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Game theory 
 
Abstract 
 
Game theory models interactive decision making in terms of players, strategies, and payoffs. Conventional 
(individual) decision theory cannot prescribe rational choice in games, because a player cannot maximize 
expected utility without knowing how the coplayer(s) will act. Game theory, therefore, incorporates assumptions 
of common knowledge in addition to rationality. Rational players choose dominant strategies whenever 
possible, but many games lack such strategies. Every finite game has a Nash equilibrium, and this is the key 
solution concept of game theory, but the theory is indeterminate, because many games have multiple equilibria. 
Various criteria for equilibrium selection have been proposed. Experimental games provide information about 
the strategic behavior of human decision makers with bounded rationality. Evolutionary game theory helps to 
explain the evolution of cooperation and altruism and adaptive learning in repeated games. 
 
Keywords:  common knowledge, cooperation, Nash equilibrium, Prisoner’s Dilemma game, Stag Hunt game, 
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Background 
Game theory is a formal theory of interactive decision making, used to model any decision 
involving two or more decision makers, called players, each with two or more ways of acting, 
called strategies, and well-defined preferences among the possible outcomes, represented by 
numerical payoffs.  
 In the theory, a player can represent an individual human decision maker or a corporate 
decision making body, such as a committee or a board. A (pure) strategy is a complete plan 
of action, specifying in advance what moves a player would make – what actions the player 
would perform – in every contingency that might arise. If each player has only one decision 
to make and the players decide simultaneously, then the concept of a strategy coincides with 
that of a move, but in more complicated cases a strategy is a comprehensive plan specifying 
moves in advance, taking account of all possible counter-moves of the coplayer(s). A mixed 
strategy is a probability distribution over a player’s set of pure strategies. It is usually 
interpreted as a strategy chosen at random, with a fixed probability assigned to each pure 
strategy, as when a player tosses a coin to choose between two pure strategies with equal 
probabilities. In Bayesian interpretations of game theory, initiated by Harsanyi [12], a mixed 
strategy is sometimes interpreted as a coplayer’s uncertainty about a strategy choice. Payoffs 
represent players’ von Neumann–Morgenstern utilities, which are (roughly) their true 
preferences on an interval scale of measurement, as revealed by the assumedly consistent 
choices that they make in lotteries in which the outcomes have known probabilities assigned 
to them. A player’s payoff function is a mapping that assigns a specific payoff to each 
outcome of the game. 
 The conceptual groundwork of game theory was laid by Zermelo, Borel, von Neumann, 
and others in the 1920s and 1930s (see [10]), and the first fully developed version of the 
theory appeared in Theory of Games and Economic Behavior by von Neumann and 
Morgenstern [31]. The theory began to have a significant impact on the behavioral and social 
sciences after the publication in 1957 of a more accessible text entitled Games and Decisions 
by Luce and Raiffa [18]. The early game theorists considered the chief goal of the theory to 
be that of prescribing what strategies rational players ought to choose to maximize their 
payoffs. In this sense the theory, in its classical form, is primarily normative rather than 
positive or descriptive. An additional rationality assumption, that people generally try to do 
the best for themselves in any given circumstances, makes the theory relevant to the 
empirical behavioral sciences and justifies experimental games (see Section titled 
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Experimental Games below); and in evolutionary game theory, the rationality assumption is 
replaced by replicator dynamics or adaptive learning mechanisms (see Section titled 
Evolutionary Game Theory). 
 
Basic Assumptions 
 
In conventional decision theory, rational choice is defined in terms of maximizing expected 
utility (EU), or subjective expected utility (SEU), where the objective probabilities of 
outcomes are unknown (see utility theory). But this approach is problematic in games, 
because each player has only partial control over the outcomes, and it is generally unclear 
how a player should choose in order to maximize EU or SEU without knowing how the other 
player(s) will act. Game theory, therefore, incorporates not only rationality assumptions, in 
the form of expected utility theory, but also common knowledge assumptions, enabling 
players to anticipate one another’s strategies to some extent, at least. The standard common 
knowledge and rationality (CKR) assumptions are as follows:  
 CKR1 (common knowledge): The specification of the game, including the players’ 
strategy sets and payoff functions, is common knowledge in the game, together with 
everything that can be deduced logically from it and from the rationality assumption CKR2. 
 CKR2 (rationality): The players are rational in the sense of expected utility theory – they 
always choose strategies that maximize their individual expected payoffs, relative to their 
knowledge and beliefs – and this is common knowledge in the game. 
 The concept of common knowledge was introduced by Lewis [16] and formalized by 
Aumann [1]. A proposition is common knowledge if every player knows it to be true, knows 
that every other player knows it to be true, knows that every other player knows that every 
other player knows it to be true, and so on. This is an everyday phenomenon that occurs, for 
example, whenever a public announcement is made, so that everyone present not only knows 
it, but knows that others know it, and so on [21].  
 
Key Concepts 
 
Other key concepts of game theory are most easily explained by reference to a specific 
example. Figure 1 depicts the best known of all strategic games, the Prisoner’s Dilemma 
game. The figure shows its payoff matrix, which specifies the game in normal form (or 
strategic form), the principal alternative being extensive form, which will be illustrated in the 
section titles Subgame-perfect and Trembling-hand Equilibria. Player I chooses between the 
rows labeled C (cooperate) and D (defect), Player II chooses between the columns labeled C 
and D, and the pair of numbers in each cell represent the payoffs to Player I and Player II, in 
that order by convention. In noncooperative game theory, which is being outlined here, it is 
assumed that the players choose their strategies simultaneously, or at least independently, 
without knowing what the coplayer has chosen. A separate branch of game theory, called 
cooperative game theory, deals with games in which players are free to share the payoffs by 
negotiating coalitions based on binding and enforceable agreements. The rank order of the 
payoffs, rather than their absolute values, determines the strategic structure of a game. 
Replacing the payoffs 5, 3, 1, 0 in  Figure 1 by 4, 3, 2, 1, respectively, or by 10, 1, –2, –20, 
respectively, changes some properties of the game but leave its strategic structure (Prisoner’s 
Dilemma) intact.  
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  II 
  C D 

 C 3, 3 0, 5 I 
 D 5, 0 1, 1

 
Figure 1 Prisoner’s Dilemma game 

 
 The Prisoner’s Dilemma game is named after an interpretation suggested in 1950 by 
Tucker [30] and popularized by Luce and Raiffa [18, pp. 94-97]. Two people, charged with 
joint involvement in a crime, are held separately by the police, who have insufficient 
evidence for a conviction unless at least one of them discloses incriminating evidence. The 
police offer each prisoner the following deal. If neither discloses incriminating evidence, then 
both will go free; if both disclose incriminating evidence, then both will receive moderate 
sentences; and if one discloses incriminating evidence and the other conceals it, then the 
former will be set free with a reward for helping the police, and the latter will receive a heavy 
sentence. Each prisoner, therefore, faces a choice between cooperating with the coplayer 
(concealing the evidence) and defecting (disclosing it). If both cooperate, then the payoffs are 
good for both (3, 3); if both defect, then the payoffs are worse for both (1, 1); and if one 
defects while the other cooperates, then the one who defects receives the best possible payoff 
and the cooperator the worst, with payoffs (5, 0) or (0, 5), depending on who defects.  
 This interpretation rests on the assumption that the utility numbers shown in the payoff 
matrix do, in fact, reflect the prisoners’ preferences. Considerations of loyalty, and a 
reluctance to betray a partner-in-crime, might reduce the appeal of being the sole defector for 
some criminals, in which case that outcome might not yield the highest payoff. But the payoff 
numbers represent von Neumann–Morgenstern utilities, and they are, therefore, assumed to 
reflect the players’ preferences after taking into account such feelings and everything else 
affecting their preferences. Many everyday interactive decisions involving cooperation and 
competition, trust and suspicion, altruism and spite, threats, promises, and commitments turn 
out, on analysis, to have the strategic structure of the Prisoner’s Dilemma game [7]. An 
obvious example is price competition between two companies, each seeking to increase its 
market share by undercutting the other.  
 How should a rational player act in a Prisoner’s Dilemma game played once? The first 
point to notice is that D is a best reply to both of the coplayer’s strategies. A best reply (or 
best response) to a coplayer’s strategy is a strategy that yields the highest payoff against that 
particular strategy. It is clear that D is a best reply to C because it yields a payoff of 5, 
whereas a C reply to C yields only 3; and D is also a best reply to D because it yields 1 rather 
than 0. In this game, D is a best reply to both of the coplayer’s strategies, which means that 
defection is a best reply whatever the coplayer chooses. In technical terminology, D is a 
dominant strategy for both players. A dominant strategy is one that is a best reply to all the 
strategies available to the coplayer (or coplayers, if there are several).  
 Strategic dominance is a decisive argument for defecting in the one-shot Prisoner’s 
Dilemma game – it is in the rational self-interest of each player to defect, whatever the other 
player might do. In general, if a game has a dominant strategy, then a rational player will 
certainly choose it. A dominated strategy, such as C in the Prisoner’s Dilemma game, is 
inadmissible, inasmuch as no rational player would choose it. But the Prisoner’s Dilemma 
game embodies a genuine paradox, because if both players cooperate, then each receives a 
better payoff (each gets 3) than if both defect (each gets 1). 
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Nash Equilibrium 
 
The most important “solution concept” of game theory flows directly from best replies. A 
Nash equilibrium (or equilibrium point or simply equilibrium) is an outcome in which the 
players’ strategies are best replies to each other. In the Prisoner’s Dilemma game, joint 
defection is a Nash equilibrium, because D is a best reply to D for both players, and it is a 
unique equilibrium, because no other outcome has this property. A Nash equilibrium has 
strategic stability, because neither player could obtain a better payoff by choosing differently, 
given the coplayer’s choice, and the players, therefore, have no reason to regret their own 
choices when the outcome is revealed.  
 The fundamental theoretical importance of Nash equilibrium rests on the fact that if a 
game has a uniquely rational solution, then it must be a Nash equilibrium. Von Neumann and 
Morgenstern [31, pp. 146-148] established this important result via a celebrated indirect 
argument, the most frequently cited version of which was presented later by Luce and Raiffa 
[18, pp. 63-65]. Informally, by CKR2, the players are expected utility maximizers, and by 
CKR1, any rational deduction about the game is common knowledge. Taken together, these 
premises imply that, in a two-person game, if it is uniquely rational for the players to choose 
particular strategies, then those strategies must be best replies to each other. Each player can 
anticipate the coplayer’s rationally chosen strategy (by CKR1) and necessarily chooses a best 
reply to it (by CKR2); and because the strategies are best replies to each other, they are in 
Nash equilibrium by definition. A uniquely rational solution must, therefore, be a Nash 
equilibrium. 
 The indirect argument also provides a proof that a player cannot solve a game with the 
techniques of standard (individual) decision theory (see strategies of decision making), by 
assigning subjective probabilities to the coplayer’s strategies as if they were states of nature 
and then simply maximizing subjective expected utility (SEU). The proof is by reductio ad 
absurdum. Suppose that a player were to assign subjective probabilities and maximize SEU 
in the Prisoner’s Dilemma game. The specific probabilities are immaterial, so let us suppose 
that Player I, for whatever reason, believed that Player II was equally likely to choose C or D. 
Then Player I could compute the SEU of choosing C as 1/2(3) + 1/2(0) = 1.5, and the SEU of 
choosing D as 1/2(5) + 1/2(1) = 3; therefore, to maximize SEU, Player I would choose D. But 
if that were a rational conclusion, then by CKR1 Player II would anticipate it, and by CKR2 
would choose (with certainty) a best reply to D, namely D. This leads immediately to a 
contradiction, because it proves that Player II was not equally likely to choose C or D, as 
assumed from the outset. The only belief about Player II’s choice that escapes contradiction 
is that Player II will choose D with certainty, because joint defection is the game’s unique 
Nash equilibrium.  
 

  II 
  C D 

 C 9, 9 0, 8 I 
 D 8, 0 7, 7

 
Figure 2 Stag Hunt game 

 
 Nash proved in 1950 [22] that every game with a finite number of pure strategies has at 
least one equilibrium point, provided that the rules of the game allow mixed strategies to be 
used. The problem with Nash equilibrium as a solution concept is that many games have 
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multiple equilibria that are nonequivalent and noninterchangeable, and this means that game 
theory is systematically indeterminate. This is illustrated in Figure 2, which shows the payoff 
matrix of the Stag Hunt game, first outlined in 1755 by Rousseau [26, Part II, paragraph 9], 
introduced into the literature of game theory by Lewis [16, p. 7], brought to prominence by 
Aumann [1], and discussed in an influential book by Harsanyi and Selten [13, pp. 357-359]. 
It is named after Rousseau’s interpretation of it in terms of a hunt in which joint cooperation 
is required to catch a stag, but each hunter is tempted to go after a hare, which can be caught 
without the other’s help. If both players defect in this way, then each is slightly less likely to 
succeed in catching a hare, because they may end up chasing the same one.  
 This game has no dominant strategies, and the (C, C) and (D, D) outcomes are both Nash 
equilibria because, for both players, C is the best reply to C, and D is the best reply to D. In 
fact, there is a third Nash equilibrium – virtually all games have odd numbers of equilibria – 
in which both players use the mixed strategy (7/8C, 1/8D), yielding expected payoffs of 63/8 
to each. The existence of multiple Nash equilibria means that formal game theory specifies 
no rational way of playing this game, and other psychological factors are, therefore, likely to 
affect strategy choices.  
 
Payoff Dominance 
 
Inspired by the Stag Hunt game, and in an explicit attempt to provide a method for choosing 
among multiple equilibria, Harsanyi and Selten’s General Theory of Equilibrium Selection in 
Games [13] introduced as axioms two auxiliary principles. The first and most important is the 
payoff-dominance principle, not to be confused with strategic dominance, discussed in the 
section titled Key Concepts. If e and f are two equilibria in a game, then e payoff-dominates 
(or Pareto-dominates) f if, and only if, e yields a strictly greater payoff to every player than f 
does. The payoff-dominance principle is the proposition that if one equilibrium payoff-
dominates all others in a game, then the players will play their parts in it by choosing its 
strategies. Harsanyi and Selten suggested that this principle should be regarded as part of 
every player’s ‘concept of rationality’ and should be common knowledge among the players.  
 In the Stag Hunt game, (C, C) payoff-dominates (D, D), and it also payoff-dominates the 
mixed-strategy equilibrium in which both players choose (7/8C, 1/8D); therefore, the payoff-
dominance principle requires both players to choose C. But this assumption requires 
collective reasoning that goes beyond the orthodox rationality assumption of CKR2. 
Furthermore, it is not intuitively obvious that players should choose C, because, by so doing, 
they risk the worst possible payoff of zero. The D strategy is a far safer choice, risking a 
worst possible payoff of 7. This leads naturally to Harsanyi and Selten’s secondary criterion 
of selection among multiple equilibria, called the risk-dominance principle, to be used only if 
payoff dominance fails to yield a determinate solution. If e and f are any two equilibria in a 
game, then e risk-dominates f if, and only if, the minimum possible payoff resulting from the 
choice of e is strictly greater than the minimum possible payoff resulting from the choice of f, 
and players who follow the risk-dominance principle choose its strategies. In the Stag Hunt 
game, D risk-dominates C for each player, but the payoff-dominance principle takes 
precedence, because, in this game, it yields a determinate solution.  
 
Subgame-perfect and Trembling-hand Equilibria 
 
Numerous refinements of the Nash equilibrium concept have been suggested to deal with the 
problem of multiple Nash equilibria and the consequent indeterminacy of game theory. The 
most influential of these is the subgame-perfect equilibrium, introduced by Selten [27]. Selten 
was the first to notice that some Nash equilibria involve strategy choices that are clearly 
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irrational when examined from a particular point of view. A simple example is shown in 
Figure 3. 
 

  II 
  C D 

 C 2, 2 0, 0 
 I 

 D 1, 3 1, 3 
               (a) 

 

 
 
                     (b) 
 

Figure 3 Subgame-perfect equilibrium 
 
 The payoff matrix in Figure 3(a) specifies a game in which both (C, C) and (D, D) are 
Nash equilibria, but only (C, C) is subgame-perfect. The Nash equilibrium (D, D) is not only 
weak (because 3 is not strictly greater than 3 for Player II) but also imperfect, because it 
involves an irrational choice from Player II. This emerges most clearly from an examination 
of the extensive form of the game, shown in Figure 3(b). The extensive form is a game tree 
depicting the players’ moves as if they occurred sequentially. This extensive form is read 
from Player I’s move on the left. If the game were played sequentially, and if the second 
decision node were reached, then a utility-maximizing Player II would choose C at that point, 
to secure a payoff of 2 rather than zero. At the first decision node, Player I would anticipate 
Player II’s reply and would, therefore, choose C rather than D, to secure 2 rather than 1. This 
form of analysis, reasoning backward from the end, is called backward induction and is the 
basic method of finding subgame-perfect equilibria. In this game, it shows that the (D, D) 
equilibrium could not be reached by rational choice in the extensive form, and that means that 
it is imperfect in the normal form. By definition, a subgame-perfect equilibrium is one that 
induces payoff-maximizing choices in every branch or subgame of its extensive form. 
 In a further refinement, Selten [28] introduced the concept of the trembling-hand 
equilibrium to identify and eliminate imperfect equilibria. At every decision node in the 
extensive form or game tree, there is assumed to be a small probability ε (epsilon) that the 
player acts irrationally and makes a mistake. The introduction of these error probabilities, 
generated by a random process, produces a perturbed game in which every move that could 
be played has some positive probability of being played. Assuming that the players’ 
trembling hands are common knowledge in a game, Selten proved that only the subgame-
perfect equilibria of the original game remain equilibria in the perturbed game, and they 
continue to be equilibria as the probability ε tends to zero. According to this widely accepted 
refinement of the equilibrium concept, the standard game-theoretic rationality assumption 
(CKR2) is reinterpreted as a limiting case of incomplete rationality.  
 
Experimental Games 
 
Experimental games have been performed since the 1950s in an effort to understand the 
strategic interaction of human decision makers with bounded rationality and a variety of 
nonrational influences on their behavior (for detailed reviews, see [6], [11], [15, Chapters 1-
4], [17], [25]). Up to the end of the 1970s, experimental attention focused largely on the 
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Prisoner’s Dilemma and closely related games. The rise of behavioral economics in the 1980s 
led to experiments on a far broader range of games – see [4], [5].  
 The experimental data show that human decision makers deviate widely from the rational 
prescriptions of orthodox game theory. This is partly because of bounded rationality and 
severely limited capacity to carry out indefinitely iterated recursive reasoning (‘I think that 
you think that I think . . .’) (see [8], [14], [29]), and partly for a variety of unrelated reasons, 
including a strong propensity to cooperate, even when cooperation cannot be justified on 
purely rational grounds [7]. 
 
Evolutionary Game Theory 
 
The basic concepts of game theory can be interpreted as elements of the theory of natural 
selection as follows. Players correspond to individual organisms, strategies to organisms’ 
genotypes, and payoffs to the changes in their Darwinian fitness – the numbers of offspring 
resembling themselves that they transmit to future generations. In evolutionary game theory, 
the players do not choose their strategies rationally, but natural selection mimics rational 
choice. Maynard Smith and Price [20] introduced the concept of the evolutionarily stable 
strategy (ESS) to handle such games. It is a strategy with the property that if most members 
of a population adopt it, then no mutant strategy can invade the population by natural 
selection, and it is, therefore, the strategy that we should expect to see commonly in nature. 
An ESS is invariably a symmetric Nash equilibrium, but not every symmetric Nash 
equilibrium is an ESS. 
 The standard formalization of ESS is as follows [19]. Suppose most members of a 
population adopt strategy I, but a small fraction of mutants or invaders adopt strategy J. The 
expected payoff to an I individual against a J individual is written E(I, J), and similarly for 
other combinations strategies. Then I is an ESS if either of the conditions (1) or (2) below is 
satisfied: 
 
 E(I, I) > E(J, I) (1) 
 E(I, I) = E(J, I), and E(I, J) > E(J, J) (2) 
 
 Condition (1) or (2) ensures that J cannot spread through the population by natural 
selection. In addition, differential and difference equations called replicator dynamics have 
been developed to model the evolution of a population under competitive selection pressures. 
If a population contains k genetically distinct types, each associated with a different pure 
strategy, and if their proportions at time t are x(t) = (x1(t), ..., xk(t)), then the replicator 
dynamic equation specifies the population change from x(t) to x(t + 1). 
 Evolutionary game theory turned out to solve several long-standing problems in biology, 
and it was described by Dawkins as ‘one of the most important advances in evolutionary 
theory since Darwin’ [9, p. 90]. In particular, it helped to explain the evolution of cooperation 
and altruistic behavior – conventional (ritualized) rather than escalated fighting in numerous 
species, alarm calls by birds, distraction displays by ground-nesting birds, and so on.  
 Evolutionary game theory is also used to study adaptive learning in games repeated many 
times. Evolutionary processes in games have been studied analytically and computationally, 
sometimes by running simulations in which strategies are pitted against one another and 
transmit copies of themselves to future generations in proportion to their payoffs (see [2], [3, 
Chapters 1, 2], [23], [24]).  
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