 1 means that in the limit �S ! 0 limiters do not a�et theow. Following these inequalities we an write: 2x�0(x) = ��(x)�(x), where 0 � �(x) � 1.The solution of these inequalities with initial ondition is�(x) = exp �12 Z x0 �(�)� d�!; (15)10



if the integral on the right-hand side exists. This is a general solution for double monotonilimiters (in the seond approximation for entropy). If �(x) is the Heaviside step funtion,�(x) = H(x��St) with threshold value �St, then the general solution (15) gives us thethreshold limiter. If, for example, �(x) = xk=(�Skt + xk), then�(x) =  1 + xk�Skt !� 12k : (16)This speial form of limiter funtion is attrative beause for small x it gives�(x) = 1� 12k xk�Skt + o(xk):Thus, the limiter does not a�et the motion up to the (k+1)st order, and the marosopiequations oinide with the marosopi equations for LBM without limiters up to the(k+ 1)st order in powers of deviation from quasiequilibrium. Furthermore, for large x weget the kth order approximation to the threshold limiter (14):�(x) = s�Stx + o(x�k):Of ourse, it is not forbidden to use any type of limiters under the loal and globalontrol of dissipation, but double monotoni limiters provide some natural propertiesautomatially, without additional are.4 Numerial experimentsTo onlude this paper we report some numerial experiments onduted to demonstratethe performane of some of the proposed nonequilibrium entropy limiters for LBM fromSe. 3.4.1 Veloities and equilibriaWe will perform simulations using both entropi and non-entropi loal equilibria, but wealways work with an athermal LBM model. Whenever we use non-entropi equilibria weemploy Kullbak entropy (7).In 1D, we use a lattie with spaing and time step Æt = 1 and a disrete veloity setfv1; v2; v3g := f0;�1; 1g so that the model onsists of stati, left- and right-moving pop-ulations only. The subsript i denotes population (not lattie site number) and f1, f2and f3 denote the stati, left- and right-moving populations, respetively. The entropy isS = �H, with H = f1 log(f1=4) + f2 log(f2) + f3 log(f3); (17)11



(see, e.g., [26℄) and, for this entropy, the loal entropi equilibrium state f � is availableexpliitly: f �1 = 2�3 �2�p1 + 3u2�;f �2 = �6�(3u� 1) + 2p1 + 3u2�;f �3 = ��6�(3u+ 1)� 2p1 + 3u2�; (18)
where � :=Xi fi; u := 1�Xi vifi: (19)The standard non-entropi polynomial equilibria [37℄ are:f �1 = 2�3  1� 3u22 !;f �2 = �6(1� 3u+ 3u2);f �3 = �6(1 + 3u+ 3u2): (20)
In 2D, we employ a uniform 9-speed square lattie with disrete veloities fvi j i =0; 1; : : : 8g: v0 = 0, vi = (os((i�1)�=2); sin((i�1)�=2)) for i = 1; 2; 3; 4, vi = p2(os((i�5)�2 + �4 ); sin((i � 5)�2 + �4 )) for i = 5; 6; 7; 8. The numbering f0, f1; : : : ; f8 are for thestati, east, north, west, south, northeast, northwest, southwest and southeast-movingpopulations, respetively. As usual, the entropi equilibrium state, f �, an be uniquelydetermined by maximising an entropy funtionalS(f) = �Xi fi log� fiWi�;subjet to the onstraints of onservation of mass and momentum [2℄:f �i = �Wi 2Yj=1�2�q1 + 3u2j�0�2uj +q1 + 3u2j1� uj 1Avi;j : (21)Here, the lattie weights, Wi, are given lattie-spei� onstants: W0 = 4=9, W1;2;3;4 = 1=9andW5;6;7;8 = 1=36. Analogously to (19), the marosopi variables � and u = (u1; u2) arethe zeroth and �rst moments of the distribution f , respetively. The standard non-entropipolynomial equilibria [37℄ are:f �i = �Wi 1 + 3viu+ 9(viu)22 � 3u22 !: (22)12



4.2 LBGK and ELBMThe governing equations for LBGK arefi(x + vi; t+ 1) = f �i (x; t) + (2� � 1)(f �i (x; t)�fi(x; t)); (23)where � = 1=(2� + 1).For ELBM (4) the governing equations are:fi(x + vi; t+ 1) = (1� �)fi(x; t) + � ~fi(x; t); (24)with � as above and ~f = (1��)f+�f �. The parameter, �, is hosen to satisfy a onstantentropy ondition. This involves �nding the nontrivial root of the equationS((1� �)f + �f �) = S(f): (25)To solve (25) numerially we employ a robust routine based on bisetion. The root issolved to an auray of 10�15 and we always ensure that the returned value of � doesnot lead to a numerial entropy derease. We stipulate that if, at some site, no nontrivialroot of (25) exists we will employ the positivity rule instead (Fig. 1).4.3 Shok tubeThe 1D shok tube for a ompressible athermal uid is a standard benhmark test for hy-drodynami odes. Our omputational domain will be the interval [0; 1℄ and we disretizethis interval with 801 uniformly spaed lattie sites. We hoose the initial density ratioas 1:2 so that for x � 400 we set � = 1:0 else we set � = 0:5.In the �rst test we present three possible ombinations of two hoies of equilibria, poly-nomial (20) or entropi (18), and two hoies of stepping, LBGK (23) or ELBM (24). Wesolve (25) to an auray of 10�15. The results, whih are self-explanatory, are presentedin Fig. 2 for the kinemati visosity � = 3:3333 � 10�2 and � = 10�9 in dimensionlessunits.For shok tube experiments, the introdution of loal dissipation in thin zones near shokshas a similar e�et to the introdution of global dissipation in the whole domain. Eventhe introdution of loal dissipation at one point suppresses spurious osillations [7,8℄. Inthe absene of any dissipation mehanism, dispersive osillations on the mesh sale haveto appear in shok regions [30℄.It is neessary to mention that for the di�erene shemes without arti�ial numerialdissipation studied in [40℄, spurious osillations in the immediate neighborhoods of shoksould be suppressed by suÆiently high visosity or heat ondution only (and the rolesof visosity and heat ondution in forming sharp monotone pro�les are di�erent). Nolimiters were added in [40℄, but instead, the visous and heat ondution terms in theNavier-Stokes equations are found to serve as aurate edge detetors.13
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Fig. 3. Density pro�le of the 1:2 athermal shok tube simulation with (a) � = 0:066, (b)� = 0:0066 and () � = 0:00066 after 400 time steps using LBGK (23) without any limiter.Total entropy and nonequilibrium entropy time histories are displayed in the adjaent panels.Entropi equilibria (18) with perfet entropy (17) are used.14
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0 0.5 1
0.4

0.6

0.8

1

(a)

x

ρ

0 200 400
1215

1217

t

S

0 200 400
0

5
x 10

−4

t

∆S

0 0.5 1
0.4

0.6

0.8

1

(b)

x

ρ

0 200 400
1215

1217

t

S

0 200 400
0

5
x 10

−3

t

∆S

0 0.5 1
0.4

0.6

0.8

1

(c)

x

ρ

0 200 400
1215

1217

t

S

0 200 400
0

0.05

t

∆S
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We have purposefully seleted suh a oarse grid simulation beause it is readily foundthat, on this problem, unregularised LGBK fails (blows-up) for all but the most modestReynolds numbers Re := Lu0=�.4.4.1 Steady-state vortex entresFor modest Reynolds number the system settles to a steady state in whih the dominantfeatures are a primary entral rotating vortex, with several ounter-rotating seondaryvorties loated in the bottom-left, bottom-right (and possibly top-left) orners.The steady state has been extensively investigated in the literature. The study of Hou etal. [23℄ simulates the ow over a range of Reynolds numbers using unregularised LBGK ona 256� 256 grid. Primary and seondary vortex entre data is provided. We ompare thissame statisti for the present median �ltered oarse grid simulation. We will employ thesame onvergene riteria used in [23℄. Namely, we deem that steady state has been reahedby ensuring that the di�erene between the maximum value of the stream funtion forsuessive 10; 000 time steps is less that 10�5. The stream funtion, whih is not a primaryvariable in the LBM simulation, is obtained from the veloity data by integration usingSimpson's rule. Vortex entres are haraterised as loal extrema of the stream funtion.We ompare our results with the LBGK simulations in [23℄ and [41℄. To align ourselveswith these studies we speify the following boundary ondition: lid pro�le is onstant;remaining avity walls are subjet to the \boune-bak" ondition [37℄. In our simulations,the initial uniform uid density pro�le is � = 2:7 and the veloity of the lid is u0 = 1=10(in lattie units).Colleted in Table 1, for Re = 2000; 5000 and 7500, are the oordinates of the primaryand seondary vortex entres using (a) unregularised LBGK; (b) LBGK with median�lter limiter (Æ = 10�3); () LBGK with median �lter limiter (Æ = 10�4), all with non-entropi polynomial equilibria (22). Lines (d), (e) and (f) are the same but with entropiequilibria (21). The remaining lines of Table 1 are as follows: (g) literature data [23℄(unregularised LBGK on a 256 � 256 grid); (h) literature data [41℄ (positivity rule); (i)literature data [41℄ (ELBM). With the exeption of (g), all simulation are onduted ona 100 � 100 grid. The top-left vortex does not appear at Re = 2000 and no data wasprovided for it in [41℄ at Re = 5000. The unregularised LBGK Re = 7500 simulationblows-up in �nite time and the simulation beomes meaningless. The y-oordinate of thetwo lower-vorties at Re = 5000 in (i) appear anomalously small and were not reproduedby our experiments with the positivity rule (not shown).We have onduted two runs of the experiment with the median �lter parameter Æ = 10�3and Æ = 10�4. Despite the inreased number of realisations the vortex entre loationsremain e�etively unhanged and we detet no signi�ant variation between the two runs.This demonstrates the gentle nature of the median �lter. At Reynolds Re = 2000 themedian �lter has no e�et at all on the vortex entres ompared with LBGK.We �nd no signi�ant di�erenes between the experiments with entropi and non-entropipolynomial equilibria in this test. 19



The oordinates of the primary vortex entre for unregularised LBGK at Re = 5000 arealready quite inaurate as LBGK begins to lose stability. Stability is lost entirely at someritial Reynolds number 5000 < Re � 7500 and the simulation blows-up.Furthermore, we have agreement (within grid resolution) with the data given in [23℄. Alsoompiled in Table 1 is the data from the limiter experiments onduted in [41℄ (althoughnot expliitly disussed in the language of limiters by the authors of that work). In [41℄the authors give vortex entre data for the positivity rule (Fig. 1) and for ELBM. In [41℄the positivity rule is alled FIX-UP.As Reynolds number inreases the ow in the avity is no longer steady and a moreompliated ow pattern emerges. On the way to a fully developed turbulent ow, thelid-driven avity ow is known to undergo a series of period doubling Hopf bifurations. Onour oarse grid, we observe that the oordinates of the primary vortex entre (maximumof the stream funtion) is a very robust feature of the ow, with little hange betweenoordinates (no hange in y-oordinates) omputed at Re = 5000 and Re = 7500 with themedian �lter. On one hand, beause of this observation it beomes inonlusive whetherthe median limiter is adding too muh additional dissipation. On the other hand, a morestudious hoie of ontrol riteria may indiate that the �rst bifuration has alreadyourred by Re = 7500.4.4.2 First Hopf bifurationA survey of available literature reveals that the preise value of Re at whih the �rst Hopfbifuration ours is somewhat ontentious, with most urrent studies (all of whih arefor inompressible ow) ranging from around Re = 7400{8500 [10,32,33℄. Here, we do notintend to give a preise value beause it is a well observed grid e�et that the ritialReynolds number inreases (shifts to the right) with re�nement (see, e.g., Fig. 3 in [33℄).Rather, we will be ontent to loalise the �rst bifuration and, in doing so, demonstratethat limiters are apable of regularising without e�eting fundamental ow features.To loalise the �rst bifuration we take the following algorithmi approah. Entropiequilibria are in use. The initial uniform uid density pro�le is � = 1:0 and the veloityof the lid is u0 = 1=10 (in lattie units). We reord the unsteady veloity data at asingle ontrol point with oordinates (L=16; 13L=16) and run the simulation for 5000 non-dimensionless time units (5000L=u0 time steps). Let us denote the �nal 1% of this signalby (usig; vsig). We then ompute the energy Eu (`2-norm normalised by non-dimensionalsignal duration) of the deviation of usig from its mean:Eu := s Lu0jusigj(usig � usig)`2; (27)where jusigj and usig denote the length and mean of usig, respetively. We hoose this robuststatisti instead of attempting to measure signal amplitude beause of numerial noise inthe LBM simulation. The soure of noise in LBM is attributed to the existene of aninherently unavoidable neutral stability diretion in the numerial sheme (see, e.g., [9℄).20



Table 1Primary and seondary vortex entre oordinates for the lid-driven avity ow at Re =2000; 5000; 7500.Primary Lower-left Lower-right Top-leftRe x y x y x y x y2000 (a) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (b) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 () 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (d) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (e) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (f) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (g) 0.5255 0.5490 0.0902 0.1059 0.8471 0.0980 Not appliable2000 (h) 0.5200 0.5450 0.0900 0.1000 0.8300 0.0950 Not appliable2000 (i) 0.5200 0.5500 0.0890 0.1000 0.8300 0.1000 Not appliable5000 (a) 0.5152 0.6061 0.0808 0.1313 0.7980 0.0707 0.0505 0.89905000 (b) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 () 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (d) 0.5152 0.5960 0.0808 0.1313 0.8081 0.0808 0.0505 0.89905000 (e) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (f) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (g) 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745 0.0667 0.90595000 (h) 0.5150 0.5680 0.0950 0.0100 0.8450 0.0100 Not available5000 (i) 0.5150 0.5400 0.0780 0.1350 0.8050 0.0750 Not available7500 (a) | | | | | | | |7500 (b) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 () 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (d) | | | | | | | |7500 (e) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (f) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (g) 0.5176 0.5333 0.0706 0.1529 0.7922 0.0667 0.0706 0.9098We opt not to employ the \boune-bak" boundary ondition used in the previous steadystate study. Instead we will use the di�usive Maxwell boundary ondition (see, e.g., [11℄),whih was �rst applied to LBM in [1℄. The essene of the ondition is that populationsreahing a boundary are reeted, proportional to equilibrium, suh that mass-balane(in the bulk) and detail-balane are ahieved. The boundary ondition oinides with\boune-bak" in eah orner of the avity.21



To illustrate, immediately following the advetion of populations onsider the situationof a wall, aligned with the lattie, moving with veloity uwall and with outward pointingnormal to the wall in the negative y-diretion (this is the situation on the lid of the avitywith uwall = u0). The implementation of the di�usive Maxwell boundary ondition at aboundary site (x; y) on this wall onsists of the updatefi(x; y; t+ 1) = f �i (uwall); i = 4; 7; 8;with  = f2(x; y; t) + f5(x; y; t) + f6(x; y; t)f �4 (uwall) + f �7 (uwall) + f �8 (uwall) :Observe that, beause density is a linear fator of the equilibria (21), the density of thewall is inonsequential in the boundary ondition and an therefore be taken as unity foronveniene. As is usual, only those populations pointing in to the uid at a boundarysite are updated. Boundary sites do not undergo the ollisional step that the bulk of thesites are subjeted to.We prefer the di�usive boundary ondition over the often preferred \boune-bak" bound-ary ondition with onstant lid pro�le. This is beause we have experiened diÆulty inseparating the aforementioned numerial noise from the genuine signal at a single ontrolpoint using \boune-bak". We remark that the di�usive boundary ondition does notprevent unregularised LBGK from failing at some ritial Reynolds number Re > 5000.Now, we ondut an experiment and reord (27) over a range of Reynolds numbers. In eahase the median �lter limiter is employed with parameter Æ = 10�3. Sine the transitionbetween steady and periodi ow in the lid-driven avity is known to belong to the lass ofstandard Hopf bifurations we are assured that E2u / Re [17℄. Fitting a line of best �t tothe resulting data loalises the �rst bifuration in the lid-driven avity ow to Re = 7135(Fig. 8). This value is within the tolerane of Re = 7402�4% given in [33℄ for a 100�100grid. We also provide a (time averaged) phase spae trajetory and Fourier spetrum forRe = 7375 at the monitoring point (Fig. 9 and Fig. 10) whih learly indiate that the�rst bifuration has been observed.5 Test disussion and a priori estimations of additional dissipationThe diversity of possible nonequilibrium entropy limiters is huge. The examples providedby our tests present only a tiny fration of these possibilities. For better orientation inthis world one needs some a priori estimates. Of ourse, the �rst question should onernadditional dissipation. It is easy to �nd all the dissipation a posteriori (we presented all theneessary tehniques in Subse. 3.4), but for a priori estimates we need some hypothesesabout the �S distribution.Let us start from the most straightforward idea: estimation at the average. Let us take�S = E(�S) and estimate the additional dissipation. This orresponds to the hypothesisthat �S is distributed near its mean value with relatively small deviation. Immediately, we�nd that under this assumption any loal limiter of the form (10) is simply equivalent to22
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Fig. 9. A phase trajetory for veloity omponents for the signal (usig; vsig) at the monitoringpoint (L=16; 13L=16) using LBGK regularised with the median �lter limiter with Æ = 10�3 on a100� 100 grid (Re = 7375). Dots represent simulation results at various time moments and thesolid line is a 100 step time average of the signal.23
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superposition of loal simple distributions whose parameters utuate on a rather largespatio-temporal sale. The idea of superstatistis an help us: the domain of ow anbe split into several subdomains, in any of these subdomains there is an exponentialdistribution of �S and as a result there is a mixed \superdistribution" in the wholedomain.Already two exponential distributions give a muh more realisti piture:p(�S) = 1� q�S1 exp(��S=�S1) + q�S2 exp(��S=�S2) (28)with q � 1 and �S1 � �S2. For this distribution, the threshold limiter (and otherlimiters that do not a�et the average points with �S � E(�S)) ats on the points thatbelong to the seond distribution, far from the �S mean value. This point of view is sup-ported by the following observation: entropy prodution for all suessfully working lim-iters in the shok tube test (Subse. 4.3) is almost the same, even if the ontrol parameterÆ hanges by several orders of magnitude. Of ourse, this observation also supports otherhypotheses with a representation of p(�S) as a mixture of two simple distributions withsigni�antly di�erent E(�S). For example, if p(�S) = (1�q)Æ(�S��S1)+qÆ(�S��S2)with q � 1 and �S1 � �S2, then the behaviour of dissipation will also be similar.Again, we an extrat a pratial onsequene. It is not neessary to apply limiters at allpoints. In addition to a threshold in �S we an also use a threshold number of pointsk and apply limiters at not more than k points with maximal �S. For example, if weapply the Ehrenfests' or the threshold limiter only at one point of the shok pro�le, thenit hanges the piture drastially: there remain some utuations, but their amplitudedereases by orders [7,8℄.Let us estimate the additional dissipation produed by the threshold limiter for thenonequilibrium entropy distribution (28). If the threshold value �St � �S1 and theallowed number of points for the limiter ation k < qN , where N is the total number ofpoints, then only the seond exponential distribution a�ets the limiter work. A simpleexpliit estimation gives us the following:If qN exp(��St=�S2) > k then we expet that the number of points with appliation ofthe limiter to be � k and the average dissipation per suh point to beSpp � Z 1�S2 ln(qN=k) �S ��St�S2 exp ��S�S2 ! d�S= �S2 kqN "ln qNk � �St�S2 + 1# ;or kSpp totally.If qN exp(��St=�S2) < k then we expet that the number of points with appliation ofthe limiter to be � qN exp(��St=�S2) < k and the average dissipation per suh point25
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between the urrent value and the median value is higher than a given threshold) worksproperly both for shoks and for 2D ow with Re . 8000 on a 100�100 grid without anysign of parasiti visosity. Additional entropy prodution for the median �lter limiters inshok tube tests is essentially the same as for other suessful limiters (it is 10-20% less,see Fig. 7), but the value of nonequilibrium entropy �S for the median limiter is muhhigher than for loal value limiters, and small (marosopially unobservable) osillationsof �S appear. The distribution of �S is muh more sensitive to the hoie of limiter thanthe additional dissipation. This is one more pratial hint from the performed tests. Thisindiator shows that the median �lter disturbs the original LBGK kinetis less than othertested limiters with the same or sometimes better stabilisation results.All these observations and suessful tests allow us to suggest the minimal median �lterlimiter as a \limiter of hoie". There is one important addition we did not test in thiswork, whih improve performane of the median limiter: one should not apply the limiterat all points where the threshold is exeeded, but at a �xed number of suh points (notmore than a given k, exatly as we did for the Ehrenfests' limiters [8℄).6 ConlusionsWe have onstruted a system of nonequilibrium entropy limiters for the LBM:� the positivity rule that provides positivity of distribution;� the pointwise entropy limiters based on seletion and orretion of most nonequilibriumvalues;� �lters of nonequilibrium entropy, and the median �lter as a �lter of hoie.All these limiters exploit physial properties of LBM and allow ontrol of total additionalentropy prodution. In general, they do the same work for LBM as ux limiters do for �nitedi�erenes, �nite volumes and �nite elements methods, and ome into operation whensharp gradients are present. For smoothly hanging waves, the limiters do not operateand the spatial derivatives an be represented by higher order approximations withoutintroduing non-physial osillations. But there are some di�erenes too: for LBM themain idea behind the onstrution of nonequilibrium entropy limiter shemes is to limita salar quantity | the nonequilibrium entropy | or to delete the \salt and pepper"noise from the �eld of this quantity. We do not touh the vetors or tensors of spatialderivatives, as it is for ux limiters.Standard test examples demonstrate that the developed limiters erase spurious osillationswithout blurring of shoks, and do not a�et smooth solutions. The limiters we havetested do not produe a notieable additional dissipation and allow us to reprodue the�rst Hopf bifuration for 2D lid-driven avity on a oarse 100�100 grid. At the same timethe simplest median �lter deletes the spurious post-shok osillations for low visosity.Perhaps, it is impossible to �nd one best nonequilibrium entropy limiter for all problems.It is a speial task to onstrut the optimal limiters for a spei� lasses of problems.27
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