
Nonequilibrium entropy limitersin latti
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s, University of Lei
ester, LE1 7RH, UKAbstra
tWe 
onstru
t a system of nonequilibrium entropy limiters for the latti
e Boltz-mann methods (LBM). These limiters erase spurious os
illations without blurringof sho
ks, and do not a�e
t smooth solutions. In general, they do the same workfor LBM as 
ux limiters do for �nite di�eren
es, �nite volumes and �nite elementsmethods, but for LBM the main idea behind the 
onstru
tion of nonequilibrium en-tropy limiter s
hemes is to transform a �eld of a s
alar quantity | nonequilibriumentropy. There are two families of limiters: (i) based on restri
tion of nonequilibriumentropy (entropy \trimming") and (ii) based on �ltering of nonequilibrium entropy(entropy �ltering). The physi
al properties of LBM provide some additional bene-�ts: the 
ontrol of entropy produ
tion and a

urate estimate of introdu
ed arti�
ialdissipation are possible. The 
onstru
ted limiters are tested on 
lassi
al numeri
alexamples: 1D athermal sho
k tubes with an initial density ratio 1:2 and the 2D lid-driven 
avity for Reynolds numbers Re between 2000 and 7500 on a 
oarse 100�100grid. All limiter 
onstru
tions are appli
able both for entropi
 and for non-entropi
equilibria.Key words: latti
e Boltzmann method, numeri
al regularisation, entropyPACS: 47.11.Qr, 47.20.-k, 47.11.-j, 51.10.+y
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tionIn 1959, S.K. Godunov [18℄ demonstrated that a (linear) s
heme for a PDE 
ould not, atthe same time, be monotone and se
ond order a

urate. Hen
e, we should 
hoose betweenspurious os
illation in high order non-monotone s
hemes and additional dissipation in�rst order s
hemes. Flux limiter s
hemes are invented to 
ombine high resolution s
hemesin areas with smooth �elds and �rst order s
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The idea of 
ux limiters 
an be illustrated by 
omputation of the 
ux F0;1 of the 
onservedquantity u between a 
ell marked by 0 and one of two its neighbour 
ells marked by �1:F0;1 = (1� �(r))f low0;1 + �(r)fhigh0;1 ;where f low0; 1 , fhigh0; 1 are low and high resolution s
heme 
uxes, respe
tively, r = (u0 �u�1)=(u1 � u0), and �(r) � 0 is a 
ux limiter fun
tion. For r 
lose to 1, the 
ux lim-iter fun
tion �(r) should be also 
lose to 1.Many 
ux limiter s
hemes have been invented during the last two de
ades [43℄. No par-ti
ular limiter works well for all problems, and a 
hoi
e is usually made on a trial anderror basis.Below are several examples of 
ux limiter fun
tions:�mm(r) = max [0;min (r; 1)℄ (minmod, [36℄);�os(r) = max [0;min (r; �)℄ ; (1 � � � 2) (Osher, [12℄);�m
(r) = max [0;min (2r; 0:5(1 + r); 2)℄ (monotonised 
entral [42℄);�sb(r) = max [0;min (2r; 1) ;min (r; 2)℄ (superbee, [36℄);�sw(r) = max [0;min (�r; 1) ; (r; �)℄ ; (1 � � � 2) (Sweby, [39℄):The latti
e Boltzmann method has been proposed as a dis
retization of Boltzmann'skineti
 equation and is now in wide use in 
uid dynami
s and beyond (for an introdu
tionand review see [37℄). Instead of �elds of moments M , the latti
e Boltzmann methodoperates with �elds of dis
rete distributions f . This allows us to 
onstru
t very simplelimiters that do not depend on slopes or gradients.All the limiters we 
onstru
t are based on the representation of distributions f in theform: f = f � + kf � f �k f � f �kf � f �k ;where f � is the 
orrespondent quasiequilibrium (
onditional equilibrium) for given mo-ments M , f � f � is the nonequilibrium \part" of the distribution, whi
h is representedin the form \norm�dire
tion" and kf � f �k is the norm of that nonequilibrium 
ompo-nent (usually this is the entropi
 norm). Limiters 
hange the norm of the nonequilibrium
omponent f � f �, but do not tou
h its dire
tion or the quasiequilibrium. In parti
ular,limiters do not 
hange the ma
ros
opi
 variables, be
ause moments for f and f � 
oin
ide.All limiters we use are transformations of the formf 7! f � + �� (f � f �) (1)with � > 0. If f � f � is too big, then the limiter should de
rease its norm.The outline of the paper is as follows. In Se
. 2 we introdu
e the notions and notationsfrom latti
e Boltzmann theory we need, in Se
. 3 we elaborate the idea of entropi
 limitersin more detail and 
onstru
t several nonequilibrium entropy limiters for LBM, in Se
. 4some numeri
al experiments are des
ribed: 2



(1) 1D athermal sho
k tube examples;(2) steady state vortex 
entre lo
ations and observation of �rst Hopf bifur
ation in 2Dlid-driven 
avity 
ow.In Se
. 5 we dis
uss some pra
ti
al 
onsequen
es of our tests and estimate additionalentropy produ
tion and additional vis
osity for several 
ases. Con
luding remarks aregiven in Se
. 6.2 Ba
kgroundThe essen
e of latti
e Boltzmann methods was formulated by S. Su

i in the followingmaxim: \Nonlinearity is lo
al, non-lo
ality is linear" 2 . We should even strengthen thisstatement. Non-lo
ality (a) is linear; (b) is exa
tly and expli
itly solvable for all timesteps; (
) spa
e dis
retization is an exa
t operation.The latti
e Boltzmann method is a dis
rete velo
ity method. The �nite set of velo
ityve
tors fvig (i = 1; :::m) is sele
ted, and a 
uid is des
ribed by asso
iating, with ea
hvelo
ity vi, a single-parti
le distribution fun
tion fi = fi(x; t) whi
h is evolved by adve
-tion and intera
tion (
ollision) on a �xed 
omputational latti
e. The values fi are namedpopulations. If we look at all latti
e Boltzmann models, one �nds that there are two steps:free 
ight for time Æt and a lo
al 
ollision operation.The free 
ight transformation for 
ontinuous spa
e isfi(x; t + Æt) = fi(x� viÆt; t):After the free 
ight step the 
ollision step follows:fi(x) 7! Fi(ffj(x)g); (2)or in the ve
tor form f(x) 7! F (f(x)):Here, the 
ollision operator F is the set of fun
tions Fi(ffjg) (i = 1; :::m). Ea
h fun
tionFi depends on all fj (j = 1; :::m): new values of the populations fi at a point x are knownfun
tions of all previous population values at the same point.The latti
e Boltzmann 
hain \free 
ight ! 
ollision ! free 
ight ! 
ollision � � � " 
anbe exa
tly restri
ted onto any spa
e latti
e whi
h is invariant with respe
t to spa
e shiftsof the ve
tors viÆt (i = 1; : : : ; m). Indeed, free 
ight transforms the population values atsites of the latti
e into the population values at sites of the same latti
e. The 
ollisionoperator (2) a
ts pointwise at ea
h latti
e site separately. Mu
h e�ort has been applied toanswer the questions: \how does the latti
e Boltzmann 
hain approximate the transport2 S. Su

i, \Latti
e Boltzmann at all-s
ales: from turbulen
e to DNA translo
ation", Math-emati
al Modelling Centre Distinguished Le
ture, University of Lei
ester, Lei
ester UK, 15thNovember 2006. 3



equation for the momentsM?", and \how does one 
onstru
t the latti
e Boltzmann modelfor a given ma
ros
opi
 transport phenomenon?" (a review is presented in book [37℄).In our paper we propose a universal 
onstru
tion of limiters for all possible 
ollisionoperators, and the detailed 
onstru
tion of Fi(ffjg) is not important for this purpose.The only part of this 
onstru
tion we use is the lo
al equilibria (sometimes these statesare named 
onditional equilibria, quasiequilibria, or even simpler, equilibria).The latti
e Boltzmann models should des
ribe the ma
ros
opi
 dynami
, i.e., the dynami
of ma
ros
opi
 variables. The ma
ros
opi
 variables M`(x) are some linear fun
tions ofthe population values at the same point: M`(x) = Pim`ifi(x), or in the ve
tor form,M(x) = m(f(x)). The ma
ros
opi
 variables are invariants of 
ollisions:Xi m`ifi =Xi m`iFi(ffjg) (or m(f) = m(F (f))).The standard example of the ma
ros
opi
 variables are hydrodynami
 �elds (density{velo
ity{energy density): fn; nu; Eg(x) := Pif1; vi; v2i =2gfi(x). But this is not an obliga-tory 
hoi
e. On the other hand, the athermal latti
e Boltzmann models with a shortenedlist of ma
ros
opi
 variables fn; nug are very popular.The quasiequilibrium is the positive �xed point of the 
ollision operator for the givenma
ros
opi
 variablesM . We assume that this point exists, is unique and depends smoothlyon M . For the quasiequilibrium population ve
tor for given M we use the notation f �M ,or simply f �, if the 
orrespondent value of M is obvious. We use �� to denote the equili-bration proje
tion operation of a distribution f into the 
orresponding quasiequilibriumstate: ��(f) = f �m(f):For some of the 
ollision models an entropi
 des
ription of quasiequilibrium is possible: anentropy density fun
tion S(f) is de�ned and the quasiequilibrium point f �M is the entropymaximiser for given M [25,38℄.Let the entropy S(f) be de�ned for ea
h positive population ve
tor f = (fi) (below weuse the same letter S for the lo
al in spa
e entropy and hope that the 
ontext will alwaysmake this notation 
lear). We assume that the global entropy on a grid is a sum of lo
alentropies for all sites.The notion of quasiequilibrium is most general and des
ribes 
onditional equilibria for any
hoi
e of ma
ros
opi
 variables. If the ma
ros
opi
 variables are the usual hydrodynami
�elds, then for 
ontinuous velo
ity spa
e the quasiequilibria are lo
al Maxwellian, i.e.,lo
al equilibria. The same term, lo
al equilibria, is suitable for latti
e Boltzmann modelstoo.As a basi
 example we 
onsider the latti
e Bhatnagar{Gross{Krook (LBGK) model withoverrelaxation (see, e.g., [4,13,22,27,37℄). The LBGK 
ollision operator isF (f) := ��(f) + (2� � 1)(��(f)� f); (3)where � 2 [0; 1℄. For � = 0, LBGK 
ollisions do not 
hange f , for � = 1=2 these 
ollisions4



a
t as equilibration (this 
orresponds to the Ehrenfests' 
oarse graining [16℄ further de-veloped in [15,20,21℄), and for � = 1, LBGK 
ollisions a
t as a point re
e
tion with the
enter at the equilibrium ��(f).It is shown [9℄ that under some stability 
onditions and after an initial period of relaxation,the simplest LBGK 
ollision with overrelaxation [22,37℄ provides se
ond order a

urateapproximation for the ma
ros
opi
 transport equation with vis
osity proportional to Æt(1��)=�.Entropi
 LBGK (ELBM) methods [6,21,25,38℄ di�er in the de�nition of (3):� the quasiequilibrium should be the point of 
onditional entropy maximum: S(f)! maxunder the 
ondition m(f) =M ;� for � = 1 the 
ollision operator should 
onserve the entropy, and in general has thefollowing form: F (f) := (1� �)f + � ~f; (4)where ~f = (1 � �)f + ���(f). The number � = �(f) at ea
h spa
e point is 
hosenso that the lo
al 
onstant entropy 
ondition is satis�ed: S(f) = S( ~f). For LBGK (3),� = 2.In the low-vis
osity regime, LBGK su�ers from numeri
al instabilities whi
h readily man-ifest themselves as lo
al blow-ups and spurious os
illations.The LBM experien
es the same spurious os
illation problems near sharp gradients as highorder s
hemes do. The physi
al properties of the LBM s
hemes allows one to 
onstru
tnew types of limiters: the nonequilibrium entropy limiters. In general, they do the samework for LBM as 
ux limiters do for �nite di�eren
e, �nite volume and �nite elementmethods, but for LBM the main idea behind the 
onstru
tion of nonequilibrium entropylimiter s
hemes is to limit a s
alar quantity | nonequilibrium entropy (and not the ve
torsor tensors of spatial derivatives, as it is for 
ux limiters). These limiters introdu
e someadditional dissipation, but all this dissipation 
ould easily be evaluated through analysisof nonequilibrium entropy produ
tion.Two examples of su
h limiters have been re
ently proposed: the positivity rule [7,31,41℄and the Ehrenfests' regularisation [8℄. The positivity rule just provides positivity of distri-butions: if a 
ollision step produ
es negative populations, then the positivity rule returnsthem to the boundary of positivity. In the Ehrenfests' regularisation, one sele
ts the ksites with highest nonequilibrium entropy (the di�eren
e between entropy of the state fand entropy of the 
orresponding quasiequilibrium state f � at a given spa
e point) thatex
eed a given threshold and equilibrates the state at these sites.The positivity rule and Ehrenfests' regularisation provide rare, intense and lo
alised 
or-re
tions. It is easy and also 
omputationally 
heap to organise more gentle transfor-mation with smooth shift of highly nonequilibrium states to equilibrium. The followingregularisation transformation distributes its a
tion smoothly: we 
an just 
hoose in (1)� = �(�S(f)) with suÆ
iently smooth fun
tion �(�S(f)). Here f is the state at some site,f � is the 
orresponding quasiequilibrium state, S is entropy, and �S(f) := S(f �)�S(f).5



The next step in the development of the nonequilibrium entropy limiters is in the usage oflo
al entropy �lters. The �lter of 
hoi
e here is the median �lter: it does not erase sharpfronts, and is mu
h more robust than 
onvolution �lters.Not all latti
e Boltzmann models are entropi
, and an important question arises: \howto 
reate nonequilibrium entropy limiters for LBM with non-entropi
 (quasi)equilibria?".We propose a solution of this problem based on the dis
rete Kullba
k entropy [29℄:SK(f) = �Xi fi ln fif �i !: (5)For entropi
 quasiequilibria with perfe
t entropy the dis
rete Kullba
k entropy gives thesame �S: �SK(f) = �S(f). Let the dis
rete entropy have the standard form for an ideal(perfe
t) mixture [26℄: S(f) = �Xi fi ln fiWi!:In quadrati
 approximation,�SK(f) =Xi fi ln fif �i ! �Xi (fi � f �i )2f �i : (6)If we de�ne f � as the 
onditional entropy maximum for given Mj = Pkmjkfk, thenln f �k =Xj �jmjk;where �j(M) are the Lagrange multipliers (or \potentials"). For this entropy and 
ondi-tional equilibrium we �nd�S = S(f �)� S(f) =Xi fi ln fif �i ! = �SK(f); (7)if f and f � have the same moments, m(f) = m(f �).In what follows, �S is the Kullba
k distan
e �SK(f) (7) for general (positive) quasiequi-libria f �, or simply S(f �) � S(f) for entropi
 quasiequilibria (or se
ond approximationsfor these quantities (6)).In thermodynami
s, the Kullba
k entropy belongs to the family of Massieu{Plan
k{Kramers fun
tions (
anoni
al or grand
anoni
al potentials). There is another sense ofthis quantity: SK is the relative entropy of f with respe
t to f � [19,35℄. We should stressthat even in 
ases when the employed quasiequilibrium is a 
lose approximation of theentropi
 quasiequilibrium but does not realise the 
onditional entropy maximum exa
tly,we have to use the Kullba
k entropi
 distan
e (7) instead of S(f �)�S(f). The 
hange ofde�nition of �S is ne
essary to provide positivity of �S: f � always realises the maximumof the Kullba
k entropy (5) for the given ma
ros
opi
 variables M = m(f).6
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Positivity domain Fig. 1. Positivity rule in a
tion. The motions stops at the positivity boundary.3 Nonequilibrium entropy limiters for LBM3.1 Positivity ruleThere is a simple re
ipe for positivity preservation [7,31,41℄: to substitute nonpositiveF (f)(x) (3) by the 
losest nonnegative state that belongs to the straight line��f(x) + (1� �)��(f(x))j � 2 R� (8)de�ned by the two points, f(x) and the 
orresponding quasiequilibrium. This operation isto be applied pointwise, at points of the latti
e where positivity is violated. The 
oeÆ
ient� depends on x too. Let us 
all this re
ipe the positivity rule (Fig. 1). This re
ipe preservespositivity of populations and probabilities, but 
an a�e
t a

ura
y of approximation. Thesame rule is ne
essary for ELBM (4) when the positive \mirror state" ~f with the sameentropy as f does not exists on the straight line (8).3.2 Ehrenfests' regularisationTo dis
uss methods with additional dissipation, the entropi
 approa
h is very 
onvenient.The lo
al nonequilibrium entropy for ea
h site is�S(f) := S(f �)� S(f); (9)where f � is the 
orresponding quasiequilibrium at the same point.The Ehrenfests' regularisation [7,8℄ provides \entropy trimming": we monitor lo
al de-viation of f from the 
orresponding quasiequilibrium, and when �S(f)(x) ex
eeds apre-spe
i�ed threshold value Æ, perform lo
al Ehrenfests' steps to the 
orresponding equi-librium: f 7! f � at those points.So that the Ehrenfests' steps are not allowed to degrade the a

ura
y of LBGK it ispertinent to sele
t the k sites with highest �S > Æ. The a posteriori estimates of addeddissipation 
ould easily be performed by analysis of entropy produ
tion in Ehrenfests'steps. Numeri
al experiments show (see, e.g., [7,8℄) that even a small number of su
hsteps drasti
ally improves stability. 7



To avoid the 
hange of a

ura
y order \on average", the number of sites with this stepshould be � O(Nh=L) where N is the total number of sites, h is the step of the spa
edis
retization and L is the ma
ros
opi
 
hara
teristi
 length. But this rough estimate ofa

ura
y in average might be destroyed by 
on
entration of Ehrenfests' steps in the mostnonequilibrium areas, for example, in boundary layers. In that 
ase, instead of the totalnumber of sites N in O(Nh=L) we should take the number of sites in a spe
i�
 region.The e�e
ts of 
on
entration 
ould be easily analysed a posteriori.3.3 Smooth limiters of nonequilibrium entropyThe positivity rule and Ehrenfests' regularisation provide rare, intense and lo
alised 
or-re
tions. Of 
ourse, it is easy and also 
omputationally 
heap to organise more gentletransformations with a smooth shift of highly nonequilibrium states to quasiequilibrium.The following regularisation transformation distributes its a
tion smoothly:f 7! f � + �(�S(f))(f � f �): (10)The 
hoi
e of fun
tion � is highly ambiguous, for example, � = 1=(1 + ��Sk) for some� > 0 and k > 0. There are two signi�
antly di�erent 
hoi
es: (i) ensemble-independent� (i.e., the value of � depends on lo
al value of �S only) and (ii) ensemble-dependent �,for example �(�S) = 1 + (�S=(�E(�S)))k�1=21 + (�S=(�E(�S)))k ; (11)where E(�S) is the average value of �S in the 
omputational area, k � 1, and � & 1.For small �S, �(�S) � 1 and for �S � �E(�S) it tends to q�E(�S)=�S. It is easyto sele
t an ensemble-dependent � with 
ontrol of total additional dissipation.3.4 Monitoring of total dissipationFor given �, the entropy produ
tion in one LBGK step in quadrati
 approximation for�S is: ÆLBGKS � [1� (2� � 1)2℄Xx �S(x);where x is the grid point, �S(x) is nonequilibrium entropy (9) at point x, ÆLBGKS is thetotal entropy produ
tion in a single LBGK step. It would be desirable if the total entropyprodu
tion for the limiter ÆlimS was small relative to ÆLBGKS:ÆlimS < Æ0ÆLBGKS: (12)A simple ensemble-dependent limiter (perhaps, the simplest one) for a given Æ0 operatesas follows. Let us 
olle
t the histogram of the �S(x) distribution, and estimate thedistribution density, p(�S). We have to estimate a value �S0 that satis�es the following8



equation: Z 1�S0 p(�S)(�S ��S0) d�S = Æ0[1� (2� � 1)2℄ Z 10 p(�S)�S d�S: (13)In order not to a�e
t distributions with small expe
tation of �S, we 
hoose a threshold�St = maxf�S0; Æg, where Æ is some prede�ned value (as in the Ehrenfests' regularisa-tion). For states at sites with �S � �St we provide homothety with equilibrium 
enterf � and 
oeÆ
ient q�St=�S (in quadrati
 approximation for nonequilibrium entropy):f(x) 7! f �(x) +s�St�S (f(x)� f �(x)): (14)3.5 Median entropy �lterThe limiters des
ribed above provide pointwise 
orre
tion of nonequilibrium entropy atthe \most nonequilibrium" points. Due to the pointwise nature, the te
hnique does notintrodu
e any nonisotropi
 e�e
ts, and provides some other bene�ts. But if we involve thelo
al stru
ture, we 
an 
orre
t lo
al non-monotone irregularities without tou
hing regularfragments. For example, we 
an dis
uss monotone in
rease or de
rease of nonequilibriumentropy as regular fragments and 
on
entrate our e�orts on redu
tion of \spe
kle noise" or\salt and pepper noise". This approa
h allows us to use the a

essible resour
e of entropy
hange (12) more thriftily. Salt and pepper noise is a form of noise typi
ally observed inimages. It represents itself as randomly o

urring white (maximal brightness) and bla
kpixels. For this kind of noise, 
onventional low-pass �ltering, e.g., mean �ltering or Gaus-sian smoothing is unsu

essful be
ause the perturbed pixel value 
an vary signi�
antlyboth from the original and mean value. For this type of noise, median �ltering is a 
om-mon and e�e
tive noise redu
tion method. Median �ltering is a 
ommon step in imagepro
essing [34℄ for the smoothing of signals and the suppression of impulse noise withpreservation of edges.The median is a more robust average than the mean (or the weighted mean) and so asingle very unrepresentative value in a neighborhood will not a�e
t the median valuesigni�
antly. Hen
e, we suppose that the median entropy �lter will work better thanentropy 
onvolution �lters.For the nonequilibrium entropy �eld, the median �lter 
onsiders ea
h site in turn andlooks at its nearby neighbours. It repla
es the nonequilibrium entropy value �S at thepoint with the median of those values �Smed, then updates f by the transformation (14)with the homothety 
oeÆ
ient q�Smed=�S. The median, �Smed, is 
al
ulated by �rstsorting all the values from the surrounding neighbourhood into numeri
al order and thenrepla
ing that being 
onsidered with the middle value. For example, if a point has 3 nearestneighbors in
luding itself, then after sorting we have 3 values �S: �S1 � �S2 � �S3.The median value is �Smed = �S2. For 9 nearest neighbors (in
luding itself) we haveafter sorting �Smed = �S5. For 27 nearest neighbors �Smed = �S14.We a

ept only dissipative 
orre
tions (those resulting in a de
rease of �S, �Smed < �S)9



be
ause of the se
ond law of thermodynami
s. The analogue of (13) is also useful fora

eptan
e of the most signi�
ant 
orre
tions. In \salt and pepper" terms, we 
orre
t thesalt (where �S ex
eeds the median value) and do not tou
h the pepper.3.6 Monotoni
 and double monotoni
 limitersTwo monotoni
ity properties are important in the theory of nonequilibrium entropy lim-iters:(1) a limiter should move the distribution to equilibrium: in all 
ases of (1) 0 � � � 1.This is the dissipativity 
ondition whi
h means that limiters never produ
e negativeentropy.(2) a limiter should not 
hange the order of states on the line: if for two distributionswith the same moments, f and f 0, f 0 � f � = x(f � f �) and �S(f) > �S(f 0)before the limiter transformation, then the same inequality should hold after thelimiter transformation too. For example, for the limiter (10) it means that �S(f � +x�(�S(f � + x(f � f �)))(f � f �)) is a monotoni
ally in
reasing fun
tion of x > 0.In quadrati
 approximation, �S(f � + x(f � f �)) = x2�S(f);�S(f � + x�(�S(f � + x(f � f �)))(f � f �)) = x2�2(x2�S(f));and the se
ond monotoni
ity 
ondition transforms into the following requirement: y�(y2s)is a monotoni
ally in
reasing (not de
reasing) fun
tion of y > 0 for any s > 0.If a limiter satis�es both monotoni
ity 
onditions, we 
all it \double monotoni
". Forexample, Ehrenfests' regularisation satis�es the �rst monotoni
ity 
ondition, but violatesthe se
ond one. The limiter (11) violates the �rst 
ondition for small �S, but is dissipativeand satis�es the se
ond one in quadrati
 approximation for large �S. The limiter with� = 1=(1 + ��Sk) always satis�es the �rst monotoni
ity 
ondition, violates the se
ond ifk > 1=2, and is double monotoni
 (in quadrati
 approximation for the se
ond 
ondition),if 0 < k � 1=2. The threshold limiter (14) is also double monotoni
.For smooth fun
tions, the 
ondition of double monotoni
ity (in quadrati
 approximation)is equivalent to the system of di�erential inequalities:�(x) + 2x�0(x) � 0;�0(x) � 0:The initial 
ondition �(0) = 1 means that in the limit �S ! 0 limiters do not a�e
t the
ow. Following these inequalities we 
an write: 2x�0(x) = ��(x)�(x), where 0 � �(x) � 1.The solution of these inequalities with initial 
ondition is�(x) = exp �12 Z x0 �(�)� d�!; (15)10



if the integral on the right-hand side exists. This is a general solution for double monotoni
limiters (in the se
ond approximation for entropy). If �(x) is the Heaviside step fun
tion,�(x) = H(x��St) with threshold value �St, then the general solution (15) gives us thethreshold limiter. If, for example, �(x) = xk=(�Skt + xk), then�(x) =  1 + xk�Skt !� 12k : (16)This spe
ial form of limiter fun
tion is attra
tive be
ause for small x it gives�(x) = 1� 12k xk�Skt + o(xk):Thus, the limiter does not a�e
t the motion up to the (k+1)st order, and the ma
ros
opi
equations 
oin
ide with the ma
ros
opi
 equations for LBM without limiters up to the(k+ 1)st order in powers of deviation from quasiequilibrium. Furthermore, for large x weget the kth order approximation to the threshold limiter (14):�(x) = s�Stx + o(x�k):Of 
ourse, it is not forbidden to use any type of limiters under the lo
al and global
ontrol of dissipation, but double monotoni
 limiters provide some natural propertiesautomati
ally, without additional 
are.4 Numeri
al experimentsTo 
on
lude this paper we report some numeri
al experiments 
ondu
ted to demonstratethe performan
e of some of the proposed nonequilibrium entropy limiters for LBM fromSe
. 3.4.1 Velo
ities and equilibriaWe will perform simulations using both entropi
 and non-entropi
 lo
al equilibria, but wealways work with an athermal LBM model. Whenever we use non-entropi
 equilibria weemploy Kullba
k entropy (7).In 1D, we use a latti
e with spa
ing and time step Æt = 1 and a dis
rete velo
ity setfv1; v2; v3g := f0;�1; 1g so that the model 
onsists of stati
, left- and right-moving pop-ulations only. The subs
ript i denotes population (not latti
e site number) and f1, f2and f3 denote the stati
, left- and right-moving populations, respe
tively. The entropy isS = �H, with H = f1 log(f1=4) + f2 log(f2) + f3 log(f3); (17)11



(see, e.g., [26℄) and, for this entropy, the lo
al entropi
 equilibrium state f � is availableexpli
itly: f �1 = 2�3 �2�p1 + 3u2�;f �2 = �6�(3u� 1) + 2p1 + 3u2�;f �3 = ��6�(3u+ 1)� 2p1 + 3u2�; (18)
where � :=Xi fi; u := 1�Xi vifi: (19)The standard non-entropi
 polynomial equilibria [37℄ are:f �1 = 2�3  1� 3u22 !;f �2 = �6(1� 3u+ 3u2);f �3 = �6(1 + 3u+ 3u2): (20)
In 2D, we employ a uniform 9-speed square latti
e with dis
rete velo
ities fvi j i =0; 1; : : : 8g: v0 = 0, vi = (
os((i�1)�=2); sin((i�1)�=2)) for i = 1; 2; 3; 4, vi = p2(
os((i�5)�2 + �4 ); sin((i � 5)�2 + �4 )) for i = 5; 6; 7; 8. The numbering f0, f1; : : : ; f8 are for thestati
, east, north, west, south, northeast, northwest, southwest and southeast-movingpopulations, respe
tively. As usual, the entropi
 equilibrium state, f �, 
an be uniquelydetermined by maximising an entropy fun
tionalS(f) = �Xi fi log� fiWi�;subje
t to the 
onstraints of 
onservation of mass and momentum [2℄:f �i = �Wi 2Yj=1�2�q1 + 3u2j�0�2uj +q1 + 3u2j1� uj 1Avi;j : (21)Here, the latti
e weights, Wi, are given latti
e-spe
i�
 
onstants: W0 = 4=9, W1;2;3;4 = 1=9andW5;6;7;8 = 1=36. Analogously to (19), the ma
ros
opi
 variables � and u = (u1; u2) arethe zeroth and �rst moments of the distribution f , respe
tively. The standard non-entropi
polynomial equilibria [37℄ are:f �i = �Wi 1 + 3viu+ 9(viu)22 � 3u22 !: (22)12



4.2 LBGK and ELBMThe governing equations for LBGK arefi(x + vi; t+ 1) = f �i (x; t) + (2� � 1)(f �i (x; t)�fi(x; t)); (23)where � = 1=(2� + 1).For ELBM (4) the governing equations are:fi(x + vi; t+ 1) = (1� �)fi(x; t) + � ~fi(x; t); (24)with � as above and ~f = (1��)f+�f �. The parameter, �, is 
hosen to satisfy a 
onstantentropy 
ondition. This involves �nding the nontrivial root of the equationS((1� �)f + �f �) = S(f): (25)To solve (25) numeri
ally we employ a robust routine based on bise
tion. The root issolved to an a

ura
y of 10�15 and we always ensure that the returned value of � doesnot lead to a numeri
al entropy de
rease. We stipulate that if, at some site, no nontrivialroot of (25) exists we will employ the positivity rule instead (Fig. 1).4.3 Sho
k tubeThe 1D sho
k tube for a 
ompressible athermal 
uid is a standard ben
hmark test for hy-drodynami
 
odes. Our 
omputational domain will be the interval [0; 1℄ and we dis
retizethis interval with 801 uniformly spa
ed latti
e sites. We 
hoose the initial density ratioas 1:2 so that for x � 400 we set � = 1:0 else we set � = 0:5.In the �rst test we present three possible 
ombinations of two 
hoi
es of equilibria, poly-nomial (20) or entropi
 (18), and two 
hoi
es of stepping, LBGK (23) or ELBM (24). Wesolve (25) to an a

ura
y of 10�15. The results, whi
h are self-explanatory, are presentedin Fig. 2 for the kinemati
 vis
osity � = 3:3333 � 10�2 and � = 10�9 in dimensionlessunits.For sho
k tube experiments, the introdu
tion of lo
al dissipation in thin zones near sho
kshas a similar e�e
t to the introdu
tion of global dissipation in the whole domain. Eventhe introdu
tion of lo
al dissipation at one point suppresses spurious os
illations [7,8℄. Inthe absen
e of any dissipation me
hanism, dispersive os
illations on the mesh s
ale haveto appear in sho
k regions [30℄.It is ne
essary to mention that for the di�eren
e s
hemes without arti�
ial numeri
aldissipation studied in [40℄, spurious os
illations in the immediate neighborhoods of sho
ks
ould be suppressed by suÆ
iently high vis
osity or heat 
ondu
tion only (and the rolesof vis
osity and heat 
ondu
tion in forming sharp monotone pro�les are di�erent). Nolimiters were added in [40℄, but instead, the vis
ous and heat 
ondu
tion terms in theNavier-Stokes equations are found to serve as a

urate edge dete
tors.13
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Fig. 2. Density pro�le of the 1:2 isothermal sho
k tube simulation after 400 time steps using(a) LBGK (23) with polynomial quasiequilibria (20) [� = 3:3333 � 10�2℄; (b) LBGK (23) withentropi
 quasiequilibria (18) [� = 3:3333 � 10�2℄; (
) ELBM (24) [� = 3:3333 � 10�2℄; (d)LBGK (23) with polynomial quasiequilibria (20) [� = 10�9℄; (e) LBGK (23) with entropi
quasiequilibria (18) [� = 10�9℄; (f) ELBM (24) [� = 10�9℄.
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Fig. 3. Density pro�le of the 1:2 athermal sho
k tube simulation with (a) � = 0:066, (b)� = 0:0066 and (
) � = 0:00066 after 400 time steps using LBGK (23) without any limiter.Total entropy and nonequilibrium entropy time histories are displayed in the adja
ent panels.Entropi
 equilibria (18) with perfe
t entropy (17) are used.14
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Fig. 4. Density pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9 after 400 timesteps using LBGK (23) and the smooth limiter (26) with k = 1=2, � = Æ=(E(�S)k) and (a)Æ = 0:1; (b) Æ = 0:01 and (
) Æ = 0:001. Total entropy and nonequilibrium entropy time historiesfor ea
h parameter set fk; �(Æ)g are displayed in the adja
ent panels. The last 
ase (
) is 
loseto LBGK simulation without limiters.Following the idea of 
omparison of the a
tion of limiters with physi
al dissipation, wepresent LBGK 
omputations of sho
ks without any limiter as a referen
e point for testinglimiters (Fig. 3).For all further sho
k tube experiments with limiters we will �x the kinemati
 vis
osityof the 
uid at � = 10�9 (the "bulk vis
osity") in dimensionless units. Of 
ourse, byusing limiters an additional vis
osity is produ
ed in thin zones with high gradients, andthis � = 10�9 
hara
terises the LBM gas before the introdu
tion of limiters. Additionaldissipation is dis
ussed in Subse
. 3.4 and below in Se
. 5.Now, we would like to demonstrate just a representative sample of the many possibilitiesof limiters suggested in Se
. 3. In ea
h 
ase the limiter is implemented by a post-pro
essingroutine immediately following the 
ollision step (either LBGK (23) or ELBM (24)). Here,we will only 
onsider LBGK 
ollisions.The post-pro
essing step adjusts f by the update formula:f 7! f � + �(�S)(f � f �);where �S is de�ned by (9) and � is a limiter fun
tion.15
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Fig. 5. Density pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9 after 400 timesteps using LBGK (23) and the smooth limiter (26) with k = 1, � = Æ=(E(�S)k) and (a) Æ = 0:1;(b) Æ = 0:01 and (
) Æ = 0:001. Total entropy and nonequilibrium entropy time histories for ea
hparameter set fk; �(Æ)g are displayed in the adja
ent panels.For the Ehrenfests' regularisation one would 
hoose�(�S)(x) = ( 1; �S(x) � Æ;0; otherwise,where Æ is a pre-spe
i�ed threshold value. Furthermore, it is pertinent to sele
t just k siteswith highest �S > Æ. This limiter has been previously applied to the sho
k tube problemin [7{9℄ and we will not reprodu
e those results here.Instead, our �rst example will be the following smooth limiter:�(�S) = 11 + ��Sk : (26)This limiter (26) always satis�es the 
ondition �(0) = 1, and �0(0) = 0 for k > 1. Forthis limiter, we will �x k = 1=2 (so that the limiter is double monotoni
 in quadrati
approximation to entropy) and 
ompare the density pro�les for � = Æ=(E(�S)k), Æ =0:1; 0:01; 0:001 (Fig. 4). We have also ensured an ensemble-dependent limiter be
auseof the dependen
e of � on the average E(�S). We a

ompany ea
h panel with the totalentropy and nonequilibrium entropy histories. Note the di�erent s
ales for nonequilibriumentropy. Note also that entropy (ne
essarily) now grows due to the additional dissipation.16
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Fig. 6. Density pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9 after 400time steps using LBGK (23) and the threshold limiter (13) with (a) �St = 5E(�S); (b)�St = 10E(�S) and (
) �St = 20E(�S). Total entropy and nonequilibrium entropy timehistories for ea
h threshold �St are displayed in the adja
ent panels.The se
ond example is the smooth limiter (26) with k = 1 (Fig. 5). It is worthwhile tomention that for the same parameter Æ this limiter suppresses spurious os
illations moree�e
tively. For example, for Æ = 0:001, for k = 1=2 we see almost the same post-sho
kos
illations as for the system without limiter, whereas the same pi
ture for k = 1 alreadydi�ers. For points with �S < E(�S) the limiter with k = 1 and the same Æ a�e
ts the 
owless than the limiter with k = 1=2, whereas for �S > E(�S) it works more intensively.We 
an guess that for e�e
tive suppression of post-sho
k os
illations it is important howthe limiter behaves for �S � E(�S). More detailed dis
ussion is presented in Se
. 5. Weshould mention that this limiter is not double-monotoni
, but this 
aused no problems inthis spe
i�
 experiment.Our next example (Fig. 6) 
onsiders the threshold �lter (13). In this example we 
hoosethe estimates �S0 = 5E(�S); 10E(�S); 20E(�S) and �x the toleran
e Æ = 0 so that thein
uen
e of the threshold alone 
an be studied. Only entropi
 adjustments are a

epted inthe limiter: �St � �S. As the threshold in
reases, nonequilibrium entropy grows fasterand spurious os
illations begin to appear.Finally, we test the median �lter (Fig. 7). We 
hoose a minimal �lter so that only thenearest neighbours are 
onsidered. As with the threshold �lter, we introdu
e a toleran
eÆ and we try the values Æ = 10�3; 10�4; 10�5. Only entropi
 adjustments are a

epted inthe limiter: �Smed � �S. 17
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Fig. 7. Density pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9 after 400 timesteps using LBGK (23) and the minimal median limiter with (a) Æ = 10�5; (b) Æ = 10�4 and(
) Æ = 10�3. Total entropy and nonequilibrium entropy time histories for ea
h toleran
e Æ aredisplayed in the adja
ent panels.We have seen that ea
h of the examples we have 
onsidered (Fig. 4, Fig. 5, Fig. 6 andFig. 7) is 
apable of subduing spurious post-sho
k os
illations 
ompared with LBGK. Of
ourse, by limiting nonequilibrium entropy the result is ne
essarily an in
rease in entropy.From our experien
es our re
ommendation is that the median �lter is the superior 
hoi
eamongst all the limiters suggested in Se
. 3. The a
tion of the median �lter is found tobe both extremely gentle and, at the same time, very e�e
tive.4.4 Lid-driven 
avityOur se
ond numeri
al example is the 
lassi
al 2D lid-driven 
avity 
ow. A square 
avityof side length L is �lled with 
uid with kinemati
 vis
osity � (initially at rest) and drivenby the 
avity lid moving at a 
onstant velo
ity (u0; 0) (from left to right in our geometry).We will simulate the 
ow on a 100�100 grid using LBGK regularised with the median �lterlimiter. Unless otherwise stated, we use entropi
 equilibria (21). The implementation of the�lter is as follows: the �lter is not applied to boundary nodes; for nodes whi
h immediatelyneighbour the boundary the sten
il 
onsists of the 3 nearest neighbours (in
luding itself)
losest to the boundary; for all other nodes the minimal sten
il of 9 nearest neighbours isused. 18



We have purposefully sele
ted su
h a 
oarse grid simulation be
ause it is readily foundthat, on this problem, unregularised LGBK fails (blows-up) for all but the most modestReynolds numbers Re := Lu0=�.4.4.1 Steady-state vortex 
entresFor modest Reynolds number the system settles to a steady state in whi
h the dominantfeatures are a primary 
entral rotating vortex, with several 
ounter-rotating se
ondaryvorti
es lo
ated in the bottom-left, bottom-right (and possibly top-left) 
orners.The steady state has been extensively investigated in the literature. The study of Hou etal. [23℄ simulates the 
ow over a range of Reynolds numbers using unregularised LBGK ona 256� 256 grid. Primary and se
ondary vortex 
entre data is provided. We 
ompare thissame statisti
 for the present median �ltered 
oarse grid simulation. We will employ thesame 
onvergen
e 
riteria used in [23℄. Namely, we deem that steady state has been rea
hedby ensuring that the di�eren
e between the maximum value of the stream fun
tion forsu

essive 10; 000 time steps is less that 10�5. The stream fun
tion, whi
h is not a primaryvariable in the LBM simulation, is obtained from the velo
ity data by integration usingSimpson's rule. Vortex 
entres are 
hara
terised as lo
al extrema of the stream fun
tion.We 
ompare our results with the LBGK simulations in [23℄ and [41℄. To align ourselveswith these studies we spe
ify the following boundary 
ondition: lid pro�le is 
onstant;remaining 
avity walls are subje
t to the \boun
e-ba
k" 
ondition [37℄. In our simulations,the initial uniform 
uid density pro�le is � = 2:7 and the velo
ity of the lid is u0 = 1=10(in latti
e units).Colle
ted in Table 1, for Re = 2000; 5000 and 7500, are the 
oordinates of the primaryand se
ondary vortex 
entres using (a) unregularised LBGK; (b) LBGK with median�lter limiter (Æ = 10�3); (
) LBGK with median �lter limiter (Æ = 10�4), all with non-entropi
 polynomial equilibria (22). Lines (d), (e) and (f) are the same but with entropi
equilibria (21). The remaining lines of Table 1 are as follows: (g) literature data [23℄(unregularised LBGK on a 256 � 256 grid); (h) literature data [41℄ (positivity rule); (i)literature data [41℄ (ELBM). With the ex
eption of (g), all simulation are 
ondu
ted ona 100 � 100 grid. The top-left vortex does not appear at Re = 2000 and no data wasprovided for it in [41℄ at Re = 5000. The unregularised LBGK Re = 7500 simulationblows-up in �nite time and the simulation be
omes meaningless. The y-
oordinate of thetwo lower-vorti
es at Re = 5000 in (i) appear anomalously small and were not reprodu
edby our experiments with the positivity rule (not shown).We have 
ondu
ted two runs of the experiment with the median �lter parameter Æ = 10�3and Æ = 10�4. Despite the in
reased number of realisations the vortex 
entre lo
ationsremain e�e
tively un
hanged and we dete
t no signi�
ant variation between the two runs.This demonstrates the gentle nature of the median �lter. At Reynolds Re = 2000 themedian �lter has no e�e
t at all on the vortex 
entres 
ompared with LBGK.We �nd no signi�
ant di�eren
es between the experiments with entropi
 and non-entropi
polynomial equilibria in this test. 19



The 
oordinates of the primary vortex 
entre for unregularised LBGK at Re = 5000 arealready quite ina

urate as LBGK begins to lose stability. Stability is lost entirely at some
riti
al Reynolds number 5000 < Re � 7500 and the simulation blows-up.Furthermore, we have agreement (within grid resolution) with the data given in [23℄. Also
ompiled in Table 1 is the data from the limiter experiments 
ondu
ted in [41℄ (althoughnot expli
itly dis
ussed in the language of limiters by the authors of that work). In [41℄the authors give vortex 
entre data for the positivity rule (Fig. 1) and for ELBM. In [41℄the positivity rule is 
alled FIX-UP.As Reynolds number in
reases the 
ow in the 
avity is no longer steady and a more
ompli
ated 
ow pattern emerges. On the way to a fully developed turbulent 
ow, thelid-driven 
avity 
ow is known to undergo a series of period doubling Hopf bifur
ations. Onour 
oarse grid, we observe that the 
oordinates of the primary vortex 
entre (maximumof the stream fun
tion) is a very robust feature of the 
ow, with little 
hange between
oordinates (no 
hange in y-
oordinates) 
omputed at Re = 5000 and Re = 7500 with themedian �lter. On one hand, be
ause of this observation it be
omes in
on
lusive whetherthe median limiter is adding too mu
h additional dissipation. On the other hand, a morestudious 
hoi
e of 
ontrol 
riteria may indi
ate that the �rst bifur
ation has alreadyo

urred by Re = 7500.4.4.2 First Hopf bifur
ationA survey of available literature reveals that the pre
ise value of Re at whi
h the �rst Hopfbifur
ation o

urs is somewhat 
ontentious, with most 
urrent studies (all of whi
h arefor in
ompressible 
ow) ranging from around Re = 7400{8500 [10,32,33℄. Here, we do notintend to give a pre
ise value be
ause it is a well observed grid e�e
t that the 
riti
alReynolds number in
reases (shifts to the right) with re�nement (see, e.g., Fig. 3 in [33℄).Rather, we will be 
ontent to lo
alise the �rst bifur
ation and, in doing so, demonstratethat limiters are 
apable of regularising without e�e
ting fundamental 
ow features.To lo
alise the �rst bifur
ation we take the following algorithmi
 approa
h. Entropi
equilibria are in use. The initial uniform 
uid density pro�le is � = 1:0 and the velo
ityof the lid is u0 = 1=10 (in latti
e units). We re
ord the unsteady velo
ity data at asingle 
ontrol point with 
oordinates (L=16; 13L=16) and run the simulation for 5000 non-dimensionless time units (5000L=u0 time steps). Let us denote the �nal 1% of this signalby (usig; vsig). We then 
ompute the energy Eu (`2-norm normalised by non-dimensionalsignal duration) of the deviation of usig from its mean:Eu := 




s Lu0jusigj(usig � usig)




`2; (27)where jusigj and usig denote the length and mean of usig, respe
tively. We 
hoose this robuststatisti
 instead of attempting to measure signal amplitude be
ause of numeri
al noise inthe LBM simulation. The sour
e of noise in LBM is attributed to the existen
e of aninherently unavoidable neutral stability dire
tion in the numeri
al s
heme (see, e.g., [9℄).20



Table 1Primary and se
ondary vortex 
entre 
oordinates for the lid-driven 
avity 
ow at Re =2000; 5000; 7500.Primary Lower-left Lower-right Top-leftRe x y x y x y x y2000 (a) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (b) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (
) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (d) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (e) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (f) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (g) 0.5255 0.5490 0.0902 0.1059 0.8471 0.0980 Not appli
able2000 (h) 0.5200 0.5450 0.0900 0.1000 0.8300 0.0950 Not appli
able2000 (i) 0.5200 0.5500 0.0890 0.1000 0.8300 0.1000 Not appli
able5000 (a) 0.5152 0.6061 0.0808 0.1313 0.7980 0.0707 0.0505 0.89905000 (b) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (
) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (d) 0.5152 0.5960 0.0808 0.1313 0.8081 0.0808 0.0505 0.89905000 (e) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (f) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (g) 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745 0.0667 0.90595000 (h) 0.5150 0.5680 0.0950 0.0100 0.8450 0.0100 Not available5000 (i) 0.5150 0.5400 0.0780 0.1350 0.8050 0.0750 Not available7500 (a) | | | | | | | |7500 (b) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (
) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (d) | | | | | | | |7500 (e) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (f) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (g) 0.5176 0.5333 0.0706 0.1529 0.7922 0.0667 0.0706 0.9098We opt not to employ the \boun
e-ba
k" boundary 
ondition used in the previous steadystate study. Instead we will use the di�usive Maxwell boundary 
ondition (see, e.g., [11℄),whi
h was �rst applied to LBM in [1℄. The essen
e of the 
ondition is that populationsrea
hing a boundary are re
e
ted, proportional to equilibrium, su
h that mass-balan
e(in the bulk) and detail-balan
e are a
hieved. The boundary 
ondition 
oin
ides with\boun
e-ba
k" in ea
h 
orner of the 
avity.21



To illustrate, immediately following the adve
tion of populations 
onsider the situationof a wall, aligned with the latti
e, moving with velo
ity uwall and with outward pointingnormal to the wall in the negative y-dire
tion (this is the situation on the lid of the 
avitywith uwall = u0). The implementation of the di�usive Maxwell boundary 
ondition at aboundary site (x; y) on this wall 
onsists of the updatefi(x; y; t+ 1) = 
f �i (uwall); i = 4; 7; 8;with 
 = f2(x; y; t) + f5(x; y; t) + f6(x; y; t)f �4 (uwall) + f �7 (uwall) + f �8 (uwall) :Observe that, be
ause density is a linear fa
tor of the equilibria (21), the density of thewall is in
onsequential in the boundary 
ondition and 
an therefore be taken as unity for
onvenien
e. As is usual, only those populations pointing in to the 
uid at a boundarysite are updated. Boundary sites do not undergo the 
ollisional step that the bulk of thesites are subje
ted to.We prefer the di�usive boundary 
ondition over the often preferred \boun
e-ba
k" bound-ary 
ondition with 
onstant lid pro�le. This is be
ause we have experien
ed diÆ
ulty inseparating the aforementioned numeri
al noise from the genuine signal at a single 
ontrolpoint using \boun
e-ba
k". We remark that the di�usive boundary 
ondition does notprevent unregularised LBGK from failing at some 
riti
al Reynolds number Re > 5000.Now, we 
ondu
t an experiment and re
ord (27) over a range of Reynolds numbers. In ea
h
ase the median �lter limiter is employed with parameter Æ = 10�3. Sin
e the transitionbetween steady and periodi
 
ow in the lid-driven 
avity is known to belong to the 
lass ofstandard Hopf bifur
ations we are assured that E2u / Re [17℄. Fitting a line of best �t tothe resulting data lo
alises the �rst bifur
ation in the lid-driven 
avity 
ow to Re = 7135(Fig. 8). This value is within the toleran
e of Re = 7402�4% given in [33℄ for a 100�100grid. We also provide a (time averaged) phase spa
e traje
tory and Fourier spe
trum forRe = 7375 at the monitoring point (Fig. 9 and Fig. 10) whi
h 
learly indi
ate that the�rst bifur
ation has been observed.5 Test dis
ussion and a priori estimations of additional dissipationThe diversity of possible nonequilibrium entropy limiters is huge. The examples providedby our tests present only a tiny fra
tion of these possibilities. For better orientation inthis world one needs some a priori estimates. Of 
ourse, the �rst question should 
on
ernadditional dissipation. It is easy to �nd all the dissipation a posteriori (we presented all thene
essary te
hniques in Subse
. 3.4), but for a priori estimates we need some hypothesesabout the �S distribution.Let us start from the most straightforward idea: estimation at the average. Let us take�S = E(�S) and estimate the additional dissipation. This 
orresponds to the hypothesisthat �S is distributed near its mean value with relatively small deviation. Immediately, we�nd that under this assumption any lo
al limiter of the form (10) is simply equivalent to22



5750 6000 6250 6500 6750 7000 7250 7500 7750 8000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(7135,0)

Re

E2

u
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tion of the sloping line with the x-axis o

urs 
lose to Re = 7135.

Fig. 9. A phase traje
tory for velo
ity 
omponents for the signal (usig; vsig) at the monitoringpoint (L=16; 13L=16) using LBGK regularised with the median �lter limiter with Æ = 10�3 on a100� 100 grid (Re = 7375). Dots represent simulation results at various time moments and thesolid line is a 100 step time average of the signal.23
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trum for the signal usig at the monitoring point (L=16; 13L=16)using LBGK regularised with the median �lter limiter with Æ = 10�3 on a 100 � 100 grid(Re = 7375). We measure a dominant frequen
y of ! = 0:525.multiplying f�f � by �(E(�S)) and it leads to additional vis
osity �� � (1��(E(�S)))in dimensionless form. However, as we 
an see from Fig. 4 and Fig. 5, for example, per-forman
e 
an be signi�
antly di�erent for limiters that have the same �(E(�S)). Thisimplies that the hypothesis about a narrow distribution of �S near its mean value doesnot work, and performan
e of a limiter depends on the value of �(�S) for larger �S.There is a pra
ti
al 
onsequen
e of this observation too. A limiter's work is important for�S > E(�S) (or even �S � E(�S)). Hen
e, all the in
uen
e of a limiter on dynami
sat �S � E(�S) is a parasiti
 e�e
t, and this should be ex
luded. Therefore, for smoothlimiters, �(�S), it is natural to assume that �(0) = 1 and �0(0) = 0. This means that, forsmall �S, 
ollisions with a limiter 
oin
ide with LBM 
ollisions in the �rst two orders.The �rst attempt to improve the hypothesis about the distribution of �S is an assumptionthat �S has exponential distribution with probability densityp(�S) = 1E(�S) exp(��S=E(�S)):This distribution for entropy seems very familiar from equilibrium statisti
al physi
s, butthe tests of Ehrenfests' limiters [7,8℄ and of threshold limiters (Fig. 6) show that evenlimiter with threshold � 20E(�S) signi�
antly improves the pi
ture. For the exponentialdistribution, P(E > 20E(�S)) = exp(�20): on our grid, appearan
e of su
h points isimprobable.A dynami
al reason for fat tails 
an be a so-
alled superstatisti
s [3℄, where one has a24



superposition of lo
al simple distributions whose parameters 
u
tuate on a rather largespatio-temporal s
ale. The idea of superstatisti
s 
an help us: the domain of 
ow 
anbe split into several subdomains, in any of these subdomains there is an exponentialdistribution of �S and as a result there is a mixed \superdistribution" in the wholedomain.Already two exponential distributions give a mu
h more realisti
 pi
ture:p(�S) = 1� q�S1 exp(��S=�S1) + q�S2 exp(��S=�S2) (28)with q � 1 and �S1 � �S2. For this distribution, the threshold limiter (and otherlimiters that do not a�e
t the average points with �S � E(�S)) a
ts on the points thatbelong to the se
ond distribution, far from the �S mean value. This point of view is sup-ported by the following observation: entropy produ
tion for all su

essfully working lim-iters in the sho
k tube test (Subse
. 4.3) is almost the same, even if the 
ontrol parameterÆ 
hanges by several orders of magnitude. Of 
ourse, this observation also supports otherhypotheses with a representation of p(�S) as a mixture of two simple distributions withsigni�
antly di�erent E(�S). For example, if p(�S) = (1�q)Æ(�S��S1)+qÆ(�S��S2)with q � 1 and �S1 � �S2, then the behaviour of dissipation will also be similar.Again, we 
an extra
t a pra
ti
al 
onsequen
e. It is not ne
essary to apply limiters at allpoints. In addition to a threshold in �S we 
an also use a threshold number of pointsk and apply limiters at not more than k points with maximal �S. For example, if weapply the Ehrenfests' or the threshold limiter only at one point of the sho
k pro�le, thenit 
hanges the pi
ture drasti
ally: there remain some 
u
tuations, but their amplitudede
reases by orders [7,8℄.Let us estimate the additional dissipation produ
ed by the threshold limiter for thenonequilibrium entropy distribution (28). If the threshold value �St � �S1 and theallowed number of points for the limiter a
tion k < qN , where N is the total number ofpoints, then only the se
ond exponential distribution a�e
ts the limiter work. A simpleexpli
it estimation gives us the following:If qN exp(��St=�S2) > k then we expe
t that the number of points with appli
ation ofthe limiter to be � k and the average dissipation per su
h point to beSpp � Z 1�S2 ln(qN=k) �S ��St�S2 exp ��S�S2 ! d�S= �S2 kqN "ln qNk � �St�S2 + 1# ;or kSpp totally.If qN exp(��St=�S2) < k then we expe
t that the number of points with appli
ation ofthe limiter to be � qN exp(��St=�S2) < k and the average dissipation per su
h point25
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Fig. 11. Histograms of nonequilibrium entropy �S for the 1:2 athermal sho
k tube simulationwith (a) � = 0:066, (b) � = 0:0066 and (
) � = 0:00066 after 400 time steps using LBGK (23)without any limiter. Entropi
 equilibria (18) with perfe
t entropy (17) are used. We use brokeny-axis. These histograms 
orresponds to 
omputations represented on Fig. 3(a),(b),(
). Thex-axis interval is from zero to (a) 450E(�S), (b) 97E(�S) and (
) 32E(�S), respe
tively. Itis divided in 20 bins.to be Spp � Z 1�St �S ��St�S2 exp ��S�S2 !d�S= �S2 exp ��St�S2 ! ;or qN�S2 exp(�2�St=�S2) totally.These estimates use some features of the �S distribution. Any theoreti
al or 
omputa-tional study of this distribution immediately gives us a 
lue for estimates of a limiterswork.In the last 
ase, we 
an estimate additional vis
osity in the highly nonequilibrium regionthat 
orresponds to the se
ond exponent in the distribution (28). Indeed, the number ofpoints in this region is qN , the average �S is �S2, additional dissipation per point in thisregion is �S2 exp(�2�St=�S2). This 
orresponds to additional 
ontra
tion to equilibriumwith 
oeÆ
ient � 1 � 12 exp(�2�St=�S2) per 
ollision step. Due to standard LBGKestimates, the 
orrespondent additional vis
osity is �� � 14 exp(�2�St=�S2) < k24(qN)2 (indimensionless units). For example, for �� � 0:01 this gives �St & 1:6�S2, for �� � 0:001we have �St & 2:8�S2, and for �� � 0:0001 we have �St & 3:9�S2.Does the distribution of �S have a long tail? To support this hypothesis we 
omputed thehistograms of �S (Fig. 11) for the experiment presented in Fig. 3. It is straightforward toestimate that su
h a long tail is pra
ti
ally impossible for an exponential distribution. Forexample, the probability to have by 
han
e the maximal �S so far from E(�S) (for 801points) is p < 801 exp(��Smax=E(�S)). For the histograms presented in Fig. 11, we get:(a) p < 10�170, (b) p < 10�21 and (
) p < 10�8, respe
tively. Of 
ourse, the probability ofappearan
e of the whole tails by 
han
e in 
ases (b) and (
) is mu
h smaller.Dire
t estimate of additional dissipation for the median �lter limiter is impossible withouthypotheses about pair 
orrelations in the �S �eld. Computational tests for sho
k tubesand for lid-driven 
avity 
ow show that the median �lter limiter (applied to the \salt" noiseonly when �S ex
eeds the median value, and, moreover when the value of the di�eren
e26



between the 
urrent value and the median value is higher than a given threshold) worksproperly both for sho
ks and for 2D 
ow with Re . 8000 on a 100�100 grid without anysign of parasiti
 vis
osity. Additional entropy produ
tion for the median �lter limiters insho
k tube tests is essentially the same as for other su

essful limiters (it is 10-20% less,see Fig. 7), but the value of nonequilibrium entropy �S for the median limiter is mu
hhigher than for lo
al value limiters, and small (ma
ros
opi
ally unobservable) os
illationsof �S appear. The distribution of �S is mu
h more sensitive to the 
hoi
e of limiter thanthe additional dissipation. This is one more pra
ti
al hint from the performed tests. Thisindi
ator shows that the median �lter disturbs the original LBGK kineti
s less than othertested limiters with the same or sometimes better stabilisation results.All these observations and su

essful tests allow us to suggest the minimal median �lterlimiter as a \limiter of 
hoi
e". There is one important addition we did not test in thiswork, whi
h improve performan
e of the median limiter: one should not apply the limiterat all points where the threshold is ex
eeded, but at a �xed number of su
h points (notmore than a given k, exa
tly as we did for the Ehrenfests' limiters [8℄).6 Con
lusionsWe have 
onstru
ted a system of nonequilibrium entropy limiters for the LBM:� the positivity rule that provides positivity of distribution;� the pointwise entropy limiters based on sele
tion and 
orre
tion of most nonequilibriumvalues;� �lters of nonequilibrium entropy, and the median �lter as a �lter of 
hoi
e.All these limiters exploit physi
al properties of LBM and allow 
ontrol of total additionalentropy produ
tion. In general, they do the same work for LBM as 
ux limiters do for �nitedi�eren
es, �nite volumes and �nite elements methods, and 
ome into operation whensharp gradients are present. For smoothly 
hanging waves, the limiters do not operateand the spatial derivatives 
an be represented by higher order approximations withoutintrodu
ing non-physi
al os
illations. But there are some di�eren
es too: for LBM themain idea behind the 
onstru
tion of nonequilibrium entropy limiter s
hemes is to limita s
alar quantity | the nonequilibrium entropy | or to delete the \salt and pepper"noise from the �eld of this quantity. We do not tou
h the ve
tors or tensors of spatialderivatives, as it is for 
ux limiters.Standard test examples demonstrate that the developed limiters erase spurious os
illationswithout blurring of sho
ks, and do not a�e
t smooth solutions. The limiters we havetested do not produ
e a noti
eable additional dissipation and allow us to reprodu
e the�rst Hopf bifur
ation for 2D lid-driven 
avity on a 
oarse 100�100 grid. At the same timethe simplest median �lter deletes the spurious post-sho
k os
illations for low vis
osity.Perhaps, it is impossible to �nd one best nonequilibrium entropy limiter for all problems.It is a spe
ial task to 
onstru
t the optimal limiters for a spe
i�
 
lasses of problems.27
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