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Abstract

A Computational Analysis of the Gradient Navigation Strategies of the

NematodeCaenorhabditis elegans

SERGETHILL

In the present thesis, we apply computational methods to the study of animal behaviour. Specif-
ically, we are interested in the gradient navigation strategies ofC. elegans, for which we show that
there are many interesting questions that have not yet been answered byexisting research.

In order to study the behaviour ofC. elegans, we first develop a range of tools to help us do so.
We base a large part of our work on Markov-like models of behaviour and since these are not Marko-
vian in the strict sense (limiting the analytical tools which can be used to study theirbehaviour), we
first present a possible transformation from a Markov-like model with variable transition probabil-
ities into a strictly Markovian model. We next present a framework for studying the behaviour of
behavioural models which is not restricted to the work presented here butis likely to find general
use in behavioural studies.

Using these tools, we then analyse the chemotactic behaviour ofC. elegans, showing that
we can adequately explain most features of this behaviour using energy-efficiency considerations.
We also show that the main behavioural strategy, so-calledpirouettesis likely to be caused by an
inability to sample the environment during a turn and that the animal my not be actingupon gradient
information while reversing.

Finally, we investigate the deterministic isotherm tracking strategy displayed byC. elegans.
We develop a computational model for this behaviour which is able to reproduce all of the main
features ofC. elegansisotherm tracking and we propose a candidate neural circuit which might
encode this strategy. Additionally, we briefly discuss the use of stochastic strategies by the animal
when moving towards its preferred temperature.

In summary, the work presented here therefore provides contributions totwo major fields: we
extend the methodology available for behavioural analysis in ethology and we contribute a number
of insights and advancements to the field ofC. elegansresearch.
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Chapter 1

Aims and Motivations

THE nematodeCaenorhabditis elegansis a popular organism for behavioural and neuroscien-

tific studies (Seee.g.de Bono and Maricq, 2005). This is mainly due to the comparative

simplicity of its behaviour, the fact that the complete connectivity of its neural circuit is known

(White et al., 1986) and the fact that it is usually possible to destroy specific neurons and observe

the resulting change in behaviour.

It thus has to be one of the main goals of the behavioural research onC. elegansto describe,

quantify and understand the behaviour of the nematode as completely as possible. While reviewing

the literature (Chapter2), however, we find that several interesting questions have not yet been

adequately addressed. For instance, the animal is capable of navigating chemical gradients towards

the source of a chemical and it has been shown that it performs this navigation using a directed

random walk strategy (Pierce-Shimomura et al., 1999) but this behaviour has not been significantly

studied further since that fundamental study. Yet several questions remain; for instance, given that

the locomotion ofC. eleganscan be broken down into three behavioural units (forward runs, turns

and reversals, seeZariwala et al., 2003; Miller et al., 2005), how important is each behavioural

2



Chapter 1: Aims and Motivations 3

unit for performing the overall navigation effectively and what is its role and relationship to the

other identified units? In what different ways could these units be combinedin effective navigation

strategies?

The aim of this thesis therefore is to address the above questions as well asother open ones we

identify in the literature and by this further the field of behavioural studies ofC. elegans. Specifi-

cally, we will address a range of questions regarding both chemotactic andthermotactic behaviour,

but we will restrict the scope of the present work to gradient navigation strategies used by the animal.

Our main approach is computational, that is to say we will use computational modelsof the

behaviours we are interested in and analyse them for novel predictions on these behaviours. The

choice of these model is ethologically guided (Lehner, 1996; Martin and Bateson, 1993, see Chapter

2) but part of the analysis used in this thesis requires a novel approach tounderstanding behaviour

based on computational models, as will be discussed in Chapter4. It has therefore also become a

second aim of this thesis to provide such a novel approach. While our main behavioural interest

in this work is focused onC. elegans, we find it nonetheless desirable to formulate this approach

in a general way so that it may find applications in a range of behavioural studies not necessarily

restricted to the field ofC. elegansresearch.

We are therefore trying to achieve two aims in this thesis. First, and most importantly, we

wish to further the study ofC. elegansbehaviour using computational approaches and focusing

on open questions regarding its gradient navigation strategies. Second we wish to formulate any

methodology we develop in the course of this work in such a way that it may be also be useful in

studies outside the field ofC. elegansresearch.
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1.1 Organisation of this thesis

We have divided the present thesis into four conceptually distinct parts. PartsI andIV deal with

the introductory matters and the overall discussion and suggestions for further work respectively.

The research carried out for this thesis is presented in 4 chapters whichare spread over two parts.

Part II is concerned with general computational techniques for modelling and analysing animal

behaviour. It is not specific toC. elegansand the work presented in this part is likely to find

applications in a variety of fields. PartIII deals specifically with the major gradient navigation

strategies ofC. elegans.



Chapter 2

Literature Review

THE aim of this chapter is to introduce the nematodeC. elegansand review the current state

of the art inC. elegansresearch. While doing so, we will simultaneously identify open

question that can be addressed in the present thesis.

2.1 The nematodeC. elegans

2.1.1 Etymology

The nameCaenorhabditis elegansis actually a blend of three words:Καινος (kainos, gr.):

recent, referring to the Pleistocene epoch (The word Pleistocene is derived fromΠλειστος (pleistos,

gr.) meaning ’most’ andΚαινος), Ραβδος (rhabdos, gr.): rod (rhabditis meaning rod-like and

referring to the genus of rod-like organisms), andelegans(lat.): elegant, referring to the ’elegant’

sinusoidal movements of the nematode.

C. eleganswas initially simply namedRhabditis elegansby Émile Maupas(1899, 1900). In

1952, Günther Osche revised theRhabditisgenus, introducingCaenorhabditisas a subgenus (Os-

5



Chapter 2: Literature Review 6

Figure 2.1: The nematodeC. elegans. Picture adapted from (Altun and Hall, 2005).

che, 1952), changing the name toRhabditis (Caenorhabditis) elegans. Finally, EllsworthDougherty

(1953) elevated some of the sub-genera from Osche to genus status andC. elegansreceived its cur-

rent name.

2.1.2 General facts

C. elegans, pictured in its adult form in Fig.2.1, is a small free-living organism, roughly 1

mm long and with a life expectancy of 2 to 3 weeks, beginning with fertilisation.C. elegansmoves

through several larvae stages until it reaches its adult form roughly 2 days after hatching. Its body

is transparent with all cells, including the neurons, visible through a microscope and it is easy to

culture, making it an ideal candidate for developmental and genome studies.It reproduces sexually,

although there are no female specimen but rather only males and hermaphrodites. Males are found

only very rarely however and virtually all laboratory studies are on hermaphrodites.

The majority of research involvingC. elegansis genetical (see for instanceRiddle et al., 1997),

since the genome ofC. elegansis completely mapped and relatively small, with only about 100

Megabases, which are arranged on 6 chromosomes and an estimated total of around 20,000 genes

(Wei et al., 1996). In the present thesis, however, we are more interested in the behavioural and
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Figure 2.2: The layout of the nervous system inC. elegans(Durbin, 1987)

neuroscientific studies ofC. elegans(e.g.de Bono et al., 2002; Dunn et al., 2004; Pierce-Shimomura

et al., 1999; Ryu and Samuel, 2002; Mori and Ohshima, 1995). These may also make use of the

research into theC. elegansgenome (e.g.de Bono and Bargmann, 1998; Mori, 1999; Cheung et al.,

2004). Indeed, since the genome is completely known, it becomes possible to breed mutants lacking

specific neurons. Along with laser ablation techniques, with which it is possible to destroy selected

neurons, these methods are a powerful way of investigating the behavioural function of certain

neurons in live animals (e.g.Mori and Ohshima, 1995; Tsalik and Hobert, 2003; Hardaker et al.,

2001).

2.2 The neural architecture ofC. elegans

The “brain” of the nematodeC. elegansconsists of 302 neurons, a number which stays constant

across individuals (White et al., 1986) (see appendixA for a list of neurons and their approximate

location). Those neurons are connected via approximately 5000 chemicalsynapses and 2000 gap

junctions (Niebur and Erdós, 1993) and the connectivity has been virtually completely mapped out

(White et al., 1986), albeit only for one individual. An electronic database listing all the synaptic

connections in a convenient format also exists (Oshio et al., 2003). It has also been shown that

the connectivity of theC. elegansneural system satisfies the constraints on a small world network1

1A mathematical graph in which any node can be reached from any other node in a small number of steps, but in
which most nodes are not actually direct neighbours.
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(Nishikawa et al., 2002).

The neurons are separated into 116 morphologically different classes (Kaplan, 1996), which in

turn are generally divided into three categories: sensory neurons, interneurons and motor neurons.

47 neurons are believed to sensory neurons (Kaplan, 1996), of which 32 appear to be chemo-sensory

(Lanjuin and Sengupta, 2004), as their sensory endings are generally exposed to the environment.

Around 20 neurons actually belong to a smaller pharyngeal sub-circuit, which is solely concerned

with body functions related to feeding and digestion and is largely independent of the main neu-

ronal circuit (Avery, 1993; Albertson and Thomson, 1976) while most of the remaining neurons are

grouped together in a nerve ring ((White et al., 1986), see Fig.2.2).

The interneurons can be further subdivided into primary interneurons (neurons which are di-

rectly connected to sensory neurons), secondary interneurons (which are only connected to other

interneurons) and command interneurons (which are connected to motor neurons) (Ferrée and Lock-

ery, 1999). All neurons are named by letter sequences which are usually 3 to 4 lettersfor a class of

neurons followed by a letter identifying the individual neurons inside that class.

When looking at the general function of neurons (e.g. are they sensory neurons, and if so, to

what stimuli doe they react?), it is usually sufficient to consider the 116 classes rather than individual

neurons (e.g.Gabel et al., 2007; Gray et al., 2005; Dunn et al., 2004), although it has been shown

that the difference between two neurons may be important in more detailed behaviour. For instance,

Wes and Bargmann(2001) showed that the two AWC neurons, involved in chemo-sensing, are

functionally distinct and a loss of this diversity results in impaired chemotaxis.

The largest part of the neural studies in the field ofC. elegansresearch concerns itself with the

identification of the functional role of certain neurons (for overviews, see for instanceBargmann,

1993; de Bono and Maricq, 2005), making use, for instance, of laser ablations or selective mutations

to destroy or deactivate certain neurons in order to determine how this will affect behaviour. This

has led for instance to the identification of neurons that take part in chemotactic (e.g.Bargmann and
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Horvitz, 1991) and thermotactic behaviour (Mori and Ohshima, 1995) as well as the identification

of the likely circuit for touch sensitivity (Chalfie et al., 1985). Most of these investigations aimed to

discover neurons involved in the processing of a general stimulus (e.g. thermal or chemical). Other

studies have determined neurons that are involved in generating particularlocomotory output (e.g.

Gray et al., 2005).

2.3 Neurophysiology

This section will give an overview of the neurophysiological data availableon C. elegans. As

will be evident, the available knowledge on the neurophysiology ofC. elegansis far from complete,

and while laser ablation and mutation studies have allowed us to identify the roles of different

neurons, the small size ofC. eleganshas, until recently, made it impossible to obtain intracellular

recordings (Nickell et al., 2002). Indeed, the cell bodies of the neurons are typically only 2µm in

diameter and as an extra challenge, the worm is protected by a cuticle which explodes at attempts

to dissect the animal (Goodman et al., 1998).

Thus, several key data have actually been adapted from the larger nematodeAscaris suum.

Generally, data fromAscaris s. is usually used in modelling studies when equivalent data is un-

available fromC. elegansitself (see for instance (Ferrée and Lockery, 1999)). However, this is

problematic since there are indications thatAscaris s.differs in several aspects fromC. elegans,

both in intracellular properties (Nickell et al., 2002) as well as through the significant difference

thatAscaris s.actually also features spiking neurons (Niebur and Erdós, 1993).

2.3.1 C. elegans neurons

In most animals, neurons transmit information between them using spikes (or action poten-

tials), which are essentially electrical pulses travelling down the axons of theneurons and are
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caused by the opening and closing of different types of ion channels (O’Reilly and Munakata,

2000). The detailed dynamics behind these action potentials were first describedfor giant squid

axons byHodgkin and Huxley(1952). However, their model is now generally used for describing

the dynamics of spiking neurons in most animals, including human beings.

The most striking feature ofC. elegansneurons then, is that they lack theNa+ voltage depen-

dent ion channel, which is essential for the Hodgkin-Huxley model of signalling between neurons

(Nickell et al., 2002). Instead, it is assumed, based on data fromAscaris s.and recordings from

a few C. elegansneurons that they use slow, graded potentials based on calcium dynamics and

electrotonic effects to transmit signals (Nickell et al., 2002; Goodman et al., 1998).

Intracellular calcium dynamics have only recently been measured in detail for two sensory

neurons: ASJ (Gabel et al., 2007) and AFD (Clark et al., 2006), involved in electrosensation and

thermosensation respectively. These studies have used calcium imaging techniques to determine

how changes in the environment might be translated into sensory signals andwill be discussed in

more detail later on.

One of the only detailed intracellular recordings and characterisation of individual channels

has been done byNickell et al. (2002), who looked in detail at the chemo-sensory neurons AWA

and AWC. While they were unable to clearly measure the value of the resting potential due to the

limitations of the equipment and techniques currently available (with values measured from different

cells ranging from−16 to−65 mV), they found a region of high membrane resistance, bounded by

inwardly (active at potentials lower than−50 mV) and outwardly (active at potentials higher than

−20 mV) rectifying currents, between−20 and−70 mV. Outwardly rectifying channels were found

to be activated byCa2+ as well as, as mentioned before, by depolarisation while inwardly rectifying

channels were separated into two types, both activated by hyperpolarisation, with one being difficult

to characterise and the other one being most likely a non-selective cation channel.

Thus it is clear that our knowledge of the intracellular properties ofC. elegansneurons is not
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sufficient at the moment for constructing detailed computational models of these neurons. However,

as will be argued in section2.3.3, this lack of data is not a fundamental problem for the work

presented in this thesis.

2.3.2 C. elegans Synapses

As there is virtually no physiological data on the synapses ofC. elegansitself, data from

Ascaris s.is generally used as it seems reasonable to assume thatC. eleganssynapses will function

in a similar way (Ferrée and Lockery, 1999). Thus, post-synaptic voltage can likely be modelled as

the result of a sigmoid function of the pre-synaptic voltage.

An interesting study bySchuske et al.(2004) shows that the GABA neurotransmitter inC.

elegansactually has both an inhibitory and an excitatory function. The inhibitory effect has been

observed in motor neurons controlling ventral and dorsal muscles. In order to bend the body,C.

eleganscontracts the muscles on either the ventral or the dorsal side while using GABA innervation

to relax the muscles on the opposing side. The excitatory effect has been observed during defecation,

where GABA releases from the AVL and DVB neurons are required to excite muscle contractions

resulting in the expulsion of intestinal contents. Other known standard neurotransmitters that have

been found inC. elegans(usually by analysing the genome for their expression) include serotonin,

dopamine and acetylcholine. For additional discussion, see for instanceRiddle et al.(1997).

In general however, the signs of most synapses have not been measured yet and remain thus

unknown. Some studies attempt to identify synaptic signs through computationalmodels (e.g.Ma-

jewska and Juste, 2001; Iwasaki and Gomi, 2004), however none of them are without problems.

The study byMajewska and Juste(2001), violates the hypothesis (Dale, 1935) that any one neuron

uses the same neurotransmitters at all its synapses, as noted byIwasaki and Gomi(2004). For their

part, Iwasaki and Gomi(2004) use spiking neurons in their simulations, which ignores one of the

key facts aboutC. elegansneurons that researchers feel reasonably confident about, namelythat the
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animal does not use spiking neurons.

2.3.3 Implications of the lack of neurophysiological data for the present thesis

It is evident from the data presented here that neurophysiological information aboutC. elegans

is rather scarce and data fromAscaris s.cannot be used unreservedly. For this reason it cannot be

expected that detailed computational models of any neural circuitry underlying a given behaviour

will be produced in this thesis. While this would not be impossible in principle and even somewhat

constrained since the connectivity of the neural circuitry is known2, such investigations would only

have a theoretical interest at best but would remain without real predictive powers. In particular,

it can be shown that even when neural and synaptic dynamics are known, any given neural circuit

can nonetheless produce the same overall behaviours for a wide rangeof values for its parameters

(Prinz et al., 2004). In the case ofC. elegans, where not even the dynamics are known in sufficient

detail, this issue would be even more severe.

However, while detailed models of the neural circuitry are not likely to be useful in the present

work, the situation is different when considering functional models which focus on the computa-

tions required for performing a certain behaviour but do not actually worry about a detailed neural

implementation of these computations. An interesting study in this respect has been done byDunn

et al. (2004). In their work, they train and optimise neural networks to perform chemotactic be-

haviour (discussed in the next section). While the merits of the architecture of the networks they

find in this way are debatable for the reasons discussed above,Dunn et al.(2004) focus, in part

of their discussion, on the computations performed by their networks ratherthan the layout itself.

They thus find, for instance, that the animal is likely to compute the first time derivative of the inputs

perceived by the chemosensory neurons. They have thus formulated anecessary computation that is

2This is an interesting situation in itself.C. elegansstands apart as being the only animal for which we know the
neural connectivity but not the neural dynamics. In the case of mostother, higher lifeforms, neural dynamics can be
known in great detail but the exact connectivity remains unknown and can be modelled at best using general statistical
guesses on its possible nature.
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performed within the neural circuitry ofC. eleganswhose plausibility is independent of the actual

biological neural implementation.

In this thesis, we take a similar approach, in particular in Chapter6, in which we consider the

computational requirements for certain behaviours and formulate restrictions on the computational

capabilities ofC. elegans. Any discussion of neural computations will therefore remain at the

functional level.

2.4 The behaviour ofC. elegans

It has been said before that the main interests of the present work are behavioural. In this

section, we therefore give an overview of the behaviour ofC. elegansand open questions to be

addressed in the present thesis will be highlighted. Some behaviours, in particular the feeding

behaviour, are mentioned only out of interest and for the sake of completeness but will not be the

subject of major investigations in the remaining chapters of this thesis. The following is a quick

summary of the behaviours that will be dealt with in the thesis:

• Chemotaxis, the ability of the animal to navigate chemical gradients using a directed random

walk.

• Thermotaxis, the ability of the animal to navigate towards a preferred thermal region in

thermal gradients, again using a directed random walk.

• Isotherm tracking , the ability of the animal to follow a “line” defined by a specific tempera-

ture within a thermal gradient with great accuracy.

2.4.1 Locomotion

C. elegansmoves forward through sinusoidal movements of the body while lying on its side

and contracting its ventral and dorsal muscles respectively (Gray et al., 2005). These sinusoidal
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Figure 2.3: Tracks of 3 worms allowed to wander for 20 minutes in a uniform gradient (Fig. 2a
from Pierce-Shimomura et al., 1999).

Figure 2.4: Tracks of 4 worms allowed to wander for 5 minutes in a radial gradient (Fig. 3a from
Ferrée and Lockery, 1999). Peak of the gradient is at the centre of the figure.
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swims, which characterise the movement ofC. eleganscan be interrupted by turns, which fall into

two main categories: reversals and omega turns (Ferrée and Lockery, 1999). During reversals, the

worm first moves backwards and then turns into a different direction whilean omega turns is a

movement during which the worm bends its head towards its tail, thus forming the shape of the

Greek letterΩ before moving off into a different direction (Pierce-Shimomura et al., 1999). It is

thus possible to identify three different locomotory behaviours inC. elegans: forward runs, reversals

and turns. The overall movement ofC. elegansgenerally resembles a random walk (Zariwala et al.,

2003, see Fig.2.3), but can be heavily influenced by external parameters, for example thepresence

of a chemical gradient in which the worm tends to move towards the peak of thegradient (Fig.2.4).

It is known that the sinusoidal movement is produced by ventral and dorsal neurons exciting

and inhibiting each other beginning in the head of the animal. The resulting bendof the head is

then propagated along the length of the body, resulting in the sine-wave like movement but it is

an open question whether or not these rhythmic movements are actually mediatedby a Central

Pattern Generator (CPG) (Suzuki et al., 2005a). Detailed models of the motor neurons and the body

of C. eleganshave also been produced (Suzuki et al., 2005b,a), which are capable of reproducing

the general body shapes ofC. elegans, but while interesting from a theoretical point of view, the

biological relevance is again debatable, in particular since these studies assume the existence of a

CPG even though this remains unconfirmed.

From a behavioural point of view, it is also perhaps more interesting to investigate how sensory

and interneurons affect the locomotory output ofC. elegansrather than the mechanics by which the

behaviour is produced.A candidate neural circuit for the locomotion ofC. elegansis presented in

Fig. 2.5. Gray et al.(2005) show that killing the AWC or the ASK neurons (sensory neurons for

detecting volatile and water soluble chemicals respectively) has no effect on the behaviour in the

presence of food or on the dispersal behaviour observed when the worm has been in the absence

of food for a longer time (see section2.4.2). However, it does affect the local search behaviour
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Figure 2.5: Fig. 3a from (Gray et al., 2005). A candidate circuit for locomotion inC. elegans.
Command interneurons are shown in green, sensory-, inter- and motor-neurons are indicated by their
respective shapes, arrows indicate synaptic connections and H-shaped bars gap junctions (where the
style of the arrow or of the H-shape indicates the number of connections between the neurons at
either end).

displayed when the worm is moved from food to an environment without food,as the killing of the

AWC or the ASK neurons reduces the frequency of reversals and omega turns. In contrast, killing

the ASI chemo-sensory neurons resulted in an inability to reduce the frequency of short reversals

during the dispersal behaviour. Killing the thermotactic AFD neurons led to a small decrease of

reversals and omega turns during local search, but this effect was muchsmaller than the ones pre-

viously observed (Gray et al., 2005). Killing other sensory neurons had little or no effect on the

locomotion.

Tsalik and Hobert(2003) also find a decrease in reversal frequency when the AFD neurons are

killed, hypothesising that it is actually caused by an increase in forward run duration, which could

be explained by the fact thatC. elegansuses the AFD neurons to suppress reversals when in aversive

thermal conditions.

Gray et al.(2005) go on to identify the roles of non-sensory neurons in the locomotory be-
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haviour. They show that killing the AIZ neurons reduced the frequency of short reversals on food

while killing AIB or RIM neurons resulted in animals that did not exhibit a higherfrequency of

longer reversals and omega turns upon removal from food. Animals lacking AIY or RIM neurons

were not able to initiate the dispersal behaviour after having been removedfrom food for a longer

amount of time.

The finding on the AIY and RIM neurons is consistent with what has been observed previously

by Tsalik and Hobert(2003), who noted that their removal caused hyper-reversal behaviour. They

also find that the removal of AIY results in a slightly defective chemotaxis, although this defect can

be overcome by increasing the chemical’s concentration, thus indicating thatthe AIY neurons are

not the only gateway through which sensory neurons can modulate locomotion.

The AVA command neurons are essential for reversals and backward movement (Chalfie et al.,

1985; Niebur and Erdós, 1993) and unsurprisingly,Gray et al.(2005) show that killing these neu-

rons results in a complete inability to generate long reversals and a much lower frequency of short

reversals whilst in the presence of food. Omega turns, on the other hand, were not affected.Niebur

and Erdós(1993) also show that backward movement can be completely disabled by eliminating

both the AVA and the AVD neurons or the DA neurons, whereas simply eliminating AVA or DD

just results in impaired backwards movement. Similarly, the animal can be rendered unable to move

forward by removing both the AVB and PVC neurons or the DB neurons, whereas simply remov-

ing AVB or DD results in impaired forward movement (Niebur and Erdós, 1993). Ablating the

RIM motor neurons resulted in an increase of short reversals. This effect could be reversed by also

killing the AVA command neurons, suggesting that RIM might use the connections to the command

neurons in order to suppress short reversals (Gray et al., 2005).

Finally, Gray et al.(2005) look at which neurons affect omega turns. It turns out that killing

either the SMD or RIV neurons decreases the frequency of omega turns, with SMD being respon-

sible for the omega turn amplitude while killing the RIV neuron removes the bias forthe first head
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swing after a reversal being into the ventral direction.

Perhaps the most fascinating insight to be gained from these studies is that the three main

locomotory behaviours ofC. elegans- namely forward runs, turns and reversals, appear to be di-

rectly and separately encoded in neural subcircuits. We will use this factlater when choosing a

computational model ofC. elegansbehaviour.

2.4.2 Feeding and social behaviours

The movement ofC. eleganschanges dramatically depending on whether it is currently in the

presence or the absence of food (Gray et al., 2005). In the presence of food, (Gray et al., 2005) have

found that the worms move forward slowly, reverse frequently, although the reversals are usually

quite short, and almost never exhibit omega turns. If the worms are moved off the food, however, the

frequency of short reversals decreases while the frequency of long reversals increases at the same

time, as does the frequency of omega turns. This high frequency of reversals and omega turns was

found to decrease again after a longer time in the absence of food, resulting in longer runs in one

direction.

The feeding behaviour ofC. elegansis interesting, not only because of the feeding itself, but

also because some strains ofC. elegansexhibit a kind of social behaviour during feeding (de Bono,

2003). In fact, social strains will not reduce their speed upon encounteringfood until they have

aggregated with otherC. elegansindividuals, whereas solitary worms will start feeding immedi-

ately(de Bono et al., 2002). This social behaviour seems to be related purely to feeding however.

The aggregation behaviour of the social strains is not observed in the absence of food, or when the

worms are well-fed (de Bono et al., 2002).

As far as neural mechanisms underlying this social behaviour is concerned, it appears that it

is mediated by neurons responsible for detecting noxious stimuli (de Bono et al., 2002). In fact,

de Bono et al.(2002) show that the two neuron groups in question are ASH and ADL, as the
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aggregation behaviour is significantly disrupted if both ASH and ADL neurons are ablated. Just

killing either both ASH or both ADL neurons, however, did not significantly influence the worm’s

behaviour. It appears that bacterial odour emanating from the food itself may induce the social

aggregation behaviour, although the exact reason for this behaviour remains rather unclear (de Bono

et al., 2002).

In a related study,Coates and de Bono(2002) identify more neurons which could play a role in

producing the aggregation behaviour. They note that suppressing the AQR, PQR and URX neurons

inhibits social feeding. These neurons are unusual, because they arethe only ones to be exposed to

the body fluid ofC. elegans,which appears to be its blood analogue (Coates and de Bono, 2002),

but it is unclear how exactly these neurons affect the aggregation behaviour. Indeed, it is not even

known for sure if all three affect the behaviour, or merely one or two ofthem.

2.4.3 Gradient navigation behaviours

Most of the behavioural work onC. eleganshas been done on its behaviour in graded environ-

ments, which is also the main interest of the present thesis. Here, we will review such behaviour in

the two main environments navigated by the animal: chemical gradients and thermalones.

Chemotaxis

Chemotaxis refers to the ability ofC. elegansto navigate chemical gradients either towards the

source of this chemical (e.g. if the source is food) or away from it (e.g. if the source is a predator).

The animal is capable of identifying different chemicals and able to act upona gradient created by

one chemical even if another chemical has a strong uniform presence (Wes and Bargmann, 2001).

In order to successfully perform chemotaxis,C. elegansmust have a way of assessing the surround-

ing chemical gradient. Chemosensors ofC. eleganscan be found both at the head and at the tip

of the tail (Ferrée and Lockery, 1999). However, mutants in which the rear sensors are blocked
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Figure 2.6: Fig. 5c from (Pierce-Shimomura et al., 1999) showing the separation of tracks into
runs and pirouettes. Dark parts of the track have been classified as a run whereas lighter parts have
been classified as a pirouette.

are not significantly impaired in performing chemotaxis (Ward, 1973), thus suggesting that only

the front sensors play a major role. It is not known exactly how the worm assesses the chemical

gradient, however (Ferrée and Lockery, 1999). Two likely mechanisms exist: either the gradient

is sampled during head sweeps resulting from its typical sinusoidal motion (Ward, 1973) or simply

while moving forward through the environment (Ferrée and Lockery, 1999).

One of the earliest studies into chemotaxis has been done byWard(1973), who hypothesised

that the animal performs chemotaxis by keeping its head pointed up the chemicalgradient “like a

weather wane pointing into the wind”. However, this strategy has since beensuperseded by the

pirouette strategy initially proposed byPierce-Shimomura et al.(1999). According to this strategy,

a pirouette is a “series of turns interspersed with short runs” (Pierce-Shimomura et al., 1999, see

Fig. 2.6). During chemotaxis, it has been shown that these pirouettes occur most frequently when

the worm is currently heading down the gradient and least frequently when it is heading up the

gradient (Pierce-Shimomura et al., 1999). Critically, Pierce-Shimomura et al.(1999) also show, that

the start of pirouettes is not correlated with the absolute concentration of thechemical, but with a

change in concentration. Further, on average the worm will be heading ina favourable direction
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after a pirouette.

The directed random walk as described by the pirouette strategy remains theaccepted model of

C. eleganschemotactic behaviour to date. One subsequent behavioural study aimed at verifying that

the pirouette strategy is the only behavioural strategy used in chemotaxis (Pierce-Shimomura et al.,

2005) while another attempted to identify the required sensorimotor transformations necessary for

the pirouette strategy (Miller et al., 2005) but in general, there have been no further significant

behavioural studies of chemotaxis.

However, there are still several interesting open questions. The random walk strategy used by

C. eleganscombines forward runs, turns and reversals into the pirouette strategy, but is this strategy

optimal given these available locomotory behaviours or do other strategies exist? More generally, if

C. eleganslocomotion consists of these three behaviours (which are all directly encoded in different

neural circuits, as seen previously in this chapter), how should they be combined in order to perform

efficient chemotaxis?

Further, does the observed behaviour give any insights in the underlying computations? It has

been shown previously for instance, thatC. elegansis likely to compute the first time derivative of

the sensory input (Dunn et al., 2004), but are other insights possible as well? These questions will

be addressed in Chapter5.

Most of the sensory neurons for chemical stimuli are thought to be known. The AWC neu-

rons are known to sense at least five odours: butanone, benzaldehyde, 2,3-pentanedione, isoamyl

alcohol and 2,4,5-trimethylthiazole (Wes and Bargmann, 2001). Other sensory neurons involved in

chemotaxis include AWA and AWB which also respond to volatile odorants (AWAsensing odorants

to which the worm is attracted and AWB odorants by which it is repelled (Lanjuin and Sengupta,

2004)), ASE and ASK for water-soluble chemicals (Kaplan, 1996) and ADF, ASG, ASI and ASJ for

water soluble compounds and pheromones (Kaplan, 1996). Fig. 2.7 shows most of the significant

connections and the interneurons thought to be involved in chemotaxis.
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Figure 2.7: Fig. 8 from (Dunn et al., 2004). The simplified circuit shown is a part of the chemo-
sensory circuit inC. elegans. Dashed lines are gap junctions, arrows are chemical synapses and
self connections actually represent chemical synapses between the pairof neurons in that class.
Pathways in which there were ’fewer than 2 pre-synaptic densities or fewer than 3 gap junctions’
were ignored in this diagram.

Response to the sensory cues seems to be mainly mediated by the AIY neuronsalthough a

second route via AIZ and RIB also exists (Tsalik and Hobert, 2003), hinting at redundancy within

theC. elegansneuronal circuit. However, animals whose AIY neurons have been killedwill show

a defective chemotaxic behaviour unless higher concentrations of the chemical are present (Tsalik

and Hobert, 2003).

2.4.4 Thermotaxis

Navigation towards a preferred temperature

Similarly to its behaviour in chemical gradients,C. elegansis able to navigate thermal gradients

towards regions of preference. This “region of preference” is typically thought to be a region whose

ambient temperature is roughly the cultivation temperature of the animal (Samuel et al., 2003), but

it has recently been shown that the preferred temperature is actually based on recent thermal history
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(Biron et al., 2006).

The history of the study of thermotaxis inC. elegansis perhaps more interesting than the

corresponding history of chemotactic studies as our knowledge of this behaviour keeps evolving

even today. One of the first studies of thermotaxis was done byMori and Ohshima(1995), in what

is essentially a study of the neural system of the nematodeC. elegans. Mori and Ohshima(1995)

distinguish between a thermophilic and a cryophilic drive inC. elegans, where the cryophilic drive

is used for moving down a thermal gradient towards the preferred temperature and the thermophilic

one for moving upwards towards the preferred temperature. The same study also identified the

AFD neuron class as being the main thermosensory neuron, while hypothesising that a second

thermosensory neuron also had to exist.Mori and Ohshima(1995) tried to identify more neurons

involved in the thermotactic circuit by killing off neighbouring neurons of AFD. They found that

killing both AIY neurons, which are post-synaptic to the AFD neurons, resulted in a significant

cryophilic movement as well as the loss of the isotherm tracking ability. Interestingly, killing AIZ,

a post-synaptic partner of AIY resulted in worms actually exhibiting a thermophilic behaviour.

To investigate the relationships between the AFD, AIY and AIZ neurons,Mori and Ohshima

(1995) killed off pairs of them, but found that only killing AFD together with AIZ yielded any useful

information. Animals to which this was done exhibited a far more extreme abnormalbehaviour than

those which only had AFD killed, suggesting that AIZ receives information from a further, as yet

unidentified, thermosensory neuron. Further, when looking at furtherpossible candidates for the

thermotactic circuit, both the RIA (which is post-synaptic to both AIY and AIZ) and RIB (which is

post-synaptic AIY and pre-synaptic to AIZ and RIA) interneurons werealso found to slightly affect

thermotaxis in new ways. In terms of identifying a neural circuit for thermotactic behaviour, this

study byMori and Ohshima(1995) remains the most important work.

Ryu and Samuel(2002), in the first paper investigating the behavioural strategies behindC.

elegansthermotaxis however find no behavioural evidence for the thermophilic drive suggested by
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Mori and Ohshima(1995), that is to say, they find no evidence that the animal will move towards its

preferred temperature if the ambient temperature is lower. The study does find cryophilic behaviour,

whose mechanism is similar to the pirouette strategy proposed for chemotaxis: run periods are

extended if the worm is heading down a gradient compared to movement in an isotropic environment

and shortened if it is heading up a gradient.

Interestingly, the controversy surrounding the existence of the thermophilic drive continues.

Ito et al.(2006) argue for the existence of a thermophilic drive which may only become active after

a longer period of time and therefore missed in studies like the one byRyu and Samuel(2002).

On the other hand, studies of the calcium dynamics within the AFD neurons, to date still the only

known thermosensory neurons, show no activity at temperatures below the preferred one (Kimura

et al., 2004; Clark et al., 2006).

Whether or not a second thermosensory neuron, as hypothesised byMori and Ohshima(1995)

exists also remains unknown. On one hand, the existence of such a neuron might explain the con-

troversy around the thermophilic drive but on the other hand, it has beenshown that activity of the

AFD neuron is sufficient to explain all other thermotactic behaviours (Clark et al., 2007, 2006).

There are thus still open research questions about the navigation ofC. elegansin thermal environ-

ments. However, these questions are less concerned with behavioural strategies and more with the

thermal range in which these strategies are active. As such, they are best answered by experimental

work and do not lend themselves well to the theoretical computational work weaim to perform in

the present thesis. For this reason, we will not address either the thermophilic drive or the possible

existence of another thermosensory neuron in later chapters of this thesis.

A study which claims to have found a thermophilic drive however, and which deserves a little

discussion has been done byZariwala et al.(2003). In this behavioural study,Zariwala et al.(2003)

find that the turning rate of the animal increases if the worm is placed in a temperature below

the preferred one (similar to the observations byRyu and Samuel(2002) for the cryophilic drive).
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Further, they find that the cryophilic drive manifested by the worm in their study actually resembles

an avoidance response, where the worm first reverses and then performs an omega turn.

The results fromZariwala et al.(2003) thus appear to be at odds with those fromRyu and

Samuel(2002). However, it is important to note that that the experimental setups in these studies

differ substantially from each other. WhereasRyu and Samuel(2002) put the worm on thermal

gradients either above or below the preferred temperature and observed its movement across this

gradient,Zariwala et al.(2003) either increased or decreased the ambient temperature (initially set

to 20 ◦C, the cultivation and thus the preferred temperature of wild type worms) by 3◦C step, but

did not provide a thermal gradient leading back towards the preferred temperature. This difference

in setup (most notably the lack of an actual gradient inZariwala et al.(2003)’s study) suggests that

it is entirely possible for both experiments to, in fact, be looking at a different type of behaviour.

This suggestion is backed up by the fact that (Ryu and Samuel, 2002) also found, as discussed

earlier, that the turn probability of the animal is different depending on whether it is in an isotropic

environment or in a gradient.C. elegansthus appears to be exhibiting a different behaviour depend-

ing on whether it is simply placed in a warmer environment or a thermal gradient.It is thus possible

thatZariwala et al.(2003) have inadvertently studied the animal’s response to sudden temperature

changes rather than its navigation strategies in thermal gradients. The significant difference lies in

the fact that during a sudden temperature drop below the preferred temperature, the AFD neuron

would switch from active to silent which in turn may trigger a behavioural response. If the animal is

already in a thermal gradient below the preferred temperature, the activityof the AFD neuron would

remain unchanged (i.e. silent) and would thus not trigger a behavioural response. The thermophilic

response discovered byZariwala et al.(2003) may thus not apply to navigation in thermal gradients.
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Isothermal tracking

A second interesting behaviour observed in thermal environments is the tracking of isothermal

lines in the graded environment. However, this behaviour has not yet received much attention in the

literature. It was first characterised byRyu and Samuel(2002) who noted that the behaviour only

appears if the animal is within 2 to 3◦C of its preferred temperature. Interestingly,Samuel et al.

(2003) have shown that the synaptic output of the AFD neurons increases in thesame temperature

range and may thus regulate the on- and offset of the isotherm tracking behaviour.

A more comprehensive study of isothermal tracking behaviour has been published byLuo et al.

(2006). In this study, it was found that isotherm tracks are periods of prolonged forward movement,

suggesting that the animal continuously performs small course correctionsto stay on the track. It

does so with amazing precision: while tracking isotherms it does not deviate from them by more

than 0.1 ◦C. At the same time, however, the animal does not appear to be actively seeking isotherm

alignment as isotherm tracks are separated by periods of stochastic movement andC. elegansdoes

not appear to align onto them deterministically. Finally, it has been shown that the animal is not

likely to keep a memory of the isotherm it is currently tracking but maintains the alignment through

other means.

Luo et al. (2006) then formulate a strategy which might be employed byC. elegans. They

propose that the animal continuously adjusts the rate of curvature of the head segment in function

of the sensory input in order to balance warming and cooling phases during a head sweep and thus

maintain the alignment. The strategy thus attempts to achieve and maintain a balance in thermal

input which should keep the animal aligned with the isotherm. This is puzzling however, as such a

balance would also exist were the animal to move directly perpendicularly to theisothermal track,

that is to say directly into (or away) from the gradient. If the strategy proposed byLuo et al.(2006)

could be used for such a navigation into the gradient, the animal would be ableto navigate towards

its preferred temperature deterministically rather than stochastically using this same strategy. Since
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this would be clearly at odds with observed behaviour, it would imply that the strategy proposed

by Luo et al.(2006) is not actually a candidate strategy for isothermal tracking byC. elegansand a

new strategy would have to be formulated. We will discuss and address this issue in Chapter6 of

the present thesis.

The ability of C. elegansto deterministically track isotherms raises another important ques-

tion that has not yet been answered: why would the animal use a stochasticstrategy for navigating

towards its preferred temperature at all? It is clearly able to sample the temperature at a sufficient

resolution and respond with sufficiently precise movements for deterministic isothermal tracking,

so what prevents it from using the same sensory and locomotory capabilitiesfor navigating de-

terministically towards its preferred temperature? This question will also be addressed in Chapter

6.

2.4.5 Electrical fields navigation

It has recently become evident that electrosensory behaviour ofC. elegansis actually also me-

diated by the neural circuitry (Gabel et al., 2007), rather than being, for instance, a simple physical

effect. The navigation strategy used by the animal in electrical fields also appears to be determin-

istic: it will crawl at a specific angle to the field towards the negative pole. Aninteresting parallel

with isotherm tracking is the fact that in both cases, the optimal direction is alongthe (isopotential)

gradient lines rather than perpendicularly to them. Concerning electrical field navigation however,

it has been found that the intracellular calcium levels in ASJ, the main sensoryneuron involved

in this behaviour, is directly correlated with the travel angle relative to the electrical field and is

highest (lowest) when the animal is directly facing the positive (negative) pole (Gabel et al., 2007).

In contrast to navigation in thermal environments thus, the output of ASJ is byitself sufficient to

directly mediate the deterministic strategy and no further computational steps areneeded.

Therefore, even though the optimal direction in both cases lies parallel to “lines” (isothermal
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or isopotential) in the environment, the similarities between isotherm tracking and electrical field

navigation end there. When navigating electrical fields, the animal is able to perceive the optimal

direction immediately and as such, the behaviour is of lesser interest to us. Itdoes however serve

as another example of a navigation problem in whichC. elegansuses a deterministic rather than a

stochastic navigation strategy.

2.5 Ethological considerations for modelling and analysing behaviour

The previous section has introduced the animal we are interested in and identified several open

questions relating to its behaviour. In order to successfully address these questions, we therefore

need tools enabling us to both model and analyse this behaviour. We are therefore interested in

methods from the field of Ethology which will allow us to achieve our goals usingmainly compu-

tational means.

Perhaps the largest part of the methods available in Ethology are actually concerned with the

measuring of behaviour in experimental setups (seeMartin and Bateson, 1993, for an introduction).

This is less interesting in the context of the present thesis since our work is largely based on existing

and published behavioural measurements. Nonetheless, a few conceptsfrom this methodology can

help in guiding our work and providing its ethological context.

2.5.1 The context of the present work within the field of Ethology

First, it is generally accepted that the field of Ethology mostly aims to address 4 main types of

questions (Martin and Bateson, 1993), initially proposed byTinbergen(1963):

• How is a behaviour performed (Proximate causation)?

• How does a behaviour evolve during the lifetime of an animal (Ontogeny)?

• What is the function of a behaviour?



Chapter 2: Literature Review 29

• How did a behaviour evolve?

The questions we have identified in the previous section are mainly related to thefirst and last

point in this classification. We are interested in the strategies underlying chemotactic behaviour as

well as the mechanisms underlying isothermal tracking, both of which related tothe first class of

questions. Additionally, we are interested in studying the use of stochastic rather than deterministic

navigation strategies for reaching preferred temperatures in a graded environment. This investiga-

tion falls within the final class identified byTinbergen(1963), although the question might be better

formulated as “Whydid a behaviour evolve?”. Together, these classes thus define the ethological

context of our work.

2.5.2 Modelling behaviour

A second interesting concept from the methodology for measuring behaviour is the concept of

behavioural unit(Lehner, 1996). Given a continuous observed behaviour, it is possible to break it

down into functionally distinct units. Choosing appropriate units is important and can be a difficult

task but at the same time, well-chosen units would provide an ideal basis for acomputational model

of a behaviour. In the case ofC. elegans, we have seen previously in this chapter that locomotory

patterns are generally divided into three different classes (forward runs, turns and reversals) and

that these classes appear to have their own underlying neural subcircuits. Given the fact that these

classes can be observed both behaviourally and within the neural circuitry, they seem ideal choices

as behavioural units. There have been two previous studies which useda computational model based

on these units (Zariwala et al., 2003; Miller et al., 2005), giving us additional confidence that these

units are a reasonable choice. We therefore base our computational investigations on these models

with three behavioural states.
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2.5.3 Analysing models of behaviour

Finally, we need to consider the nature of the computational model used in this work. Zariwala

et al. (2003); Miller et al. (2005) model the stochastic gradient navigation using a Markov-like

model. This will be discussed in more detail in Chapter3, but an immediate issue with such a model

is that it is not strictly Markovian since its transition probabilities depend on external input. This

makes it in principle impossible to directly use Markovian properties for analysing the behaviour

of the model analytically, instead forcing the use of numerical simulations. Since such Markov-like

models are however an attractive tool for modelling stochastic behaviours infunction of external

input (see alsoe.g. Sánchez-Montañés and Pearce, 2006) with potential applications outside the

field of C. elegans, it is interesting to investigate if they can be somehow converted into a strict

Markov model with the aim of making the full array of Markovian analysis techniques available.

Chapter3 is dedicated to this investigation.

2.6 Summary of Chapter2

This chapter has introduced the nematodeC. elegansand the current state of the art of the

research on this animal. Several open questions have been identified which need to be addressed:

• Given the three locomotory behaviours ofC. elegans(forward runs, turns and reversals), how

are these best combined if the aim is efficient chemotaxis? Is the pirouette strategy employed

by the animal optimal in this sense? Why are pirouettes used at all?

• Is it possible to derive novel predictions on the computational capabilities ofthe animal from

the chemotactic behaviour?

• Is the existing proposed strategy for isotherm tracking (Luo et al., 2006) reasonable? If not,

can another strategy be proposed?
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• Given how well the animal tracks isotherms, why does it rely on stochastic strategies at all

when navigating towards the preferred temperature? Are deterministic strategies prevented

by something fundamental?

Additionally, we have identified a need for novel techniques for analysingbehaviour:

• Is it possible to convert Markov-like models with variable transition probabilities into strict

Markov models? If so, how can this be done and what are the restrictions,if any?

• Can we propose a framework for analysing behaviour based on computational models which

is able to extract novel information and make novel predictions on this behaviour?

The remainder of this thesis is dedicated to answering these questions. The technical questions

relating to the analysis of behavioural models are addressed first and theinsights gained from that

work is then applied to address the open issues in the study of the behaviourof C. elegans.



Part II

Modelling and Analysing Behaviour

32



Chapter 3

Translating Markov-like models of behaviour into strict

models

I T is sometimes possible to model goal-oriented behaviours of animals using a Markov-like

model. These are based on a Markov process, which models the sequence of states a given

system can be in (Brémaud, 1999; Grinstead and Snell, 1997). A fundamental characteristic of such

a process is that the next state depends only on the present one and is randomly selected from all

states of the system based ontransition probabilities, i.e. the likelihood for each state to be the

successor of the current state. If the transition probabilities are fixed and do not change over time,

the model isstrictly Markovian.

When such a model is used in behavioural studies, the states are usually set to correspond to

the different observed behavioural units while the transition probabilities are dependent on some

external variable or input. A very basic example is given in Fig.3.1. Here, we consider a fictional

animal, which can only eat or sleep; the model therefore only contains two states corresponding

to these behavioural units. Since the model is Markov-like, transitions between these states are

probabilistic. To be useful in modelling behaviour, however, these transitions need to be a function

33
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Figure 3.1: An example behavioural model of a fictional animal whose sole behaviours are eating
and sleeping. The model is Markov-inspired since the transitions between the different states of
the model (corresponding to behavioural units of the animal) are probabilistic, but is not strictly
Markovian since the exact values of the transition probabilities are a function of the hunger level of
the animal.

of some external input or variable which modulates the overall behaviour of the model, which means

the model is no longer strictly Markovian (but merely Markov-like). In the example of Fig.3.1, this

variable is the hunger level of the animal, represented here as a simple binaryvariable; the animal

is either hungry or full. If it is hungry, the transition probabilities in the model are such that the

animal is very likely to eat but not likely to sleep (black transition probabilities).In other words, if

the animal is currently sleeping, it is likely to stop doing so and start eating and ifit is eating, it is

likely to continue doing so. Once the animal is full, it becomes more likely to stop eating and start

sleeping (red transition probabilities).

Such a model can then be used for different investigations. Given a certain set of transition

probabilities, one can try to assess how optimal they are with respect to some goal. In the basic ex-

ample of Fig.3.1, one could for instance assume that the goal is to stop feeling hungry as quickly as

possible. Alternatively, one could investigate what the optimal transition probabilities are if only the

model of the behaviour and a goal are given. In terms of animal behaviour, these two investigations

are very different: the first one assesses the optimality of the actual observed behaviour with respect

to some goal, the second one determines what the optimal behaviour given certain behavioural units

would be. It is possible that the answer to the second question turns out to be the observed set of

transition probabilities used for the first question, but this does not necessarily have to be the case.

Combined, the results from these investigations can then answer questions about the optimality of
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the observed behaviour as well as the likely goals and motivations governing this behaviour.

Given the Markovian nature of the model, it would then be very tempting to use itsMarkovian

properties to answer questions such as the above. In particular theprobability of absorption in a

given state(i.e. the likelihood that the model will end up in a given state, usually a goal state),

or themean first passage time(i.e. the mean time it takes the model to reach a certain state for

the first time) seem ideally suited in principle for such investigations since they could be used to

determine (1) what the likelihood that the model reaches a given goal is or (2) how long the model

would take on average to reach a given goal. Unfortunately, a number ofissues prevent the direct

use of the Markovian properties. There are two important ones: (1) the model, due to its variable

transition probabilities, is not strictly Markovian and properties like the probablitiy absorption or

the mean first passage time are therefore impossible to compute. (2) Even though the modelled

behaviour may be goal-oriented, there is no actual representation of the goal within the model itself.

In other words, even though the model acts on external variables (e.g. the hunger state in our simple

example), it has no representation of them and the Markovian properties could thus not inform on

the performance of the model with respect to this goal.

These issues may seem critical, but they do not render Markov-inspiredmodels of behaviour

useless. It is still possible to assess the optimality of a given set of transition probabilities or to de-

termine an optimal set of transition probabilities through numerical simulations. Depending on the

model, it may even still be possible to use some of the Markovian properties foradditional insights.

These points will be illustrated more fully in Chapter5 but for now, we wish to investigate whether

it is possible to overcome the restrictions imposed by the variability of the transitionprobabilities

and the absence of a goal state in order to allow an evaluation of these modelsbased on Markovian

properties. In other words, is it possible to translate a Markov-like model of behaviour, such as the

one shown in Fig.3.1 into a strict Markov model?

In this chapter, we introduce a Markov-like model ofC. elegansgradient navigation upon
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which most of our investigations presented in Chapter5 will be based. We will show that there is

indeed a possible transformation into a strict Markov model and we will definethis model. How-

ever, although the model exists, computational limitations prevent us from actually computing its

Markovian properties. Next, we apply the same technique to a model of the behaviour of a different

animal, the moth, which is sometimes studied under simplified conditions. Again, the behaviour

will be modelled using a Markov-like model which we translate into a strict Markov-model. In

this case, our computational ressources are sufficient for computing theMarkovian properties and

we can investigate the behaviour of the model analytically. In particular, we will use this model to

briefly investigate the optimality of the surge-cast behaviour displayed by themoth in chemotactic

searches.

3.1 A model ofC. elegans gradient navigation

C. elegansis a soil-living nematode with the ability to navigate a number of different gradients

(mainly chemical and thermal) using a directed random walk strategy which decreases the frequency

of random reorientation manoeuvres if the animal is moving in a desired direction with respect to the

gradient and increases this frequency if it is not (Pierce-Shimomura et al., 1999; Ryu and Samuel,

2002). A key feature of theC. elegansstrategy are so-calledpirouettes, which are a series of small

runs and turns (Pierce-Shimomura et al., 1999), interrupting long runs with increased frequency if

the animal is travelling in a disadvantageous direction on the gradient. Turns produced byC. elegans

are typically seen as being one of two types: omega turns, which are a largechange in direction; and

reversal turns, during which the animal reverses for a short period of time before moving forward

again in a different direction.

The behaviour ofC. eleganshas been described in the literature using a three-state probabilistic

model in which each of the states corresponds to one of the behavioural units identified for the
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Figure 3.2: A dual Markov-like model that can be used to describeC. elegansgradient navigation
behaviour (Pierce-Shimomura et al., 1999). The states correspond to the different locomotive be-
haviours shown by the animal: (F)orward runs, (T)urns and (R)eversals. Transition probabilities can
have two values depending on the direction of the model relative to the gradient. They are written
pk(Y|X) for the transition probability of stateX into stateY with k ∈ {u,d} indicating whether the
value is for moving (u)p- or (d)own-gradient.

animal and the probability of moving from one state to another is dependent onthe direction of

travel relative to the gradient (Zariwala et al.(2003); Miller et al. (2005), see Fig. 3.2). These

behavioural units correspond to runs (called theF state here, in which the animal moves forward),

reversals (theR state in which it reverses) and turns (theT state in which it changes direction). In

principle, it is possible to move from every state into every other state at eachtime step and the

transition probability for moving fromX toY is written pk(Y|X), with k∈ {u,d} as the value of the

probability depends on whether or not the model is moving up-gradient (k = u) or down-gradient

(k = d). It has been shown that such a model is able to reproduceC. elegansgradient navigation in

both chemical and thermal gradients given an appropriate set of transitionprobabilities (Zariwala

et al., 2003; Miller et al., 2005).

The purpose of this section is to determine if it is possible to analyse the behaviour of this

model analytically. The actual analysis of the behaviour ofC. elegansis presented in detail in
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Chapter5. Where required in the following, we assume that the model defined in Fig.3.2navigates

in a Cartesian space towards the peak of a gradient, located at the originO(0,0). The model moves

with a fixed velocityv and the direction in which it is currently heading is given by the angleθ of

the trajectory with thex-axis.

3.1.1 Translation into a strict Markov model

We are primarily interested in the navigation ofC. elegans; therefore our goal state is repre-

sented in the physical space in which the worm moves (and of course in the corresponding virtual

space for the model). Typically, this state would be located at the peak of a chemical gradient. Since

a strict Markov model needs to include the goal state in order to be useful, we need to define such

a model over the space the model can move in, assigning a state to every pointit can occupy. It

is worth pointing out here that an infinite number of states are acceptable in a strict Markov model

provided that they are countably infinite. Hence, the fact that the model is potentially moving in

an infinite space does not pose a fundamental problem as long the number of points the model can

occupy is countable. This will be achieved through a limitation in the turn state discussed below.

Next, we note that the transition probabilities at any given time do not depend directly on

the position in space but on the current state (given by the Markov-like model) and the direction

in which the animal has moved with respect to the gradient in the last step. We address these

dependencies by associating six states of the strict model with every positionin space, three of

which correspond to the up-gradient movement of the Markov-like model inFig. 3.2 while the

remaining ones correspond to the down-gradient one.

Finally, we consider changes in orientation. If the model moves forward orreverses, the head-

ing θ remains unchanged. If the model turns, however, the orientation is increased or decreased

by a value chosen from a distribution that depends on the direction relativeto the gradient (Pierce-

Shimomura et al., 1999). By requiring this distribution to be discrete, we can ensure that the possi-
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ble new directions form a finite and countable set; we can therefore guarantee that every state in the

Markov model has a countable number of successor states and thus that the total number of states

in the model will be countable.

We can characterise every state in the strict Markov model we seek to obtainby five values:

The position in space(x,y), the orientationθ, the previous behavioural statez∈ {F,T,R} and the

direction relative to the gradientg ∈ {0,1}, where a value of 0 stands for a down-gradient and a

value of 1 for an up-gradient movement. Now letA(x,y,θ,z,g) be the current active state. We next

need to determine the successor states ofA, i.e. all the states in the strict model that can be reached

from A. The first two successor states are:

• AF(x+vcosθ,y+vsinθ,θ,F, f (x,y,θ)), equivalent to a forward movement by the model

• AR(x−vcosθ,y−vsinθ,θ,R,g), equivalent to a reversal by the model

where f (x,y,θ) is a function defined as:

f (x,y,θ) =



















1 if
√

x2 +y2−
√

(x+vcosθ)2 +(y+vsinθ)2 > 0

0 otherwise

(3.1)

and gives the value forg by determining if the forward movement has brought the model closer to

the peak (up-gradient movement) or not (down-gradient movement). It can be noted that we only

update the information related to the gradient when the model is moving forward. This is based on

the observation that the animal is likely to do the same (see Chapter5).

The remaining successor states are the result of a turn by the model. LetΘg be the set of all

possible new orientations based on the current heading and direction relative to the gradientg. The

family of successor states as a result of a turn are thus given by:

• Aα
T(x,y,α,T,g),∀α ∈ Θg
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The transition probabilities into each of these new states depend, as previously noted, onz andg

as well as on the transition probabilities of the original model. LetpF(z,g), pR(z,g) and pα
T(z,g)

denote the transition probabilities for the transitionsA → AF , A → AR andA → Aα
T respectively.

We can then define all transition probabilities of the strict model as a function of those from the

Markov-like model:

pF(z,g) =



















pu(F |z) if g = 1

pd(F |z) if g = 0

pR(z,g) =



















pu(R|z) if g = 1

pd(R|z) if g = 0

pα
T(z,g) =



















pu(T|z)
|Θg| if g = 1

pd(T|z)
|Θg| if g = 0

(3.2)

where|Θg| denotes the cardinality of the setΘg; we are therefore assuming that all values inΘg

have an equal likelihood of being chosen. This completes our definition of astrict Markov model.

Goal states are easily defined as they are in experiments with real worms as points that are within

a certain distanced from the peak of the gradient. The set of goal statesG can thus be defined as a

subset ofM, the set of all states in the Markov model:

G⊂ M|∀A(x,y,θ,z,g) ∈ M,A∈ G ⇐⇒
√

x2 +y2 < d (3.3)

If these goal states are made absorbing, it is possible in theory to calculate the mean time to

absorption for any given set of transition probabilities for the original dual Markov-like model. Min-

imising this mean time to absorption is then equivalent to finding the set of transition probabilities
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that allow efficient navigation towards the centre of the gradient by the original model. In order for

this calculation to be possible, the number of states in the model must be finite.

It is easily shown, however, that any model of a useful size contains toomany states to be

analysed computationally. Assume for instance that the model can move only ona virtual petri

dish with a diameter of 10cm. By definition, the number of states of our model in such a world

would be finite. Now, for simplicity, we assume that the model can only move on a rectangular grid

world whose points are separated by a distancev. We are thus severely underestimating the total

number of states by settingΘg = {0,π/2,π,3π/2}. The numberN of possible points on the virtual

petri dish that can be reached by the model is thus approximately given by the area of the dish

if it is expressed withv as the unit length. For a realistic value ofv (Ferrée and Lockery, 1999),

this givesN = π
(

5
v

)2
= π

(

5
0.022

)2 ≈ 162190. Remembering that the model attaches 6|Θg| states

to each of these points, we have a total number of 3892560 states in this model,which means the

transition probability matrix would contain≈ 1.51×1013 elements. Since we have underestimated

the number of states by several orders of magnitude due to our restrictivechoice ofΘg, it is clear

that it is not practical with the currently available computational resources toevaluate this model

further. We therefore leave it as a theoretical model which serves as anillustration of the concept

of translating Markov-like models into strict Markov models and will analyse thebehaviour ofC.

elegansbased on numerical simulations as discussed in Chapter5. In the next section, however, we

will show, that an analytical evaluation is not always impractical.

3.2 Moth behaviour as a dual Markov-like model

3.2.1 Moth behaviour

Similarly to C. elegans, the moth is also on occasion faced with a navigation problem that

requires it to find the source of a chemical. UnlikeC. elegans, however, the moth may not make use
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of a clear continuous stream of information about its progress towards said source. Typically, the

source, which the moth attempts to reach, emits a chemical plume consisting of individual pockets

of odour which propagate with the wind (Balkovsky and Shraiman, 2002). The moth is thus not

exposed to a chemical gradient but has to navigate based only on the information of whether or not

it has found one of these pockets.

In nature, the moth does so by employing a so-called surge-and-cast strategy (Baker, 1986;

Vickers and Baker, 1994): if it encounters a pocket, it will fly directly into the wind (surge) but if

it goes without such encounters for some time, it moves backwards and forwards perpendicularly

to the wind direction until it finds another pocket (cast). It is this surge-and-cast strategy and its

optimality as a solution to the navigation problem that we wish to investigate here.

3.2.2 A dual Markov-like model of the moth plume navigation behaviour

Although the real moth moves in a continuous three dimensional world, simple models can be

defined on a two dimensional grid world (Sánchez-Montañés and Pearce, 2006; Balkovsky and

Shraiman, 2002), a Cartesian space in which the possible points the model can occupy are all

M(x,y)|x,y ∈ Z. In such a world with the assumption that the moth never stays at the same po-

sition two time steps in a row, the model has four possible points it can move to if currently at a

point with coordinates(i, j): (F)orward to the point(i −1, j), (U)p to the point(i, j + 1), (D)own

to the point(i, j −1) and finally (R)everse to the point(i + 1, j). These four possible movements

thus form the states of our Markov-like model of the moth (Fig.3.3), similarly to the previous one

for C. elegans(Fig. 3.2). Additionally, Sánchez-Montañés and Pearce(2006) have shown that it is

sufficient to consider just two different strategies for understanding moth chemotaxis: one when a

pocket has been encountered and another otherwise. Similarly to theC. elegansmodel, the moth

model is thus dual, with one set of transition probabilities for each of these twopossibilities. We

can thus again write the transition probabilities for this model aspk(Y|X) for moving from stateX
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Figure 3.3: A dual Markov-like model of moth chemotactic navigation in a simple grid world.
Possible state transitions are indicated by arrows but the corresponding transition probabilities are
not explicitly indicated for clarity. In this model, the F and R states correspondto forward and
backward movements, equivalent to a step to the left or the right respectively in the grid world.
Similarly, the U and D states correspond to lateral movements, equivalent to a step up or a step
down in the grid world.
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to stateY with k∈ {1,2}, where a value of 1 indicates the transition probability value in the case of

an encounter of a pocket and 2 the transition probability value otherwise.

It is worth underlining that there is a difference between this model and thatof Sánchez-

Montañés and Pearce(2006): the latter models the locomotion by randomly selecting one of the

F, U, D or R states at each time step, where the probabilities of getting picked for each state are

guided by the information of whether or not a pocket has been encountered at that time step. In the

present model, due to its Markovian nature the probability for each state of getting picked in the

next time step additionally depends on the state the model is currently in, potentiallyallowing more

complex behaviour to emerge.

To be complete for the present purpose, the grid world needs to feature asource and emit-

ted pockets. Here, we model this in the same way asSánchez-Montañés and Pearce(2006) and

Balkovsky and Shraiman(2002): at every time step (1) a pocket appears at the source, which is

located at the origin and (2) all existing pockets currently at coordinates(i, j) move with equal

probability to either(i +1, j +1), (i +1, j) or (i +1, j −1).

3.2.3 Conversion into a strictly Markovian model

Since the model moves in a very simple discrete grid world where the source ofthe plume is the

goal state the model should reach, we can define a new Markov model in which each state represents

a point on this grid. While this model could potentially have an infinite number of states, it remains

Markovian because the number of states would be countably infinite. Similarly tothe C. elegans

model then, every point on the grid is represented by four states in the newmodel to incorporate the

states from the original Markov-like model. Likewise, every state of the strict model can have up to

four successor states (Fig.3.4).

The transition probabilities into these states additionally depend on the fact of whether or not a

pocket has been encountered in the current state. Pockets move on the(x,y) plane alone in a random
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Figure 3.4:

A visual representation of a strict Markov model based on the Markov-like model of Fig.3.3. The

example is for a 5×5 grid world. (A) The grid world in which the model can move. Current location

is given by the green dot, possible locations at the next time step by the remaining coloured dots:

a forward movement places the model at the purple dot, a reversal at the orange dot, an upward

movement at the red dot and a downward movement at the blue dot. Turquoise rectangle represents

the plume source. (B) Corresponding strict Markov model. Every crossing of lines represents a

state. The different actions the moth can perform are implemented as different layers in the strict

model. Goal states are indicated by turquoise rectangles. An example of a current state and its the

four successor states is shown based on (A).
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walk fashion - it is thus possible to calculate the probability of encountering a pocket in a given point

on the grid at any time. Letm(i, j) be this probability for the point(i, j). Finally, letA(x,y,z) be the

current active state, withz∈ {F,U,D,R} corresponding to the states of the Markov-like model. Its

four possible successor states are (Fig.3.4):

• AF(x−1,y,F), equivalent to a forward movement by the model

• AU(x,y+1,U), equivalent to an upward movement by the model

• AD(x,y−1,D), equivalent to a downward movement by the model

• AR(x+1,y,R), equivalent to a backward movement by the model

The transition probabilities into each of these states depend on the value ofz andm(x,y) as well as

the transition probabilities of the original model. LetpF(x,y,z), pU(x,y,z), pD(x,y,z) andpR(x,y,z)

be the transition probabilities for the transitionsA→AF , A→AU , A→AD andA→AR respectively.

We have:

pF(x,y,z) =m(x,y)p1(F|z)+(1−m(x,y))p2(F|z)

pU(x,y,z) =m(x,y)p1(U |z)+(1−m(x,y))p2(U |z)

pD(x,y,z) =m(x,y)p1(D|z)+(1−m(x,y))p2(D|z)

pR(x,y,z) =m(x,y)p1(R|z)+(1−m(x,y))p2(R|z) (3.4)

These equations are sufficient to define a strict Markov model over the grid world in which the

moth moves, but we still need to give an expression form(x,y). For this, we can reformulate the

problem based on the dynamics of the plume: given somey, how many different ways are there to

add−1, 0 and 1 inx steps in order to obtainy? The answer, usually written







x

y







2

, is given by
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theyth element in thexth row of the trinomial triangle1 or byAndrews(1990):
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where not every term of the sum or even the sum itself necessarily exist. From this, we can obtain

m(x,y) by noting that the coefficients in theith row in the trinomial triangle sum to 3i :

m(x,y) =







x

y







2
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3x (3.6)

This completes our definition of a strict Markov model based on the grid worldwith a plume

of pockets based on our previous dual 3-state Markov model of the moth behaviour.

3.2.4 Goal states and optimisation in a finite grid world

Since the strict Markov model has a state per point in the grid world, the source of the plume

is also a state (in fact, 4 states, one for each value ofz) in this model. Also, failure states (with

x = −1, effectively meaning the model has moved past the source) are available. Based on this, we

can immediately calculate the probability of absorption into one of the goal states for any starting

position. It is also possible to calculate the mean time to absorption, but it is important to stress that

this represents the mean time to reach either a goal or a failure state. It is not possible to single out

goal states in the calculation of the mean time to absorption; to do so would requiredefining only

the goal states as absorbing states but this would then change the behaviour of the entire Markov

1A numerical triangle similar to Pascal’s triangle, except that each value in arow is given by summing the left, middle
and right values in the row above.



Chapter 3: Translating Markov-like models of behaviour into strict models 48

model since failure states would become transient. Nonetheless, we will showthat the mean time to

absorption can be a useful metric in this optimisation task.

At this point, we need to consider the grid world in which the model will move. TheMarkov

model as defined previously can accommodate an infinite number of states, but in order to calculate

the mean time to absorption and the probability of absorption into a particular state,the transition

probability matrix of the model is needed, which in turn requires the number of states to be finite.

The number of states is further limited by computational restrictions: since thereis a state for every

point in the grid world and there is an added third dimension to accommodate the different states

of the original dual model, the number of states is given by 4XY, where is the number of points

on thex-axis andY the corresponding value for they-axis. Therefore the number of elements

in the transition probability matrix is given by(4XY)2 and for the example ofx ∈ [−1,30] and

y∈ [−60,60], this evaluates to 225120016 elements. It is therefore clear that neither a very large

world nor an attempt at deriving an analytical expression for both the probability of absorption into

a goal state and the mean time to absorption are practical. We therefore derive the mean time to

absorption and the probability to absorption at run time from a specific set oftransition probabilities

for the original dual model and use these values to optimise that model. Section3.3 will discuss

some of the techniques that can be used specifically in MATLAB to keep the computations feasible

within a reasonable time scale.

Whenever one has to limit the size of the world in which a model can move, two important

questions need to be answered: 1) What happens to the model if it attempts to move outside of the

world and 2) How do the results generalise to larger, potentially infinite worlds?

For the present purposes, we address the first point by defining that,if the model would nor-

mally move outside of the world with a probabilityp, it will instead remain in the current position

with the same probability. It should be noted that this will have an effect on some models that have

a natural tendency to attempt to move beyond the borders of the world - for starting points close to
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the border, the mean time to absorption may be reported wrongly depending onthe transition prob-

abilities of the original model. This is because the way we define the border prohibits the model

from entering the state that would have taken it outside of the world (typically Up or Down) and

instead forces it to remain in the current one. This is acceptable here because models that would

be seriously affected would by definition not display a behaviour aimed at taking them close to the

source and therefore would not be interesting. In general, the higher the probability of success for

a given point, the more likely the model is to move towards the source from that point onwards and

consequently the probability that it will move to the border and be affected byit drops.

The second point is easily addressed by evaluating the results from a world of a given size

either in a larger or in an infinite world. To this effect, we define the size of theworld in which

the model is optimised asx∈ [−1,30] andy∈ [−60,60] whereas the result will be evaluated again

based on the Markovian properties of a world withx∈ [−1,50] andy∈ [−100,100] as well as by

running a model moth based on the optimised transition probabilities in an infinite world.

3.3 Computational implementation

In this section, we detail computational techniques that are useful for implementing calcula-

tions with the large transition probability matrices resulting from our model in MATLAB to ex-

emplify how a careful design of a program can significantly reduce the computational cost of the

operations. First, however, we recall the definitions of the mean time to absorption and the proba-

bility of absorption into a given state. Details on the optimisation process are alsogiven.

3.3.1 Properties of absorbing Markov chains

The canonical form of the transition probability matrix of an absorbing Markov chain is:
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t1 . . . tn a1 . . . am

t1

... Q R

tn
a1
... 0 Im

am

Wheret1 . . .tn are transient anda1 . . .am absorbing states.Im denotes the identity matrix of size

m, 0 is a matrix of all zeros. Based on this form, the fundamental matrixN of the model can be

defined asN = (In−Q)−1. N always exists for absorbing Markov chains and contains the number

of steps the model can be expected to spend in each state (columns) beforeabsorption if started in a

given state (rows) (for a proof, seeGrinstead and Snell, 1997, p. 418). The mean time to absorption

for each starting state thus follows trivially by summing across all rows inN, producing a vector

T whoseith element is the mean time to absorption of the model if started in stateti . Further,

calculatingA = N×R creates an by m matrix in which each element(i, j) is the probability of

absorption into statea j if the model is started in stateti .

3.3.2 Considerations for the implementation in MATLAB

The first important observation is that although the number of states and thusthe size of the

transition probability matrix is large, each row will only contain four non-zerovalues at most (since

each state can only have a maximum of four successor states, by definition).The largest part of the

transition probability matrix therefore consists of zeros and is thus useful touse asparsematrix to

store the transition probabilities, significantly reducing the memory load.

The second observation is that in order to compute the fundamental matrixN we first need

to generate an appropriately sized identity matrix. Since we have made the transition probability

matrix (and thusQ) sparse, it is sensible to generate a sparse identity matrix using thespeye instead
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of theeye function, resulting in a significant time saving.

Thirdly, we note that to compute the fundamental matrix, we need to take the inverse ofIn−Q,

which is computationally very expensive for large matrices. It is thus worth realising that summing

the rows of a square matrix with side lengthn, which is required to compute the mean time to

absorption, is equivalent to multiplying this matrix with a column vector of lengthnof ones. Naming

this vectorCn, we thus haveT = (In−Q)−1 ·Cn and we note that the probability of absorption is

given byA = (In−Q)−1 ·R. For all values of interest, we therefore need to multiply the inverse

of a matrix with another matrix. In MATLAB, this is an operation implemented asmatrix left

division, defined asA\B = A−1 ·B, which computes the result with negligible error without actually

generating the inverse. Using this operator we can therefore again savea significant amount of time.

Together, these considerations make the calculation of both the mean time to absorption and

the probability of absorption into a goal state feasible at run-time in an optimisationalgorithm.

3.3.3 Optimised values

All transition probabilities are optimised in a Cartesian world with coordinate ranges x ∈

[−1,30] and y ∈ [−60,60]. Like Sánchez-Montañés and Pearce(2006), we consider the model

to be successful if it arrives at either of the points(0,−1), (0,0) or (0,1) (see Fig. 3.4) and to

have failed if it arrives at a point with anx-coordinate of−1 without having passed through one

of the aforementioned goal points. The total probability of absorption into a goal statepγ, i.e. the

probability of success, is thus defined as the sum of the probabilities for arriving in each of those

states.

The mean time to absorption cannot be defined exclusively for the goal states, as previously

discussed. Also, the mean time to absorption can vary with bothx andy. To be able to optimise

the mean time to absorption in a meaningful way for all points in the world it therefore needs to

be normalised for the distance from the source. We note that the mean time to absorption into a
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goal state is dependent on bothx andy, but the mean time to absorption into a fail state mostly

depends onx. This is because the goal states are located in a small region around the origin while

the fail states form a line with equationF : x = −1. Any normalisation of the overall mean time to

absorption will thus depend on the probability of success in the sense that there is a probabilitypγ

that the normalisation will depend onx andy and a probability 1− pγ that it will only depend onx.

This yields:

τn(x,y) = τxy

(

pγ
√

x2 +y2
+

1− pγ

x+1

)

(3.7)

whereτn(x,y) is the normalised andτxy the original mean time to absorption for a starting point with

coordinates(x,y). There is a small error here caused by the fact that the points(0,1) and(0,−1)

are also goal states, which is not taken into account in the formula, but since their distance to the

origin is small, the error is negligible for our purposes.

Since we are interested in finding results that are general for the entire world, it is best to

considerpγ for all points in the world butτn only for points that show a non-zero probability of

success. We therefore optimise either the mean ofpγ or τn over all points for which they are

considered. Other possible values for optimisation would be for example maximal or minimal

values found in the entire world, but initial trials have shown this to be less useful than the mean,

in particular because in some conditions there will always be points with either a0 probability of

success or a very large mean time to absorption. Therefore, optimising for those values would

almost certainly result in a flat shape of the cost function masking otherwiseinteresting minima.

3.3.4 Optimisation algorithm

A standard simulated annealing approach (Kirkpatrick et al., 1983; Cerny, 1985) is used to

optimise the system. The transition probability functionP = exp((Es−En)/T) for En > Es andP = 1
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transition probabilities transition probabilities

model model model model

A T A T A T A T

p1(F |F) 1 1 p1(F |D) 1 p2(F |F) 0 1 p2(F |D) 0
p1(U |F) 0 0 p1(U |D) 0 p2(U |F) 0.5 0 p2(U |D) 0.5
p1(D|F) 0 0 p1(D|D) 0 p2(D|F) 0.5 0 p2(D|D) 0.5
p1(R|F) 0 0 p1(R|D) 0 p2(R|F) 0 0 p2(R|D) 0
p1(F|U) 1 p1(F |R) p2(F |U) 0 p2(F |R)
p1(U |U) 0 p1(U |R) p2(U |U) 0.5 p2(U |R)
p1(D|U) 0 p1(D|R) p2(D|U) 0.5 p2(D|R)
p1(R|U) 0 p1(R|R) p2(R|U) 0 p2(R|R)

Table 3.1: Resulting transition probabilities when the model is optimised for either mean time to
absorption (T) or probability of absorption into a goal state(A) alone. Values which have no effect
on model behaviour are omitted. Of interest is that the reversal state is usedin neither solution.
Further, the solution minimising the time to absorption relies solely on forward movement whereas
the solution maximising the probability of absorption into a goal state shows a typical surge and
cast behaviour.

otherwise is also standard. Here,T is the current temperature of the system andEs andEn are the

energies of the current state and the selected neighbour respectively.The initial temperature of the

system is set to a conservativeT = 20×103 ◦ and the cool-down for each time-step is defined as

Tt+1 = αTt with α = 0.99.

3.4 Optimised source location behaviour

All optimisations were done based on a model whose world size was given byx ∈ [−1,30]

andy∈ [−60,60]. For the purposes of illustration however, we re-evaluate those models in alarger

world (x ∈ [−1,50] andy ∈ [−100,100]) to show that the results are not dependent on the size of

the world. This is further underlined by an evaluation through a numerical simulation in an infinite

world.
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Figure 3.5: Properties and behaviour of the two solutions in a finite two dimensional grid world. (A)
Probability of absorption in a goal state and (B) mean time to absorption for each possible starting
point of a world withx∈ [1,50] andy∈ [−100,100] when the model is optimised to maximise the
probability of absorption. (C) Example track when the model is run in an infinite world. Red circles
indicate positions at which a pocket has been encountered. Source is located at coordinates(0,0)
Note that vertical lines may actually be multiple overlapping up-and-down movements. (D, E, F)
Analogue results when the model is optimised to minimise mean time to absorption.
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3.4.1 Optimisation of single properties

Table3.1 lists the two solutions found when either the mean normalised time to absorption

was minimised or the probability of absorption into a goal state maximised. It is immediately

obvious that the solution using a minimal normalised mean time to absorption is not realistic as

it ignores all information about the plume and simply moves forward. On the other hand, the

solution maximising the probability of absorption into a goal state displays behaviour, also found

by Sánchez-Montañés and Pearce(2006), that is reminiscent of the strategy used by the moth: when

a pocket is encountered, the model always moves forward, otherwise itmoves up or down with equal

probabilities. It can be pointed out that this solution for maximal probability of absorption into a

goal state is not unique; other solutions which use different transition probabilities between the up

and down states when no pocket is present exist. Common to all solutions however is a probability

of 0 for moving forward if no pocket has been encountered.

Figure3.5shows the probability of absorption into a goal state and the mean time to absorption

for every possible starting position in the grid world as well as example tracksof model moths driven

by the respective transition probabilities. The most important observation here is that the mean times

to absorption for the model optimising the probability of absorption into a goal state are generally

very large. Conversely, the model optimised solely for a low mean time to absorption has a success

rate of 0 for all starting positions not directly opposite the goal states, rendering it useless for all

practical purposes.

3.4.2 Optimisation of combined properties

Based on these results, it is interesting to investigate if configurations exist that achieve a

reasonable success rate within a reasonable time. In principle, this can be analysed by restraining

one parameter while optimising the other: maximising the probability of absorption intoa goal state

while forcing the time to absorption to be low or minimising the time to absorption while forcing
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Figure 3.6: Optimal model maximising the probability of absorption while keeping themean time
to absorption low. (A) Probability of absorption and (B) mean time to absorption for each possible
starting state. (C) An example successful track by a model moth based on these results. X denotes
the starting position to avoid confusion based on the use of reversals in this model. Circles represent
encounters with pockets of the plume. The shown trajectory may hide overlapping movements.
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transition probabilities

p1(F|F) 1 p1(F |D) 0.7 p2(F |F) 0.1 p2(F|D) 0.6
p1(U |F) 0 p1(U |D) 0.3 p2(U |F) 0.18 p2(U |D) 0.16
p1(D|F) 0 p1(D|D) 0 p2(D|F) 0 p2(D|D) 0.096
p1(R|F) 0 p1(R|D) 0 p2(R|F) 0.72 p2(R|D) 0.144
p1(F |U) 0.1 p1(F |R) 0.5 p2(F|U) 1 p2(F |R) 0.8
p1(U |U) 0 p1(U |R) 0 p2(U |U) 0 p2(U |R) 0
p1(D|U) 0.9 p1(D|R) 0.5 p2(D|U) 0 p2(D|R) 0.06
p1(R|U) 0 p1(R|R) 0 p2(R|U) 0 p2(R|R) 0.14

Table 3.2: The solution found if the probability of success is optimised while the timeto absorption
is forced to be low. Of interest is the high probability of alternating backwards and forward move-
ment when no pocket is present which is most likely to be interrupted by an upward movement.
The general strategy of the model is thus to make a slow progress towards the upper left, but with a
mostly intact surge behaviour (different from the classic surge behaviour only because there is also
a chance to move downwards when a pocket has been encountered).

the probability of absorption into a goal state to be high (e.g. mean over all states> 0.7). When

the latter is done, the solution previously found when maximising only the probability of absorption

into a goal state is found again (Fig.3.5A and B). This is a strong indication that this is in fact the

most time-efficient solution if a high probability of absorption into a goal state is required.

Fig. 3.6and Tab.3.2show the result of optimising the probability of absorption while keeping

the normalised mean time to absorptionτn below 10. Although this value is chosen arbitrarily based

on results fromSánchez-Montañés and Pearce(2006), the results are similar for different values. In

particular the characteristic candle-flame shaped corridor with non-zeroprobability of absorption

into a goal state (Fig.3.6A) is always seen, although the direction may vary. The strategy employed

here is thus a variation of the one used by the time-optimised model (Fig.3.5D and E): the model

moves more or less in a pre-determined direction (biased towards the upper left in this particular

example) but unlike the first solution, the progress is slower and affectedby pockets of the plume.

In particular, it is interesting to note that the model has a high likelihood of presenting alternating

forward and reverse steps, interrupted by the occasional upward movement. The strategy is thus

a combination of slowly moving in a predetermined direction while frequently hovering around a
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Figure 3.7: (A) Probability of absorption into a goal state and (B) mean time to absorption for the
optimised model detailed in Tab.3.2based on numerical simulations with 100 runs per data point.

position, presumably to increase the chance of encountering a pocket if that position is within the

plume. The overall failure of this solution to provide high probabilities of success for all possible

points in the world is therefore a result of the need to move in a predetermined direction in order to

satisfy the constraints imposed on the mean time to absorption.

Fig, 3.6B also exemplifies the previously discussed effect that defining a bordercan have on

the results. It can be seen in the upper right corner that the mean time to absorption for points that

are more likely to hit the upper border before they reach the goal or failure states increases more

steeply compared to unaffected points. A comparison with Fig,3.6A shows that this does not affect

points with a non-zero probability of success. Therefore, the results also remain unaffected.

3.4.3 Comparison with numerical simulations

To investigate how the restriction of the model to a finite world for analysis affects the results,

if at all, we have evaluated the set of transition probabilities detailed in Tab.3.2again using numer-

ical simulations of model moths in an infinite world, starting at all points(x,y)|x∈ [1,50] andy∈

[−100,100]. For each of these points, the success probability was calculated by starting a model
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100 times and counting the number of successful runs. The mean time to absorption is calculated

from the mean running time of each of these 100 simulations. Both results are shown in Fig.3.7.

To assess the difference between the numerical results in an infinite world and those derived

from Markovian properties in a finite world, we compute the RMSE between thetwo and find a very

low value (0.067). The RMSE between the numerical and Markovian property-basednormalised

mean times to absorption is found to be high (13.92 steps). This is due to the previously discussed

effect the border can have on the mean time to absorption for certain startingpoints. If only start

states that have a non-zero probability of absorption into a goal state are considered, the RMSE

drops to 1.20 steps.

We have thus shown that, although the restriction to a finite world can affect the mean time

to absorption, it does not do so dramatically for points that are of interest. Additionally, the prob-

ability of absorption into a goal state computed with negligible error. In terms of computational

requirements, the numerical simulation presented here has taken approximately two days on a Pen-

tium IV 3.2GHz with Hyper-threading and 2GB of RAM whereas the equivalent evaluation of the

Markovian properties is achieved in under 90s (and under 20s for the smaller world size used in the

optimisation process itself), thus clearly underlining the advantage gained from the translation into

a strict Markov model.

3.5 Summary of Chapter3

This Chapter contains two main achievements which each merit a discussion in turn: we have

shown how a dual Markov-like model of behaviour can be translated into astrict Markov model

for analysis and we have analysed the behaviour of a very simple model of moth plume-navigation

behaviour.
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3.5.1 Uses and limits of the translation into strict Markov models

The translation into a strict Markov model has been motivated mainly through thedesire to be

able to optimise a behavioural Markov-like model by calculating its probability ofsuccess or the

mean time required to achieve a certain goal analytically. The goal state (as well as the start states)

must therefore be present in the resulting Markov model. Since we have concerned ourselves only

with navigational problems here, the strict model had to be defined over the world in which the

original dual state model can move, which has resulted in a rather large number of states in all

examples considered here. This does not prevent the model to be used for other types of goal states

(e.g. not being hungry) as long as the space in which the start and goal states exist are finite or

countably infinite and the multi-state model of the behaviour navigates through this space.

This space also imposes the most severe limitation on the strict model - while the model itself

may be countably infinite, it needs to be finite in practise so that the probability ofabsorption and

the mean time to absorption can be computed from the transition probability matrix. The size of

this finite world is then further restricted by the available computational resources. This limitation

is obviously not always relevant - most laboratory behavioural experiments are carried out in finite

surroundings (e.g.on a petri dish forC. elegans); models could thus be analysed in virtual versions

of these experiments.

The restriction to a finite world does however require a definition for handling attempts by the

model to move outside of the world, which again depends on the specific modelunder investiga-

tion. For the simple moth model used here, this was not defineda priori, so we chose to replace

movements across the border with a stay in the current position. ForC. eleganson the other hand,

the abundant ethological experiments involving the observation of the animalon a petri dish (i.e.

a finite, bounded world) allow the definition of appropriate responses, for instance via the touch

avoidance response (Chalfie et al., 1985).

The moth model included a failure state, but as theC. elegansmodel shows, this is not always
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necessary. The presence of failure states affects which values can be used in the analysis of the

model. Without a possibility to fail, the probability of absorption into a goal state is meaningless but

the mean time to absorption very relevant. If failure states are present, the probability of absorption

is very informative but the mean time to absorption needs to be analysed with caution.

In general, if the restriction to a finite world in which a Markov like model can move is ac-

ceptable, it is useful to translate it into a strict Markov model so it can be evaluated without having

to resort to repeated time consuming simulations, that can be subject to statisticalfluctuations. The

net gain depends on the problem;C. elegansmoves in an environment which is nice in the sense

that information about the environment remains similar in different runs because the gradient can

be sampled reliably at any point in space. This is different for the moth: pockets of the source

propagate according to a random walk and a trajectory that has encountered many plumes in one

run may go without hitting a single one in a repeat attempt. It is thus much easier to numerically

optimise the original dual Markov-like model ofC. elegans(see Chapter5) than it is to optimise

the corresponding moth model. Therefore, while a translation into a strict Markov model is not

necessarily required for theC. elegansmodel, it is essential for an analysis of the moth model.

3.5.2 Moth navigation towards the source of a plume

Using the strict Markov model, it has been possible to analyse the behaviourand performance

of a dual Markov-like model based solely on the four directions the model can move in at any

given step. It has been shown that minimising the mean time to absorption alone leads to clearly

unreasonable behaviour. Maximising the probability of absorption into a goal state has resulted in a

surge-and-cast behaviour similar to the ethological description for chemotaxis in the real moth, but

the mean time to absorption was rather large. Attempting to optimise the probability of absorption

while at the same time constraining the mean time to absorption has resulted in an interesting strat-

egy not observed in the moth: the model will travel forward in a certain direction, usually at some



Chapter 3: Translating Markov-like models of behaviour into strict models 62

non-zero angle with respect to thex axis but will frequently hover in one position for a while which

slows the overall travel down. This slow forward movement increases theprobability of finding

pockets and thus the probability of success for some starting points but the predetermined direction

of overall movement means the starting positions that have a non-zero success probability form a

corridor in the world.

Of particular interest is the result that any attempt to optimise for mean time to absorption

while keeping the probability of success high also results in a surge-and-cast behaviour. While

it has been speculated previously that such a strategy is indeed the best for being successful at

finding the source (Balkovsky and Shraiman, 2002), this has not previously been shown explicitly.

Similarly to the results bySánchez-Montañés and Pearce(2006), it is found that 2 sets of transition

probabilities are sufficient for this behaviour to emerge. The emerging casting behaviour in this

case is rather primitive however and different, more efficient, casting strategies have been proposed

which additionally make use of the restrictions on the source location a pocketprovides (Balkovsky

and Shraiman, 2002). It would thus be interesting to use the work presented here as a basis for

discovering and evaluating the different types of casting strategies that exist. A question of particular

interest is what type of information the moth actually uses in its navigation (Vergassola et al., 2007).

Here, we have simply used the presence or absence of a pocket at anygiven time step, but it is also

possible for instance, that the animal integrates the number of pockets it encounters in a given time

window to direct its behaviour.

However, the purpose here was simply to illustrate that problems using Markov-like models

which can be translated into strict Markov models while remaining computable exist and to show

an example analysis. Further analysis of the moth behaviour will thus have to be deferred to a later

date. For now, we will focus on ways to analyse computationals models such as those introduced in

this chapter.



Chapter 4

A framework for the systematic analysis of behavioural

models

CHAPTER 3 has introduced a Markov-like model ofC. elegansgradient navigation behaviour

and has touched on the fact that it is interesting to consider the optimality of transition

probabilities under certain conditions. In this chapter, we will present a comprehensive framework

for analysing the behaviour of an animal based on a computational model. Besides being very

useful for the study of behaviour, the framework has applications in other domains as well; this will

be discussed at the end of the chapter.

4.1 Using optimisation to analyse behaviour

When optimisation techniques are applied to behavioural models, it can be with the aim of

determining which cost parameter an observed behaviour minimises (assumingthat the behaviour

is optimal in some sense), as seen for instance in Optimal Foraging Theory (MacArthur and Pianka,

1966). In Action Selection studies, the aim is to identify how an animal might determine anoptimal

63



Chapter 4: A framework for the systematic analysis of behavioural models 64

course of action even though evaluating all possible courses is computationally prohibitive (seee.g.

Seth, 2007). In such a scenario, finding a single optimal solution is usually sufficient. In the present

work however, we are more concerned with finding at least a representative set ofdifferentconfig-

urations of a behavioural model as this would inform on the different possible strategies potentially

available to an animal.

How does one go about finding such a representative set? The behaviour of a computational

model is dictated by its parameters. In the Markov-like models used here, these are the transition

probabilities but this may of course differ in other models. In general then,different strategies for

reaching a given goal can be understood as being located in differentregions of the parameter space

of the model. Not every point in the parameter space will represent a goodstrategy. Some may be

inefficient, others may not address the goal of the behaviour under investigation at all. It is therefore

interesting to ask which regions of the parameter space of a model contain optimal strategies and

which ones do not.

It is important to define what is understood by “regions” of a parameter space. Since our aim

here is to apply the framework to Markov-like models, the parameter space willbe finite since each

parameter can only take on values from a limited range ([0,1] for transition probabilities). The

entire parameter space of such a model will thus be ann-dimensional hypercube (assuming the

range of each parameter is the same - if not, some sides of the parameter space may be longer than

others and the shape would strictly be then-dimensional equivalent of a rectangular prism but this

has no consequences for the framework presented here) and a region is then simply an arbitrarily

defined subspace contained within that hypercube. Trying to find a representative set of optimal

configurations for any model then amounts to defining a set of such regions and determining for

each of those regions whether or not it contains an optimal configuration.

Subspace searches have been used in previous optimisation studies as well, but with a different

aim. Like most work in Optimisation Theory, these studies attempt to find methods to improve
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the speed and/or the reliability of optimisation algorithms, either generally or for specific types of

problems. This can be achieved, for instance, by identifying lower-dimensional subspaces of the

entire search space most likely to contain the global optimum (seee.g.Byrd et al., 1987; Branch

et al., 1999). Our interest here however is to find a set of optimal solutions by searching each

subspace individually for one, a task for which these approaches arenot designed for.

In a sense we are thus interested in obtaining a rough description of the shape of the cost

function through searching the subspace. Other methods exist for analysing this shape, but they are

mostly concerned with identifying local smoothness or shape.Philippides et al.(2005) for instance

achieve this by first deriving an optimal solution and then slightly varying oneor more parameters

in order to assess to what extent this affects the performance of the solution. The local shape of

the cost function at the point of the investigated solution can then be inferred. Again, however,

we are more interested in the location of minima than the overall shape of the costfunction. The

main difference between the present study and other work in optimisation studies is thus the explicit

search for multiple minima, which we aim to undertake by searching subspaces. Efficiency in the

speed of execution is of lesser interest to us here (in contrast to many other studies), although we

will show later that our approach here can in some tasks also perform wellfrom this point of view.

If the aim is thus to derive a set of subspaces in order to find a representative set of minima,

there are some restrictions on this set for it to be useful: 1) when considered together, the regions

need to cover the entire parameter space and 2) no regions should overlap. The reason for the first

restriction is obvious - without it some regions of the parameter space might never be explored at

all. The second restriction ensures that we will not find the same optimal configurations in two

different regions. With these restrictions in mind, a natural way to generatethis set of regions is

simply to divide the parameter space into a number of smaller spaces by cutting it along one or

more dimensions as illustrated in Fig.4.1 for a simple 2-dimensional space. There is noa priori

restriction on the nature of these cuts; one could for instance divide one dimension into two parts
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A B

C D

Figure 4.1: A simple illustration of how a parameter space can be divided into different regions
by cutting along the dimensions. (A) 16 regions, (B) 4 regions, (C) 4 different regions and (D), 8
regions.

but another into four (Fig.4.1D). Here, however, we only consider cuts dividing each parameter

equally (e.g. Fig. 4.1A or C) - each dimension is therefore treated the same as far as the creation of

subspaces is concerned.

An important side effect of treating each dimension the same is that it becomes possible to

use a recursive approach for evaluating the regions of the parameter space. Consider for instance

the example division of a 2-dimensional parameter space given in Fig.4.1A. This space contains

16 regions and using a sequential approach, each of these regions would have to be evaluated in

turn. It is easily seen that such an approach could be very time-consumingif the parameter space

is high-dimensional. A recursive approach to finding optimal configurations within this parameter

space is illustrated in a step-by-step fashion in Fig.4.2. The parameter space is first considered

in its entirety. An optimisation algorithm is run in this space and if an optimal configuration is

found in it, the space is then divided into two subspaces and the optimisation algorithm rerun in

each part. This subdivision of each subspace takes place until the optimalsolution found in one

fails to meet the performance criterion or until the division process has produced a subspace whose

size meets a termination criterion. In the example here, the termination criterion is simply a side
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1 2 3 4

5 6 7
Figure 4.2: A step by step example of a recursive exploration of a parameter space, assuming a divi-
sion into 16 subspaces as in Fig.4.1A. Blue dots indicate the location of the optimal configurations
the algorithm is trying to find.Step 1: Entire space is analysed, an optimal solution is found (green
dot in subsequent steps).Step 2: The space is divided vertically into two equal halves (red line).
An optimal solution has already been found in the left half, it does thus not need to be evaluated
again. No good solution is found in the right half - this portion of the parameterspace is now ex-
cluded from further analysis (coloured yellow in subsequent steps).Steps 3-7: repeats of step 2,
dividing the remaining space alternatively along the horizontal and the vertical and evaluating each
half unless an optimal solution is already known to exist in that half.
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length smaller or equal to1/4 of the original space. In the general case ofn-dimensional spaces, a

good termination criterion could be based on the volume of the subspaces. Recursive analysis of the

cost function has been used before, but in a different context.Koyamada et al.(2004) for instance

use an optimisation algorithm which relies on a quadratic cost function in their study. Their overall

cost function however could not be approximated by a quadratic function, a problem which they

overcome by recursively subdividing the overall space into subspaces. However, the aim here still

is to derive a single optimal configuration, while our interest remains in a representative set of them.

A final consideration which needs to be discussed concerns the definitionof optimal configura-

tion. When an optimisation algorithm is run in a subspace of the entire parameter space, the optimal

solution it finds is only local to that subspace. It is therefore important to define what can be consid-

ered an important solution so that the local minimum found by the algorithm in a subspace can be

correctly identified as being a global minimum or not. There are multiple possibilitiesfor defining

such a criterion of optimal performance, depending on the exact problemunder consideration. One

option is to base this criterion on the score of the solution found by the optimisationalgorithm when

it is run on the entire parameter space. In the case of stochastic models, there will always be a slight

natural variation in the performance and repeated runs of an optimisation algorithm on the entire

parameter space might thus generate a distribution of scores. This distribution can then be used for

the definition of performance that can be considered optimal. An example of such an approach will

be given in Chapter5.

This completes the informal definition of our recursive approach for obtaining a representative

family of optimal configurations for a given model of behaviour with respect to a given goal and a

formal, slightly more elaborate definition will be given in the next section. It is important to realise

that one of the main advantages of this approach is that it can discover a representative set ofdifferent

optimal strategies with which the model can achieve its goal. There is less emphasis on finding all

minima which are similar to each other, since the algorithm only looks for one optimalsolution
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A B
Figure 4.3: An example of how different ways of dividing the parameter space will affect the results.
Dots represent all optimal configurations in the space. (A) A division which is not very informative
since optimal solutions are located close to the dividing border. (B) A better division which is more
useful in determining interesting regions within the parameter space.

per region. This is because two distinct but very similar strategies (represented by two points in

the parameter space that are very close to each other), particularly in a stochastic model, are likely

to generate the same overall behaviour. To what extent strategies are considered too similar to be

different remains of course a matter of somewhat subjective judgement and is dependent on the

problem under investigation. The present framework caters for this by allowing the division of the

parameter space into arbitrarily small subsections. It is thus always possible to define the size of the

regions one will consider in function of what one judges best for a given problem.

An issue that needs more careful consideration is that the algorithm for obvious reasons can-

not place any restrictions on the location of the optimal configurations within theregions of the

parameter space. This means that it is in principle possible that the optimal configurations found for

two neighbouring regions are in fact located on the border between thoseregions and would thus

encode similar behaviours. This is not necessarily a problem if it only happens a few times and it

is easily verified if this is an issue by looking at the exact locations of the found optimal configura-

tions within the parameter space. If too many are located at borders, it may beuseful to rerun the

algorithm so the parameter space is divided into smaller regions. This illustratesagain that the best
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way of dividing parameters within this algorithm is dependent on the specific problem (Fig.4.3).

There are also a number of interesting general features to the framework: 1) it is independent

of the specific optimisation technique used. This allows the investigator to choose whatever tech-

nique is best suited for the model he wishes to study. 2) It is independent of the chosen modelling

technique. We have only discussed on Markov-like models here becausesuch a model will be used

in Chapter5, but in principle any model with a finite parameter space can be used without modifica-

tion to the algorithm. If the parameter space is infinite (for instance if one or moreof the parameters

can take any value), the division of the parameter space needs to be reconsidered since an infinite

space cannot be divided into two halves. Assuming that an acceptable wayof dividing the space

can be found however, the algorithm remains usable.

4.2 Formal definition of the recursive algorithm

In this section, a formal definition of the recursive algorithm is given in sufficient detail to serve

as a template for implementations. It is based on the previous section but extends the capabilities of

the algorithm slightly beyond what has been discussed already, especiallyregarding the definition

of the criterion of optimal performance.

Definition 1. LetS denote the finite n-dimensional parameter space and the sets LS = {lSi |1≤ i ≤

n} and US = {lSi |1≤ i ≤ n} contain the lower and upper bounds for each dimension ofS . We call

division of the spaceS along dimension d and writeS ÷d2 the creation of two spacesM andN

with associated sets LM = LS , UM = {uMi
|(∀i 6= d,uMi

= uSi )∧ (uMd
= uSd/2)}, LN = {lNi

|(∀i 6=

d, lNi
= lSi )∧ (lNd

= lSd/2)}, UN = US .

Remark 1. This definition only shows the division of the parameter space into2 halves for simplic-

ity, but it is easily seen that the division can be defined for any m∈ N asS ÷dm =
{

M1, . . . ,Mm
}

Example 1. Let S be a parameter space such that LS = {0,0,0,0,0} and US = {1,1,1,1,1}. S ÷
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22 = {M ,N } such that LM = {0,0,0,0,0}, UM = {1,1/2,1,1,1}, LN = {0,1/2,0,0,0} and UN =

{1,1,1,1,1}.

Definition 2. Let T = {tk|1≤ k ≤ m} be a set such that tk ∈ R and tk < tk+1 if k > 1. Let s be the

value of the minimum found in a parameter spaceS by an optimisation algorithm andSmin its exact

location. We call vS ∈ T|[∄w∈ T|vS > w > s] thevalue ofS if |T| > 1. If |T| = 1∧s≤ T, vS = s.

Remark 2. vS may not exist. This will be used in the algorithm below.

Definition 3. Let VS = (uS1 − lS1) · . . . · (uSn − lSn) be the volume of the initial parameter spaceS .

We callτ|0 < τ ≤VS thetermination thresholdof our algorithm.

Remark 3. τ may not be0 in order to prevent infinite recursion in the algorithm below.τ = VS is

acceptable but does not improve on just running running an optimisation algorithm on the entire

parameter space.

Definition 4. LetX be a subdivision of the parameter spaceS and vX the value ofX . We call the

output fromX the triplet PX = {X ,Xmin,vX } and we call the output fromS the set O of all triplets

P generated by the algorithm onS .

Algorithm 1. Preliminaries: Let d= 1. Let O= ∅ be the set of results from the algorithm. LetS

be the initial n-dimensional parameter space and defineτ andT as required.

Step 1: Obtain the location of the minimum Smin and its score s inS from the optimisation

algorithm and determine vS .

Step 2: If vS does not exist, let vS = +∞. Let O= O∪{{S ,Smin,vS}} and halt.

Step 3: Calculate the volume VSof S. If VS < τ, let O= O∪{{S ,Smin,vS}} and halt.

Step 4: PerformS ÷d = {M ,N }.

Step 5: Let d = d+1. If d > n, let d= 1.

Step 6: Run algorithm withS =M , d and O.

Step 7: Run algorithm withS =N , d and O.
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Remark 4. Time may be saved by aborting the optimisation algorithm in step 1 prematurely once

a minimum s|s< t,∀t ∈ T is found.

Using the present algorithm, one systematically divides the initial parameter space into smaller

subspaces with a volumeV ≤ τ and valuevS , which allows to assess what local minima one may

expect in different regions defined byτ of the parameter space. In particular,τ defines the resolution

of this visualisation: asτ → 0 the resolution will increase.

The setT allows the user to define the different values for the minima that he is interestedin

and depends on the specific problem. This extends the notion of a criterion for optimal performance

discussed previously.T may be a singleton, in which case it functions exactly like the previously

discussed criterion.

4.3 Analysing the set of optimal solutions

Applying the recursive algorithm to the parameter space of a model thus generates a list of

regions within the entire parameter space containing optimal configurations ofthe model. It fol-

lows trivially that regions which do not contain optimal configurations are nowalso known. The

available methods for analysing this family depend in part on the nature of the model. If it is Marko-

vian or Markov-like, one may for instance wish to look simply at the distribution of the transition

probabilities across the optimal configurations found by the algorithm. It may also be possible to

look at certain Markovian properties of these configurations. These model-specific types of analysis

will be presented more fully in Chapter5, in which the present framework is actually applied to a

Markov-like model. Here, however, we focus on an analysis which is applicable independently of

the model and very informative on the relative importance of each parameterof the model with

respect to optimal performance.

It is possible to see the determination of whether or not a given region of theparameter space
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contains an optimal configuration as a decision process on the values of thedifferent parameters. As

an example, consider again a simple 3-dimensional parameter space, which isdivided into 8 equal

regions (cut once along each dimension). Let the parameters be known as A, B andC, each varying

between 0 and 1. After using the recursive algorithm, it is known for eachof those regions whether

or not they contain an optimal configuration. When focusing on the value range each parameter is

allowed in a given region (S in the output from the algorithm as specified in section4.2), this list

will provide the following kind of information:

• If 0≤ A < 0.5, 0≤ B < 0.5 and 0≤C < 0.5 a good solution is found.

• If 0≤ A < 0.5, 0≤ B < 0.5 and 0.5≤C≤ 0.5 a good solution is found.

• If 0≤ A < 0.5, 0.5≤ B≤ 1 and 0≤C < 0.5 no good solution is found.

• If 0≤ A < 0.5, 0.5≤ B≤ 1 and 0.5≤C≤ 0.5 no good solution is found.

• If 0.5≤ A≤ 1, 0≤ B < 0.5 and 0≤C < 0.5 a good solution is found.

• If 0.5≤ A≤ 1, 0≤ B < 0.5 and 0.5≤C≤ 0.5 a good solution is found.

• If 0.5≤ A≤ 1, 0.5≤ B≤ 1 and 0≤C < 0.5 no good solution is found.

• If 0.5≤ A≤ 1, 0.5≤ B≤ 1 and 0.5≤C≤ 0.5 no good solution is found.

This information covers all the regions in the parameter space and can be represented as a

decision tree, as shown in Fig4.4. The tree shown is not the smallest possible tree. In fact, it is

easily seen that the only decisive factor in determining whether or not a region contains an optimal

configuration is the allowed value range ofB since all good solutions are found whenB< 0.5. While

this is obvious in the present simple example, finding the smallest decision tree that accurately

represents a given data set is not a trivial problem in the general case. It can be solved, however,
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Figure 4.4: A simple decision tree based on the example from section4.3. Yellow nodes represent
parameters, edges the restrictions on the value of the parameter in the parent node and boxes indicate
whether or not a particular combination of value ranges contains an optimal configuration.

using an AI technique called the ID3 algorithm (Mitchell, 1997). Briefly, the ID3 uses information

theory (Shannon and Weaver, 1949) to compute the information entropy of the data set. In our

example, we have 3 parameters,A, B andC and two possible conclusions - a region either does or

does not contain an optimal configuration.

The entropy of the entire setS is then given by:

E(S) = −
n

∑
i=1

|Si |
|S| log2

|Si |
|S| (4.1)

where|S| is the cardinality of theS, |Si | the number of items with conclusioni andn = 2 since

we only have two conclusions. A decision tree will split this entire set into a number of subsets

along one of the parameters. The ID3 algorithm decides which parameter to use first for this split

based on the reduction in entropy this will achieve for the resulting subsets.For a parameterΦ, the
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algorithm therefore computes the gain of splittingSalong this parameter:

G(S,Φ) = E(S)− ∑
v∈Φ

|Sv|
|S| E(Sv) (4.2)

wherev represents each of the values that the parameterΦ can take (0−0.5 and 0.5−1 for any

parameter in our example),Sv is the subset ofS in which Φ takes valuev and|Sv| is the cardinality

of this set. The parameter which provides the highest gain is then used as thefirst node in the tree

and the algorithm is rerun on each of the remaining subtrees until the entropyfor a subtree is 0 or

all parameters have been used in the parent tree. The resulting tree is thenlikely to be the smallest

tree which can accurately represent the given data set.

In our example above, it is simple to see that the gain is maximal when the tree is divided along

parameterB and that the resulting subtrees will all have an entropy of 0. The optimal decision tree

in our example thus consists of a single node,B.

Issues can arise if the data set is not complete (e.g. if there were some regions in our example

for which we wouldn’t know whether or not they contained an optimal configuration) or if there

are conflicts in the data (e.g. if one region were both labelled as containing and not containing an

optimal configuration). However, our recursive algorithm ensures that these problems will not be

encountered and it will thus always be possible to use the ID3 algorithm forthe construction of a

decision tree based on the output of the recursive algorithm.

The real interest here is not the tree itself, however. An example tree will be seen in Chapter

5, but in general, when the model analysed using this framework has a largenumber of parameters

which are divided into several smaller regions, even a size-optimised tree may be too large to read.

However, it is still possible to compute the average location of each parameterof the model in the

tree, i.e. how far from the top node it can be found in the different subtrees. Since the algorithm
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places parameters which are most relevant to reducing the entropy of the data set, and thus are most

important in the behaviour described by the model, at the top, this effectivelygenerates a ranking of

the model parameters according to their importance in the behaviour the model isexhibiting. In our

simple example, we would find that parameterB is the only important parameter in the model.

There are several advantages which can be gained from such a ranking. At its simplest, it pro-

vides a better understanding of the importance of the corresponding behavioural units with respect

to the overall goal which in turn informs on the nature of the different strategies that exist to achieve

this goal. If some behavioural units are not present in the ranking at all, as seen in our simple ex-

ample above, this is also informative since those units were presumably used inthe model because

they were observed in the animal whose behaviour is being modelled. This analysis can thus iden-

tify behavioural units which are unlikely to contribute to achieving a certain goal and are thus more

likely observed due to other, perhaps uncontrolled variables in the behavioural experiments which

formed the basis of the computational model. A more detailed application of this typeof analysis

will be seen in Chapter5.

4.4 Other applications for the framework

The recursive search of the parameter space is obviously useful notonly for analysing compu-

tational models of behaviour but can be applied to any optimisation problem in which it is useful to

understand the distribution of global minima across the parameter space. Since it is not restricted

by the choice of model or optimisation technique, it is generally applicable. Whileit is of course

always possible that faster approaches exist for a given specific problem, our approach can always

be used if those are not yet known.

A second, perhaps more interesting application of this algorithm is that it can help dealing

with local minima problems in heuristic optimisation tasks. Consider for instance the parameter
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Figure 4.5: A randomly generated parameter space used here to illustrate some applications of our
framework. Red indicates peaks, blue valleys. White circle shows global minimum.

space shown in Fig.4.5. Finding the global minimum (indicated by the white circle, and with a

value of 1.4233) is a hard task even for algorithms that are designed to overcome local minima, like

Genetic Algorithms (Fraser and Burnell, 1970) or Simulated Annealing (Kirkpatrick et al., 1983;

Cerny, 1985). Table4.1 summarises the performance of a standard SA algorithm, our recursive

approach with a variety of different divisions of the parameter space and a sequential subspace

search using the same parameter space divisions. When using the recursive approach (using the

same SA algorithm for the optimisation), the criterion for optimal performance is arbitrarily set to

10. It is easily seen that even when each parameter is just divided into two,the chance of locating

the global minimum increases significantly from 2% to 62% as measured in 50 repeated runs of

the algorithms. Similarly, the mean optima returned over those runs decreases from 6.58±3.78 to

2.41±1.76 indicating that even when the recursive algorithm fails to locate the globaloptimum, the

best value found is still closer to the optimum in the recursive approach. The performance of the

recursive algorithm only increases as the parameter space is divided intosmaller spaces. However,

the increased ability of dealing with local minima comes at an obvious cost - it requires more

computational time (Table4.1) The performance of the sequential subspace search is qualitatively

similar and with a low number of subspaces almost identical to the recursive approach. As the
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Technique Prob. of finding minimum Mean score found Mean time (s)

Standard SA 0.02 6.58±3.78 1.55
Recursive withτ = 1/4 0.62 2.41±1.76 8.95
Sequential withτ = 1/4 0.68 2.19±1.42 9.83
Recursive withτ = 1/16 0.64 1.66±0.78 20.97
Sequential withτ = 1/16 0.70 1.65±0.77 43.30
Recursive withτ = 1/64 0.9 1.43±0.01 48.62
Sequential withτ = 1/64 0.9 1.43±0.01 177.58

Table 4.1: The chance of finding the global minimum in the parameter space shown in Fig. 4.5and
the mean and standard deviation of the solutions found in 50 trials for a standard simulated annealing
algorithm, a sequential subspace search and our recursive algorithm dividing the parameter space
into 4, 16 and 64 subspaces respectively. The mean running time of the algorithms are also shown.

number of subspaces increases, however, the mean running time of the sequential approach becomes

much larger compared to the recursive algorithm, which is expected since it always evaluates all

subspaces.

To better judge the relation between the increased cost and the increased success, we ask how

often each of the algorithms would need to be run in order to have returned the global minimum with

a probability of 0.9 (i.e. the best observed success rate). To do so, we use the Pascal distribution

(Feller, 1968):

f (t) = p(1− p)(t−1) (4.3)

which gives the probability that an event happens for the first time at timet if the probability of the

event happening at any time isp. Summing fromt = 1 to t = n then gives the probability of the

event having happened for anyt ≤ n. For a givenp, we thus need to find the smallestn such that:

n

∑
t=1

p(1− p)(t−1) ≥ 0.9 (4.4)

The results are summarised in table4.2. It can be seen that under these circumstances, each of
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Technique Runs required Approx. time required (s)

Standard SA 114 176
Recursive withτ = 1/4 3 26.85
Sequential withτ = 1/4 3 29.49
Recursive withτ = 1/16 3 62.91
Sequential withτ = 1/16 2 86.6
Recursive withτ = 1/64 1 48.62
Sequential withτ = 1/64 1 177.58

Table 4.2: The number of times an algorithm needs to be run to have found the global minimum
with a probability of 0.9 and the corresponding time cost

the recursive algorithms outperforms the standard simulated annealing algorithm significantly. A

similar effect has been found for the sequential approach: unless the number of subspaces is set

to 64, it outperforms the standard approach significantly. Compared to the recursive approach, the

performance is rather similar when the parameter space is divided into 4 regions, but this is no

longer true for other divisions.

Interestingly, it can also be seen that dividing the parameter space into smaller regions does not

necessarily result in a faster performance if a target probability of having found the global minimum

is set. In our example, dividing the parameter space into 4 regions is a more time-efficient solution

for finding the global minimum with probability 0.9 than a division into 64 regions.

While it is of course not normally knowna priori with what probability a heuristic optimi-

sation approach will find a global minimum in an unknown parameter space, it has thus still been

shown that using our recursive approach as well as a sequential subspace search can both increase

this probability in a single run at the expense of requiring more time and can achieve a target prob-

ability over multiple runs in less time than a standard approach. Compared to sequential subspace

searches of the same granularity, the recursive approach mainly provides a time advantage which

increases with the number of subspaces, but at least in our example above, the difference between

the most time-efficient solutions for achieving a probability of 0.9 of finding the global minimum

was minimal.



Chapter 4: A framework for the systematic analysis of behavioural models 80

4.5 Summary of Chapter4

This chapter has introduced a framework for analysing computational models of behaviour by

discovering a family of configurations which allow the model to perform some behaviour optimally.

This family of configurations is found by systematically searching the parameter space of the model

for different strategies by which the model could achieve a certain goal. An analysis based on the

ID3 algorithm has been introduced which allows the ranking of the model’s parameters with respect

to the goal-oriented behaviour. Additionally, it has been shown that the framework has uses outside

of behavioural analysis, especially in the case of heuristic optimisation in a paramater space that is

likely to trap a standard algorithm in local minima.

The strengths of the framework here are its generality and independenceof specific modelling

or optimisation techniques. This makes it very useful as a general tool in ethology for the analysis

of goal-oriented behaviour. An example application toC. elegansgradient navigation behaviour

will be given in Chapter5.
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Chapter 5

Stochastic gradient navigation strategies ofC. elegans

A model ofC. elegansgradient navigation has been introduced in section3.1. Here, we use

this 3-state model to investigate this gradient navigation behaviour in detail. Initially, we

answer the question: how do the behavioural units observed inC. eleganshave to interact in order

to navigate gradients towards their centre as fast as possible? Using the framework described in

Chapter4, we systematically derive a family of solutions, which represents the diversity of energy

efficient solutions that could be adopted by the animal. This solution set is analysed for common

properties, which allows us to determine how the behavioural units of the probabilistic model need

to interact to navigate gradients efficiently and it will be shown thatC. elegans-like strategies form

the largest part of the optimal solutions. The fact thatC. elegans-like behaviour emerges in the

optimal configurations we derive allows us to be confident both in terms of therelevance of the

original model as well as our new predictions that result from it, thus demonstrating the usefulness

of our framework as a general approach to analysing complex behaviours.

We initially add the assumption that the model is able to act upon gradient information while

it is moving forward but not during reversals, which we show later to be a reasonable assump-

82
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tion. Also, it is worth underlining here that our results will be specific to this choice of model and

therefore it is important that it has been shown to reproduceC. elegansbehaviour for at least some

specific choice of parameters (Miller et al., 2005; Zariwala et al., 2003).

5.1 Optimisation of the model

A general question when considering the optimisation of a model of animal behaviour is which

cost function should be optimised as the animal’s behaviour has likely evolvedto address a number

of constraints. Here, we choose to optimise for energy efficiency (Kooijman, 2000) and we relate

the energy cost to the time taken by the model to navigate towards the centre of aradial gradient

from a fixed starting position.

C. elegansis capable of navigating gradients in both directions; it will for example move

towards food but away from noxious stimuli even though they both produce chemical gradients.

In the context of our work, we use a radial gradient whose direction is defined towards the centre.

Since the model used here only receives the sign of the change in gradient over time as an input,

the exact nature of the increase in concentration as distance to the peak decreases has no effect on

the results. Here, we thus simply define the gradient as increasing linearly inthe radial direction.

We test virtual worms whose behaviour is dictated by a specific set of transition probabilities for the

model by setting a task which requires them to navigate this gradient from a fixed starting position

towards the centre. The faster a virtual worm performs this navigation, the more efficient the choice

of transition probabilities for the underlying model is.

5.1.1 Parameter space of the model

The model has three states ((F)orward run, (T)urn and (R)eversal), with two sets (one for up-

gradient (u) and one for down-gradient (d) travel) of three probabilities attached to each state (Fig.
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3.2). This gives a total of 18 transition probabilities. It is however possible to represent each set of

three probabilities by just two valuesϕi andρi (with {ϕi ,ρi} ∈ [0,1]2 and i ∈ {F,R,T}) as in the

following example for up-gradientF state probabilities:

pu(F |F) =ϕF (5.1)

pu(R|F) =(1−ϕF)ρF (5.2)

pu(T|F) =(1−ϕF)(1−ρF) (5.3)

In behavioural terms, the parameterϕi represents the likelihood of remaining in the statei while

ρi determines which of the remaining two states will be the most likely successor stateif statei is

left. The parameter space of the model can thus be represented in just 12 dimensions, which has no

effect on the range of behaviours that the model can display but simplifies the optimisation process

significantly. The multiplicative relationship between the parameters ensures that the sum of each

set of probabilities will always be 1, irrespective of the values taken byϕi andρi .

5.1.2 Definition of the criterion for optimal performance

As was noted in Chapter4, the recursive algorithm we use for analysing the model requires

ana priori definition of a criterion for optimal performance. In this case, it can be obtained from

the performance of the best solution found by the SA algorithm when run onthe entire parameter

space.

Due to the stochastic nature of the model, there will be some variability in the performance

of this solution, but it is possible to use this variability to define a limiting value for what can

be considered an optimal solution to the problem. The variability was determined by optimising

models 50 times and noting the distribution of the performance scores (see Fig.5.1). A Pearson



Chapter 5: Stochastic gradient navigation strategies ofC. elegans 85

211.1 214.3 217.5 220.7 223.8 227.0 230.1 233.3 236.5 239.7
0

2

4

6

8

10

12

Score

N
um

be
r 

of
 e

le
m

en
ts

 p
er

 b
in

Figure 5.1: Distribution of the scores of 50 solutions found by the SA algorithm in the stochastic
parameter space. Bin size is≈ 3.1. Meanµ= 222.93s and STDσ = 6.57s. Black line shows fitted
Gaussian. The shape, mean and standard deviation of the distribution determine the definition of
optimal solutions (those with a scores≤ µ+3σ, see text).

χ2 test confirms that this distribution with meanµ = 222.93s and standard deviationσ = 6.57s is

normal, which (from the cumulative distribution function) indicates that 99.87% of all scores are

lower thanµ+ 3σ. Since the distribution represents a collection of optimal performances, we can

define a model obtaining a scores≤ µ+3σ = 242.64s as being optimal.

5.1.3 Model assessment

Individual simulated worms whose behaviour is determined by a specific setof transition prob-

abilities for the model are tested in a virtual gradient. The starting position of themodel is fixed

at a distance of 20
√

2 mm from the peak of the gradient and the initial orientation cycles from 0

to 360◦ in 5 ◦ increments for each run. A total of 72 runs are performed per assessment and the

average time required to come within 0.5 mm of the peak of the gradient defines the value of the

cost function at the point defined by the model’s transition probabilities and thus the score of the

transition probabilities.
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5.1.4 Simulation of worms

All simulations of virtual worms take place in a Cartesian space with discrete time steps of 1 s.

The virtual worms are only able to assess the change in gradient over time when moving forward.

It is not known if this is also true forC. elegans, but we will show that this is likely to be a correct

assumption (seeResults). Fixed parameters have been set to realistic values where possible: travel

speed has been implemented as a constant set to 0.22 mm/s (Ferrée and Lockery, 1999) and turn

rates are chosen randomly from values between 0 and 50◦/s for up-gradient turns and 50 and 210

◦/s otherwise, reflecting values that have been observed in real animals (Pierce-Shimomura et al.,

1999). C. elegansalso exhibits a directional bias even when the animal is moving forward (Pierce-

Shimomura et al., 2005). This is implemented as a Gaussian distribution with mean 0.441±2.12◦/s

(Pierce-Shimomura et al., 1999). Reversals are implemented as a forward movement with a negative

speed and the same directional bias.

5.1.5 Simulated annealing

A standard simulated annealing approach (Kirkpatrick et al., 1983; Cerny, 1985) is used to

optimise the system. The transition probability functionP = exp((Es−En)/T) for En > Es andP = 1

otherwise is also standard. Here,T is the current temperature of the system andEs andEn are the

energies of the current state and the selected neighbour respectively.The initial temperature of the

system is set toT = 15×103 ◦ and the cool-down for each time-step is defined asTt+1 = αTt with

α = 0.99. The algorithm halts successfully before the end of the cool-down if a solution whose

score is equal or better than the criterion for optimal performance is found.
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Figure 5.2: Probability distributions of solutions found by the optimisation algorithm. Each subplot
indicates the distribution of the values for one transition probability across allsolutions. Both
up- (black circles) and down-gradient (transparent squares) distributions are shown, although up-
gradient data is only meaningful for theF state (first row). Rows correspond to the active states
and columns to the possible successor states. The third subplot in the first row thus displays the
distribution of transition probabilities from theF state into theR state. Bin size is 0.1. Of interest
are strong preferences for specific values, seen for instance for both the up-gradient and down-
gradient values ofp(F |F) (top left).

5.2 C. elegans gradient navigation strategies

Dividing each dimension once using the recursive algorithm, we determined that 945 of the

total 4096 hypercubes in the parameter space contained at least one optimal solution. In this section,

we seek to understand what the common requirements for optimal performance are.

5.2.1 Probability distributions show run shortening during down-gradient naviga-

tion

First, we consider the distribution of values for every transition probability of the model across

all identified solutions. This allows us to easily identify transition probabilities thathave similar

values for all solutions, thus indicating a strong preference for those values.

The distributions of the transition probabilities for the 945 solutions are shownin Fig. 5.2. The

distribution for theF state is expected: 93.75% of the individuals havepu(F|F) = 1, 90.26% have
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pd(F |F) < 0.3, thus showing the typical preference ofC. elegansfor long runs when going up-

gradient and short ones when going down-gradient. However, it is interesting to note thatpd(R|T)

is close to 0 for most individuals (45.19% the individuals havepd(R|T) < 0.1, 88.04% pd(R|T) <

0.5), making aT-Rsequence uncommon, which is similar to observations in real animals (Zariwala

et al., 2003; Miller et al., 2005). Sincepu(F |F) = 1 for most solutions, all transition probabilities

related to the other two states will have no effect on the behaviour when moving up-gradient and

are distributed randomly across the value range.

We briefly investigate the robustness of the solutions by selecting the run-time value of a model

parameter randomly from a flat distribution centred around the optimal value for that parameter and

with a spread of 0.5 anew at every time step. We analyse the effect of such a fluctuation on each

of the parameters in turn. Although the fluctuation is quite strong, the time the modelsrequire to

navigate towards the peak when only one of the down-gradient parameters is fluctuated remains

within 105% of the original performance. When all down-gradient parameters are fluctuated simul-

taneously, the required time increases to 112% of the original one. A fluctuation of the parameter

encodingpu(F |F) however results in a complete inability of the solutions to perform well in the

task. Even if the spread of the distribution is reduced to 0.1, the solutions only reach the peak of

the gradient after 140% of the original time. This loss in performance however is mainly due to the

fact that none of the other up-gradient parameters were actually optimisedby the algorithm. If they

are manually set to optimal values (i.e. facilitating a return to theF state), a fluctuation with spread

0.1of pu(F|F) results in a small increase in navigation time to 113% while the original spread of

0.5 results in an increase to 150%.

We have thus shown that the model remains relatively robust even againststrong fluctuations

except if they affect all up-gradient parameters at the same time. If only asingle parameter is

fluctuated, the strongest decrease in performance is observed forpu(F |F), which is to be expected

since the solutions will spend the largest amount of their travel time going up-gradient in theF state.
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Figure 5.3: ID3 decision tree for visualising the regions of the energy cost function divided into
those that contained an optimal solution and those that did not. Only parametersaffecting down-
gradient navigation are considered here. Edge labels indicate whether the value range for the pa-
rameter specified by the parent node will be (l)ow (0−1/3), (m)edium (1/3−2/3) or (h)igh (2/3−1) in
the sub-tree below that edge. Combinations (e.g. low or medium, indicated by “l,m”) are possible
if the sub-trees for each branch are identical. Diamond nodes decide the likelihood of staying in the
behavioural state indicated by the node (they thus represent theϕ parameters of the reduced param-
eter space) while square nodes decide if the likelihood of leaving a state is biased towards either of
the possible successor states (thus representing theρ parameters). The notationX < Z > Y is used
to indicate that a low value range will bias the likelihood of leavingZ heavily towardsX whereas a
high value range will bias it towardsY. Each leaf node, represented by a circle, indicates whether
the region of the energy cost function defined by the preceding decisions on the value ranges for
the different parameters has been found to contain at least one optimal solution (Yes) or not (No).
It can thus be seen for instance that no optimal solution has been found in the region defined by a
medium value for remaining in theF state and a high bias for moving into theT state if leaving the
F state. This tree can also be used to determine how important every parameter isin the behaviour
(see table5.1).

We found no clear differences in the effect on performance when other parameters are singled out

for fluctuations. We have also not found any clear differences in performance between individual

members of the family of solution in this investigation.

5.2.2 Ranking of the behavioural units

Next, we apply the ID3 algorithm as discussed in Chapter4 to create a ranking of the be-

havioural units. The results from the distribution analysis in the previous section allow a simpli-
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Value Span

Rank Node Low Med High Mean pos.

1 F 14.1% 27.2% 58.7% 1±0
2 T < F > R 55.6% 26.4% 18% 2±0
3 R 2.6% 19.8% 16.4% 3.2±0.44
4 F < T > R 2.1% 2.7% 1.2% 4.5±0.84
5 T 6% 9.9% 6.8% 4.57±0.78
6 F < R> T 0.5% 0.7% 0% 5.33±1.15

Table 5.1: Summary of the ID3 tree in Fig.5.3emphasising the distribution of hypercubes in which
no optimal solution was found by the SA algorithm over the sub-trees (low, medium and high) below
each node. Mean pos. indicates the average position of a node in the tree and the standard deviation.
Rank sorts nodes according to their mean position, which indicates the importance of the parameter
represented by each node in gradient navigation.

fication of the parameter space: since all up-gradient chains havepu(F |F) ≃ 1, it is admissible to

ignore the up-gradient parameters and focus on the down-gradient ones without loss of generality.

The model will simply remain in theF state when moving up-gradient and the behaviour will thus

be independent of the other up-gradient parameters. Since it can be seen in Fig.5.2that the optimal

configurations for some values are located at the division border, we re-run the recursive algorithm

with every dimension divided into three, rather than two parts (with value ranges [0,1/3], ]1/3,2/3]

and]2/3,1] per dimension) for this analysis, as discussed in Chapter4.

The resulting decision tree is shown in Fig.5.3. Since it indicates all hypercubes that do not

contain an optimal solution, it is possible to calculate the total percentage of the 6dimensional space

of the cost function that is occupied by such hypercubes (52.54%) and how these hypercubes are

distributed over the subbranches of all nodes (squares or diamonds in Fig. 5.3) in the decision tree

(see table5.1). Table5.1 indicates the mean position and the resulting rank of each node.

The ranking confirms that the most important feature while moving down-gradient for suc-

cessful gradient navigation is the parameter determining the length of forward runs. Additionally,

the distribution of hypercubes containing no optimal solution under thepd(F|F) node increases as

the value increases, with over half being located in the high]2/3,1] range. This implies that longer



Chapter 5: Stochastic gradient navigation strategies ofC. elegans 91

runs when going down-gradient are worse than shorter ones, which isexpected and corresponds to

observed behaviour in the real animal (Pierce-Shimomura et al., 1999).

The second important feature is the behavioural unit following the forward run, where a prefer-

ence for reversals is clearly seen as 55% of all hypercubes with no optimal solution lie in a region of

the parameter space which favours turns over reversals as a successor state to forward runs. This is

similar to observations inC. elegans,which often precedes turns with a reversal (Gray et al., 2005).

The length of reversals is also important and there is a clear preference for short reversals as only

2.6% of the hypercubes with no optimal solution are located in the low[0,1/3] range, in agreement

with observations in the real animal (Zhao et al., 2003).

Beyond the third level, the standard deviation of the mean position increases,indicating that

these nodes are scattered throughout levels 3 to 6. This makes it more difficult to assess their

significance as interdependent effects are quite likely.

5.2.3 Changing the criteria for optimal performance has little impact on results

We have shown in the previous section that only the down-gradient parameters are of interest.

Here, we briefly investigate how the choice of the criteria for optimal performance affects the results.

We originally defined the criterion for optimal performance as the mean plus three standard

deviations of the distribution of scores obtained by running the optimisation algorithm on the entire

parameter space 50 times. Here we analyse if the distributions of the probabilityvalues for the

down-gradient parameters (depicted in Fig.5.2) change substantially for different definitions of the

criterion for optimal performance.

To do so, we collect three subsets from the original family of solutions: individuals whose score

is less or equal than the mean (µ) plus zero, one or two standard deviations (σ) of respectively. We

compute the same histograms as depicted in Fig.5.2for each subset and normalise for the number of

individuals in each set. We then compare these histograms with the original (also normalised) one by
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Figure 5.4: Mean first passage times from theT state into theF andR states (left) and from theR
state into theF andT states (right). The preference for short MFTs intoF (typically < 6 s) can
easily be seen. Dashed line visualises correlation.

computing the RMSE between the original and each new one. We find a RMSE of0.0189 between

the original histogram and that of the subset with a criterion ofµ+ 2σ. This RMSE increases to

0.0534 for the subset with a criterion ofµ+σ and to 0.1029 for the one with a criterion ofµ.

Since we normalised the data, the RMSE indicates the difference in change ofproportion

between the data in the different histograms. It can thus be seen that the difference between the

histograms is less than 2% if one standard deviation is subtracted from the criterion for optimal

performance, which increases to 5% and 10% if two or three standard deviations are subtracted.

Thus the change in histograms remains relatively small even when the family of solutions is halved

(since a criterion defined simply as the mean would remove the entire right-handside of the curve

in Fig. 5.1) and we can therefore feel confident that the results presented hereremain valid for other

reasonable choices of a criterion for optimal performance.

5.2.4 Markovian properties reveal the use of pirouettes

Finally, because the model used here is Markov-like, we consider the Markovian properties of

all solutions found by the SA algorithm. These properties are generally useful for understanding
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the behaviour of a Markov model and, as for the probability distribution analysis, strong trends

and preferences for specific values across all solutions indicate requirements for optimal behaviour.

It has been noted before that the type of probabilistic model used here is not Markovian in the

strict sense due to the non-stationary transition probabilities (Miller et al., 2005). Nonetheless, it

is possible to consider the transition probabilities for up- and down-gradient movements separately

as strict Markov chains in a meaningful way as the only transition point fromone chain into the

other is located in theF state (the only state in which the model can receive information about

the gradient which will determine whether up- or down-gradient probabilities are going to be used

in the next step). Here, we call anup-gradient chaina sequence of states determined exclusively

by up-gradient transition probabilities anddown-gradient chaina sequence of states determined

exclusively by down-gradient transition probabilities.

To confirm that the optimal solutions make use of all the states of the model, we compute their

ergodicity. A Markov chain is ergodic if every state in the chain can be reached within a certain time.

We found that 12 of the solutions returned by the SA algorithm have non-ergodic down-gradient

chains and that in all cases, theR state is excluded from the chain. An additional 51 solutions have

a very low probability of entering theR state (pd(R|F) + pd(R|T) < 0.1). 6.66% of the models

under consideration therefore do not rely on theR state in their strategies, preferring anE. coli-like

run and tumble approach (Berg and Brown, 1972). The presence of these solutions exemplifies that

a bacterial strategy can in some cases perform similarly to the more intricateC. elegansstrategy.

However, the low number of such solutions in comparison with those that use reversals indicates

that reversals may improve the robustness of the performance as other parameters are varied.

To determine the likely sequences of behavioural units, we next considerthe mean first passage

times (MFTs) of all solutions found by the optimisation algorithm. This is the mean time required

by the model to reach a given state for the first time if started in a given other state. It is only possible

to consider the MFT for ergodic chains. Since most solutions have absorbing up-gradient chains in
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the F state (pu(F |F) = 1, making it impossible to leave that state again), only the down-gradient

chains (withpd(R|F) + pd(R|T) ≥ 0.1) are considered. Additionally, MFTs starting from theF

state cannot be taken into account as this state contains a transition point into the up-gradient chain.

Fig. 5.4shows the MFTs for all qualifying solutions from the SA algorithm and states.It can

clearly be seen that the MFT fromT into F is relatively low across all solutions (mean 2.45±0.87

s), similar to the MFT fromR into F (mean 3.01± 0.96 s). Periods of reversals and turns are

therefore frequently interrupted by forward runs, which will be shortif the model is still heading

down-gradient. The models thus tend to use a pirouette strategy (i.e. turn events interspersed with

short runs) similar to that ofC. elegans(Pierce-Shimomura et al., 1999).

The MFT fromT into R shows a much higher variability (mean 4.87±4.02 s) while the MFT

from R into T remains relatively low for most individuals (mean 3.01±1.26 s). A Kendell-τ test

reveals a noticeable correlation (value−0.22) between the MFTs for leaving theT state but less so

for leaving theR state (correlation value 0.07) (see Fig.5.4). Since the MFT fromT into R is low

only if the MFT fromT into F is high, runs are the clearly preferred successor behavioural unit toa

turn. In other words, the models are not likely to follow turns with reversals.The lack of correlation

between the MFTs leaving theR state indicates the lack of a clear preference for a successor state

to R in the family of solutions, which can also be seen in the analysis of the ID3 decision tree (Fig.

5.3and table5.1).

The MFTs intoF also give a good indication of the average length of sequences composedof

reversals and turns between forward runs and confirm the preference for frequent returns into the

F state already observed in the transition probability distribution (Fig.5.2). They do not, however,

give an indication about the length of the resulting pirouette itself as it is not known whether the

next step in theF state will be in the up-gradient or the down-gradient chain.
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5.2.5 Pirouettes may emerge in part from an inability to sample the gradient during

a turn

Next, we try to pin down the cause of these pirouettes. There are two aspects of the model

which could in principle give rise to them: (1) intrinsic properties of the distributions from which

the turn rates are sampled, or (2) assumptions on the gradient sampling ability of the model. We

have tested the effect of the second consideration by modifying the model so that it is also able

to sample the gradient during turns. This modified model was then optimised for the same task

and a family of solutions derived as before. First, we noticed that the new family of solutions

had 1393 members (compared to the previous 945), indicating that providinggradient information

during turns has facilitated the task. The threshold for optimal performancehowever was virtually

identical to that for the original family (242.42 s versus the original 242.64 s), indicating that the

additional information did not provide a large performance gain. Since this new family now has

two transition states between up- and down-gradient chains (in theF as well as theT state), it

is no longer possible to identify pirouettes based on Markovian properties alone. We therefore

simulated each optimal solution in both the new and original families 20 times and identified the

proportion of down-gradient reorientation sequences that do not contain anF state, other than those

located at the beginning of the sequence. We find that on average 18± 6% of all down-gradient

reorientation sequences in tracks produced by the original family of solutions did not involve a

forward movement, whereas for the new family this value increased significantly to 64±6%. The

number of pirouettes executed by this model is thus higher if the model is unableto evaluate the

gradient during a turn. Although it is difficult to control for the exact effect of the distributions from

which the turn rates are sampled, we have thus shown that they are not the only cause of pirouettes.

Comparison with biological data is difficult because the proportions of pirouettes with at least

one forward movement exclusively within down-gradient reorientation sequences has not yet been

identified. When all reorientation sequences are considered, the proportion is estimated at about
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40% (Pierce-Shimomura et al., 1999), but since the length of forward runs is much shorter while

going down-gradient, turns interspersed with small runs are more likely to happen while moving

down-gradient whereas single turns are more likely to happen while moving up-gradient. The pro-

portion of turns interspersed with runs can therefore be expected to be higher than the reported

40% when considering only down-gradient movements. It is thus possible that the animal also uses

pirouettes at least in part because it may not always continuously evaluate the change in gradient

during a turn, but more biological data would be needed to confirm this.

5.2.6 Performance on planar gradients

It is interesting to investigate the performance of our optimal solutions in a verydifferent

type of environment: a planar gradient. In this case, gradient concentration decreases linearly with

the distance to thex axis, but is independent of the specific horizontal position in the Cartesian

plane. Since the peak of the gradient is now essentially a line, we expect that models will take

less time to navigate towards it than in radial environments. Indeed, when a family of optimal

solutions is derived in a planar environment, it contains 1881 members compared to 945 for the

planar environment and their performance when started at the same distance from the peak is lower

(121.79±15.64 s) than that of models in a radial environment (189.44±19.89 s).

We then simulated the family originally optimised for radial environments in the planarone

and find that there is no significant difference (p> 0.3) in performance with those optimised for the

planar environment (mean time to the peak 121.40±11.69 s). The converse is not true, however

- models optimised for planar environments perform significantly worse (p < 0.001) in a radial

environment (mean time to peak 202.4±29.59 s versus 189.44±19.89 s).

We have thus shown that our models also perform close to optimal levels in planar gradients

for which they where not originally optimised and that a radial environment has been a good initial

choice.
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Figure 5.5: Probability distribution of the transition probabilities of optimal solutions assuming the
model is able to process gradient information during a reversal. Bin size is 0.1. Compared with Fig.
5.2, a smaller proportion of the models havepu(F |F) ≈ 1 and more models havepu(R|R) ≈ 1. The
functional role of reversals in these models can thus be similar to that of forward runs.

5.2.7 Models naturally dwell at the peak

Although our models have been optimised solely for efficient navigation of thegradient, we

find that they naturally dwell near the peak once it is reached. After the models reached the peak,

they were typically found to stay within 0.5±0.39 mm of it. Although our models can not slow

down and become stationary like real animals, it is interesting to observe herethat the dwelling at

the peak need not explicitly be represented in the cost function and may be an emergent property of

the gradient navigation even in the real animal

5.2.8 Gradient information during reversals leads to unnatural behaviour

It is not known whetherC. elegansis capable of acting upon gradient information while it is

reversing, but reported state transition probabilities (Miller et al., 2005) suggest that it does not. This

can be examined by enabling sampling of the gradient while reversing in the model used previously

and optimising it using our recursive approach to collect a set of optimal solutions given the new

conditions. If this is done, 1782 hypercubes are found to contain solutions capable of optimal
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Figure 5.6: Four randomly chosen example tracks of models with reversal gradient information
enabled (right) and disabled (left). Runs are indicated in grey, reversals in black. It can be easily
seen that the right model’s use of reversals is abnormal.

performance and the decision tree generated by the ID3 algorithm (not shown) indicates that the

performance of the solutions is unsatisfactory whenpu(F|F) and pu(R|R) are both less than 0.5.

These results indicate that optimised models will use theF andR states as functionally equivalent

units.

Fig. 5.5 shows that a large number of the solutions now found do not possess the strong

preference for forward runs when moving up-gradient observed inreal animals (Pierce-Shimomura

et al., 1999) and our previous set of optimised models (Fig.5.2). Similarly, a large percentage of the

new solutions usepu(R|R) = 1 (Fig. 5.5), effectively navigating towards the centre of the gradient

while moving backwards, which has also never been observed in real animals. Example tracks of

worms modeled with those probabilities (Fig.5.6) underline the abnormal use of reversals.

When comparing the performance of 2000 runs from this new family of solutions with the

original family, we found that being able to act on gradient information during reversals gives the

models a small but significant (p < 0.001) advantage (mean time to navigate to the peak: 184.75±

19.65 s versus 189± 19.9 s). Interestingly however, when the equivalent families optimised for

planar gradients are compared, no significant difference in performance is observed (122.1±15.62

s versus 121.79±15.64 s,p > 0.7).

We have thus shown that the ability to act upon gradient information during reversals can in
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some cases give the models a slight advantage; it is therefore interesting to observe that the animal

does not appear to do so. However, this may be due simply to mechanical reasons: since the animal

reverses over its own tracks, it is possible that gradient information has been disrupted within those

tracks. Alternatively, since most sensory neurons are located in the head of the animal, gradient

information may simply be obscured by the animal’s body and thus unavailable during a reversal.

Given that the gain from such information is minimal, this is unlikely to put the animal at a severe

disadvantage.

5.3 The family of solutions can be used for investigations of novel sit-

uations

An interesting test for any computational model is its evaluation in a novel task for which it

was not originally designed. In this section, we first show that the family of solutions previously

derived perform similarly to real animals in a situation they were not originally designed for: step

changes in the concentration of the otherwise uniform chemical environment. The behaviour of

C. elegansin such a situation has been previously studied byMiller et al. (2005) and we base our

present analysis on their results.

We then use the family of solutions to investigate two interesting questions: 1) What are the

effects of the responses to downsteps and upsteps in gradient concentrations displayed byC. ele-

gans? This has been touched upon but not fully investigated byMiller et al. (2005). 2) The same

study artificially deleted either the downstep or the upstep response in computational models of

real animals and shows that models with a deleted downstep response still prefer the regions of

higher concentration in the quadrant assay (Fig.5.7). This seems at odds with the pirouette strategy

(Pierce-Shimomura et al., 1999): how can a model which cannot react to entering a lower concen-

tration (i.e. does not display pirouettes) outperform a model which is still able to avoid theworse
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concentration (using pirouettes)? It is therefore interesting to see whether we can reproduce this

behaviour with our family of solutions or find the behaviour one would expect from the pirouette

strategy.

Although it would be preferable to use our family of models without modification,some adjust-

ments are unavoidable. First, the models possess two sets of transition probabilities which regulate

behaviour depending on whether the concentration of the chemical environment increases or de-

creases. However, since the chemical concentration in the present experiments is mostly invariant

over time, a situation that has been virtually impossible in the task for which the models were opti-

mised, they need to be extended with a set of transition probabilities for this situation. Since there is

little point in optimising a model for a situation in which there is no clear goal based on the inputs

available to the model, we derive this set of transition probabilities from a previous experimental

study ofC. elegans(Zariwala et al., 2003); they are thus biologically realistic.

Second, it is important to consider not just the chemical stimulus itself but also how this trans-

lates into neural activity.C. elegansneurons are thought to signal mainly using calcium dynamics,

which have a slow timecourse. No intracellular studies of the calcium dynamics inchemosensory

neurons exist so far, but they have been studied in AFD, the main thermosensory neurons inC.

elegans(Clark et al., 2006). In those experiments, it was found that intracellular calcium increases

(decreases) if a temperature upstep (downstep) is experienced and then slowly recovers to pre-

stimulus levels (over a timecourse of≈ 20 s for upsteps and> 80 s for downsteps) unless another

temperature step is experienced. In the previous simulations of our optimised models, a period in

which no gradient changes are experienced was impossible and therefore the behaviour of the mod-

els was consistent with the dynamics even though those were not explicitly implemented into the

models. Here however, situations in which there is no change in the environment are possible and

the corresponding neural dynamics therefore need to be added to the models. For simplicity, we

base these on the upstep responses of the AFD neurons: information thatthere has been a change in
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Figure 5.7: The quadrant assay setup. Quadrants denoted by ’Home’ contain an environment with
a reference concentration whereas the quadrants denoted ’Test’ contain either an up or a downstep
from these concentrations.

the chemical environment will persist in the model for 20 s unless a change inthe opposite direction

is noticed.

5.3.1 Quadrant assays

Miller et al. (2005) separate the plate on which the animals move into quadrants (see Fig.5.7)

with the concentration in the quadrants such that two quadrants contain environments the animal is

used to (home quadrants) and the other two contain either upsteps or downsteps from the concen-

tration in the home quadrants (test quadrants). It is shown that animals prefer to stay in the home

quadrant when the other quadrants are a downstep but prefer the other quadrants if the concentra-

tion increases in them. The quantitative measure for this is simply based on the number of worms

in each type of quadrant:

I =
NH −NS

NH +NS
(5.4)
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whereNH is the number in the home quadrants andNS is the number in the step response test

quadrants.

Similarly to Miller et al. (2005), we find that the models prefer the home quadrants if their

concentration is higher than that of the test quadrant (I = 0.65±1.3) and the test quadrant otherwise

(I =−0.68±0.07). The models somewhat outperform real animals in this test but this is mainly due

to the fact that the models by design do not take the amplitude of the gradient step into account, so

quantitative matches cannot be expected in this assay. Nonetheless, the qualitative match between

the models behaviour and that of the animals is clearly seen.

5.3.2 Responses to step changes in concentration

Miller et al. (2005) expose animals to a uniform change (upstep or downstep) in gradient ata

single point in time while recording their ethograms. These ethograms are converted into 4 functions

of probability versus time by calculating the amount of time spent by each animal inone of four

states over 10 s bins of the ethogram. The final data corresponds to the mean and standard deviation

of these functions over all animals versus time. The main states correspond toforward runs, turns

and reversals; a fourth state is used for behaviour that is not clearly defined but the probability of

that state remains near 0 for the entire time.

When both the upstep and downstep experiments are replicated with a subsetof our family of

models, we observe similar responses to those reported byMiller et al. (2005) for real animals. An

upstep results in a transient increase of the probability of finding models in the forward state with

corresponding decreases of the probabilities for both other states (Fig.5.8). A reduction in the stan-

dard deviation is also observed. Conversely, a downstep results in a decrease in forward probability

with a corresponding increase in the standard deviation of the turn probability and an increase in the

reversal probability (Fig.5.9). Miller et al. (2005) only report forward state probability states for

the downstep situation, so it is not possible to judge the realism of the changesin the reversal and
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Figure 5.8: Evolution of the Probability of finding models in a given state versus time in the case
of an upstep (indicated by the dashed line). Black line is mean probability for all models, red area
indicates standard deviation. A clear response can be seen after the upstep as the probability of
finding models in the forward state increases to 1 (with a STD of 0 for the corresponding time)

.
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Figure 5.9: Evolution of the Probability of finding models in a given state versus time in the case of
an downstep (indicated by the dashed line). Black line is mean probability for all models, red area
indicates standard deviation. Again, a clear response can be seen for the downstep, as (1) a decrease
in the mean probability forward runs, (2) an increase in the standard deviation of the probability of
turns and (3) an increase in the mean probability of reversals.
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Transition type Sig. of

Type of model High - Low - High Low - High - Low difference

Fully functional 11.62±1.54 s 34.37±5.15 s p < 0.001
Upstep disabled 12.90±0.91 s 18.45±1.8 s p < 0.001

Downstep disabled 64.72±35.0 s 84.44±49.79 s p > 0.51

Table 5.2: Summary of the times elapsed between a transition from a quadrant with the higher
(lower) concentration into the other type of quadrant and the return to the higher (lower) concen-
tration. The effects of disabling either upstep or downstep responses can be seen and compared to
the performance of a fully functional model. It is immediately apparent that disabling the downstep
response has a much more critical impact than disabling the upstep. Also shown is thep value from
a non-parametric Kruskal-Wallis test on the difference between the two crossing times for each type
of model.

turn probabilities, but the change in forward probability matches well.

5.3.3 Virtual mutants in quadrant assays

Miller et al. (2005) create virtual mutants based on the ethograms collected from the real an-

imals and artificially remove either their ability to respond to downsteps or to upsteps in gradient

concentration. When these virtual mutants are tested in the same quadrant assays, their performance

is lower, indicating that both downstep and upstep responses play a role in chemotaxis.

When the downstep response is disabled in our models, a much more extreme failure of chemo-

taxis is seen in our models than in the models byMiller et al. (2005) (I = −2.7±0.72 if the test

concentration is an upstep,I = 0.03±0.57 if it is a downstep), losing all ability to perform well in

this test. When the upstep response is disabled, however, our models retainthe ability to show the

behaviour of the animals (I = −2.6±0.07 if the test concentration is a upstep,I = 0.29±0.14 if it

is a downstep) but their performance is reduced compared to the assay withall responses enabled

(as evidenced by a non parametric Kruskal-Wallis test on the chemotaxis index from each repeat of

the experiment:d f = 1, p < 0.001 if the step to the test concentration is a downstep,p < 0.001 if

the step to the test concentration is an upstep).
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Deleting upstep responses from our model thus replicates the effect found by Miller et al.

(2005) whereas deleting downstep responses exceeds it. The finding that bothresponses make

quantitatively detectable contributions to the performance in the quadrant assay thus holds true for

our models, but we can additionally conclude from our test that the downstep response is more

important than the upstep response; in other words, that pirouettes remain an important feature for

our models in this test.

It is also interesting to analyse the strategy in this quadrant assay by lookingat the times

between the crossings of the borders of the quadrants (summarised in Tab. 5.2). If fully functional

models cross from the higher concentration region into the lower concentration region, the mean

time until they return to the higher concentration region is 11.62± 1.54 s, whereas if they cross

from the lower region into the higher region, the mean time until they return to the lower region is

34.37±5.15 s. There is a statistical significance between the two crossing times (p < 0.001).

If the response to an upstep is eliminated, the mean time spent in the lower region after cross-

ing is 12.90±0.91 s whereas the mean time spent in the higher region after crossing is 18.45±1.8.

There is a strong difference between the two cross times for these mutants (p< 0.001) and a weaker

difference between the time spent in the lower region by these mutants and that of the fully func-

tional models (0.001< p < 0.01).

Finally, if the response to a downstep is eliminated, the mean time spent in the lower region

after crossing is 64.72±35.0 s whereas the mean time spent in the higher region after crossing is

84.44±49.79 s. There are obviously strong differences with all of the performances both by the

fully functional models and those that have had an the upstep response removed (p < 0.001 in all

cases). There is no significant difference, however, between thesetwo crossing times (p > 0.51).

Therefore, the main effect of the upgradient response is to extend the timespent in the higher

concentration compared to the time spent in the lower concentration. If it is removed, time in the

higher concentration reduces significantly and there is a weak effect onthe time spent in the lower
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concentration, but overall, the existence of the downgradient response is enough to ensure more

time is spent in the higher concentration than in the lower one.

If the downgradient response is removed, however, there is no longera statistically detectable

difference between the times spent in the higher and lower concentrations respectively and the time

in the lower concentration increases significantly compared to both the fully functional models and

and those without an upgradient response. Without the downgradient response thus, it becomes im-

possible to differentiate between the two levels of concentration and therefore to keep the time spent

in the lower concentration as low as possible, which again illustrates the importance of pirouettes in

this assay.

5.4 Summary of Chapter5

5.4.1 Components ofC. elegans gradient navigation

Based on a simple probabilistic model connecting different behavioural units of C. elegans,

we have been able to predict thatC. elegansmay not act on gradient information while reversing

because optimised models that could do so displayed behaviour that did not agree well with that

found in the real animal. We have further demonstrated that the animal might atleast in part use the

pirouette reorientation strategy due to an inability to sense or act upon gradient navigation while in

the process of turning. The random walk strategy may thus be a consequence of an inability to use

alternative, deterministic strategies due to insufficient or insufficiently accurate input at the sensory

level. This is further supported by recent studies which show thatC. elegansuses a deterministic

strategy rather than a random walk for navigating electrical fields (Gabel et al., 2007) towards the

negative pole. It has been suggested that the different sensory modalities may converge upon a

common neural sub-circuit for navigation (Zariwala et al., 2003). If this is the case, our results and

those ofGabel et al.(2007) suggest that this sub-circuit may in principle, depending on the nature
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of the sensory input, be capable of more deterministic navigation strategies than the random walk

usually observed. This point will be investigated in more detail in Chapter6.

Additionally, we have shown that to be successful at gradient navigation, long forward runs

when going up-gradient and short forward runs when moving down-gradient are necessary. In this,

the optimised models reproduce the behaviour observed in real animals (Pierce-Shimomura et al.,

1999). Our family of optimal solutions also demonstrates that reversals were not strictly required

for successful gradient navigation, but in the models that did use them, a strong preference for using

them at the end of a forward run rather than a turn was found, which is similar to the behaviour

observed inC. elegans(Gray et al., 2005). Additionally, we found thatR−T sequences were more

likely thanT −Rones, implying that there is a higher likelihood of following a reversal with a turn

than vice versa. This feature has also been observed in real animals (Zariwala et al., 2003).

For other parameters, no strong requirements for successful gradient navigation in the condi-

tions of our simulation were found. In particular, the lack of a strong effect of pd(T|T) indicates that

the distribution from which the amplitude of a single turn is sampled (which is determined by the

experimentally fixed distribution of the turn rate and the time spent in theT state) is not important,

with reorientation manoeuvres consequently relying on a series of turns and runs. The optimised

models thus demonstratepirouettessimilar to those found inC. elegans(Pierce-Shimomura et al.,

1999).

In general, we find a close agreement between the behaviour of our models that have been

optimised to minimise travel time towards the centre of a gradient and the observedbehaviour ofC.

elegans. This is a strong indication that the main aim of the gradient navigation behaviour exhibited

by the animal is to navigate it as efficiently as possible given the available behavioural units.

The only notable discrepancy we find is that the optimised models will not usuallyinitiate a turn

while going up-gradient, whereas real animals can (Pierce-Shimomura et al., 1999). The behaviour

of the optimised models here is easily explained as they have been optimised for efficient gradient
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navigation alone and in such a strategy, initiating turns while moving in a favourable direction can

clearly not be optimal.C. elegansbehaviour however may exhibit multiple strategies aimed at

achieving different and sometimes conflicting goals simultaneously. The animalcan for instance

react to changes in oxygen levels (Cheung et al., 2005) and is sensitive to touch (Chalfie et al.,

1985), which may induce behavioural patterns influenced by the surface on which it is moving. The

model used here (Fig.3.2) thus displays a pure gradient navigation strategy whereas the behaviour

of the nematode, even in experimental conditions, may be more complex. This illustrates how

optimisation techniques can be used to accurately describe a strategy with a single goal using the

behavioural units available to the animal even though the observed behaviour might encode multiple

simultaneously active strategies.

5.4.2 Evaluating computational models in novel tasks

We have shown that our models, in spite of having been neither designed for nor optimised

in step response situations can reproduce the behaviour ofC. elegansin such situations reason-

ably well. To achieve this, only minimal biologically realistic modifications were necessary which

extended the models by giving them the ability to recognise situations in which no change in con-

centration is experienced.

We have also been able to demonstrate the effects of the upgradient and downgradient re-

sponses on the performance in the quadrant assay. In particular, we have shown that in our models,

deleting the downstep response results in a failure to perform well in the quadrant assay, which does

not reconcile well with the results byMiller et al. (2005), but fits well with the predictions of the

pirouette strategy (Pierce-Shimomura et al., 1999).



Chapter 5: Stochastic gradient navigation strategies ofC. elegans 110

5.4.3 On the computational analysis of behaviour

Overall, none of the conclusions above would be easy to arrive at fromexperimental observa-

tion alone, mainly due to the inaccessibility of the parameters involved. We have thus illustrated how

computational techniques for optimising behavioural models and analysing theresults can comple-

ment and extend the understanding of a behaviour that has been observed experimentally. Although

we have focused onC. elegansgradient navigation here, our framework is however general and

would remain useful for studying behaviours of other animals.



Chapter 6

Deterministic isotherm tracking of C. elegans

CHAPTER 5 has dealt exclusively with the stochastic navigation strategies employed byC.

elegansfor navigating different types of gradients towards a region of preference. In the

case of chemotaxis, this is the only observed strategy. If the animal is placedin a thermal gradient

however, two strikingly different strategies can be observed: if the animal is near its preferred

temperature, it will sometimes track isothermal lines in the environment with remarkable precision,

not deviating by more than 0.1 ◦C (Ryu and Samuel, 2002) and on average for about 35 s (Luo

et al., 2007, initially erroneously reported as 80 s byLuo et al.(2006)). If the ambient temperature

is higher than the preferred one however, the animal will move towards lower temperatures using

again a directed random walk (Ryu and Samuel, 2002) similar to the one observed for chemotaxis,

characterised in Chapter5.

In the present chapter, we are interested in the isotherm tracking behaviour of the animal. While

the behaviour has been known for several decades (Luo et al., 2006), it has received relatively little

attention in the literature (see Chapter2). To date, only one computational model of the strategy the

animal might employ to achieve this isotherm tracking has been proposed (Luo et al., 2006). We
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are not convinced by this model however, as will be shown later in the chapter, and therefore we

propose a different one here, based on likely sensory information (which can be collected in a single

headsweep) about the environment.

Even though we do not have detailed information about the computational capabilities of the

C. elegansneural circuit (as discussed in Chapter2), we are then able to formulate the general

computations required for our proposed isotherm tracking strategy and,using the resulting (neces-

sary) requirements on the connectivity between some neurons, we can search the neural circuit of

C. elegansfor subcircuits meeting these requirements.

Finally, we have some interest in the fact that the animal seems to navigate towards a tempera-

ture of preference stochastically but will track isotherms deterministically. This has been observed

multiple times in the same experimental setups (e.g.Mori and Ohshima, 1995; Ryu and Samuel,

2002) so it is unlikely that the use of the stochastic strategy is due to differences inexperimental

setup. It is also unlikely to be due to noisy systems or inaccuracies at the sensory or motor levels

since the animal is capable of precisely tracking isotherms in the same environment. An interesting

question therefore is whether or not the animal would, at least in theory, have sufficient information

about the thermal environment available to navigate towards its preferred temperature determinis-

tically or whether the stochastic strategy is used simply because the sensory information does not

permit other approaches.

We can investigate the available sensory information when navigating towardsa preferred tem-

perature in parallel to our determining the information available for isotherm tracking since both

investigations are very similar. In fact, one can define the optimal travel direction for both isotherm

tracking and navigation towards a preferred temperature in relation to the isotherms themselves:

for isotherm tracking, it is (obviously)parallel to the isotherms while it isperpendicularto the

isotherms and pointing towards colder regions1 when the animal is travelling towards its preferred

1This follows from the general observation that the animal only appears tomove towards its preferred temperature
when currently in warmer regions (Ryu and Samuel, 2002), see Chapter2
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Figure 6.1: Figure 6a fromLuo et al.(2006), illustrating the behaviour of their isotherm tracking
model. The model is travelling at an angleθ to the isotherm. Shown are tracks when the course
correction of the model is disabled (black) in which case the model keeps moving at the same angle
and enabled (grey) in which case the model curves more vigorously at point x than point aty (shown
in magnification) since the change in gradient his higher atx. This results in a course correction
eventually aligning the model onto the isotherm.

temperature. First however, this chapter will discuss the isotherm trackingmodel of Luo et al.

(2006) in more detail.

6.1 Issues with the existing model of isotherm tracking

6.1.1 Definition of the existing model

C. elegansmoves forward by producing undulating sine-like movements, alternatively con-

tracting ventral and dorsal muscles. These contractions originate at the head segment of the animal

and then travel along the remainder of the body.Luo et al.(2006) propose a model of isotherm track-

ing which essentially contends that the animal continuously adapts the intensity which it curves its

head in function of the perceived change in temperature. The idea is that this will allow the animal to

balance warming and cooling phases encountered during the lower and upper part of the headsweep

since the head movements can only be identical during those parts if the animal ismoving directly

along an isotherm. According to their model, if the animal were to travel at a slight angle to an
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isotherm, it would curve more vigorously during one part of the head sweep than the other, causing

a slight turn aligning the animal more with an isotherm (Fig.6.1).

Mathematically,Luo et al.(2006) implement their model as follows: the direction in which the

head is travelling at any given time is given by its angleθ(t) relative to a fixed line so thatθ = π/2 if

the animal is moving perpendicularly away from the gradient. This angle is given by an oscillator

whose acceleration is dependent on the current change in gradientT ′(t). Thus:

θ′′(t) = θ0ω2sin(ωt)
(

1+ f
(

T ′(t)
))

(6.1)

whereθ0 = π/4 is the amplitude of the headsweep,ω = π is the frequency of the headsweep and

f (·) is a function determining in what mannerT ′(t) affects the acceleration.Luo et al.(2006) note

that the minimal requirement is thatf (x) = f (|x|) (which ensures that the response to a cooling

phase is the same as that to a warming phase of identical amplitude) and usef (x) = gx2 for most

of their discussion while acknowledging that other possible forms exist. Here,g is a free parameter

of the model representing a gain. The change in gradient over time, finally,is simply given by the

direction of the animal’s headθ(t), its current speedv and the steepness of the gradient∇T:

T ′(t) = |v| |∇T|sin(θ(t)) (6.2)

It should be noted that we have given a simplified version of the gradient used byLuo et al.(2006)

reduced to a spatial time-invariant gradient.Luo et al. (2006) also superimpose a time-varying

pulsating gradient over the spatial one given here in Eqn.6.2 in some of their experiments (which

is included as a second term in Eqn.6.2). They use this second gradient to show that the animal

continuously determines the direction of the isotherm. To illustrate some of the issues with this

model, however, it is sufficient to consider the behaviour of the model within the time-invariant

gradient.
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6.1.2 Behaviour of the model

Numerical simulations of the model as defined in section6.1.1show that it is possible to find a

value for the free parameterg so that the model can correct the direction it which it travels towards a

direction parallel to gradient lines (Luo et al., 2006). We are interested here in the balancing strategy

the model employs in this course correction. It relies on an asymmetry betweenthe gradient changes

encountered during the upper and the lower half of the headsweep, which is indeed the case for most

directions which are not parallel to the gradient lines. However, one would also expect the gradient

changes during both parts of the headsweep to be symmetrical if the model were to travel directly

perpendicularly to the isotherm (since the perpendicular is an axis of symmetry in both planar and

radial gradients).

Here we therefore investigate the course correction of the model defined by Eqns. 6.1 and

6.2 as a function of the initial travel angleα relative to the gradient lines. We make one change,

which does not affect the overall behaviour, to the model: we replace thesine-based oscillator for

the headsweeps with a cosine-based one. The reason for this is simply the fact that it will simplify

the specification of initial conditions for solving Eqns.6.1and6.2numerically, as the speed of the

oscillatorθ′(0) will be 0 regardless of the acceleration component in6.1 if the oscillator is cosine-

based. If it is sine-based, as in the original model,θ′(0) will depend on the acceleration component

and the relationship is not clear. The initial condition forθ(0) is similar in both cases, it merely

depends onα. For a cosine-based oscillator, this is given byθ(0) = θ0 + α, whereas it would be

θ(0) = α for a sine-based one. The modified Eqn.6.1thus reads:

θ′′(t) = −θ0ω2cos(ωt)
(

1+ f
(

T ′(t)
))

(6.3)

Since the gradient as defined by Eqn.6.2 is planar and of linear steepness, the gradient change is
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Figure 6.2: The course correction due to the gradient-dependent term inEqn. 6.1 as a function of
the initial heading and the steepness of the gradient. (A) Three dimensional view of the the function.
(B) The same function viewed along the(x,z) plane. The model does not apply course correction if
the initial orientationα ∈ {0,π/2,π}.

independent of the location of the animal, it merely depends on its direction. For our purposes, we

therefore investigate the course correction implemented by the model during one headsweep. If no

correction is performed during the first headsweep, then the same will holdtrue for any following

headsweeps because of the nature of the gradient and the model’s heading will never change. It

is worth underlining that we are not interested here to see if the course correction helps alignment

of the isotherm (which is regulated by the free parameterg), we are merely trying to determine

for which initial travel directionsα a course correction exists. This allows us to ignore the free

parameterg (which we do by simply setting it to 200, the “realistic” value determined byLuo et al.

(2006)), which will affect the amplitude of a course correction but not its existence (as long asg 6= 0

of course).

To compute the course correction, we first numerically derive the shape of θ(t) in function of

the initial headingα and the steepness of the gradient∇T (restricted to values between 0 and 0.7

as in (Luo et al., 2006)) over one headsweep and then calculate the difference between the twoend

values. The course correction thus computed is shown in Fig.6.2. We find that, regardless of the
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steepness of the gradient, there is never a course correction if the modelis travelling either along

the isotherm (α ∈ {0,π}) or roughly perpendicular to it (α ≈ π/2).

If the model is not moving exactly on one of the trajectories to which no coursecorrection is

applied, the course correction will tend to reorient it towards the parallel rather than the perpendic-

ular to the isotherm (Fig.6.2). However, this behaviour can be changed into a reorientation towards

the perpendicular simply by multiplying for instance the free parameterg by−1. InC. eleganssuch

a switch could easily be mediated by the AFD neuron, whose synaptic activity increases when the

animal is in a region in which isotherm tracking occurs (Samuel et al., 2003).

This is therefore significant behaviour; when the model is travelling perpendicularly to the

gradient lines it is in fact navigating the gradient in a direction that could directly take it to a region

of preferred temperature. IfC. elegansthus were to perform isotherm tracking as proposed by

the model, balancing cooling and warming periods during the headsweep, it could thus use the

exact same deterministic strategy for navigating gradients towards a region of interest. However,

it has been shown repeatedly that navigation, when the optimal direction lies into the gradient, is

stochastic even in thermal environments (Ryu and Samuel, 2002; Zariwala et al., 2003; Ito et al.,

2006). We find it very unlikely that the animal will always use a different stochastic strategy for

navigating towards a region of interest if the same goal could be reached more efficiently by using

the strategy for navigating along gradient lines without modification. There isthus sufficient reason

for asking if isotherm tracking could be performed by an alternative strategy which acknowledges

the fact that isotherm tracking is the only deterministic gradient navigation strategy observed. We

will see in the remainder of this chapter that such a strategy can indeed be proposed.
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Figure 6.3: A simple diagram illustrating Eqn.6.5. Shown are the head segmenth, attached to the
centroid of the model at pointC and ending in the tip of the headH as well as the general travel
directionα and the angle between the head and the travel directionθ. The coordinates of the head
(xH andyH) are also given.

6.2 Modelling the animal

In the remainder of this chapter, we model the animal’s movement in a slightly different way

from Luo et al.(2006). Mainly, we define the direction of the headθ not with respect to a fixed

line in space but with respect to the centroid of the model’s body, which in turnis travelling at an

angleα to the horizontal (Fig.6.3). This addresses a shortcoming in the definition of the model by

Luo et al.(2006), which does not explicitly take into account that the fixed line against whichθ is

defined is only fixed in a linear gradient but not in a radial one (since the fixed line itself is defined

as being parallel to the gradient lines).

First, it is important to understand how a gradient may be perceived by the animal, which

requires us to be able to define the location of the animal in the gradient at anypoint in time. We

therefore modelC. elegans, as a simple system moving in a Cartesian space. This system consists

of a pointC, moving at a constant speedv and a head segment of lengthh attached to this pointC

whose angleθ with respect to the travel directionα of the pointC is given by a simple harmonic
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oscillator followingLuo et al.(2006):

θ(t) =
π
4

cos
(πt

2

)

(6.4)

In this system, the end pointH of the head segment represents the tip of the head where the sensory

neurons are located. It is thus the position of this point in space that we areinterested in, and its

coordinates can be given as a function of timet:

xH(t) = vtcosα+hcos
(

α+
π
4

cos
(πt

2

))

yH(t) = vtsinα+hsin
(

α+
π
4

cos
(πt

2

))

(6.5)

Since we are interested in the different navigational strategies primarily in graded environments, we

define such a gradient within the Cartesian space. For simplicity, we use a simple planar gradient

with linear steepness here. This is acceptable in this case since we are only interested in how the

animal will perceive the environment during a single head sweep and given its small size and slow

speed, most natural environments can be approximated with a linear planar gradient within the

region available to the animal during one headsweep. It should be noted that this simplification only

applies to the mathematical analysis in this chapter; all numerical simulations use radial gradients.

We initially define the orientation of the gradient in space so that gradient lines(i.e. isotherms) are

parallel to thex-axis. The strength of the gradientg apparent to the model at timet is therefore

simply given by theyH(t):

g(t) = yH(t)

= vtsinα+hsin
(

α+
π
4

cos
(πt

2

))

(6.6)
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In radial gradients however, the gradient lines will not necessarily be parallel to thex axis as assumed

in Eqn6.6. Rather, they will be parallel to the tangent to the circle with centreO (the peak of the

gradient) at the current location of the model. When approximating a radial gradient at a given time

t, the gradient information can be derived by rotating the initial planar gradient so that the isotherm

lines become parallel with the tangent (see Fig.6.4). The gradient information thus depends on

bothα and the angleγ between the tangent to the gradient at the model’s current location and the

x-axis

The equation of the tangent to a circle centred on the origin at the point(x0,y0) is given by:

x0x+y0y−
(

x2
0 +y2

0

)

= 0 (6.7)

A directional vector of the tangent is thus−→t (y0/|y0|,−x0/|y0|) andγ is then simply given in function

of the scalar product between−→t and a directional vector of thex-axis
−→
i (1,0):

γ =
x0

|x0|
cos−1









y0

|y0|
√

1+
(

x0
y0

)2









(6.8)

where the signs ofx0 andy0 are used to (1) ensure the correct orientation of the directional vector

of the tangent and (2) to makeγ directional (Fig. 6.4). For the special cases ofx0 = 0 or y0 =

0, γ is simply ±π/2 or 0 radians respectively andγ is obviously not defined at the origin. The

gradient informationgrad available to the model during one headsweep in a radial gradient is thus

approximated by substituting Eqn.6.8 into Eqn.6.6:

grad(t) = vtsin(α+ γ)+hsin
(

α+ γ+
π
4

cos
(πt

2

))

(6.9)
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Figure 6.4: Diagram detailing how a radial gradient (top) can be approximated by planar gradients
(bottom). An example is shown for each quadrant. In each case, blue, red and green arrows indicate
the direction of the gradient, the directional vector of the tangent (dotted lines) and the directional
vector of thex-axis respectively. Magenta arcs indicate the angleγ between the tangents and the
x-axis. It is important to notice how the orientation of the tangent’s directional vectors changes in
each quadrant in order to keep the desired orientation relative to the gradient. Similarly, the direction
of the angle between the tangents and thex-axis depends on which half of the plane the tangent is
located in. The approximated shape of the gradient at any pointM in the plane is then given by
rotating the planar gradient (bottom) usingγ so that the gradient lines become parallel to the tangent
to the circle centred on the origin atM.
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6.3 Available sensory information during one headsweep

Based on the model defined above, we can now investigate (1) how the animal may perceive

the gradient depending on its direction of travel relative to the gradient and (2) what information

the animal could thus, at least theoretically, derive about its direction relative to the gradient based

on this perception. It is worthwhile to repeat at this point that there are onlytwo principal direc-

tions of interest for us in this investigation: parallel to the isotherm (for isothermal tracking) and

perpendicularly to it (for navigating towards a preferred temperature).In non-planar gradients, the

perpendicular can be defined in relation to the tangent to the isotherm as opposed to the isotherm

itself.

If the animal is travelling in parallel to the isotherms, we already know that its perception

of the environment contains sufficient information to navigate deterministically along those lines;

the question of interest is thus not whether this information exists but what form it takes and what

computations are required to extract it from the perceived information about the environment. If

the animal’s desired direction is perpendicular to the gradient however, it isnot yet fully known

what kind of information it can extract from its perception of the environment. So far, it has simply

been shown that it is sufficient for stochastic gradient navigation (Clark et al., 2007). Here, we take

this one step further and ask if it would also in principle be sufficient for a deterministic gradient

navigation strategy that does not depend on some continuous balancing ofthe input.

There are some previous results on the sensory capabilities ofC. elegansthat we need to take

into account at this point. First, it is known that the animal can compute the change in gradient

over time,dg/dt in both chemical (Dunn et al., 2004) and thermal (Clark et al., 2007) environments.

During stochastic gradient navigation, the sign ofdg/dt alone is sufficient for successfully reaching

the region of interest in the environment (Ryu and Samuel, 2002; Miller et al., 2005, see Chapter

5). Second, it has also been shown that intracellular calcium dynamics in the thermosensory neuron
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Figure 6.5: The evolution of the amplitude informationa as perceived by the model during one
headsweep, plotted against the angleθ between the head and the direction of travel. Colour rep-
resents time. (A) Large figure shows the amplitude information if the model is moving exactly
parallel to the gradient (red arrow), two smaller figures show the same information when the model
is travelling at an angle of−π/6 andπ/6 radians respectively to the red arrow. (B) Same informa-
tion when the model is travelling perpendicular to the gradient (large figure)or deviating from the
perpendicular by−π/6 or π/6 radians (small figures).

AFD very accurately reflect changes in outside temperature (Clark et al., 2006) in thermal environ-

ments warmer than the preferred temperature. Since we base the following analysis on the observed

behaviour in thermal environments, we therefore use the amplitude ofdg/dt as a starting point when

modelling sensory information.

We thus first give an expression for the evolution of this amplitude informationa (available

at the head of the modelled animal) over time. This is simply given by the time derivative of the

gradient (Eqn.6.6):

a(t) = vsinα− hπ2

8
cos
(

α+
π
4

cos
πt
2

)

sin
πt
2

(6.10)

Fig. 6.5 shows how the model perceives the environment during a single head sweep, both when

heading exactly into the optimal direction for a given behaviour (large figures) and when travelling
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at an angle (small figures) based on Eqn.6.10. Of particular initial interest is the fact that there

appears to be a point at which the amplitude during both the downsweep and the upsweep of the

head is the same if the travel direction is almost perpendicular (Fig.6.5B). If the travel is more

parallel to the gradient lines, this point disappears (Fig.6.5A).

Does the head angle at which this crossover point is encountered convey any information about

the optimal direction if the animal attempts to navigate perpendicularly to the gradient lines? As-

suming that it is encountered at timetc during the downsweep, the head will be at the same angle

again at time 4− tc during the upsweep. With this consideration, we can use Eqn.6.10to determine

tc as a function of the travel directionα by solving:

vsinα− hπ2

8
cos
(

α+
π
4

cos
πtc
2

)

sin
(πtc

2

)

= vsinα− hπ2

8
cos

(

α+
π
4

cos
π(4− tc)

2

)

sin

(

π(4− tc)
2

)

(6.11)

where we impose 0< tc < 2 to restrict the potentially infinite number of solutions to those

encountered within the first downsweep. The solution is then given by:

tc =
2
π

cos−1
(

4
π

(π
2
−α
)

)

(6.12)

which imposes the conditionπ4 ≤ α ≤ 3π
4 on α, confirming what can be guessed from Fig.6.5,

namely that the crossover point only appears if the model is travelling with less than aπ/4 radians

difference to a perpendicular line to the gradient. Substituting Eqn.6.12in Eqn. 6.4, we see that
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the angleθc at timetc is given by:

θc =
π
2
−α (6.13)

The model thus encounters the crossover point when the angle between itshead and the travel

direction is precisely the difference between the actual travel direction and a travel direction per-

pendicular to the gradient. It is worth noting that this result is independent of both the speedv and

the length of the head segmenth in this model.

It is possible to find this information in a different way, which only requires sampling of the

gradient during one half of a headsweep. For this, we consider the rateof change in gradient strength

during the headsweep. Fig.6.5 suggests that head angle at which the point of fastest descent is

encountered is correlated with the deviation from the optimal course. This point occurs when the

derivative of Eqn.6.10is minimal. This derivative is given by:

da
dt

=
hπ3

64

[

4cos
(πt

2

)

cos
(

α+
π
4

cos
(πt

2

))

+πsin2
(πt

2

)

sin
(

α+
π
4

cos
(πt

2

))]

(6.14)

but we have not been able to find the minima analytically. Therefore, we investigate the hypothesis

numerically and compute the head angleθm at which Eqn.6.14is minimal for values ofα between

π/4 and3π/4 radians inπ/180 increments. We find that, although there is no 1 : 1 relationship between

required course correction andθm this time, the two are still heavily correlated and the relationship

can be approximated linearly by (see also Fig.6.6):

θm = −α−1.8·10−3

2.7908
(6.15)
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Figure 6.6: The relationship between the minima of Eqn.6.14(blue dots) and the required course
correction for alignment onto the optimal direction (red line). It is possible to find a linear trans-
formation approximately mapping the minima onto the required course correction (green dots, see
Eqn.6.15).

The RMSE of this fit is≈ 2.3×10−3 radians, indicating that the fit is not perfect but likely to be

sufficient for the present purposes. This is thus an alternative strategy whose advantage is that it

only requires information from one half of a headsweep at the cost of precision.

We have therefore shown that at least two strategies for travelling perpendicularly to the

isotherms exist based on information obtained during one headsweep. Combined with the result

by Clark et al.(2007), showing that the amplitude information can be used to determine whether

one is generally moving up or down the gradient, it has thus been proven that the information avail-

able toC. elegansdoes contain sufficient information for a deterministic gradient navigation strategy

towards a temperature of preference.

Similarly, we can consider the amplitude information in the case of isotherm tracking and ask if

the amplitude information might allow a deterministic navigation strategy by providing information
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on the degree of off-courseness, similar to what has just been provenfor perpendicular gradient

navigation. As can be seen in Fig.6.5A, the time at which the amplitude information reaches

a maximum or minimum seems again to be correlated with the travel angle; it is thus a likely

candidate for providing this information. In principle, one would verify this by finding the roots of

the derivative given by Eqn.6.14, but we have not been able to find the roots analytically. Therefore,

we again investigate the hypothesis numerically and compute the head angleθm at which Eqn.6.14

equals 0 for values ofα between−π/4 andπ/4 radians inπ/180 increments. We again find that the

relationship between the required course correction andθm can be approximated linearly (with a

RMSE of≈ 3.3×10−3 radians) by:

θm = −α−5.7·10−3

2.7109
(6.16)

Next we investigate a model implementing this strategy that can perform isothermal tracking

up to or exceeding the performance ofC. elegans. While tracking isotherms, the animal does not

deviate from them by more than 0.1◦C and follows them for about 35 s on average (Luo et al.,

2007).We can therefore test this model by determining at which point it will deviate from its starting

gradient value by more than 0.1◦C. If we use the fit as given by Eqn.6.16, the model can only track

example radial gradients for 4 s (gradient radius 1 cm) and 7 s (gradientradius 7 cm). All gradients

have a linear steepness of 1◦ C/mm. If we optimise the constants in Eqn.6.16for longest isotherm

tracking in a gradient with radius 7cm however, the performance improvesto and close to 2 min for

a radius of 1cm and 1 hour for a radius of 7cm, where 1 hour is also the time limitimposed on the

simulations. The new approximation is given by:

θm = −α+0.8·10−3

5.1703
(6.17)
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Figure 6.7: Performance of a model using the head angleθm at whichda/dt = 0 as sole guidance in
an isothermal tracking test for radial isotherms of different sizes. Performance is defined as the time
until the model deviates by more than 0.1 ◦C from the isotherm. Gradient steepness is 1◦C/mm.
Solid dark blue line shows performance (lefty-axis) using the initial linear approximation of the
relationship betweenθm and the error in directionα given by Eqn.6.16while dashed light blue
line shows performance (righty-axis) when the constants in Eqn.6.16 have been optimised for
longest isotherm tracking (Eqn.6.17). Dashed line plateaus at 1 hour, the maximum duration in
these simulations.

and Fig.6.7shows the performance of both the original and the new fit in radial gradients varying

in radius from 1cm to 10cm.

Therefore, although the error caused by the initial approximation is too significant for an ac-

ceptable performance, there nonetheless exists a linear relationship between θm andα that can be

used to matchC. elegansin isotherm tracking performance. It is worthwhile to note that the fit

presented in Eqn.6.17is not the only one which will produce acceptable performance and merely

serves to illustrate that linear transformations betweenθm andα which enable the model to perform

isotherm tracking at acceptable levels exist. Additionally, the gradients usedin these experiments

were extremely steep (1◦C/mm), illustrating that the model can perform well even in extreme con-

ditions. Its performance can be expected to improve in more realistic gradients(e.g. 1 ◦C/cm).

Even though the exact relationship betweenθm andα is not clear, we have thus shown that even a
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rough linear transformation ofθm is sufficient for isotherm tracking.

It has thus been demonstrated that, based on the information available to the animal, a simple

strategy relying only on determining the maximum or minimum of the amplitude information during

a headsweep can be sufficient for isotherm tracking behaviour. Sucha strategy is both simpler than

that proposed byLuo et al.(2006) (since no continuous adaption of the motor output is required) and

is more consistent with the overall behaviour ofC. elegans(since it cannot be used for navigating

perpendicularly to the gradient).

Finally, we observe that the performance of the model improves with the radius of the isotherms

(Fig. 6.7) which is a novel prediction on the animal behaviour. Unfortunately, no experimental data

with which this prediction could be verified exists at the moment; we therefore leave the verification

for a later date.

6.4 A candidate neural circuit for isotherm tracking

We have argued in Chapter2 that too little is known about the detailed neural dynamics of

C. elegansto realistically expect to be able to model their computations in a meaningful manner.

Nonetheless, we can consider some of the requirements from our isotherm tracking model and how

they translate into requirements on theC. elegansneural circuitry as well as compare to what is

already known about the general behaviour of some neurons.

6.4.1 Restrictions imposed by our model

Our strategy has two functionally distinct parts: (1) computing the second derivative of the

sensory information and (2) correcting the current course in function of the head angle relative

to the body at the time where the computed second derivative was 0. Assumingthat this course

correction is computed by a single neuron class CORR (see Fig.6.8), we can then specify some
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CORR

DIFF2

SMD

Any head
motor neuron

Excitatory Connection

Inhibitory Connection

Figure 6.8: Candidate neural circuit for isotherm tracking. CORR computes course correction using
input from any of the head motor neurons and the second derivative ofthe sensory information
DIFF2 and communicates this correction to the SMD motor neuron.

requirements on the connectivity of that neuron and thus identify candidates for this function within

the neural circuit ofC. elegans.

First, CORR needs to be postsynaptic to whichever neuron computes the second derivative.

Since it is hard to make any strong statements about howC. elegansmight compute derivatives

without detailed knowledge of its neurocomputational power, we will not usethis from the outset to

constrain the choice of candidates for CORR (but see below for some speculation).

Second, our strategy assumes that the angle of the head relative to the centroid of the body

is available to that neuron. This angle could in principle be derived from thecurrent state of the

muscles and their degree of contraction/relaxation and it should thereforealso be able to predict it

from motor neuron activity. While it is in principle possible that any motor neuron could provide this

information, we believe it is most likely to come from one of the head motor neurons, (1) because

their activity is most likely to be directly correlated with the angle and (2) because the signal path

transmitting this information to the interneurons in nerve ring of the animal would then be shortest.

We therefore require CORR to be postsynaptic to any of the head neuronsSIA, SIB, SMB, SMD,
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Neuron Known properties Likely candidate

OLL* Sensory neuron No
RIA Involved in thermotaxis With Reservations
RIC* Yes
PLN Strongly associated with PLM neurons No
SAA* May be part of locomotory circuit Yes
AVK* Yes
RIB May be involved in thermotaxis No
ADA Yes
AIB May be required for executing omega turns Unlikely
RIS Yes

Table 6.1: List of the candidate neurons for the CORR neuron assumed to compute the course
correction during isothermal tracking in our model. Neurons marked with an asterisk (*) are only
candidates if no assumption on the computation of the second derivative is made.

RMD, RME, RIM or RIV (Gray et al., 2005).

Third, CORR has to be able to communicate the required course correction to aneuron which

can actually implement it.Gray et al.(2005) andGabel et al.(2007) list the SMD motor neurons as

a likely candidate for controlling this kind of course corrections; in particular Gabel et al.(2007) hy-

pothesise that it is responsible for carrying out the required course corrections during the navigation

of electrical fields. We therefore require CORR to be presynaptic to the SMD neurons.

6.4.2 Candidate neurons for computing course correction

Using the restrictions above, we searched the connectivity of theC. elegansneural circuit

(White et al., 1986; Oshio et al., 2003) for candidate neurons. The resulting list is shown in Tab.

6.1. Some of these neurons are disqualified as candidates because of priorknown functions: OLL

is a sensory neuron (Tsalik et al., 2003) and as such an unlikely candidate for CORR. The function

of PLN is not known, but morphologically it seems to be closely associated withthe PLM class

(Gray et al., 2004) and since that neuron is not present in our list, we do not believe that PLN is

a likely candidate for CORR. RIB may be involved in thermotaxis, but its ablation does not affect
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isotherm tracking (Mori and Ohshima, 1995), it can therefore not be one of the main neurons in a

theoretical isotherm tracking circuit. Finally, AIB is thought to mediate omega turns (Gray et al.,

2005), which makes it unlikely as a candidate for CORR since omega turns are generally of large

but stochastically chosen amplitude (Pierce-Shimomura et al., 1999).

One particularly interesting neuron in Tab.6.1 is the RIA neuron. It has been shown to be

involved in thermotaxis and its ablation leads to a complete loss of isotherm trackingabilities in the

animal (Mori and Ohshima, 1995), which would make it an ideal candidate for CORR. However,

its ablation also renders the animal cryophilic meaning it will no longer navigate toits preferred

temperature but rather to the coldest one it can find. This behaviour is notexplained through a mere

loss of isotherm tracking abilities alone, yet our hypothesised neuron CORR has no other functions

in thermal environments that we can predict. RIA is thus a possible candidate for CORR, but only

with reservations as it is likely that it performs other functions in thermal navigation as well and

these still need to be determined and their compatibility with CORR ascertained. Theremaining

neurons are all equally likely candidates, mainly because nothing is known about their specific

function and therefore nothing contradicts the hypothesis that they represent CORRa priori.

6.4.3 On computing the second derivative

As said previously, it is not currently possible to know exactly how derivatives can be computed

in C. elegans. Dunn et al.(2004) for instance assume a network of 3 neurons A B and C is required,

where A is presynaptic to B and C while B is only presynaptic to C. The theory isthat a signal

from A to C has a fast route (the direct one) and a slow route (via B); C can therefore use these

timeshifted signals to compute the derivative. However, we note thatC. elegansneurons usually

have several tens of connections between themselves (White et al., 1986), whose detailed properties

are not known. If any of those have different lengths or otherwise transmit signals at a different

speed, a time-shifted signal for the computation of a derivative would also be available without the
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need for a third neuron. Finally, it is important to realise that whenC. elegansneurons are discussed,

they are usually referred to by class (e.g.AFD). A class can however contain 2 to 6 neurons (AFDL

and AFDR in the case of the AFD class) and while it is usually valid to group themtogether because

they seem to fulfil their main functional role as a class rather than individualneurons, it is entirely

possible that a single class could compute a derivative using time-shifted signals between its member

neurons.

It is thus clear that we cannot make strong predictions on where the second derivative is com-

puted if we do not know exactly how it is computed. If we assume however, that one class of

neurons can compute a derivative and that AFD computes the first derivative (Clark et al., 2007),

then the candidate neuron DIFF2 would have to be postsynaptic to AFD and presynaptic to any of

the neurons in Tab.6.1. Searching the connectivity of theC. elegansneural circuit again, we find

that this gives use 5 candidate neurons: AIY, ASE, AIB, AIN, and AWA. Additionally, the list of

candidates for CORR is reduced, leaving only ADA, RIA and RIS of the initial neurons that we

considered likely candidates.

Of these candidates for DIFF2, ASE and AWA are chemosensory neurons, which makes them

unlikely to be part in the thermosensory circuit, further underlined by the fact that their ablation has

little effect on thermosensation (Mori and Ohshima, 1995). The other neurons are all very general

interneurons with several roles each, which makes it impossible to confirm or deny their plausibility

as a difference engine. Since our isotherm strategy proposes that relevant head angle for the course

correction is encountered when the second derivative of the sensoryinformation is 0, it is possible

that DIFF2 is an inhibitory neuron, only releasing CORR when its time-shifted inputs cancel each

other out, but it is not known for any of those candidate DIFF2 neuronswhether they are excitatory,

or inhibitory.
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6.4.4 Plausibility of the isotherm tracking strategy

Given the assumption that the course correction used in our isotherm tracking strategy is com-

puted by one neuron, we have been able to formulate some necessary requirements for the connec-

tivity of that neuron and with that, we were able to determine that only 5 of the 302 neurons in

C. elegansfulfil these requirements and do not have other known conflicting functions. This pro-

vides a good starting point for laser ablation studies seeking to verify the existence of this course

correction behaviour, but it is of course possible that the course correction is in reality computed

elsewhere. In particular, we have assumed direct connections to any ofthe head motorneurons and

the SMD motorneuron. In reality, there may be intermediate neurons within thesesignalling paths,

but we have no way of predicting that. What we have shown, however, isthat our proposed isotherm

tracking strategy is plausible on a neural connectivity level even under the perhaps most restrictive

requirement2 of direct connections to all neurons providing or requiring information.

6.5 On the use of stochastic strategies when navigating towards the

peak of gradients

We have shown previously in this chapter that it is quite likely for the animal to have sufficient

information for a theoretical deterministic strategy towards its preferred temperature based on its

known computations and the intracellular calcium activity of the AFD neuron (Clark et al., 2006,

2007). This indicates that it is not using the stochastic navigation simply as a result of an inability

to do otherwise.

It also makes it more difficult to pin down the use of the stochastic strategy over a deterministic

one on any single cause. For instance, it may fulfil an utility that is not immediatelyapparent through

the observation of behaviour. It is also possible that a circuit for stochastic navigation is necessary

2In the sense that allowing indirect signalling paths would only increase the number of different possible paths.



Chapter 6: Deterministic isotherm tracking ofC. elegans 135

due to insufficient sensory resolution for chemotaxis and that the same circuit is used (as previously

suggested bye.g.Zariwala et al., 2003) for navigation towards the preferred temperature, perhaps

simply to minimise neural requirements.

It is thus clear, that we can make no strong claims about the use of stochasticover apparently

available deterministic strategies. We can however analyse the computational requirements of the

the two theoretical deterministic strategies we have identified earlier and compare them to what is

known about the computational capabilities ofC. elegansto assess whether they may be fundamen-

tally impossible to compute for the animal.

We have presented two deterministic strategies for navigating perpendicularly to the gradient

lines. The first one, the “cross-over point” strategy is interesting because it can actually exactly

determine any required course correction less or equal thanπ/4 radians in either direction. Since it

relies on comparing gradient information from one half of a headsweep to that from the other half,

this strategy requires at a minimum a memory system capable of functioning as a FILO stack. There

is however no evidence yet to indicate that such a memory system exists inC. elegans. In general,

the memory systems that are known in the animal integrate stimuli over time. The main example

is the preference of the animal for a given temperature, initially based on thetemperature at which

it has been cultivated. In this case, it has been shown that this memory is encoded by the main

thermosensory neuron AFD itself (Samuel et al., 2003) and that it evolves over time based on the

recent thermal history (Biron et al., 2006). Such a system cannot operate as a FILO stack, however

and there is no evidence supporting the existence of more complex memory systems yet.

The second, “steepest descent” strategy requires locating the minimum of the second derivative

of the gradient information during one head-sweep. However, it is not immediately possible for a

neural circuit to locate this minimum independently of the overall gradient strength at the current

location using only the second derivative. The computation of the third derivative would thus be

required as well as the location of its roots and a comparison with the sign of thesecond derivative
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to ensure that the root indicate the location of steepest descent and not steepest ascent. It is known

thatC. elegansis capable of computing derivatives (Dunn et al., 2004; Clark et al., 2007); whether

this extends to the level of third derivatives is unknown but not in principleimpossible. We can thus

not reject the possibility thatC. elegansis capable of the computations required for a deterministic

navigation towards its preferred temperature. We do note that it seems unlikely that the animal will

compute the third derivative of the sensory information but have no definiteevidence to support this.

We also note that the simplest computational strategy we could find for deterministicnavigation

towards a preferred temperature (computation of the third derivative of the sensory information) is

more complex than our proposed isotherm tracking strategy (computation of the second derivative

only), which may be another factor in the use of a stochastic strategy for navigating towards a

preferred temperature and of a deterministic one when following an isotherm.

Overall, however the question of whyC. elegansprefers to use stochastic navigation strategies

over deterministic ones when navigating towards its preferred temperature remains open. Here, we

have simply given some insights into required computations for theoretical deterministic strategies

that may motivate future research.

6.6 Summary of Chapter6

This chapter has investigated the deterministic isotherm tracking strategy usedby C. elegans.

We have first shown that we had sufficient doubts about the only existingcomputational model of

this behaviour to warrant investigating whether a different model for this behaviour could be pro-

posed. We next formulated a new model of isotherm tracking which computesthe required course

corrections from the second derivative of the sensory information. Weverified that it performs up

to the standards set byC. elegansand formulated a candidate neural circuit which could encode this

strategy. Based on this circuit, we have tentatively identified a small list of neurons inC. elegans
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which could be implicated in isotherm tracking.

Second, we have briefly verified that it is in theory likely for the animal to receive sufficient

sensory information about the thermal environment for deterministically navigating towards a pre-

ferred temperature. We have also briefly discussed the computational requirements of two strategies

we have identified to this effect. Although we are unable to draw any strong conclusions on the

animal’s use of stochastic strategies over deterministic ones in this case, we have shown that it

is unlikely to be simply due to insufficient available information and hope that this brief analysis

motivates further research.



Part IV

Conclusions
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Chapter 7

Summary and discussion

THE main objective of this thesis was to further the understanding of the behaviour of the

nematodeC. elegansusing mainly computational approaches. Additionally, we aimed at

keeping any methodology developed during this work sufficiently generalso it may find applications

in other behavioural studies not necessarily concerned withC. elegans.

The main contributions of the present work to existing fields of research consequently fall into

two distinct categories: (1) novel insights and results into the behaviour and neural capabilities

of C. elegansand (2) theoretical and technical innovations for analysing computationalmodels of

behaviour. Here, we briefly review and discuss the achievements of the present thesis for those two

categories in turn.

139
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7.1 Innovations in the analysis of models of behaviour

7.1.1 Ways of determining the performance of Markov-like models

We first considered the best approach to analysing the behaviour of models that are Markov-

like but not strictly Markovian since their transition probabilities are variable.Since the variable

transition probabilities prevent the analysis of their Markovian properties,the obvious approach

is to study these models through numerical simulations. It was however interesting to investigate

whether this is always necessary or whether it is possible to transform these models in such a way

that the analytical Markovian tools, in particular the computation of the mean time to absorption

and the probability of absorption into certain states, become applicable.

We have found that such a transformation is indeed possible and have formulated the approach,

illustrated with examples for two Markov-like models. An important restriction we found was that

it is necessary to include the goal states of the behaviour in the strict model resulting from this

transformation. This is needed so it becomes possible to calculate for instance the mean time a

model takes to reach the goal state or the probability that it will reach it analytically. Since this

goal state is normally a physical location in the world (in the examples we have considered, they

were either the source of a chemical plume or the peak of a gradient), it becomes necessary to

transform the Markov-like model of behaviour into a strict Markov model insuch a way that the

states of the strict model correspond to physical locations the animal whosebehaviour is represented

by the Markov-like model can reach. This necessity finally restricts the computational model of the

real world to one which is both finite and discrete. Additionally, since the number of states in the

strict model is essentially a function of the number of locations within the modelled world that

the behavioural model can occupy, the strict model may become computationally intractable of the

modelled world, even if finite, is too large.

The transformation from Markov-like models into strict models we have presented here, while
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theoretically possible, is thus of limited use since it may not always be reasonable to accept the

necessary restrictions on the computational model of the world. In particular, we find that the

transformation is too restricted to be useful in our analysis ofC. elegansbehaviour and we have

therefore studied the Markov-like model of this behaviour using numericalsimulations.

Nonetheless the insight that Markov-like model with variable transition probabilities can be

transformed into strict Markov models if required is interesting and useful inproblems where the

restriction to simplified models is acceptable. We have given such an example byconsidering the

navigation of a moth towards the source of a chemical plume. Since both the behaviour of the moth

and the environment which influences this behaviour are random, analysing a corresponding model

purely through numerical simulations would be very time-consuming since a significant amount of

repeat measure would be necessary in order to quantify the statistical variation between trials in

a useful way. Using our transformation, however, it has become possible not only to quantify the

behaviour of the model analytically but to do so in a reasonable time-frame.

Finally, we note that the major obstacle for this model is due to computationally limited

ressources as the restrictions on the modelled world are correlated with the number of states in

a Markov model that can be held in memory and processed in a reasonable timeby computers. It

is thus entirely possible that the attractiveness of applying the approach wehave presented here to

problems which are more complex than the example one considered in this thesis will only increase

as technology progresses.

7.1.2 Using Markov-like models to analyse behaviour

Next, we introduced a comprehensive framework for analysing computational models of be-

haviour with the intention of deriving novel insights into this behaviour. The fundamental motiva-

tion was that such insights might be gained from the model when its parameters are tuned so that the

overall behaviour of the model becomes optimal for some criterion other thanrealistic modelling of



Chapter 7: Summary and discussion 142

the animal’s behaviour. The behaviour of the optimised model would then, in comparison with the

behaviour of the animal’s behaviour, yield insights into the optimality of the strategy used by the

animal. Additionally, we took into account the fact that there may well be multiple optimal strate-

gies with which stochastic models in particular can achieve a certain behaviour. We have therefore

devised an algorithm which attempts to systematically find a family of optimal configurations for

these models.

We then proposed that the distribution of these configurations over the parameter space of

the model can provide interesting information which is not readily available from mere observa-

tion of a behaviour itself. Indeed, we expected some parameters of the model to be more critical

for achieving a certain behaviour than others, which would be reflected inthe distribution of the

optimal solutions. In ethological terms, it therefore becomes possible to understand the relative

importance of the different behavioural units (which are derived fromobservation and originally in-

spired the computational model) in achieving a certain goal. Another consequence of the existence

of multiple strategies for achieving a given aim is that different individual animals might rely on dif-

ferent strategies. Determining the different strategies as made possible using the present framework

therefore gives a more general understanding of the behaviour that isable to account for individual

differences.

In order to analyse the distributions of these configurations in a meaningfulway, we draw

upon decision solving techniques from AI which are in turn inspired by information theory. This

analysis completes the definition of the framework which is generally applicableto the study of most

models with multiple optimal solutions assuming the analysis remains computationally tractable.

We have thus provided a powerful tool for the analysis of behaviour which represents a significant

contribution to the available methods in ethological studies.

Additionally to its value for the field of ethology, we have also demonstrated as aside note

that the subdivision of the parameter space of a model can be generally useful in optimisation tasks
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when the corresponding cost function is highly uneven and featuring many local minima. In such

cases, the approach can both increase the probability of finding the global minimum (at the cost

of requiring more time) or decrease the time required to reach a target probability that the global

minimum has been found. We have not considered the applications of this approach further since it

falls outside the scope of our intended work. It seems reasonable to assume, however, that it will be

of value in some investigations.

7.2 Contributions to the field of C. elegans research

7.2.1 Analysis and characterisation of the stochastic gradient navigation strategy

Using our framework for analysing behaviour, we have been able to quantify, for the first time,

the necessary and sufficient interactions of the different behavioural units identified inC. elegansfor

efficient navigation towards the peak of gradients. Some of these were rather expected - we found

for instance that runs should be long when moving in a favourable directionand short otherwise.

Other findings were less obvious, for instance that reversals should not be too long, that the exact

amplitude of a turn is not very important or that it is more preferable to follow reversals with

turns than the converse. Overall though, the behaviour of our optimised models captured the actual

behaviour ofC. elegansrather well and we have therefore been able to explain subtle behavioural

sequences in the animal behaviour using considerations of efficiency.

Additionally, we have been able to show that pirouettes as used byC. elegansmay specifically

emerge from an inability to sample the gradient during a turn and that the animal may also be

unable to act upon gradient information while reversing. These insights areespecially interesting

since they illustrate nicely how computational models can be used to predict the sensory capabilities

of animals.

In summary, we have thus extended the knowledge about the stochastic navigation strategy
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from a mere observation of behavioural units to a detailed understanding of the relative importance

of these units and why they appear in the sequences that are observed.As such, the work presented

here is likely to be the most comprehensive study ofC. elegansgradient navigation since the fun-

damental study ofPierce-Shimomura et al.(1999). While therefore of interest to theC. elegans

research community, these results also illustrate the usefulness of our computational framework for

analysing behaviour and have been published in a high-level, interdisciplinary peer-refereed journal

(Thill and Pearce, 2007).

It is perhaps interesting to relate our work to other studies of stochastic navigation behaviours.

Random-walk based gradient navigation, particularly as exhibited in the case of bacterial chemo-

taxis employed for instance byE. coli, has been analysed in great detail. The intrinsic mechanics

have been simulated as far down as the molecular level (e.g.Bray et al., 2007; Likow et al., 2005)

and analytical treatments inspired by Brownian motion also exist (e.g.Schnitzer, 1993). However

all the methods used in these cases are specific to bacterial chemotaxis (or molecular mechanics

thereof), which is different fromC. eleganschemotaxis in that it does not typically use reversals,

and some simulations rely on detailed data which has been collected over decades (Bray et al.,

2007). In our work, however, we were less interested in modelling the detailed intrinsic mechanics,

perhaps down to the molecular level, of a given behaviour. Rather, we wanted to study the necessary

relationships between given behavioural units in the production of a complex behaviour and as such,

the present work addresses different issues than previous studies of direct random walk strategies,

even though the studied behaviour is the same.

7.2.2 A new model for isotherm tacking

Isothermal tracking behaviour inC. eleganshas received relative little attention in the literature

so far, with only one previously published mathematical model aimed at definingthe strategy used

by the animal (Luo et al., 2006). We were however unconvinced by this model; most notably we
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have shown that the same strategy can be used for deterministic navigation towards the peak of a

gradient with only one additional toggle. Since such a toggle has been known to exist in the neural

circuitry of C. elegansfor some time now (Samuel et al., 2003) we found it unlikely that the strategy

proposed byLuo et al.(2006) would indeed represent the strategy used by the animal.

It has thus become necessary to investigate whether isothermal tracking could also be per-

formed using a different strategy. We have shown that this was indeed possible using only infor-

mation from the world for which we felt confident that it was actually availableto the animal. We

were able to show that our proposed strategy can also perform isotherm tracking with a precision

that is sufficient to account for the actual behaviour ofC. elegans. We do note that the strategy is

not perfect, making use of only an approximate linear transformation; however the fact that we can

still significantly exceed the performance ofC. elegansincreases our confidence that this is not a

fundamental problem. We therefore believe that this model by itself is a significant contribution to

the study ofC. elegansbehaviour in thermal environments as it addresses an important flaw of the

only previously proposed model.

We tentatively proposed a neural circuit encoding this strategy and identified a number of neu-

rons that could be involved in this circuit. In doing so, we have made use of the major tool available

for neuroscientific exploration inC. elegans: the availability of a wiring diagram for its entire neu-

ral circuit (White et al., 1986). Even with only two restrictions on our proposed neural circuit, we

have thus been able to reduce the list of candidate neurons for computing the course correction in

our model down to 5. This makes an initial experimental verification of our strategy through laser

ablation studies possible but at the same time it illustrates the limitations on behavioural neurosci-

entific studies when starting from a behavioural angle (as opposed to using laser ablation studies to

determine the role of some neurons for instance): since the detailed neuraldynamics inC. elegans

remain unknown, it is only realistically possible to formulate a theoretical high-level computational

strategy for the behaviour one is interested in and perhaps make some general predictions on the
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required neural architecture, which can then be verified experimentally at a later time. It cannot at

present be known how computations are executed in detail, however.

On a final note, we have proposed that this strategy is performed by the computation of the

second derivative of the gradient information over time, aimed essentially atlocating the time of

maximal change in gradient information during one headsweep. We have done so because this

seems an obvious reasonable strategy to determine such a time - it is independent of the actual

gradient strength (which is significant since the animal is known to track isotherms in a thermal

bracket of approximately 6◦) and it can be easily implemented by an inhibitory neuron falling

silent when its time-shifted inputs cancel each other out. We do however acknowledge that we

cannot be absolutely certain that the second derivative is computed. It ispossible that there may be

simpler strategies based for instance on simply the first derivative in ways that we were not able to

determine. However, since this would not change any of our claims besidesthe exact computation

(it would still be necessary to locate a certain time point in the first derivativeand the strategy would

still require simpler computations than a deterministic navigation towards a region of preference),

we do not consider this further.

7.2.3 On the use of stochastic rather than deterministic strategies

One of the most fundamental questions regardingC. elegansbehaviour which has not yet been

adequately addressed in the literature is the use of a directed random walk strategy to navigate

towards regions of interest. It would be tempting and at first glance reasonable to attribute this

choice to insufficient sensory resolutions or perhaps an inability to perform sufficiently precise

movements in response to the sensory input. This remains a valid theory in the case of chemotaxis,

for which the precision at which the animal may sample the gradients remains unknown. In the

case of thermotaxis, however, it is more difficult to make such an argument; indeed the exceptional

performance of the animal at tracking isotherms appears to suggest that itis both able to sample the
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environment at sufficient detail and execute sufficiently precise movements to render deterministic

strategies possible.

We therefore thought it important to briefly investigate whether the animal could at least in

theory use its available information about the gradient to navigate towards regions of interest de-

terministically and if so, how. We first found, importantly, that the information which appears to

be available to the animal is indeed sufficient for such a deterministic strategy.In fact, we have

been able to identify two such strategies, one which could provide perfectreorientation manoeuvres

at the expense of requiring a memory capable of operating as a FILO stack(for which there is no

evidence yet in the neural circuitry ofC. elegans) and another which could operate using a similar

linear approximation than the one used in our proposed isothermal tracking model, at the expense

of at a minimum requiring the computation of the third derivative.

It thus appears that the animal is likely to be able to sample sufficient informationfor deter-

ministic navigation towards its temperature of preference from the environment and it is therefore

interesting that it nonetheless prefers a stochastic approach. We can offer a few speculations why

this may be so. Most likely, it is possible that chemosensory neurons may notactually be able to

sample the gradient at a sufficient resolution. This would make a stochastic strategy necessary for

chemotaxis and since the same strategy would remain usable for navigation towards the tempera-

ture of preference (Ryu and Samuel, 2002), there may not be a sufficient advantage to warrant the

evolution of a circuit for deterministic navigation only applicable in thermal environments. Alter-

natively, it may be possible that the physical distance the signal from the AFD neuron has to travel

through the neural circuitry is too large to compute the third derivative with sufficient precision. We

note that both reasons are still speculative given the current knowledge of C. elegans; we therefore

hope that the animal’s use of stochastic strategies over deterministic ones when navigating towards

temperatures of preference will receive further attention now that we have shown it not to be simply

due to limitations in the available information.
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7.3 Conclusion

In Chapter2, we identified four major open questions about the behaviour ofC. elegans:

• Given the three locomotory behaviours ofC. elegans(forward runs, turns and reversals), how

are these best combined if the aim is efficient chemotaxis? Is the pirouette strategy employed

by the animal optimal in this sense? Why are pirouettes used at all?

• Is it possible to derive novel predictions on the computational capabilities ofthe animal from

the chemotactic behaviour?

• Is the existing proposed strategy for isotherm tracking (Luo et al., 2006) reasonable? If not,

can another strategy be proposed?

• Given how well the animal tracks isotherms, why does it rely on stochastic strategies at all

when navigating towards the preferred temperature? Are deterministic strategies prevented

by something fundamental?

As has become evident in the present chapter, we have been able to adequately address all

of these points. To address some of them, we have formulated a novel framework for analysing

behaviour based on optimised models. The utility of this framework is not restricted toC. elegans

research and we expect that it will find applications in a large variety of behavioural studies. The

work presented in this thesis has thus contributed not only toC. elegansresearch specifically but has

also provided a methodology that we expect to have applications in the general field of ethology.



Chapter 8

Suggestions for further work

Even though the present thesis has addressed the major open questions we initially identified

in Chapter2, there are always possibilities for further research. Here, we will briefly discuss some

possible future work based on the present thesis.

8.1 Extending the framework for analysing behavioural models

The framework for analysing behavioural models, as defined in Chapter4 can only strictly be

applied to models with a finite parameter space. This has suited our needs and itis likely that it

will remain useful for many other models, but for the sake of completeness itwould be desirable to

extend the framework so it can also deal with infinite parameter spaces.

This is not necessarily a trivial task. The framework as defined relies onthe division of the

entire parameter space into subspaces of equal volume. In infinite parameter spaces, this will no

longer be possible and it therefore becomes necessary to define other meaningful ways of division

into subspaces.
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8.2 Experimental verification of predictions for C. elegans

We have made a number of novel predictions on the computational and sensory capabilities of

C. elegans. It would be very interesting to verify these in the real animal.

8.2.1 Isotherm strategy

We have identified some candidate neurons that may be involved in the isothermtracking

strategy ofC. elegans. An important follow-up to this identification would be verifying whether

isotherm tracking is disturbed when any of these neurons are destroyed.

8.2.2 Resolution and operating range of chemosensory neurons

We hypothesised thatC. elegansmay be using stochastic rather than deterministic strategies for

navigating towards the peak of chemical gradients due to an insufficient resolution of the chemosen-

sory neurons. Additionally, we predicted that the animal may only be able to act upon gradient

information while moving forward. These predictions could be verified by measuring the activity of

chemosensory neurons using calcium imaging techniques in a similar fashion tothe work by (Clark

et al., 2006) on the thermosensory neuron. This may be less trivial for chemosensation than it was

for thermosensation though. In particular the fact that the animal has several chemosensory neurons

may make it more difficult to determine their sensitivity.

8.3 Behavioural work onC. elegans

8.3.1 Isotherm strategy

One particularly interesting neuron that we have identified as possibly beinginvolved in the

isotherm tracking strategy ofC. eleganswas the RIA neuron. It is interesting because its ablation

is in fact known to disrupt isotherm tracking behaviour (Mori and Ohshima, 1995), which makes
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it relevant to our model. However, its ablation also causes cryophilic behaviour, which suggests

that RIA also plays a role in navigating towards the preferred temperature. These two roles are

not in principle contradictory, however their relation would need to be clarified. Specifically, could

its putative role in our isotherm tracking strategy also have implications for navigating towards the

preferred temperature? Would it be possible to propose a unified model ofboth navigation strategies

which makes use of RIA in a way that is consistent with both what is already known about those

strategies and our predictions?

8.3.2 The use of stochastic strategies for navigating towards the preferred tempera-

ture

We have shown that the animal does not simply use stochastic strategies for navigating to-

wards the preferred temperature as a result of being unable to extract the required information for

deterministic strategies from the available sensory information. Additionally, wehave argued that

both the sensory resultion and the precision of the motor output should be sufficient to correctly

determine and execute such deterministic strategies.

It would now be interesting to examine why the animal makes use of these stochastic strategies

over deterministic ones in more detail. Our outline of the necessary computationsfor two theo-

retical deterministic strategies for navigating towards the preferred temperature may assist in such

investigations.
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Appendix A

List of neurons in C. elegans

THE following is a list of neurons found in the hermaphroditeC. elegans. It is adapted from

Altun and Hall(2006), where detailed diagrams of each neuron’s location can also be found.

Neuron name Brief description

ADAL Ring interneuron

ADAR Ring interneuron

ADEL Anterior deirid, sensory neuron

ADER Anterior deirid, sensory neuron

ADFL Amphid neuron

ADFR Amphid neuron

ADLL Amphid neuron

ADLR Amphid neuron

AFDL Amphid finger cell

AFDR Amphid finger cell
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Neuron name Brief description

AIAL Amphid interneuron

AIAR Amphid interneuron

AIBL Amphid interneuron

AIBR Amphid interneuron

AIML Ring interneuron

AIMR Ring interneuron

AINL Ring interneuron

AINR Ring interneuron

AIYL Amphid interneuron

AIYR Amphid interneuron

AIZL Amphid interneuron

AIZR Amphid interneuron

ALA Neuron, sends processes laterally and along dorsal cord

ALML Anterior lateral microtubule cell

ALMR Anterior lateral microtubule cell

ALNL Neuron associated with ALM

ALNR Neuron associated with ALM

AQR Neuron, basal body. not part of a sensillum, projects into ring

AS1 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS2 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS3 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS4 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS5 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart
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Neuron name Brief description

AS6 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS7 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS8 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS9 Ventral cord motor neuron, innervates dorsal muscles, no ventralcounterpart

AS10 Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS11 Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

ASEL Amphid neuron, single ciliated endings

ASER Amphid neuron, single ciliated endings

ASGL Amphid neuron, single ciliated endings

ASGR Amphid neuron, single ciliated endings

ASHL Amphid neuron, single ciliated endings

ASHR Amphid neuron, single ciliated endings

ASIL Amphid neuron, single ciliated endings

ASIR Amphid neuron, single ciliated endings

ASJL Amphid neuron, single ciliated endings

ASJR Amphid neuron, single ciliated endings

ASKL Amphid neuron, single ciliated endings

ASKR Amphid neuron, single ciliated endings

AUAL Neuron, process runs with amphid processes but lacks ciliated ending

AUAR Neuron, process runs with amphid processes but lacks ciliated ending

AVAL Ventral cord interneuron

AVAR Ventral cord interneuron

AVBL Ventral cord interneuron
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Neuron name Brief description

AVBR Ventral cord interneuron

AVDL Ventral cord interneuron

AVDR Ventral cord interneuron

AVEL Ventral cord interneuron, like AVD but outputs restricted to anteriorcord

AVER Ventral cord interneuron, like AVD but outputs restricted to anteriorcord

AVFL Interneuron

AVFR Interneuron

AVG Ventral cord interneuron

AVHL Neuron, mainly postsynaptic in ventral cord and presynaptic in the ring

AVHR Neuron, mainly postsynaptic in ventral cord and presynaptic in the ring

AVJL Neuron, synapses like AVHL/R

AVJR Neuron, synapses like AVHL/R

AVKL Ring and ventral cord interneuron

AVKR Ring and ventral cord interneuron

AVL Ring and ventral cord interneuron and an excitatory GABAergic motorneuron

for rectal muscles. Few synapses

AVM Anterior ventral microtubule cell, touch receptor

AWAL Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath

AWAR Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath

AWBL Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath
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Neuron name Brief description

AWBR Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath

AWCL Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath

AWCR Amphid wing cells, neuron having ciliated sheet-like sensory endings closely

associated with amphid sheath

BAGL Neuron, ciliated ending in head, no supporting cells, associated with ILso

BAGR Neuron, ciliated ending in head, no supporting cells, associated with ILso

BDUL Neuron, process runs along excretory canal and into ring, unique darkly staining

synaptic vesicles

BDUR Neuron, process runs along excretory canal and into ring, unique darkly staining

synaptic vesicles

CANL Process runs along excretory canal, no synapses, essential for survival

CANR Process runs along excretory canal, no synapses, essential for survival

CEPDL Cephalic neuron, contain dopamine

CEPDR Cephalic neuron, contain dopamine

CEPVL Cephalic neuron, contain dopamine

CEPVR Cephalic neuron, contain dopamine

DA1 Ventral cord motor neuron, innervate dorsal muscles

DA2 Ventral cord motor neuron, innervate dorsal muscles

DA3 Ventral cord motor neuron, innervate dorsal muscles

DA4 Ventral cord motor neuron, innervate dorsal muscles

DA5 Ventral cord motor neuron, innervate dorsal muscles
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Neuron name Brief description

DA6 Ventral cord motor neuron, innervate dorsal muscles

DA7 Ventral cord motor neuron, innervate dorsal muscles

DA8 Ventral cord motor neuron, innervate dorsal muscles

DA9 Ventral cord motor neuron, innervate dorsal muscles

DB1/3 Ventral cord motor neuron, innervate dorsal muscles, reciprocal inhibitor

DB2 Ventral cord motor neuron, innervate dorsal muscles, reciprocalinhibitor

DB3/1 Ventral cord motor neuron, innervate dorsal muscles, reciprocal inhibitor

DB4 Ventral cord motor neuron, innervate dorsal muscles, reciprocalinhibitor

DB5 Ventral cord motor neuron, innervate dorsal muscles, reciprocalinhibitor

DB6 Ventral cord motor neuron, innervate dorsal muscles, reciprocalinhibitor

DB7 Ventral cord motor neuron, innervate dorsal muscles, reciprocalinhibitor

DD1 Ventral cord motor neuron, reciprocal inhibitors

DD2 Ventral cord motor neuron, reciprocal inhibitors

DD3 Ventral cord motor neuron, reciprocal inhibitors

DD4 Ventral cord motor neuron, reciprocal inhibitors

DD5 Ventral cord motor neuron, reciprocal inhibitors

DD6 Ventral cord motor neuron, reciprocal inhibitors

DVA Ring interneuron, cell bodies in dorsorectal ganglion

DVB An excitatory GABAergic motor neuron/interneuron located in dorso-rectal

ganglion. Innervates rectal muscles.

DVC Ring interneuron, cell bodies in dorsorectal ganglion

FLPL Neuron, ciliated ending in head, no supporting cells, associated with ILso

FLPR Neuron, ciliated ending in head, no supporting cells, associated with ILso
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Neuron name Brief description

HSNL Herm. specific motor neuron (die in male embryo), innervate vulval muscles,

serotonergic

HSNR Herm. specific motor neuron (die in male embryo), innervate vulval muscles,

serotonergic

I1L Pharyngeal interneuron: ant sensory, input from RIP

I1R Pharyngeal interneuron: ant sensory, input from RIP

I2L Pharyngeal interneuron, ant sensory.

I2R Pharyngeal interneuron, ant sensory.

I3 Pharyngeal interneuron, ant sensory.

I4 Pharyngeal interneuron.

I5 Pharyngeal interneuron, post sensory.

I6 Pharyngeal interneuron, post sensory.

IL1DL Inner labial neuron

IL1DR Inner labial neuron

IL1L Inner labial neuron

IL1R Inner labial neuron

IL1VL Inner labial neuron

IL1VR Inner labial neuron

IL2DL Inner labial neuron

IL2DR Inner labial neuron

IL2L Inner labial neuron

IL2R Inner labial neuron

IL2VL Inner labial neuron
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Neuron name Brief description

IL2VR Inner labial neuron

LUAL Interneuron, short process in post ventral cord

LUAR Interneuron, short process in post ventral cord

M1 Pharyngeal motorneuron

M2L Pharyngeal motorneuron

M2R Pharyngeal motorneuron

M3L Pharyngeal sensory-motorneuron

M3R Pharyngeal sensory-motorneuron

M4 Pharyngeal motorneuron

M5 Pharyngeal motorneuron

MCL Pharyngeal neuron that synapse onto marginal cells

MCR Pharyngeal neuron that synapse onto marginal cells

MI Pharyngeal motor neuron/interneuron

NSML Pharyngeal neurosecretory motorneuron, contain serotonin

NSMR Pharyngeal neurosecretory motorneuron, contain serotonin

OLLL Lateral outer labial neuron

OLLR Lateral outer labial neuron

OLQDL Quadrant outer labial neuron

OLQDR Quadrant outer labial neuron

OLQVL Quadrant outer labial neuron

OLQVR Quadrant outer labial neuron

PDA Motor neuron, process in dorsal cord

PDB Motor neuron, process in dorsal cord, cell body in pre-anal ganglion
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Neuron name Brief description

PDEL Neuron, dopaminergic of postderid sensillum

PDER Neuron, dopaminergic of postderid sensillum

PHAL Phasmid neuron, chemosensory

PHAR Phasmid neuron, chemosensory

PHBL Phasmid neuron, chemosensory

PHBR Phasmid neuron, chemosensory

PHCL Neuron, striated rootlet in male, possibly sensory in tail spike

PHCR Neuron, striated rootlet in male, possibly sensory in tail spike

PLML Posterior lateral microtubule cells, touch receptor neuron

PLMR Posterior lateral microtubule cells, touch receptor neuron

PLNL Interneuron, associated with PLM

PLNR Interneuron, associated with PLM

PQR Neuron, basal body, not part of a sensillum, projects into preanalgangion

PVCL Ventral cord interneuron, cell body in lumbar ganglion, synapsesonto VB

andDB motor neuron, formerly called delta.

PVCR Ventral cord interneuron, cell body in lumbar ganglion, synapsesonto VB

andDB motor neuron, formerly called delta.

PVDL Neuron, lateral process adjacent to excretory canal

PVDR Neuron, lateral process adjacent to excretory canal

PVM Posterior ventral microtubule cell, touch receptor

PVNL Interneuron/motor neuron, post. vent. cord, few synapses

PVNR Interneuron/motor neuron, post. vent. cord, few synapses

PVPL Interneuron, cell body in preanal ganglion, projects along v. cord to nerve ring
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Neuron name Brief description

PVPR Interneuron, cell body in preanal ganglion, projects along v. cord to nerve ring

PVQL Interneuron, projects along ventral cord to ring

PVQR Interneuron, projects along ventral cord to ring

PVR Interneuron, projects along ventral cord to ring

PVS PVPR interneuron of male, cell body in preanal ganglion, sexually dimorphic

connectivity

PVT Interneuron, projects along ventral cord to ring

PVWL Interneuron, posterior ventral cord, few synapses

PVWR Interneuron, posterior ventral cord, few synapses

RIAL Ring interneuron, many synapses

RIAR Ring interneuron, many synapses

RIBL Ring interneuron

RIBR Ring interneuron

RICL Ring interneuron

RICR Ring interneuron

RID Ring interneuron, projects along dorsal cord

RIFL Ring interneuron

RIFR Ring interneuron

RIGL Ring interneuron

RIGR Ring interneuron

RIH Ring interneuron

RIML Ring motor neuron

RIMR Ring motor neuron
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Neuron name Brief description

RIPL Ring/pharynx interneuron, only direct connection between pharynx and ring

RIPR Ring/pharynx interneuron, only direct connection between pharynx and ring

RIR Ring interneuron

RIS Ring interneuron

RIVL Ring interneuron

RIVR Ring interneuron

RMDDL Ring motor neuron/interneuron, many synapses

RMDDR Ring motor neuron/interneuron, many synapses

RMDL Ring motor neuron/interneuron, many synapses

RMDR Ring motor neuron/interneuron, many synapses

RMDVL Ring motor neuron/interneuron, many synapses

RMDVR Ring motor neuron/interneuron, many synapses

RMED Ring motor neuron

RMEL Ring motor neuron

RMER Ring motor neuron

RMEV Ring motor neuron

RMFL Ring motor neuron/interneuron

RMFR Ring motor neuron/interneuron

RMGL Ring interneuron

RMGR Ring interneuron

RMHL Ring motor neuron/interneuron

RMHR Ring motor neuron/interneuron

SAADL Ring interneuron, anteriorly projecting process that runs sublaterally
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Neuron name Brief description

SAADR Ring interneuron, anteriorly projecting process that runs sublaterally

SAAVL Ring interneuron, anteriorly projecting process that runs sublaterally

SAAVR Ring interneuron, anteriorly projecting process that runs sublaterally

SABD Ring interneuron, anteriorly projecting process that runs sublaterally, synapses

to anterior body muscles in L1

SABVL Ring interneuron, anteriorly projecting process that runs sublaterally, synapses

to anterior body muscles in L1

SABVR Ring interneuron, anteriorly projecting process that runs sublaterally, synapses

to anterior body muscles in L1

SDQL Post. lateral interneuron, process projects into ring

SDQR Ant. lateral interneuron, process projects into ring

SIADL Receive a few synapses in the ring, have sublateral posteriorlydirected pro-

cesses

SIADR Receive a few synapses in the ring, have sublateral posteriorlydirected pro-

cesses

SIAVL Receive a few synapses in the ring, have sublateral posteriorlydirected pro-

cesses

SIAVR Receive a few synapses in the ring, have sublateral posteriorlydirected pro-

cesses

SIBDL Similar to SIA

SIBDR Similar to SIA

SIBVL Similar to SIA

SIBVR Similar to SIA
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Neuron name Brief description

SMBDL Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMBDR Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMBVL Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMBVR Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMDDL Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMDDR Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMDVL Ring motor neuron/interneuron, has sublateral posteriorly directed processes

SMDVR Ring motor neuron/interneuron, has sublateral posteriorly directed processes

URADL Ring motor neuron

URADR Ring motor neuron

URAVL Ring motor neuron

URAVR Ring motor neuron

URBL Neuron, presynaptic in ring, ending in head

URBR Neuron, presynaptic in ring, ending in head

URXL Ring interneuron

URXR Ring interneuron

URYDL Neuron, presynaptic in ring, ending in head

URYDR Neuron, presynaptic in ring, ending in head

URYVL Neuron, presynaptic in ring, ending in head

URYVR Neuron, presynaptic in ring, ending in head

VA1 Vent. cord motor neuron, innervates vent. body muscles

VA2 Vent. cord motor neuron, innervates vent. body muscles

VA3 Vent. cord motor neuron, innervates vent. body muscles



Appendix A: List of neurons inC. elegans 166

Neuron name Brief description

VA4 Vent. cord motor neuron, innervates vent. body muscles

VA5 Vent. cord motor neuron, innervates vent. body muscles

VA6 Vent. cord motor neuron, innervates vent. body muscles

VA7 Vent. cord motor neuron, innervates vent. body muscles

VA8 Vent. cord motor neuron, innervates vent. body muscles

VA9 Vent. cord motor neuron, innervates vent. body muscles

VA10 Vent. cord motor neuron, innervates vent. body muscles

VA11 Vent. cord motor neuron, innervates vent. body muscles

VA12 Vent. cord motor neuron, innervates vent. body muscles, but also interneuron

in preanal ganglion

VB1 Vent. cord motor neuron, innervates vent. body muscles, also interneuron in

ring

VB2 Vent. cord motor neuron, innervates vent. body muscles

VB3 Vent. cord motor neuron, innervates vent. body muscles

VB4 Vent. cord motor neuron, innervates vent. body muscles

VB5 Vent. cord motor neuron, innervates vent. body muscles

VB6 Vent. cord motor neuron, innervates vent. body muscles

VB7 Vent. cord motor neuron, innervates vent. body muscles

VB8 Vent. cord motor neuron, innervates vent. body muscles

VB9 Vent. cord motor neuron, innervates vent. body muscles

VB10 Vent. cord motor neuron, innervates vent. body muscles

VB11 Vent. cord motor neuron, innervates vent. body muscles

VC1 Vent cord motor neuron innervates vulval muscles and vent body muscles



Appendix A: List of neurons inC. elegans 167

Neuron name Brief description

VC2 Vent cord motor neuron innervates vulval muscles and vent body muscles

VC3 Vent cord motor neuron innervates vulval muscles and vent body muscles

VC4 Vent cord motor neuron innervates vulval muscles and vent body muscles

VC5 Vent cord motor neuron innervates vulval muscles and vent body muscles

VC6 Vent cord motor neuron innervates vulval muscles and vent body muscles

VD1 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD2 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD3 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD4 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD5 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD6 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD7 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD8 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD9 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD10 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD11 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD12 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD13 Vent cord motor neuron, innervates vent body muscles, reciprocal inhibitor
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