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1. Backward induction 
Backward induction is a form of logical reasoning, based on the technique of mathematical 
induction, that is applicable to certain sequential games. I shall illustrate it with a simple 
version of the ancient game of nim. There are 20 matches on the table, and two players take 
turns in removing either one or two matches, the winner being the player who takes the last 
one, leaving the other player unable to move. Ernst Zermelo (1912) proved the first major 
theorem of game theory to the effect that, in games of this type, either one player or the other 
must have a guaranteed winning strategy. In this case, which player wins, and how? 
 The player who moves first wins. The game is easily solved by backward induction. We 
begin at the end: if it is my turn to move and there are either one or two matches left, then I 
can obviously win, because in either case I can immediately take the last match, leaving my 
opponent unable to move. Therefore, if it is my opponent’s move and there are three matches 
left, I can win, because my opponent must take either one or two and will therefore have to 
leave either two or one, whereupon I can win immediately. Therefore, if it my opponent’s 
turn to move and there are six matches left, I can win, because my opponent will have to 
leave either four or five, and in either case I can then leave three, which as I have shown 
ensures that I can win. Therefore if it my opponent’s turn to move and there are nine matches 
left, I can win, because my opponent will have to leave either seven or eight, and in either 
case I can then leave six, which as I have shown, means that I can leave three on my next 
move, and this ensures that I can win. Continuing in the same vein, if it is my opponent’s turn 
to move and there are 12 or 15 or 18 left, I can win, because whatever happens I can 
eventually leave three whatever my opponent does, and then I can win on my next move. So 
if there are 20 matches to start with and I move first, then I have a guaranteed winning 
strategy, which involves taking two matches on the first move, leaving 18, and then on 
successive moves leaving 15, 12, 9, 6, and 3 matches for my opponent, and finally taking the 
one or two that remain on my last move. 
 
THEOREM 1. In a two-person game of nim in which players take turns in removing either 
one or two matches from a pile until there are none left, the winner being the player who 
takes the last match, the player who moves first has a winning strategy if the initial number 
of matches is 1 (mod 3) or 2 (mod 3), and the player who moves second has a winning 
strategy if the initial number of matches is 0 (mod 3). 
 
 Proof. The proof proceeds by induction on the number of matches. Call the players i and 
j. If it is Player i’s turn to move and there are three matches left, then Player j has a winning 
strategy, because Player i will have to take one or two, leaving either two or one, and in 
either case Player j can win immediately. For the inductive step, suppose that it is Player i’s 
turn to move with s matches left and Player j has a winning strategy. Then if it is Player i’s 
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turn to move with s + 3 matches left, Player j has a winning strategy, because if Player i 
removes one match, Player j can remove two, and if Player i removes two matches, Player j 
can remove one, in either case leaving s matches on Player i’s next move. Thus, if it is Player 
i’s turn to move, Player j has a winning strategy if s = 0 (mod 3). If it is Player i’s turn to 
move and s = 1 (mod 3) or s = 2 (mod 3), then Player i has a winning strategy that involves 
leaving s = 0 (mod 3) matches at each of Player j’s moves. Therefore, the player who moves 
first has a winning strategy if the number of matches at the start is 1 (mod 3) or 2 (mod 3), 
and the player who moves second has a winning strategy if the number of matches at the start 
is 0 (mod 3).  
 
 In Anderson’s (1991, pp. 481-482) rational analysis of the process of solving problems 
involving sequences of steps, which I take to include problems involving backward 
induction, the solver’s (subjective) probability that a given sequence of steps will achieve the 
desired goal is the product of the probabilities that the component steps will have their 
intended consequences, conditioned on the success of the prior steps. In this essentially 
probabilistic analysis, it is not necessarily rational to plan a long sequence of steps if there is 
a risk of the sequence diverging from the intended path at an early stage, and in any event the 
information-handling capacity of working memory places a limit on the number of steps that 
can be kept in mind at once. But the whole point of mathematical induction is to enable a 
problem solver to analyse the consequences of a whole series of steps without having to keep 
them in mind. According to Anderson’s general framework for rational analysis of problem 
solving (see also Anderson, 1990), human cognition is optimized to the environment, and a 
problem solver searches among potential plans that might achieve a solution. If the value of 
the solution goal is G, and every plan has a subjective probability of success P and a cost C, 
the problem solver selects the plan that maximizes the expected value PG - C and implements 
the plan provided its expected value is positive. Mathematical induction greatly reduces the 
cost C of solving certain types of problems involving sequences of steps, and this ought to 
increase its expected value in sequential games such as nim. 
 In the paragraphs that follow I shall discuss the application of backward induction to 
game theory. The choices of human decision makers in sequential games are not always 
rational in the sense of following the prescriptions of backward induction. According to 
Anderson’s (1991, p. 483) analysis, we should not expect problem solvers to make optimal 
moves in all cases, because the theory predicts that they will stop searching for optimality 
and settle for satisficing moves (moves that are satisfactory or that suffice) if the expected 
value of the search falls below a threshold. Game theory, on the other hand, conventionally 
assumes that players are perfectly rational and knowledgeable. As I shall show, the game-
theoretic knowledge and rationality assumptions are incoherent, but an attempt to eliminate 
the incoherence by replacing strict logical reasoning with common-sense (nonmonotonic) 
reasoning leads inexorably to a contradiction. 
 
2. Application to game theory 
Figure 1 shows the well known Prisoner’s Dilemma Game (PDG). Player I chooses between 
row C and row D, Player II simultaneously chooses between column C and column D, and 
the pair of numbers in each cell are the payoffs to Player I and Player II respectively for the 
corresponding pair of strategy choices. 
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Figure 1. Prisoner’s Dilemma Game (PDG) 
 
 It is generally agreed, among game theorists and decision theorists at least, that in a PDG 
rational players will choose their defecting strategies, which are labelled D in Figure 1. The 
reason for this is that the D strategies are strictly dominant for both players, in the sense that 
a player receives a higher payoff by choosing D than by choosing C whatever the other 
player chooses---whether the other player chooses C or D. It is true that both players would 
be better off if they both chose their cooperative C strategies, and therein lies the dilemma of 
the PDG---in technical terminology, the DD outcome is Pareto non-optimal---but the D 
strategies are nevertheless the uniquely rational choices in a one-shot PDG. 
 How should rational players behave in the finitely iterated PDG, that is, in a finite 
sequence of n PDGs played between the same players? Luce and Raiffa (1957, pp. 97-102) 
put forward a powerful argument that rational players will choose D at every move, 
irrespective of the size of n, provided that both players know n in advance. The argument is 
based on backward induction. Suppose the players know that the game is to be iterated 
exactly twice. Both players will notice that their D strategies are strictly dominant in a one-
shot version of the game. This implies that the outcome of the second round is bound to be 
DD, because it is in effect a one-shot PDG, given that there are no moves to follow and thus 
no indirect effects to consider. But if the outcome of the second round is perfectly 
determined, then the first round is also in effect a one-shot PDG, because influences on the 
following round can be discounted. Therefore both players will choose D on both rounds. 
This backward induction argument generalizes straightforwardly to any finite number of 
iterations. 
 Even before the backward induction argument for sequential games was formalized by 
Aumann (1995), its validity had been widely accepted, although the conclusion seems 
counter-intuitive in the finitely iterated PDG, given that both players would do better in the 
long run if they both played more cooperatively. In fact, Luce and Raiffa (1957) themselves 
seem to have had difficulty believing their own proof. They confessed that ‘If we were to 
play this game we would not take the [D] strategy at every move!’ (p. 100, italics in original), 
and they commented that choosing D on every move ‘is not “reasonable” in the sense that we 
predict that most intelligent people would not play accordingly’ (p. 101), although they 
offered no persuasive justification for this opinion. 
 Since the late 1950s, well over 1000 experiments designed to investigate the behaviour of 
players in the PDG and related games have appeared in print (see Colman, 1995, pp. 134-160 
for a comprehensive review). The evidence shows that in finitely iterated PDGs, players 
seldom conform to the prescriptions of the backward induction argument. What is typically 
observed (e.g., Andreoni & Miller, 1993; Cooper, DeJong, & Forsythe, 1996; Rapoport & 
Chammah, 1965) is a substantial proportion of C choices, often exceeding 30 per cent, even 
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among players who have clearly understood the strategic properties of the game. A 
substantial minority of players choose C even on their terminal moves. There is evidence, 
however, that experience with finitely iterated PDGs tends to lead to an increase in D choices 
(Selten & Stoecker, 1986). Possible explanations for violations of backward induction in the 
PDG will be discussed later. 
 
3. Chain-store game 
The problem at the heart of backward induction was brought to prominence through the work 
of Reinhard Selten (1978) on the multi-person Chain-store game. Here is a tidied-up version 
of it. A chain-store has branches in 20 cities, and in each city it faces one potential challenger 
in the guise of 
another store selling the same goods. The challengers decide one by one in order, A, B, ..., T, 
whether to enter the market in their respective cities, and whenever one of them decides to 
enter, the chain-store responds with either a predatory pricing move involving slashing the 
prices of its products to prevent the challenger from building up a customer base, or a 
cooperative move of sharing the customers with the challenger, as shown in Figure 2. 

 
 
Figure 2. Chain-store game 
 
 Figure 2 shows a subgame involving the Chain-store and a single challenger. Beginning 
at the initial decision node circled and labelled Challenger on the left of the figure, 
Challenger first chooses whether or not to compete with Chain-store, so Challenger’s two 
possible moves (represented by arcs) are labelled OUT and IN. If Challenger chooses OUT, 
then the terminal node at the bottom of the figure is reached: the subgame involving those 
two players ends and the pair of numbers in parentheses at the terminal node show the 
payoffs to the Challenger and the Chain-store respectively. Thus if Challenger stays out of 
the market, Challenger’s payoff is (obviously) zero and Chain-store’s is 100 units, 
representing maximum profits in that city. If Challenger chooses IN, then the next decision 
node (circled and labelled Chain-store) is reached: Chain-store responds with either 
COOPERATIVE or PREDATORY. If Challenger chooses IN and Chain-store responds with 
COOPERATIVE, they end up with equal market shares and profits, so that each receives a 
payoff of 50, shown in parentheses at the second terminal node. Finally, if Challenger 
chooses IN and Chain-store responds with PREDATORY, then both players suffer small 
losses, equivalent to 10 per cent of the profits that Chain-store could have expected in that 
city if unchallenged, so that each player receives a payoff of -10 units, as shown at the final 
terminal node. 
 After Challenger A has made a move and Chain-store has responded (if Challenger A’s 
choice was IN), it is Challenger B’s turn to choose IN or OUT, and Chain-store responds 
according to the same game tree, and so the game continues until the twentieth challenger T 
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has had a turn and Chain-store has responded if necessary. 
 It seems intuitively obvious that the chain-store has a strong motive to respond 
aggressively to the early challengers in order to deter the later ones. Selten (1978) called this 
deterrence theory. But according to a simple backward induction argument, this theory is 
wrong and any attempt at deterrence is futile. The backward induction argument begins with 
the situation after 19 of the 20 challengers have made their moves, and the last one, 
Challenger T, is ready to move. Irrespective of what has gone before, it is obvious that 
Challenger T will choose IN, because in that case Chain-store will choose COOPERATIVE--
-at that stage there will be no rational reason for Chain-store to choose PREDATORY, 
because that would give Chain-store a worse payoff and there is no future challenger to deter. 
Challenger T knows that Chain-store will not respond to IN with PREDATORY, so 
Challenger T will choose IN, because IN followed by COOPERATIVE from Chain-store 
gives Challenger T a much better payoff than OUT. Challenger T will enter the market and 
Chain-store will respond with COOPERATIVE in this terminal subgame. This conclusion is 
not affected by what Challengers A, B, ..., S have done at earlier stages of the Chain-store 
game, nor by how Chain-store responded to those earlier moves. 
 Now consider the stage at which the 19th challenger, Challenger S, is about to make a 
move. If S were the last challenger, then it would rational for S to choose IN, because Chain-
store would be sure to respond with COOPERATIVE, as we have seen. The only difference 
now is that it is not the last challenger: Challenger S may think that Chain-store will choose 
PREDATORY in order to deter the challenger to follow on the next round. But we have 
already seen that predatory pricing will not deter the challenger to follow, so Challenger S 
will choose IN and Chain-store will respond with COOPERATIVE. It follows that the 18th 
challenger, Challenger R, who knows all this and is rational, will also choose IN, and in that 
case Chain-store will also respond with COOPERATIVE, and by backward induction this 
applies to every challenger including the first, Challenger A. This leads to the conclusion that 
Challengers A, B, ..., T will all choose IN and in each case Chain-store will respond with 
COOPERATIVE. The inescapable conclusion from the backward induction argument is that 
every challenger will choose IN and Chain-store will always respond with cooperative rather 
than predatory pricing moves. This combination of strategies or outcome is the so-called 
subgame perfect equilibrium of the game. In an echo of Luce and Raiffa’s (1957) loss of 
confidence in their earlier backward induction argument in the PDG, Selten found his own 
conclusion hard to swallow: 
 
 If I had to play the game in the role of [the chain-store], I would follow deterrence theory. I would be very 

surprised if it failed to work. From my discussions with friends and colleagues, I get the impression that 
most people share this inclination. In fact, up to now I met nobody who said that he would behave 
according to induction theory. My experience suggests that mathematically trained persons recognize the 
logical validity of the induction argument, but they refuse to accept it as a guide to practical behavior. 
(Selten, 1978, pp. 132-133) 

 
One hesitates to criticize someone who has won a Nobel Prize for his work on game theory, 
but one does not hesitate for long. Either the backward induction argument is valid, in which 
case one should accept its conclusions, or it is invalid, in which case one should explain why 
the conclusions are not worthy of belief. 
 This is not merely an abstract puzzle: it is important to know whether deterrence works. 
In penology, it is sometimes argued that the threat of capital punishment, even if it is never a 
rational choice in any particular case, is an effective deterrent to future criminals. In some 
countries, including Iran and China, capital punishment is used prodigiously. Other examples 
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of the Chain-store game that spring to mind include various versions of the doctrine of 
military deterrence, numerous economic situations in which a series of aspirant challengers 
take on a monopolist, political conflicts in which underground political groups try to wrest 
concessions from governments by planting bombs or taking hostages, and criminal intrigues 
in which potential blackmailers consider trying to extort money from wealthy individuals or 
companies. In each of these cases, provided that the situation recurs a finite number of times, 
the payoff structure of the game is clear enough for the backward induction argument to 
apply, at least apparently, and therefore for the paradox to emerge. 
 Although there are no published experiments on choices in the Chain-store game, there is 
abundant anecdotal evidence that people do sometimes follow the prescription of backward 
induction in real-life situations with the corresponding strategic structure. Even in the animal 
kingdom, a dominant individual often defends itself against a series of challengers by 
cooperative conventional fighting rather than predatory or escalated fighting (Dawkins, 1989; 
Krebs & Davies, 1991; Lazarus, 1982, 1987, 1994). A large carnivore usually refrains from 
attacking a challenger as ferociously as it is capable of doing when in predatory mode. A 
dominant bighorn ram leaps at an adversary head-on rather than charging its flanks, which 
would cause much more damage. A male fiddler crab defending a burrow never injures a 
challenger, although its huge claws are powerful enough to crush the challenger’s abdomen. 
A dominant rattlesnake wrestles with a challenger but never bites; a dominant male deer 
locks antlers with a challenger rather than piercing its body; in some species, a dominant 
antelope actually kneels down while engaging in combat with a challenger. In each of these 
cases and many others besides, the animals are in effect responding cooperatively rather than 
in a predatory manner to serial challenges to their possession or control of resources such as 
food, territory, or mates, and they appear to follow the logic of backward induction rather 
than forward deterrence. 
 
4. Centipede game 
The paradoxical quality of backward induction is exposed most vividly in the two-person 
Centipede game, first investigated by Robert Rosenthal (1981). A simple version of it has the 
following rules: on successive trials two players alternate in choosing whether to stop the 
game or to continue it. If a player stops the game, then there are no payoffs to either player at 
that point. But whenever a player chooses to continue, that player is fined £1 and the other 
player is rewarded with £10. This is a Centipede game with linearly rather than exponentially 
increasing payoffs, and I have interpreted it in a particular way. For different payoff 
parameters and alternative interpretations, see Aumann (1995); Binmore (1987); El-Gamal, 
McKelvey, & Palfrey (1993); Kreps (1990); McKelvey and Palfrey (1992); and Reny (1986, 
1992). 
 

 
 
Figure 3. Centipede game 
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 The sequence of moves runs from left to right in Figure 3. As in Figure 2, each decision 
node is circled and labelled with the player who makes the decision, and each terminal node 
is labelled in parentheses with the payoffs to Player I and Player II in that order if the game 
stops there. To begin, Player I chooses whether to STOP the game, in which case both 
players receive zero payoffs, or to GO, in which case Player I is fined £1 and Player II 
receives £10 and the game continues (Figure 3 shows only the final payoffs at terminal 
nodes). Then it is Player II’s turn to move. Player II can choose to STOP the game, in which 
case no further payments are made and final payoffs are -1 to Player I and 10 to Player II, or 
to GO, in which case Player II is fined £1 and Player I receives £10 and the game continues. 
Then it is Player I’s turn to make another move. Once again, Player I can choose to STOP, 
with no further payments, or to GO, in which case Player I is fined another £1 and Player II 
receives another £10 and the game continues. After Player I’s second move, whether it is 
STOP or GO, the game ends. This is a short version; it is really a tripede rather than a 
centipede, because it has only three legs. Longer versions of this game are possible, of 
course, and it would look more like a centipede if it had 100 decision nodes, in which case 
the payoffs to both players would then mount up to large sums if there were a lot of GO 
choices. 
 Backward induction leads to the surprising conclusion that Player I should stop the game 
at the very first move and be content with a zero payoff. Suppose the game has reached the 
third decision node at which Player I is about to make the last move of the game. Player I can 
choose to STOP or to GO, but the only rational choice at that point is to STOP and pocket the 
payoff of £9, rather than to choose GO and receive a lesser payoff of £8. This means that at 
the immediately preceding decision node, Player II effectively chooses between stopping the 
game and receiving £10 or continuing it and receiving £9 when Player I, who is assumed to 
be rational, responds by stopping the game on the following move; Player II will therefore 
choose STOP at the second decision node. This in turn means that Player I, at the first 
decision node of the game, effectively chooses between stopping the game immediately and 
receiving a zero payoff or choosing GO and losing £1 when Player II, assumedly rational, 
stops the game at the second decision node. Player I will therefore choose STOP 
immediately. Even if the Centipede has 100 feet and fabulous payoffs towards its head, the 
backward induction argument leads inexorably to the same conclusion: Player I, if rational, 
will stop the game at the very first move, in spite of the fact that vastly better payoffs are 
guaranteed for both players if they both choose GO moves. The outcome that results from 
Player I choosing STOP at the first decision node is the unique subgame perfect equilibrium 
point of the Centipede game, and this is extremely puzzling. 
 Experimental evidence (El Gamal, McKelvey, & Palfrey, 1993; McKelvey & Palfrey, 
1992) shows that human decision makers seldom follow the logic of backward induction. In a 
four-legged Centipede game with a maximum payoff of $6.40 at its head, only 7 per cent of 
McKelvey and Palfrey’s players stopped the game at the first decision node. In a high-payoff 
four-legged Centipede game with a maximum payoff of $25.60 at its head, 15 per cent 
stopped the game at the first decision node. And in a six-legged Centipede game with a 
maximum payoff of $25.60 at its head, just under 1 per cent stopped the game at the first 
decision node. Even at the last decision node, only between 69 per cent of players (in the 
high-payoff four-legged Centipede) and 85 per cent of players (in the low-payoff four-legged 
Centipede) chose STOP. A significant proportion of the players who participated in the 
experiment---between 6 and 7 per cent---chose GO at every opportunity they got, whereas 
less than 1 per cent chose STOP at every opportunity. 
 
5. Common knowledge and rationality (CKR) 
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In order to analyse the logic of the backward induction argument, it is necessary to clarify the 
standard knowledge and rationality assumptions of game theory. These assumptions are 
collectively called common knowledge and (or of) rationality or CKR (see, e.g., Colman, 
1997; Colman & Bacharach, 1997; Hollis & Sugden, 1993; Sugden, 1991, 1992). They are as 
follows: 
 
CKR1.  The specification of the game and the players’ preferences among the outcomes, 

together with everything that can be logically deduced about the game, are 
common knowledge among the players. 

CKR2.  The players are rational in the sense that they always seek to maximize their own 
expected utilities, and this is common knowledge among the players. 

 
The form of rationality specified in CKR2 is usually interpreted as referring to the axioms of 
rational choice under uncertainty as formalized within a Bayesian framework of subjective 
probabilities by Savage (1954). The term common knowledge, which was introduced into 
game theory by David Lewis (1969, pp. 52-68) and later formalized by Aumann (1976), 
needs further explanation. 
 A proposition is common knowledge among a set of players if each player knows it to be 
true, knows that every other player knows it to be true, knows that every other player knows 
that every other player knows it to be true, and so on. It is important to distinguish this from 
the situation of general knowledge in which all members of the group merely know the 
proposition to be true. An example that shows the distinction up especially clearly is the 
muddy children problem, which is a variant of the unfaithful wives or cheating husbands 
problem (Fagin, Halpern, Moses, & Vardi, 1995, pp. 3-7, 24-30, 248-250, 397-402). A group 
of children are playing together, and some of them have mud on their foreheads. All the 
children can see the mud on the foreheads of other children but cannot see mud on their own 
foreheads. A parent arrives and announces to the group, ‘At least one of you has a muddy 
forehead’. The parent then asks: ‘Does any of you know whether you have a muddy 
forehead? Put your hand up now if you know.’ The parent then repeats this question over and 
over, pausing for a response each time. Assuming that the children are all intelligent, 
perceptive, and truthful, and that m of them have muddy foreheads, it is easy to prove that no 
children will put their hands up the first m - 1 times the question is asked, but that all the 
muddy children will put their hands up when the question is asked for the mth time. 
 
THEOREM 2. If a group of n intelligent, perceptive, and truthful children includes m who 
are muddy (m ≤ n), and all children can see whether any other children are muddy but not 
whether they themselves are muddy, and if a public announcement is made to all the children 
that m ≥ 1, and they are then asked repeatedly to respond iff they know that they themselves 
are muddy, then none of the children will respond to the first m - 1 iterations of the question, 
but all of the muddy children will respond when the question is asked for the mth time. 
 
 Proof. The proof proceeds by induction on m. If m = 1, then the single muddy child, 
seeing that none of the other children are muddy but having been told that at least one child is 
muddy, will respond as soon as the parent asks the question for the first time. Assume that the 
theorem holds for m = k. The proof will establish that if m = k + 1, then the k + 1 muddy 
children will respond when the question was asked for the (k + 1)st time. With k + 1 muddy 
children, each muddy child sees k muddy children. Because of the inductive hypothesis that 
the theorem holds for m = k, the muddy children know that if there were just k muddy 
children, then those k children would have responded when the question was asked for the kth 
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time. Knowing that they did not, the k + 1 muddy children deduce that they are themselves 
muddy, and they all respond when the question is asked for the (k + 1)st time. The theorem 
follows by induction.  
 
 The problem is interesting if m ≥ 2. If m = 2, then when the parent asks the question for 
the first time, neither of the muddy children will respond, because they have been told that 
there is at least one muddy child in the group and will both assume that there could be only 
one. But when the question is repeated a second time, they will both respond, because they 
will both realize that if there were only one muddy child, then that child would have 
responded when the question was asked for the first time. For m = 3, when the parent asks the 
question for the third time, the three muddy children will deduce that they are muddy from 
the failure of the two other muddy children to respond when the parent asked the question for 
the second time. The argument generalizes to m = 4, 5, and so on indefinitely. 
 This puzzle exposes the essential nature of common knowledge. If the proposition that ‘at 
least one member of the group has a muddy forehead’ is denoted by P, then for any m ≥ 2, all 
members of the group already know P before the parent announces it. It may therefore seem 
that the parent’s announcement that ‘At least one of you has a muddy forehead’ tells them 
nothing that they do not know already. But although they all know P already, the public 
announcement of P must none the less convey some additional information, because without 
the announcement none of the children will ever respond, no matter how often the parent asks 
the question. Without the announcement, if m = 1, when the parent asks the question for the 
first time, the muddy child will reason that there may be no muddy children in the group, will 
not respond, and will not deduce that he or she is muddy no matter how often the question is 
repeated. If m = 2, the children all know from the evidence of their own eyes that there is at 
least one muddy child in the group, even without any public announcement of this fact, but 
neither will respond when the parent asks the question for the first time, because they will 
both assume that the muddy child that they can see may be the only one in the group, and 
neither will respond when the question is repeated for a second time, because each will know 
that the failure of the other muddy child to respond when the question was asked for the first 
time could be explained by that child assuming that there are no muddy children in the group. 
No matter how often the question is repeated, the muddy children will never own up to being 
muddy. The point is that although the children all know that there is at least one muddy child 
in the group, without a public announcement they do not know that they all know this. It 
follows that the parent’s public announcement of P, a proposition that all members of the 
group already know to be true, does indeed convey some new information. It changes P from 
a proposition that every member of the group merely knows to be true into a proposition that 
is common knowledge in the group. After P has been announced publicly, not only does 
every child know P, a state of knowledge that we may symbolize by KP, but in addition to 
this P becomes common knowledge in the group, which we may write CKP: 
 
 CKP := KP ∧ KKP ∧ KKKP ∧ . . . . (1) 
 
 The backward induction argument rests on the assumptions CK1 and CK2 mentioned 
earlier. These are the assumptions that the specification of the game, the players’ preference 
functions, and the fact that the players are all rational are common knowledge in the game, in 
the sense of (1). 
 The leading explanation for empirically reported deviations from the backward induction 
path focuses on reputation effects and requires a partial relaxation of the CKR assumptions. 
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Kreps, Milgrom, Roberts, and Wilson (1982), often referred to in game theory circles as the 
Gang of Four, showed that two perfectly rational PDG players who each believe that there is 
a small probability that the other player is irrational will deviate from the prescriptions of 
backward induction in an attempt to influence the other player by building their reputations 
for cooperativeness (see also Kreps & Wilson, 1982a, 1982b). Note that this involves an 
element of incomplete information rather than incomplete rationality on the part of the 
players: the players are assumed to be perfectly rational, and it is the information rather than 
the rationality assumptions of CKR that are relaxed. Experiments designed specifically to test 
this theory in the finitely iterated PDG (Andreoni & Miller, 1993; Cooper, DeJong, & 
Forsythe, 1996) and the Centipede game (McKelvey & Palfrey, 1992) have tended to show 
that this explanation in terms of incomplete information and reputation-building cannot 
explain all violations of backward induction. The results suggest that a small proportion of 
people behave cooperatively or altruistically irrespective of any assumptions that they may 
hold about their co-players’ rationality or any attempt to bolster their own reputations. 
 To summarize: The standard knowledge and rationality assumptions of game theory 
include the assumption that players choose their moves or strategies rationally in the sense of 
expected utility theory and that the fact that they do this is common knowledge in the sense 
that every player knows it, every player knows that every player knows it, and so on. The 
backward induction paradox, which can be traced to an analysis by Luce and Raiffa (1957) of 
the finitely iterated Prisoner’s Dilemma Game, appears to show that CKR implies absurd or 
self-defeating behaviour in certain mutually interdependent decision situations involving 
sequential choices. Empirical evidence suggests that human decision makers do not always 
follow the backward induction path even when they are capable of understanding the logic of 
the argument. 
 
6. Nonmonotonic reasoning 
The backward induction argument apparently proves that Player I will stop the Centipede 
game on the first move. Bearing in mind the CKR2 rationality assumption that players always 
seek to maximize their own expected utilities, it follows that the backward induction 
argument must implicitly have proved that, for Player I, the expected utility from choosing 
STOP on the first move is greater than the expected utility from choosing GO. Backward 
induction therefore suggests that Player I must have believed that a choice of GO on the first 
move would result in Player II responding with STOP. If Player I believed that Player II 
would respond by also choosing GO, then Player I’s expected utility would be higher from 
choosing GO than from choosing STOP, and so Player I would choose GO. 
 There is something wrong, because Player I cannot have any belief about how Player II 
would respond to an opening choice of GO. If Player I were to choose GO on move 1, then a 
situation would exist that Player II would know to be strictly impossible under CKR2, 
because the logic of backward induction dictates that Player I will choose STOP on move 1 
and Player II knows that Player I is rational. It is simply incoherent to ask what a theory 
predicts in a situation that is inconsistent with one of its assumptions. We cannot expect a 
theory to predict what would happen if the theory were false. So, as several game theorists 
have pointed out (Basu, 1990; Bicchieri, 1989; Binmore, 1987; Bonanno, 1991; Pettit & 
Sugden, 1989; Reny, 1986; Sugden, 1991, 1992), CKR2 implies the truth of an incoherent 
proposition, namely that Player I’s expected utility must be greater from choosing STOP on 
the first move than from choosing GO. This means that CKR2 must itself be an incoherent 
assumption. On the one hand CKR2 requires a player to evaluate all available moves in order 
to maximize (subjective) expected utility, but on the other certain available moves cannot be 
evaluated or even defined without violating CKR2. Aumann (1995), who provided a rigorous 
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analysis of backward induction in sequential games, simply sidestepped this problem by 
explicitly restricting players’ rationality at each node of the game tree to what happens from 
that point on, whether or not that node could have been reached by rational play, so that 
Aumann’s players are rational when contemplating the future but both blind and amnesic to 
the past. 
 The CKR information and rationality assumptions can be made coherent by replacing 
them with assumptions that Monderer and Samet (1989) have called common beliefs and that 
Sugden (1992) has called entrenched common beliefs. The specification of the game, the 
players’ payoff functions, and the players’ rationality then become matters of common belief 
rather than common knowledge. A proposition is a matter of common belief if each player 
believes it to be true, believes that the other player(s) believe(s) it to be true, an so on, and if 
each player continues to believe it as long as this belief can be maintained without 
inconsistency. Sugden has shown that a replacement of CKR with entrenched common belief 
in rationality allows a player to evaluate the required expected utilities and eliminates the 
incoherence. But I shall argue below that this approach leads to something worse than 
incoherence, namely a straightforward contradiction, because it implies that a rational player 
will both choose and not choose the GO move in the Centipede game. 
 I suggest that greater clarity and precision may be achieved by reformulating the CKR2 
assumption as a default inference rule within the framework of a system of nonmonotonic 
reasoning (Geffner, 1992; Ginsberg, 1987; Makinson, 1989; McCarthy, 1980, 1986; Reiter, 
1987). Formalizations of nonmonotonic reasoning are designed to capture some of the 
features of common-sense reasoning. The canonical example consists of the two premises 
‘Birds fly’ and ‘Tweety is a bird’ together with the conclusion ‘Tweety can fly’. In this 
example, ‘Birds fly’ is interpreted to mean ‘Normally, birds fly’, ‘Typically, birds fly’, or ‘If 
x is a bird, then assume by default that x flies’. In other words, the proposition that Tweety 
can fly it is a default assumption that we adopt in the absence of information that might 
override it. If we introduce the additional item of information that Tweety is a penguin, or an 
ostrich, or an emu, or that Tweety is coated in heavy crude oil, or that Tweety is dead, then 
the conclusion no longer follows. It is in this sense that the reasoning is nonmonotonic: in 
classical first-order logic, if a set of premises P implies a conclusion q, P → q, then the 
addition of further premises from a larger set S ⊃ P cannot affect the truth of the conclusion 
q. This is called the extension theorem of semantic entailment in propositional calculus. But 
in nonmonotonic reasoning the extension theorem does not hold, and additional premises can 
negate conclusions derived from a smaller set of premises. 
 In McCarthy’s (1980, 1986) system of circumscription, ‘x is a bird’ may be symbolized 
by B(x), ‘x can fly’ by F(x), and ‘x is abnormal’ (in the sense that it is a non-flying bird) by 
Ab(x). The default inference rule ‘birds fly’ then becomes 
 
 ∀x B(x) ∧ ¬Ab(x) → F(x). (2) 
 
Reinterpreting (2) in terms of game theory, ‘x is a player’ may be symbolized by P(x), ‘x is 
rational in the sense of CKR2’ by R(x), and ‘x is abnormal’ (in the sense of violating CKR2 
in the game) by Ab(x). The default inference rule ‘the players in the game are rational in the 
sense of CKR2’ then becomes 
 
 ∀x P(x) ∧ ¬Ab(x) → R(x), (3) 
 
and this inference rule is common knowledge in the game. If Diana is a specific player, 
symbolized by d, then 



 Rationality Assumptions of Game Theory   12 

 

 
 (∀x P(x) ∧ ¬Ab(x) → R(x)) ∧ P(d) → R(d). (4) 
 
The conclusion on the right-hand side of (4) is defeasible, however. If the game is Centipede, 
for example, and Diana is in the role of Player I and chooses GO at the first decision node, 
then Player II may conclude that ¬¬Ab(x). This is equivalent to Ab(x); it blocks the default 
inference rule (3) and prevents the conclusion from being drawn in (4). 
 It is possible to replace the standard information and rationality assumptions CKR with a 
revised set of assumptions CKR′. In CKR′, CKR2 is replaced with the default inference rule 
(3), which I shall label W. Thus CKR2 is replaced by the following pair of assumptions: 
 
CKR2′. W := ∀x P(x) ∧ ¬Ab(x) → R(x). 
CKR3′. KW ∧ KKW ∧ KKKW ∧ . . . . 
 
This is the default inference rule plus the stipulation that it is common knowledge in the 
game. The players are assumed to be rational as before, but their assumptions about their co-
players’ rationality are now defeasible, and these assumptions will be abandoned as premises 
for reasoning about the game if evidence comes to light showing players to be irrational. This 
brings CKR within the ambit of common-sense reasoning, and it may provide a formal 
framework for what Monderer and Samet (1989) and Sugden (1992) had in mind when they 
developed notions of common belief and entrenched common belief in rationality. 
 This modification of the CKR2 assumption does not prevent the backward induction 
argument from going through with the finitely iterated Prisoner’s Dilemma, Chain-store, or 
Centipede games. In all cases, the players, who are still assumedly rational, will choose 
rationally, and so the default inference rule will not be blocked, therefore the conclusion will 
be the same as before, and the paradox will remain. The crucial difference is that it is no 
longer incoherent for a player to ask how a co-player would respond to a deviation from the 
backward induction path. In the Centipede game, for example, if Player I were to choose GO 
on Move 1, then Player II would simply cease to believe that Player I was rational, perhaps 
attributing this to Player I’s ‘trembling hand’ (Selten, 1975, Myerson, 1978), and would 
choose the best reply in the light of this new information. 
 Now Player I can ask without incoherence: How would Player II respond if Player I were 
to choose GO at the initial decision node? What is important is Player II’s assessment of 
Player I’s likely response at the following (final) decision node if Player II were to choose 
GO at the second decision node. If Player II thinks that there is a probability of 1/2, say, that 
Player I would respond by choosing GO once again, then Player II, by choosing GO, would 
receive a payoff of 19 with probability 1/2 (if Player I responds with GO) and a payoff of 9 
with probability 1/2 (if Player I responds with STOP). Thus, in deciding whether to choose 
STOP or GO at the second decision node, Player II’s expected payoffs are as follows: 
1. Player II’s expected payoff for choosing STOP: 10 units with certainty. 
2. Player II’s expected payoff for choosing GO: 19/2 + 9/2 = 14 units. 
The rational response for Player II, under the revised information and rationality 
assumptions, would be GO, because GO would maximize Player II’s expected utility. In fact, 
if Player II had a subjective probability greater than 1/10 that Player I would respond to a GO 
choice by also choosing GO, then Player II’s rational strategy, according to the revised 
version of CKR2, would be GO, because the expected payoff of choosing GO given a 1/10 
subjective probability of a GO reply would be (1/10)(19) + (9/10)(9) = 10, which would be 
equal to the payoff of choosing STOP, and the expected payoff of choosing GO would be 
higher if the subjective probability of a GO reply were higher. 
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 In the short tripede in Figure 3, of course, Player II may not expect Player I to repeat the 
GO strategy on the next move, because the next move is the last. But this reasoning applies 
quite generally, even in the middle of a long Centipede game---a millipede, perhaps---with 
many moves and fabulous riches dangling from its head. Suppose that Player II has observed 
Player I’s behaviour on many previous moves, and Player I has invariably chosen GO. In that 
case, Player II may choose GO, confidently expecting a GO reply from Player I. But 
according to the backward induction argument, on the first move of the game Player I will 
none the less expect a lower payoff from choosing GO than STOP, which means that Player I 
attaches a low subjective probability to the prospect of Player II choosing GO on the second 
move. 
 This conclusion is surprising and paradoxical. The backward induction argument 
mandates a STOP choice from a player at any decision node that may be reached. This 
implies that, in evaluating the expected utility of choosing GO, the player must be assigning a 
small subjective probability to a GO reply from the co-player, because it is assumed that 
players always seek to maximize their own expected utilities. Given the payoffs shown in 
Figure 3, for example, the backward induction argument implies that Player II, evaluating the 
subjective utility of a GO choice at the second decision node, must assign a subjective 
probability of less than 1/10 to a GO reply from Player I. Furthermore, this low subjective 
probability of a GO reply appears to be insensitive to influence from relevant empirical 
evidence. It is not difficult to think of circumstances in which the subjective probability of a 
GO reply should increase. For example, in the middle of a long Centipede game, after Player 
I had chosen GO at all previous decision nodes, it would seem reasonable for Player II to 
choose GO and to assign a higher subjective probability to a further GO choice from Player I. 
Many would argue that there must come some point at which inductive reasoning---by which 
I mean empirical induction of the type conventionally used for deriving posterior 
probabilities in Bayesian analysis, not mathematical induction of the type used in backward 
induction---forces the subjective probability of a GO reply above the threshold that gives a 
Player II a higher expected utility for a GO than a STOP choice. This is essentially the 
argument put forward by Sugden (1992). But the backward induction argument implies that a 
player will invariably choose STOP at any decision node, irrespective of empirical evidence 
that a GO reply is probable. Thus we have two rational arguments derived from the same 
knowledge and rationality assumptions, one for choosing GO and one for choosing STOP. 
Perhaps this is merely an elaborate new refutation of empirical induction (cf. Popper, 1959), 
which lurks behind the usual Bayesian interpretation of expected utility embodied in CKR2. 
But it is the backward induction argument, based on mathematical induction, rather than the 
expected utility argument, based on empirical induction, that appears suspect, because the 
empirical evidence of past moves must surely be of some probative relevance. 
 
7. Conclusions 
The backward induction paradox has attracted attention from decision theorists ever since 
Selten (1978) highlighted it in relation to the Chain-store game and Rosenthal (1981) 
provided a particularly stark example of it in the Centipede game. I have not resolved the 
paradox; in fact, like an over-zealous physician, I have induced a more serious pathology 
than the one I set out to cure. The backward induction argument suggests that in the 
Centipede game Player I will choose STOP at the first decision node, that in the Chain-store 
game the Chain-store will always respond cooperatively to challenges, and that in the finitely 
iterated PDG both players will defect on every round. Under the revised CKR′ assumptions, 
this implies that the expected utility of these strategies is less than the expected utility of their 
seemingly more plausible alternatives. This conclusion arises from the reasonable default 
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assumption that the co-players are rational. 
 But the backward induction argument rests on a hidden assumption about the likely 
responses to behaviour off the backward induction path, and this assumption cannot 
necessarily be maintained irrespective of the co-player’s past behaviour. The standard CKR 
assumptions of game theory allow no prediction about how a co-player would respond to a 
deviation from the backward induction path, because they imply that this situation simply 
cannot arise. With the revised CKR′ assumptions, in which CKR2′ is a default inference rule 
in a system of nonmonotonic reasoning, subject to common knowledge, a player can at least 
contemplate the co-player deviating from the backward induction path. For example, in the 
Centipede game, the revised knowledge and rationality assumptions imply that Player II may 
respond to GO with GO. Player II will choose GO if the expected utility of doing so exceeds 
the expected utility of choosing STOP. Having seen Player I choosing GO on the first move, 
Player II will be forced to infer that Player I is not rational in the sense of CKR2 and will thus 
abandon the default assumption (4) above. Faced with an irrational co-player, Player II may 
therefore judge that Player I, having already chosen a GO move off the backward induction 
path, may choose further GO moves in future if given the opportunity to do so, and Player II 
may therefore be happy to provide Player I with an opportunity to do so, given that this 
would benefit both players. All this being common knowledge in the game, Player I may 
therefore assess the expected utility of choosing GO on the first move to be greater than the 
expected utility of choosing STOP. Yet according to the backward induction argument Player 
I will none the less choose STOP on the first move, because at that stage there is nothing to 
block the default assumption (4) that Player II is rational in the sense of CKR2′. One line of 
reasoning (backward induction) prescribes a STOP choice on the first move, and another (the 
principle of expected utility maximization) prescribes GO. This is a straightforward 
contradiction and a genuine paradox, and it shows that something is seriously wrong with the 
knowledge and rationality assumptions of game theory. 
 The Prisoner’s Dilemma, Chain-store, and the Centipede games are well defined games 
that real people can and do play. It is reasonable to ask what are the rational ways of playing 
them. Backward induction seems to imply unwavering defection in the PDG, cooperative 
responses to challenges in the Chain-store game, and STOP choices in the Centipede game, 
and many writers have commented that these conclusions are highly counter-intuitive. A 
more careful analysis has shown that the conclusions are not merely counter-intuitive but 
may violate the principle of expected utility maximization built into the assumption of the 
players’ rationality in CKR2. The standard information and rationality assumptions are 
incoherent. If we tidy them up by replacing CKR2 with a default inference rule regarding the 
players’ rationality, which is assumed to be common knowledge in the game, then we can 
derive conclusions that are mutually contradictory. They suggest that in the Centipede game 
there are circumstances in which Player I both will and will not choose GO at the first 
decision node. This suggests that the knowledge and rationality assumptions, even as 
modified via nonmonotonic reasoning to allow reasoning about departures from the backward 
induction path, must be false or incoherent. In particular, the rationality assumption CKR2 or 
it nonmonotonic equivalent CKR2′ may be suspect, but it is not clear where the problem lies. 
The expected utility argument relies on empirical induction, which has no adequate rational 
justification, but it is the conclusions of the backward induction argument that are hard to 
swallow. 
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