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ABSTRACT 

Aims 

To illustrate the application of relative survival to observational studies in coronary heart 

disease and potential advantages compared to all-cause survival methods. Survival after 

myocardial infarction is generally assessed using all-cause or cause-specific methods. Neither 

method is able to assess the impact of the disease or condition of interest in comparison to 

expected survival in a similar population. Relative survival, the ratio of the observed and the 

expected survival rates, is applied routinely in cancer studies and may improve on current 

methods for assessment of survival in coronary heart disease. 

Methods and results 

Using a cohort of subjects after a first recorded acute myocardial infarction, we discuss the 

application of relative survival in coronary heart disease and illustrate a number of the key 

issues. We compare the findings from relative survival with those obtained using Cox 

proportional and non-proportional hazards models in standard all-cause survival. Estimated 

survival rates are higher using relative survival models compared to all-cause methods. 

Conclusion 

Estimates obtained from all-cause mortality fail to disentangle mortality associated with the 

condition of interest from that due to all other causes. Relative survival gives an estimate of 

survival due to the disease of interest without the need for cause of death information. 

 

Keywords: relative survival,    survival analysis,    population based research 
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INTRODUCTION/METHODS 

Why measure mortality in heart disease? 

Coronary heart disease (CHD) is the leading cause of mortality in industrialised societies (1, 

2), accounting for over 105,000 deaths in the UK in 2004 (3). Understanding both short and 

long term patient survival may help to inform improved management after presentation with 

CHD. Much of what we know about survival for patients with CHD comes from randomised 

controlled trials (RCT). Such trials usually recruit relatively selected populations followed 

over relatively short times, and the findings of RCTs may not easily be generalisable to the 

general population. Thus the assessment of patient survival in unselected clinical populations 

can be informative to the patient, the clinician, and in terms of future health-service provision. 

Important prognostic factors related to survival can be evaluated along with comparisons over 

time and between centres. 

 

How would we ideally assess mortality? 

To understand the natural history of a disease or condition of interest, and the influence of 

risk-factors and co-morbidity properly, it is essential to use appropriate statistical techniques. 

Ideally, the impact on mortality of a particular disease or condition would be measured by 

assessment of mortality specifically due to, or associated with, the disease of interest. 

However in broad population-based studies, cause of death is often difficult to establish with 

certainty. 

 

Cause-specific survival analysis 

Cause-specific (or net) survival considers as events only deaths that can be directly attributed 

to the disease of interest, with deaths from all other causes being censored. The probability of 

survival can be evaluated, but avoiding consideration of competing risks. When considering 
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cause-specific survival, it is usually of interest to fit statistical models to investigate 

simultaneously the influence of covariates, such as age and sex.  

 

What are the limitations of cause-specific analyses? 

The main limitation of cause-specific survival is its dependence upon reliable coding of 

information on the cause of death. This reliance is not well founded, particularly when the 

source of information is the death certificate. For example a patient may be recorded as dying 

of renal failure where this is the result of cardiogenic shock following acute MI. Three trained 

physician-adjudicators assessed cause of death in 2686 Framingham Heart Study participants 

(4). Of cases adjudicated as attributable to CHD, only 83.8% were recorded as such on the 

death certificates. Moreover, of cases recorded as due to CHD on the death certificate, this 

was confirmed in less than 70% by the physician-adjudicators. In this context, arguments 

have been presented that are critical of cause-specific survival. Lauer et al. (2) argue that data 

obtained from death certificates or from medical records are haphazard, biased and often 

inaccurate. These authors also suggest that all-cause death should be assessed as the primary 

end point, as it is both objective and unbiased. More recently, Mant et al.(5) argued that 

cause-specific methods are also flawed when attempting to differentiate among causes of 

cardiac death. These authors highlighted that this was the result of the inability of clinicians to 

agree on a cause of death; even where autopsy information was available, disagreement 

remained for a third of all deaths.  

 

All-cause survival analysis 

All-cause (or crude) survival includes all deaths within the cohort under investigation, and 

does not separate those due to the disease of interest from those due to other causes. All 
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deaths are considered as events with only those surviving the follow-up period, or those lost 

to follow-up, being censored.  

 

How are all-cause methods also limited? 

Clearly, in a cohort of patients with a given condition, some deaths will occur which are 

unrelated to the disease of interest. However all-cause analysis cannot disentangle deaths 

related to the disease of interest from deaths due to competing risks. A further, and important, 

limitation of all-cause survival methodology is its relative inability to disentangle the effect of 

strong covariates. For example, age is a strong confounder in most conditions. When we 

adjust for age at diagnosis in an all-cause model we are adjusting for the combination of the 

impact of age on mortality associated with the disease of interest, and its impact on mortality 

from all other causes, the magnitudes of which may differ.  

 

Relative survival analysis - What can cancer share with CHD? 

Analysis of survival in population based cancer studies often includes relative survival, used 

alongside, or instead of, crude and cause-specific methods (6, 7). Relative survival estimates 

the mortality rate for patients with the condition of interest after correcting for estimated 

mortality from all other causes. This methodology considers survival in patients with a 

specific malignancy compared to survival in a comparator population. Large scale examples 

can be found in the EUROCARE studies (8). As some parallels exist between heart disease 

and cancer; for example, extended survival and follow-up is common to both disease areas, 

consideration of relative survival methodology may be worthwhile in CHD. An investigation 

of the practical application in CHD of relative survival methodology would be informative 

regarding the impact on outcome of CHD compared to what might be expected in the absence 
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of that condition. In particular, relative survival allows for the use of appropriate statistical 

models to adjust adequately for confounders.  

 

To date there are limited numbers of published relative survival applications and related 

methods in cardiovascular disease, most involving heart surgery. Of these, Norman et al. 

describes a review of the limitations of current methods that use expected survival and how 

many authors focus on observed survival(9). Others describe various relative survival 

statistical models applied in patients undergoing cardiac surgery (10-13) 13). Few such 

reports pertain to patients with non-surgical conditions, such as atrial fibrillation (14), MI (15) 

and stroke (16, 17). For the most part these analyses fail to model the influence of covariates 

and none fully utilises relative survival methodology. 

 

What is relative survival? 

As noted above, relative survival attempts to separate mortality from the disease of interest 

from mortality due to all other causes. To do this the ratio of the observed (all-cause) survival 

in the cohort of interest and the expected survival in a similar group in the general population  

is calculated (18).  

 

Observed (all-cause) survival in 

cohort studied 
Relative survival = 

Expected survival based on rates 

in a comparator  population 

 

The cohort of interest may comprise a sample of individuals with a specific diagnosis, for 

example acute myocardial infarction (AMI). The comparator group is obtained from routine 

data, matched to the cohort of interest by age, sex, deprivation and other potentially important 
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covariates. In a relative survival model, the observed mortality rate within the cohort of 

interest is made up of the background mortality rate in the general, comparator population (ie 

deaths due to all causes) plus the excess mortality rate associated with the condition of 

interest, i.e. all deaths resulting from the AMI.  

 

Total observed mortality rate = Expected mortality rate + Excess mortality rate 

 

So when modelling relative survival we attempt to estimate directly the excess mortality  

experienced by patients diagnosed with the condition of interest, compared to that of the 

general population, thereby obtaining an estimate of net survival.  

 

An advantage of relative survival is that information on individual cause of death is not 

required; this removes the main problem associated with cause-specific mortality. However 

the method assumes that deaths due to the disease of interest are independent of mortality in 

the general population (18) , to which we will return later. Relative survival yields excess 

hazard ratios, as opposed to the standard hazard ratios obtained in Cox and other survival 

models. Excess hazard ratios can also be used to estimate variability in the excess risk of 

death due to the disease of interest when, for example, comparing one demographic group to 

another, or temporal patterns of survival after AMI. As patterns of survival in AMI change, 

with increasing interest in long-term survival, we can expect the use of relative survival 

methods to become increasingly important and relevant.  

 

What are the assumptions made within relative survival? 

An assumption when using relative survival is that the matched population group used to 

obtain expected mortality is appropriate for the particular disease under study. The mortality 
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rates should thus represent the expected mortality if the subject did not have the disease under 

study. A further issue is that when using national or regional life tables to obtain the expected 

mortality rates, the disease under study is included in these figures. If the prevalence of 

disease is low then this will have little impact on the estimates and for even the most common 

cancers it has been shown that this introduces negligible bias(18). In older age groups AMI 

has a higher prevalence than most cancers and thus the prevalence issue needs to be 

considered. In subjects aged 75, there is negligible bias in the estimate of relative survival. 

However, the bias increases with age as the prevalence of AMI increases and the estimate of 

relative survival in the most elderly groups, for example those over 90 is potentially biased. 

Fortunately, there is very little bias in excess hazard ratios when comparing groups as any 

bias will be in the same direction.  

 

Relative survival - An example analysis in cancer 

A recent population-based study (19) investigated changes in colorectal cancer survival, using 

all-cause and relative survival methods. Using all-cause analysis, the analysis showed that for 

patients aged ≥75 years, for all stages of disease, 5-year survival was 41.4% in 1976-87 and 

43.3% in 1988-99, suggesting improved survival between these periods. By comparison, the 

estimates of relative survival were much higher and, moreover, nearly identical for the two 

periods (68.0% and 67.9%), suggesting no improvement. This observation could be explained 

by improved survival in the background population, as well as in the cohort of interest and/or 

a change in the age distribution of patients with colorectal cancer. In other words, the apparent 

improvement over time in survival in the cancer cohort could represent improved survival in 

the general population, rather than cause-specific survival improvement in the cohort of 

interest. 
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Relative survival in CHD: an illustration 

Using information from a large database, we here illustrate the application of relative survival 

methodology in CHD. The data come from Leicester Royal Infirmary Coronary Care Unit. 

For all admissions to this CCU, details are recorded regarding details of presentation, 

comorbidity and other clinical data. Patients are followed prospectively for mortality. Here we 

use data pertaining to patients admitted between 1993-2006, with a presentation of acute ST 

elevation myocardial infarction. The total of 4747 individual events includes 3231 men. Men 

(64.1 years) had a mean age 8 years younger than women (72.2 years), the average age of the 

population being 66.7 years. Of this cohort, 1759 (37.1%) died within the six year follow-up 

period used here. Follow-up began at hospitalisation and not after 30 days survival as is 

sometimes the case (20). The expected mortality was calculated using rates from the United 

Kingdom Government Actuary's Department with each individual in the study cohort 

matched using age, year of hospitalisation and sex to the England and Wales population (21). 

 

What statistical methods are used? 

In this paper we conduct a simple analysis in order to illustrate the methods. We start with 

simple lifetables and compare the findings from all-cause and relative survival approaches, 

stratified by age groups, defined as <60 years, 60-75 years and >75 years old. We then look at 

the effect of age using a relative survival model with proportional excess hazards and 

compare this to a standard (all-cause) Cox proportional hazards model. We also investigate 

non-proportional models for both the relative survival and Cox approach. Finally proportional 

models investigating the effect of sex, with and without adjustment for age groups, are 

performed for both relative survival and all-cause approaches. The variables we have analysed 

in this paper are also used as matching variables. However, it is important to note that other 
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variables, for example glucose levels at admission, can easily be incorporated into the 

statistical model. 

 

 

RESULTS 

What do relative survival lifetables contain? 

Relative survival estimates can be presented in lifetables similar to those for standard survival 

analyses but with emphasis on relative survival and evaluating survival probabilities. The 

lifetables for each age group are shown in Table 1. In this table, in addition to the interval 

specific standard (observed) survival results, the expected [lightly shaded] and interval-

specific relative survival estimates [shaded] are also shown. If the observed number of deaths 

is equal to the expected number of deaths during an interval then the probability of survival 

for patients with the condition of interest is the same as that in the general population. 

Investigation of the <60 years old age group shows the observed number of deaths dropping 

from 88 in the first month to just 14 in year 2-3 of follow-up. However the expected numbers 

of deaths by 30 days and during year 2-3 of follow up are 0.5 and 5.8 respectively. Thus, 

acute ST elevation MI is associated with almost all excess deaths in the 30 day period 

following the event, and with an excess of less than 10 deaths in year 2-3.   

 

Clearly, AMI is associated with a marked excess in mortality in the immediate, post AMI 

period. However, how much of the later mortality excess, and indeed of overall mortality in 

our cohort, can be ascribed to the index AMI? Consideration of the cumulative survival data 

illustrates the information to be gained from relative survival analysis. By the end of follow-

up, an all cause approach shows cumulative survival of 0.258 for the >75 years old group. 

However taking expected mortality into account, the cumulative relative survival rate is 
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0.460. In other words, if we ignore expected, background mortality in the population, the 

survival proportion is over 20% lower in absolute terms, as mortality due to other causes is 

included in the all-cause analysis. 

 

Using the table we can also see that expected survival decreases with age. By 4-6 years of 

follow-up, the youngest age group had a cumulative expected survival rate of 0.964 and the 

oldest age group 0.561. The relative survival rate can be found as the ratio of the observed 

survival and expected survival shown in the table. Note how cumulative relative survival is 

greater compared to cumulative observed survival at all times, for all ages. Also worthy of 

note is that the interval specific relative survival is lowest during the first 30 days after AMI, 

in spite of this being the shortest time period considered in the analysis. The same is true for 

absolute survival (not shown).  

 

Can we see this graphically? 

Lifetable information is often easier to interpret in graphical form. Figure 1 shows the relative 

survival curve, along with the expected and observed (all cause) survival probabilities split by 

age groups, (under 60 years old, 60-75 and >75 years). The figure highlights the difference 

between a relative survival and an all cause survival approach. The observed values shown on 

the figure represent all of the deaths in the cohort, i.e. the survival rate if we assumed an all-

cause approach. The expected survival is the survival rate we would expect if the cohort was 

in the general population without experiencing the index AMI, and the relative survival is the 

ratio of these two lines.  

 

The initial drop in survival is smallest for the youngest age group. Moreover, relative and 

observed survival are very similar in this age group, as expected survival is close to 1. As 
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background mortality is very low in this age group, nearly all deaths experienced within this 

cohort are likely to be attributable to the index AMI. In the other age groups, particularly the 

eldest, there is also very little difference between the observed and relative survival rates for 

the first year post MI. However there is a relatively high expected mortality rate in this oldest 

age group; some of the deaths in this population are not due to the index AMI. Later, the 

relative survival curve begins to plateau, although never flattening completely. If the relative 

survival curve flattens out completely then the mortality rate of these surviving individuals is 

the same as expected in the general population. When this effect occurs it is known as 

statistical or population cure.  

 

How do we use statistical models in relative survival? 

The influence of cofactors or comorbidity on relative survival can be obtained by modelling, 

and expressed as excess hazard ratios; their interpretation is straightforward. For example, an 

excess hazard ratio of 2 for males would suggest that the excess mortality rate in men (i.e. 

deaths associated to the disease of interest) is twice as high as in women.  

Table 2 illustrates the impact of age on hazard ratios estimated from a Cox proportional 

hazards model and on excess hazards ratios from a relative survival model. Using <60years as 

the comparator group, for both 60-75 and >75 age groups, estimates of the excess hazard 

ratios are lower with relative survival modelling than with the hazard ratios from the Cox 

model. Once again this illustrates the increasing influence of competing risks in a population 

as that population ages. 

 

The effect of age can also be assessed by the excess mortality rate. During the first month the 

excess mortality rate ranges from 800 [<60 age group] to 5450 [>75 age group] excess deaths 
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per thousand person years. We can conclude that during the first month there is a huge 

increased risk of death associated with the index event.  

 

How do we look at time-dependent effects? 

In their simplest form the models assume the impact on mortality to be proportional over 

time, which may not be the case. As with Cox models, it is possible to investigate whether the 

excess hazard ratio changes over time (Figure 2). For the 6-12 month follow-up interval, and 

using the all-cause method, we would estimate that patients aged 60-75 are at approximately 

three-fold greater risk of death, and patients aged >75 are near 8-fold greater risk, compared 

to a patient aged <60. In comparison, the relative survival method estimates of excess risk are 

rather lower, at 2-fold for patients aged 60-75, and 4-fold for those aged >75 years. Over time 

the subjects in the cohort are ageing and the expected mortality rate is also increasing with 

age. Relative survival methodology takes account of this, giving a more realistic estimate of 

the excess mortality associated with the previous AMI. This is shown for illustrative purposes 

even though a likelihood ratio test proved non-significant suggesting that the proportional 

model is more appropriate. 

 

What are the results from further analyses? 

An unadjusted Cox model found that male gender was associated with a hazard ratio of 0.60 

(0.55 , 0.66), suggesting a 40% lower risk of death for males in our cohort. Using the relative 

survival estimate, which allows for the fact that the females (on average older) are more likely 

to die of other causes, the excess hazard ratio is 0.52 (0.45 , 0.58) for males, a 48% lower risk 

compared to females.  As with Cox models it is possible to adjust for multiple covariates, and 

for illustration we considered both sex and age in the models. The adjusted Cox estimate for 

males was 0.90 (0.82 , 1.00), indicating a 10% lower risk of mortality after AMI. However, as 
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we have seen, this methodology fails to separate death due to the index AMI from deaths due 

to other causes. Females in this cohort are older (mean 72.2) than males (mean of 64.1) and 

are thus more likely to die from causes other than the AMI. The adjusted relative survival 

model gives an estimate of 0.78 (0.69 , 0.88) for males, suggesting a 22% lower excess 

mortality due to CHD for males compared to females post MI, after adjustment for age. The 

advantage of this model is that it adjusts for the disease associated mortality associated with 

age separately from the expected mortality experienced in the general population. 

 

 

DISCUSSION 

What can relative survival methodology add to the assessment of CHD? 

 

Relative survival provides clinically relevant information. Investigation of excess mortality 

rates has potential implications regarding patients’ long term survival. For example while 

much resource is dedicated to the management of “young” patients with CHD, our initial 

estimates from the proportional excess hazards model suggest that for patients aged <60 

years, the excess risk due to the index MI is around 30 additional deaths per 1000 person 

years over the first 6 months, but as few as 6 excess deaths estimated per 1000 person years 

after 3 years. 

 

What are the limitations of relative survival? 

Relative survival can be interpreted as a measure of mortality due to the disease of interest 

only if deaths due to the disease of interest are independent of the mortality in the general 

population. Even if this is not the case, relative survival still provides a useful comparison 

with mortality in the comparator population, which is usually the general population(22). It 
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may be worth considering alternative comparator groups when using relative survival 

methods in CHD to derive the expected mortality rates. For example, patients with CHD have 

a high prevalence of co-morbidities and of risk-factors which put them at risk of mortality 

from causes other than CHD, such as pulmonary disease. We have used expected mortality 

from the general population, but use of expected mortality from a population with similar co-

morbidities could be selected. For example, to assess survival after AMI in patients treated 

with insulin during the index admission, one could consider matching with expected survival 

by diabetic status. However, obtaining reliable information from such a population is often 

difficult. 

 

A potentially important issue in the use of relative survival to the assessment of CHD 

survival, is that in using population life tables to derive the expected mortality rates, deaths 

due to the condition of interest are included, If the prevalence of that condition in the 

background population is low enough, then this will have little impact, a reasonable 

assumption for individual malignancies (18). However, given the predominant contribution of 

heart disease to mortality in industrialised society, the appropriateness of this assumption in 

CHD needs to be assessed, in particular for oldest age groups. 

 

We have presented some of the simpler statistical models for relative survival. However, there 

are several extensions that would also be applicable to CHD. For example, modelling time-

dependent effects on a continuous scale through the use of splines (23-25) and fractional 

polynomials (26). 

 

Relative survival methodology merits attention in observational and population-based 

assessments of CHD mortality. Application of relative survival methods is still in early 
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development in heart disease but its application in cancer is common, and informative. In 

order to obtain an estimate of net survival in population based studies, relative survival 

applies sensible assumptions based on the deaths that we would expect to occur in a cohort of 

patients if they were from the general population. One development relevant in CHD may be 

calculating expected mortality in groups that are at a potentially higher risk of mortality from 

CHD, such as ethnic minorities, or social deprivation cohorts.  
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Legends 

 

 

 

 

 

Figure 1 - Observed (all-cause), Expected and Relative survival split by age groups 
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Figure 2 - Time-dependent effects. Excess hazard ratio at intervals after index STEMI. The 

graphs illustrate excess risk of death for patients aged 60-75 or >75 years, each compared 

to patients aged <60 years. Vertical lines show the 95% confidence limits and point 

estimates of the excess hazard ratios from a relative survival model and hazard ratios 

from a Cox model. Horizontal lines   ------ show the point estimate of the excess hazard 

rate ratio from a relative survival model shown in table 2 and PH mortality rate ratio from 

a Cox model 
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TABLES    Table 1 – Abbreviated lifetables for the youngest and oldest age group. 

Age 

group 

Start of 

interval 

(years) 

End of 

Interval 

(years) 

No alive at 

the start of 

the interval 

Deaths 

in 

interval 

Cumulative 

observed 

(all-cause) 

survival 

Expected 

deaths in 

interval 

Cumulative 

expected 

survival 

Relative 

survival for 

interval 

Cumulative 

relative 

survival 

0 0.0833 1373 88 0.936 0.5 1.000 0.936 0.936 

0.0833 0.5 1280 10 0.928 2.6 0.998 0.994 0.931 

0.5 1 1245 11 0.920 3 0.995 0.993 0.925 

1 2 1182 20 0.904 6 0.990 0.987 0.913 

2 3 1047 14 0.891 5.8 0.984 0.992 0.905 

3 4 938 18 0.873 5.7 0.978 0.986 0.893 

 

 

 

<60 

 

 

 4 6 832 18 0.852 10.1 0.964 0.989 0.883 

0 0.0833 1436 481 0.665 7.5 0.993 0.670 0.670 

0.0833 0.5 955 115 0.584 30.7 0.958 0.910 0.610 

0.5 1 822 55 0.545 32.4 0.919 0.972 0.593 

1 2 748 101 0.468 59 0.841 0.938 0.556 

2 3 584 71 0.409 49.6 0.766 0.959 0.533 

3 4 464 52 0.359 40.8 0.692 0.973 0.519 

 

 

 

75+ 

 

 

 4 6 346 87 0.258 56 0.561 0.887 0.460 

  0.0833 years = One month 
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Table 2 – Comparing results from a Cox model and a relative survival model. 

Hazard ratios (95% CI) 

 Cox Model Relative Survival model 

<60 1.00 1.00 

60-75 2.71 (2.30 , 3.20) 2.43 (1.97 , 2.99) 
Age 

group 
75+ 7.84 (6.68 , 9.21) 6.92 (5.67 , 8.44) 

Models comparing the hazard ratios and excess hazard ratios from a Cox proportional 

hazards model and a relative survival model with proportional excess hazards (with 

95% confidence intervals). 

 


