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Game theory is concerned with rational choice in decisions involving two or more 
interdependent decision makers. Its range of applicability is broad, including all decisions in 
which an outcome depends on the actions of two or more decision makers, called players, 
each having two or more ways of acting, called strategies, and sufficiently well-defined 
preferences among the possible outcomes to enable numerical payoffs reflecting these 
preferences to be assigned. 

Decision theory has a certain logical primacy in psychology, because decision making 
drives all deliberate behaviour, and game theory is the portion of decision theory dealing with 
decisions involving strategic interdependence. This chapter focuses on reasoning in games, 
and in particular on theoretical problems of specifying and understanding the nature of 
rationality in strategic interaction. These problems are far from trivial, because even simple 
games present deep and mysterious dilemmas that are imperfectly understood and have not 
been solved convincingly. 

The notion of rationality underlying game theory is instrumental rationality, according to 
which rational agents choose the best means to achieve their most preferred outcomes. This 
means-end characterization of rational choice is conspicuously neutral regarding an agent’s 
preferences or desires, a point that was stressed by the Scottish philosopher David Hume in a 
frequently quoted passage of his Treatise of Human Nature: ‘Reason is, and ought only to be 
the slave of the passions, and can never pretend to any other office than to serve and obey 
them. . . . A passion can never, in any sense, be call’d unreasonable, but when founded on a 
false supposition, or when it chuses means insufficient for the design’d end.’ (1739-40, 
2.III.iii). Hume conceded only that preferences based on ‘false supposition’ are unreasonable 
or irrational. Contemporary philosophers and game theorists take an even more permissive 
view, requiring only that preferences should be consistent. Although everyday language 
contains both internal reason statements (P has a reason for doing x) and external reason 
statements (There is a reason for P to do x), the philosopher Bernard Williams (1979) has 
shown that ‘external reason statements, when definitely isolated as such, are false, or 
incoherent, or really something else misleadingly expressed’ (p. 26). A person’s reasons for 
acting in a particular way are invariably internal, hence an action is instrumentally rational, 
relative to the agent’s knowledge and beliefs at the time of acting, if it is the best means to 
achieve the most preferred outcome, provided only that the knowledge and beliefs are not 
inconsistent or incoherent. Thus, if I am thirsty, and I come upon a jar of powder that I 
believe to be cocoa but is actually rat poison, I act rationally, relative to my knowledge and 
beliefs, if I dissolve the powder in hot milk and drink the infusion, even though my 
preference for doing so is based on a ‘false supposition’. 

Instrumental rationality is formalized in expected utility theory, introduced as an 
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axiomatic system by von Neumann and Morgenstern (1947), in an appendix to the second 
edition of their book, Theory of Games and Economic Behavior. It is based on the idea that a 
rational agent has complete and consistent preferences among the available outcomes and 
also among gambles involving those outcomes. The theory assigns numerical utilities to the 
outcomes in such a way that players who always choose utility-maximizing options 
(strategies or gambles) can be shown to be acting in their own best interests and therefore to 
be instrumentally rational. In game theory, utilities are represented by payoffs, and the 
theory, as presented by von Neumann and Morgenstern, is primarily normative, inasmuch as 
its basic aim is to determine what strategies rational players should choose to maximize their 
payoffs. It is not primarily a positive or descriptive theory that predicts what strategies human 
players are likely to choose in practice. It can none the less be argued (Colman, in press) that 
it becomes a positive theory by the addition of a bridging hypothesis of weak rationality, 
according to which people try to do the best for themselves in any given circumstances. 
Granted that deviations from perfect rationality are inevitable, because human decision 
makers have bounded rationality, the bridging hypothesis provides game theory with a 
secondary objective, that of making testable predictions, thus justifying the otherwise 
inexplicable enterprise of experimental gaming (reviewed by Camerer, 2003; Colman, 1995, 
chaps 5, 7, 9; Kagel and Roth, 1995, chaps 1-4; Pruitt and Kimmel, 1977). 

The fundamental problem that we encounter when we attempt to determine rational play 
in games is that individual players have incomplete control over the outcomes of their 
actions. In individual decision making, expected utility theory provides a clear and 
unambiguous interpretation of rationality. A rational decision maker chooses the option with 
the highest expected utility or, if there is a tie for top place, one of the options with the 
highest expected utility. But a game does not generally have a strategy that is best in this 
straightforward sense, because a player’s preferences range over outcomes, not strategies, 
and outcomes are determined partly by the choices of other players. 

The remainder of this chapter will be devoted to the most prominent suggestions that 
have been put forward for solving this problem. I shall focus principally on non-cooperative 
games, except for a brief discussion of cooperative games near the end. The distinction 
between these two classes of games was introduced by Nash (1951). In non-cooperative 
games, the players act independently, whereas in cooperative games they are free to negotiate 
coalitions based binding and enforceable agreements. The following sections are devoted to 
an examination of the ideas behind the major solution concepts – general principles designed 
to yield rational solutions to particular classes of games. These fundamental issues are 
seldom discussed in the game-theoretic literature. 
 
NASH EQUILIBRIUM 
 
The leading solution concept for non-cooperative games is undoubtedly Nash equilibrium. A 
Nash equilibrium (or equilibrium point, or strategic equilibrium, or simply equilibrium) is a 
profile of strategy choices, one for each of the n players in a game, such that each player’s 
strategy is a best reply to the n – 1 others. A best reply is a strategy that maximizes a player’s 
payoff, given the strategies chosen by the others. It follows from the definition that any non-
equilibrium profile of strategies is necessarily self-destabilizing, inasmuch as at least one 
player has an incentive to deviate from it. It is often claimed, conversely, that an equilibrium 
point is self-supporting and self-enforcing, but we shall see that this is not always the case. 
An important psychological property of an equilibrium point is that it gives the players no 
cause to regret their strategy choices when those of their co-players are revealed. 
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  II 
  C D

C 4, 4 1, 2 
I 

D 2, 1 3, 3
 

                   Figure 12.1 Assurance Game. 
 
The equilibrium concept can be illustrated by the Assurance Game, the payoff matrix of 

which is displayed in Figure 12.1. This is a simple two-person game, first introduced by Sen 
(1969), in which Player I chooses between the rows arbitrarily labelled C and D, Player II 
independently chooses between the columns labelled C and D, and by convention the pair of 
numbers in each cell are the payoffs to Player I and Player II in that order. What defines this 
game as the Assurance Game is the rank order of the payoffs rather than their absolute values 
– it is still an Assurance Game if the payoffs are 10, 0, –5, and –10, for example, provided 
that the highest payoff goes to each player in the (C, C) outcome, the second-highest payoff 
to each in the (D, D) outcome, and so on. The identities of other named games also depend on 
their ordinal structures. 

Sen (1969) gave the following interpretation to illustrate how the Assurance Game might 
arise in an everyday strategic interaction, at least in the dreaming spires of academia. Two 
people face the choice of going to a lecture or staying at home. ‘Both regard being at the 
lecture together the best alternative; both, staying at home the next best; and the worst is for 
him or her to be at the . . . lecture without the other’ (p. 4, footnote 5). Given these 
preferences, the strategic structure corresponds to Figure 12.1. It is clear that the (C, C) 
outcome in the top-left cell of the payoff matrix is an equilibrium point because, for Player I, 
C is the best reply to Player II’s C, and for Player II, C is the best reply to Player I’s C. But 
there is another equilibrium point at (D, D), where strategies are also best replies to each 
other. It yields lower payoffs for both players, and it seems intuitively obvious that rational 
players would choose their C strategies, because (C, C) is not only an equilibrium point but is 
the best equilibrium point for both players (technically, it payoff dominant, and that is 
something we need to examine more closely later). In fact, (C, C) is uniquely Pareto-efficient 
in the sense that no other outcome gives either player a higher payoff without giving the other 
player a lower payoff. 

The equilibrium concept was first formalized by Nash (1950a, 1951), who gave two 
separate proofs that every finite game – that is, every game with a finite number of players, 
each having a finite number of strategies – has at least one equilibrium point, provided that 
mixed strategies are brought into consideration. A mixed strategy is a probability distribution 
over a player’s (pure) strategies. For example, if a player has two pure strategies, such as C 
and D in the Assurance Game, then one feasible mixed strategy involves choosing randomly 
between them with equal probabilities assigned to each, by tossing a coin, for example; 
another mixed strategy involves 60%–40% randomization, and so on. In fact, with the 
payoffs shown in Figure 12.1, it is easy to verify that if both players choose C and D with 
equal probability, these mixed strategies form a third Nash equilibrium, with expected 
payoffs of 2½ to each player. In the increasingly popular Bayesian interpretation of game 
theory, a mixed strategy is viewed construed as uncertainty in the mind of a co-player about 
which pure strategy will be chosen (Harsanyi, 1973). 

What makes Nash equilibrium so important is a theoretical discovery that if a game has a 
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uniquely rational solution, then it must be an equilibrium point. This proposition was 
deduced by von Neumann and Morgenstern (1944, pp. 146-8), using a celebrated Indirect 
Argument, and prominently expounded by Luce and Raiffa (1957, pp. 63-5, 173). In its 
current interpretation, the Indirect Argument rests on the standard common knowledge and 
rationality assumptions of game theory. The first of these is that the specification of the 
game, embodied in a payoff matrix in the case of a two-person game, and everything that 
follows logically from it, are common knowledge among the players. The second is that the 
players are instrumentally rational, invariably choosing strategies that maximize their utilities 
or payoffs, relative to their knowledge and beliefs, and that this too is common knowledge in 
the game. The concept of common knowledge was introduced by Lewis (1969, pages 52-68) 
and formalized by Aumann (1976). Roughly speaking, a proposition is common knowledge 
among a group of players if every player knows it to be true, knows that every other player 
knows it to be true, knows that every other player knows that every other player knows it to 
be true, and so on. 

According to the standard assumptions, the specification of the game and the players’ 
rationality are common knowledge in the game. From these assumptions, it can be proved 
that any uniquely rational solution must be an equilibrium point. First, an immediate 
implication of the common knowledge and rationality assumptions is that any conclusion that 
a player validly deduces about a game will be deduced by the co-player(s) and will be 
common knowledge in the game. This logical implication is called the transparency of 
reason (Bacharach, 1987). It implies that, if it is uniquely rational for Player 1 to choose 
Strategy s1, Player 2 to choose Strategy s2, ..., and Player n to choose Strategy sn, then s1, s2, 
..., sn must be best replies to one another, because, by the transparency of reason, each player 
anticipates the others’ strategies and, to maximize utility, chooses a best reply to them. 
Because s1, s2, ..., sn are best replies to one another, they are in Nash equilibrium by 
definition. This establishes that if a game has a uniquely rational solution, then that solution 
must necessarily be an equilibrium point. A deep and subtle problem that is often overlooked 
is that the converse does not necessarily hold, because the Indirect Argument rests on an 
unproved assumption that a game has a uniquely rational solution (Sugden, 1991). A Nash 
equilibrium, even if unique, is not necessarily a rational solution, because a game may have 
no uniquely rational solution. 
 
Unstable equilibrium 

If a particular outcome is a Nash equilibrium, that is not a sufficient reason for a rational 
player to choose the corresponding equilibrium strategy. This can be seen, first, in certain 
games with only mixed-strategy equilibrium points, such as the game shown in Figure 12.2. 
This game has no pure-strategy equilibrium point. Its unique equilibrium point is the mixed-
strategy solution in which Player I randomizes between Strategies C and D with probabilities 
2/3 and 1/3 respectively, and Player II randomizes between Strategies C and D with 
probabilities 1/3 and 2/3 respectively. If both players use these equilibrium strategies, then 
Player I’s expected payoff is 3⅔ and Player II’s is 2⅓, and neither player can benefit by 
deviating. The transparency of reason may seem to imply that each player will therefore 
expect the other to choose the prescribed equilibrium strategy. But if Player I expects Player 
II to choose (1/3C, 2/3D), then this nullifies Player I’s reason for choosing (2/3C, 1/3D), 
because any pure or mixed strategy yields an identical expected payoff of 3⅔ against Player 
II’s mixed strategy, and the same argument applies, mutatis mutandis, to Player II. This is a 
valid deduction, and the transparency of reason ensures that it is common knowledge. It 
implies that neither player has any reason to expect the other to choose a mixed equilibrium 
strategy. In the mixed-strategy case, not only does the fact that a particular outcome is a Nash 
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equilibrium fail to provide a player with a sufficient reason for choosing the corresponding 
equilibrium strategy but, on the contrary, it appears to vitiate any reason that a player might 
have for choosing it. 

  II 
  C D

C 3, 3 4, 2
I

D 5, 1 3, 3
 

               Figure 12.2 Game with a unique mixed-strategy equilibrium point. 
 
This suggests that the [(2/3C, 1/3D), (1/3C, 2/3D)] mixed-strategy equilibrium solution in 

Figure 12.2 is unstable. A player can deviate from it unilaterally without suffering any 
penalty, although there is no positive incentive to do so. Harsanyi (1973) argued, however, 
that this instability is apparent rather than real, provided that an element of uncertainty is 
introduced into the modelling of the game. He suggested that a player should always be 
assumed to have a small amount of uncertainty about a co-player’s payoffs. If games with 
solutions in mixed strategies are modelled by disturbed games with randomly fluctuating 
payoffs, deviating slightly from the values in the payoff matrix, then mixed-strategy 
equilibrium points disappear and are replaced by pure-strategy equilibrium points, and the 
fluctuating payoffs interact in such a way that rational players choose strategies with the 
probabilities prescribed by the original mixed-strategy solution. If the game shown in Figure 
12.2 is disturbed, then it will no longer have a mixed-strategy solution. Player I will receive a 
higher payoff from either the C or the D strategy – C in 2/3 of disturbed games and D in 1/3 – 
and for Player II these proportions will be reversed. Thus, although rational players will 
simply choose their best pure strategies without making any attempt to randomize, they will 
choose them with the probabilities of the classical mixed-strategy solution. 
 
Subgame-perfect equilibrium 
There is worse to come for Nash equilibrium. Some equilibrium points require players to 
choose strategies that are arguably irrational. This anomaly was discovered by Selten (1965, 
1975), who developed a refinement of Nash equilibrium, called the subgame-perfect 
equilibrium, specifically to eliminate it. A simple example of an imperfect equilibrium is 
shown in Figure 12.3. 

 II 
 C D 

C 2, 2 0, 0
I 

D 1, 3 1, 3
 

(a) 

 
 

 
(b) 

 
Figure 12.3 Game with an imperfect equilibrium point. (a) Normal form. (b) Extensive 

form. 
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In the payoff matrix shown in Figure 12.3(a), both (C, C) and (D, D) are equilibrium 
points, but (C, C) is subgame-perfect, in Selten’s terminology, and (D, D) is imperfect, 
requiring an irrational choice from one of the players. This emerges from an examination of 
the extensive form of the game shown in Figure 12.3(b), a graph depicting the players’ moves 
as if they moved sequentially, starting with Player I on the left. If the game were played 
sequentially, and if the second decision node were reached, then a utility-maximizing Player 
II would choose C, to secure a payoff of 2, not D, yielding 0. Working backwards, Player I 
would anticipate Player II’s reply and would therefore choose C rather than D, to secure 2 
rather than 1. Thus we can conclude that (C, C) is the only rational equilibrium point of the 
extensive-form game, and it is therefore subgame-perfect. Because the (D, D) equilibrium 
point could not be reached by rational behaviour in the extensive form, it is imperfect in the 
normal form. A subgame-perfect equilibrium is one that induces payoff-maximizing choices 
in every branch or subgame of its extensive form. 

Selten (1975) introduced the concept of trembling-hand equilibrium to identify and 
eliminate imperfect equilibria. At every decision node in the extensive form of a game there 
is assumed to be a small probability ε (epsilon) that the player’s rationality will break down 
for some unspecified reason, resulting in a mistake or unintended move. The introduction of 
these small error probabilities produces a perturbed game – slightly different from Harsanyi’s 
(1973) disturbed games, in which it is the payoffs rather than the players’ actions that go 
astray. In Selten’s theory, whenever a player’s hand ‘trembles’, the erroneous move is 
assumed to be determined by a random process, and every move that could possibly be made 
at every decision node therefore has some positive probability of being played. Assuming 
that the players’ trembling hands are common knowledge in a game, Selten proved that only 
the subgame-perfect equilibria of the original game remain equilibrium points in the 
perturbed game, and they continue to be equilibrium points as the probability ε tends to zero. 
According to this widely accepted refinement of the equilibrium concept, the standard game-
theoretic assumption of rationality is reinterpreted as a limiting case of incomplete 
rationality. 
 
PAYOFF DOMINANCE 
 
Undoubtedly the most serious deficiency of Nash equilibrium as a solution concept is its 
systematic indeterminacy, arising from multiplicity of equilibrium points. We have already 
encountered this problem in the Assurance Game in Figure 12.1. Equilibrium points are 
convincing solutions to strictly competitive (finite, two-person, zero-sum) games in which 
one player’s gain is invariably equal to the co-player’s loss, because in such games, if there 
are multiple equilibrium points, then they are invariably equivalent and interchangeable. 
Two equilibrium points (E, F) and (E′, F′) are equivalent if the payoffs are the same in each, 
and they are interchangeable if (E, F′) and (E′, F) are also equilibrium points. Then it makes 
no difference which equilibrium strategies the players choose, because (it is easy to prove) 
the outcome is invariably an equilibrium point with the same payoffs. Figure 12.4, for 
example, shows a typical strictly competitive game. Following the convention for strictly 
competitive games, only Player I’s payoffs are shown – Player II’s are simply the negatives 
of these, Player I’s gains being Player II’s loses. The four outcomes (C, D), (C, E), (D, D), 
(D, E), are all equilibrium points, and as long each player chooses an equilibrium strategy – 
C or D for Player I and D or E for Player II – the strategies are in equilibrium and payoffs are 
the same: 2 units to Player I and –2 to Player II. 



Reasoning About Strategic Interaction   7 

 II 
  C D E 
 C 4 2 2 
I D 7 2 2 
 E 3 0 1 

 
      Figure 12.4 Strictly competitive game with multiple equilibrium points. 

 
The classic solution of strictly competitive games is widely accepted, although occasional 

sceptical voices have been raised against it from the beginning (see especially Ellsberg, 
1956). But games that are not strictly competitive often have multiple equilibrium points that 
are non-equivalent and non-interchangeable, and as a consequence lack determinate 
equilibrium solutions. The Assurance Game shown in Figure 12.1 is a case in point: there are 
pure-strategy equilibrium points at (C, C) and (D, D), but they are non-equivalent because the 
payoffs are different in each, and non-interchangeable because if Player I chooses C and 
Player II D, for example, then the resulting (C, D) outcome is not an equilibrium point. In the 
Assurance Game, both players obviously prefer (C, C) to (D, D), but the Nash equilibrium 
criterion, on its own, is indeterminate, and games typically have several equilibrium points. 

In their influential book, A General Theory of Equilibrium Selection in Games, Harsanyi 
and Selten (1988), suggested a principle that they called the payoff-dominance principle to 
help solve the problem of Nash indeterminacy. (The also suggested a secondary risk-
dominance principle that is not directly relevant to this discussion.) Given two equilibrium 
points in a game, one payoff-dominates (or Pareto-dominates) the other if it gives every 
player a higher payoff than the other. In the Assurance Game of Figure 12.1, (C, C) payoff-
dominates (D, D), because it gives both players higher payoffs. The payoff-dominance 
principle is the proposition that if one equilibrium point payoff-dominates all others in a 
game, then rational players will choose the strategies corresponding to it. Harsanyi and Selten 
proposed that the payoff-dominance principle should be regarded as part of every player’s 
‘concept of rationality’ and should be common knowledge among the players. 

Payoff dominance is the leading principle of equilibrium selection, and its intuitive force 
is generally acknowledged (Colman, 1997; Colman and Bacharach, 1997; Crawford and 
Haller, 1990; Lewis, 1969; Sugden, 1995). But why is it intuitively compelling, and why 
should rational players use it? To expose the phenomenon in its starkest form, let us consider 
the Hi-Lo Matching Game shown in Figure 12.5(a). 
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 II 
 C D 

C 4, 4 0, 0
I 

D 0, 0 3, 3
 

       (a) 

  II 
  C D 

C 4, 4 0, 5 
I 

D 0, 0 3, 3 
 

              (b) 
 

Figure 12.5 (a) Hi-Lo Matching Game. (b) Modified Hi-Lo Matching Game. 
 
The Hi-Lo Matching Game is really just a simplified version of Sen’s Assurance Game 

with out-of-equilibrium payoffs stripped out. There are two pure-strategy equilibrium points 
at (C, C) and (D, D), and (C, C) obviously payoff-dominates (D, D). In spite of this, the 
standard common knowledge and rationality assumptions of game theory provide no rational 
justification for preferring C to D. That is why Harsanyi and Selten (1988) had to introduce 
the payoff-dominance principle as an axiom. A rational player would choose C rather than D 
if there were a reason to expect the co-player to choose C, but there is no such reason, 
because the co-player faces exactly the same quandary, and this leads to an infinite regress. It 
is impossible to derive a mandate for choosing C from the common knowledge and 
rationality assumptions. This point is widely misunderstood, presumably because choosing C 
seems intuitively rational, and it is therefore worth pausing to discuss two common fallacies. 

First, it is tempting to argue, as a referee of a journal article that I submitted once did, that 
C yields a payoff of 4 or zero, whereas D yields 3 or zero, therefore a rational player should 
choose C to maximize expected utility under uncertainty. This argument is easily refuted by 
considering the modified version in Figure 12.5(b). For Player I, C yields 4 or zero, whereas 
D yields 3 or zero, just as in the original version in Figure 12.5(a), but it is obvious that no 
rational Player I would choose C. In the modified game, Player II receives a higher payoff by 
choosing D than C against both of Player I’s strategies and will therefore certainly choose D, 
if rational. By the transparency of reason, Player I knows this and, if rational, will therefore 
choose D in order to secure a payoff of 3 rather than zero. The only rational outcome in 
Figure 12.5(b), and of course the only Nash equilibrium, is (D, D). 

The second fallacy is to assume that the Bayesian principle of insufficient reason can be 
used to assign equal probabilities to the co-player’s strategies. According to this principle, we 
are entitled to consider two events as equally probable if we have no reason to consider one 
more probable than the other. If this were valid, then in the original Hi-Lo Matching Game of 
Figure 12.5(a), Player I might assume that Player II’s strategies are equally probable, in 
which case it would certainly be rational for Player I to choose C, because it would yield a 
(subjective) expected utility of (½ × 4) + (½ × 0) = 2, whereas the expected utility of a D 
choice would be (½ × 0) + (½ × 3) = 1½. But then, then by the transparency of reason, Player 
II would anticipate Player I’s C strategy and, to maximize utility, would also choose C – with 
certainty. Player I would anticipate this, and we have a contradiction. Starting from the 
assumption that Player II’s C and D strategies are equally probable, we have proved that their 
probabilities are 1 and 0 respectively. From the assumption that Player II is equally likely to 
choose C or D, we have proved that Player II is certain to choose C – reductio ad absurdum. 
No method of assigning subjective probabilities to co-players’ strategies yields up a valid 
reason for choosing C in the Hi-Lo Matching Game. 
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There is simply no way of justifying the payoff-dominance principle in the Hi-Lo 
Matching Game, or in the Assurance Game of Figure 12.1, or in any other game, on the basis 
of the standard knowledge and rationality assumptions. Surprisingly, payoff dominance is not 
rationally justifiable, in spite of its intuitive appeal. But there is experimental evidence to 
show that human decision makers coordinate on payoff-dominant solutions with considerable 
ease, even in matching games with far more strategies than the Hi-Lo Matching Game 
(Mehta, Starmer, and Sugden, 1994) and that players are strongly influenced by payoff 
dominance in more complex games as well (Cooper, et al., 1990). Various modifications of 
the assumptions have been suggested to account for this phenomenon, the most prominent 
being team reasoning and Stackelberg reasoning. 

 
Team reasoning and Stackelberg reasoning 
Team reasoning (Sugden, 1993; Bacharach,1999) is based on the idea that, in certain 
circumstances, players act to maximize their collective payoff, relative to their knowledge 
and beliefs, rather than their individual payoffs. A team-reasoning player first identifies a 
profile of strategy choices that maximizes the collective payoff of the players, and if this 
profile is unique, plays the corresponding individual strategy that is a component of it. This 
involves a radical revision of the standard assumptions, according to which decision makers 
maximize individual payoffs. But examples of joint enterprises abound in which people 
appear to be motivated by collective rather than individual interests. On sports fields and 
battlefields, in commercial companies, university departments, and families, anecdotal 
evidence suggests that people sometimes choose actions according to what is good for ‘us’, 
though their individual preferences may not coincide with the collective interest. In some 
circumstances de-individuation may even occur, with people tending to lose their sense of 
personal identity and accountability (Colman, 1991; Dipboye, 1977; Zimbardo, 1969). Team 
reasoning leads naturally to the selection of payoff-dominant equilibrium points such as (C, 
C) in Figures 1 and 5(a). 

Experimental research has confirmed the intuition that there are circumstances in which 
decision makers prefer outcomes that maximize collective payoffs. Park and Colman (2001) 
reported an experiment in which 50 participants were presented with vignettes designed to 
elicit various social value orientations. In two vignettes, describing scenarios in which 
payoffs go into a common pool and the participants benefit jointly from cooperative 
outcomes, preferences were strongly and significantly biased towards joint rather than 
individual payoff maximization, and qualitative analysis of verbally expressed reasons for 
choices indicated that team-reasoning explanations, alluding directly or indirectly to 
collective payoff maximization, were invariably given in these two vignettes. 

A second suggestion for explaining the payoff-dominance phenomenon is Stackelberg 
reasoning, suggested by Colman and Bacharach (1997). The assumption here is that players 
choose strategies that maximize their individual payoffs on the assumption that any choice 
will invariably be met by the co-player’s best reply, as if players could read each others’ 
minds. In the Hi-Lo Matching Game shown in Figure 12.5(a), for example, if the players 
assume that any strategy will always be correctly anticipated by the co-player, then Player I 
might reason that a C choice will be met with a C counter-strategy (because Player II prefers 
4 to zero), and D will be met with by D (because Player II prefers 3 to zero). Player I would 
receive a payoff of 4 in the first case and 3 in the second, hence if the choice could be 
anticipated by Player II, then a rational Player I would choose C. If both players reason like 
this, then they choose the payoff-dominant (C, C) equilibrium point in the Hi-Lo Matching 
Game in Figure 12.5(a), or in the Assurance Game in Figure 12.1. Colman and Bacharach 
proved that Stackelberg reasoning results in coordination on a payoff-dominant equilibrium 
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point in any game that has one. In some games, Stackelberg reasoning yields strategies that 
are not in equilibrium, and such games are not Stackelberg soluble. Stackelberg reasoning 
functions as a strategy generator and Nash equilibrium as a strategy filter. 

Is there any evidence that people do, in fact reason in this way? Colman and Stirk (1998) 
reported an experiment in which 100 randomly paired players made one-off strategy choices 
in 12 different 2 × 2 games. Nine of the games were Stackelberg soluble and three were not. 
The players were motivated by substantial monetary payoffs. A significant bias towards 
Stackelberg strategies emerged in all Stackelberg-soluble games, with large effect sizes. In 
non-Stackelberg-soluble games, very small and non-significant effects were found. A 
protocol analysis of players’ stated reasons for choices revealed joint payoff maximization to 
be a reason significantly more frequently in the Stackelberg-soluble games. These results 
provide strong evidence that Stackelberg reasoning influences players, at least in 2 × 2 
games. Both Stackelberg reasoning and team reasoning probably contribute to the payoff-
dominance phenomenon, and both require revision of the underlying assumptions of game 
theory. 
 
STRATEGIC DOMINANCE 
 
The concept of strategic dominance is illustrated in the familiar Prisoner’s Dilemma Game 
(Figure 12.6). Each player chooses between cooperating (C) and defecting (D). Each receives 
a higher payoff from defecting than cooperating, irrespective of whether the other player 
cooperates or defects, but each receives a higher payoff if both cooperate than if both defect. 
The game’s name derives from an interpretation devised by Albert W. Tucker for a seminar 
at Stanford University Psychology Department in 1950, a few months after the game was 
discovered at the RAND Corporation in Santa Barbara, California. Two people, charged with 
joint involvement in a serious crime, are arrested, prevented from communicating with each 
other, and interrogated separately. The police have insufficient information for a successful 
prosecution unless at least one of the prisoners discloses incriminating evidence. Each 
prisoner has to choose between cooperating with the other prisoner by concealing the 
incriminating evidence (C) and defecting by disclosing it (D). If both cooperate, both are 
acquitted (the second-best payoff for each); if both defect, both are convicted (the third-best 
payoff for each); and if only one defects while the other cooperates, then according to a plea 
bargain offered to them, the one who defects is acquitted with a reward for helping the police 
(the best possible payoff), and the one who conceals the evidence receives an especially 
heavy sentence (the worst possible payoff). 

II 
C D 

C 3, 3 0, 5
I

D 5, 0 2, 2
 

           Figure 12.6 Prisoner’s Dilemma Game. 
 
The Prisoner’s Dilemma is ubiquitous in everyday strategic interaction. It is a standard 

model of bilateral arms races (Brams, 1976, pp. 81-91) and of many similar interactions 
involving cooperation and competition, trust and suspicion. Rapoport (1962) found a 
poignant example in Puccini’s opera Tosca, after Tosca’s lover has been condemned to death, 
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when the police chief, Scarpia, offers to save his life by ordering the firing squad to use blank 
cartridges if Tosca agrees to have sex with him. Tosca and Scarpia each face a choice 
between keeping their side of the bargain and double-crossing the other player, and the 
strategic structure corresponds to Figure 12.6. In the opera, Tosca and Scarpia both defect: 
Tosca stabs Scarpia as he is about to grab her, and Scarpia turns out not to have ordered the 
firing squad to use blank cartridges. The diabolically frustrating Prisoner’s Dilemma game 
models cooperation versus competition, trust versus suspicion, and individualism versus 
collectivism. Multi-person social dilemmas with the same underlying strategic properties 
have also been extensively studied (see reviews by Colman, 1995, chaps 6, 7, 9; Foddy et al., 
1999; Van Lange et al., 1992). 

There is a certain logical inevitability about the unfolding tragedy in Tosca, and the 
unravelling of certain peace processes in political trouble spots. The reason is that D is a 
dominant strategy for both players, in the sense that each player receives a higher payoff 
from defecting than from cooperating, irrespective of the co-player’s choice. If Player II 
chooses C, then Player I receives a higher payoff by playing D than C (Player I gets 5 rather 
than 3), and similarly if Player II chooses D (Player I gets 2 rather than 0). Defecting is thus 
the unconditionally best strategy for Player I, and by symmetry, the same applies to Player II. 
It is best for each player to defect whatever the other player does, but this entails a paradox, 
because each does better if both cooperate than if both defect. The (D, D) outcome, 
corresponding to dominant strategies, is the only Nash equilibrium, but if both players choose 
their dominated C strategies, than the outcome (C, C) is better for each. Rationality is thus 
self-defeating in the Prisoner’s Dilemma Game. 

In spite of strategic dominance, experimental evidence (reviewed by Colman, 1995, chap 
7) has shown that players frequently cooperate, to their mutual advantage. For example, in 
the largest experiment, in which the Prisoner’s Dilemma Game was played repeatedly, 
approximately half of all strategy choices were cooperative (Rapoport and Chammah, 1965), 
and even in experiments using one-shot games, a substantial minority of choices tend to be 
cooperative (e.g., Deutsch, 1960; Shafir and Tversky, 1992). Real players earn higher payoffs 
than they would have done had they followed the rational prescriptions of game theory. This 
is paradoxical, because rationality is defined as expected utility maximization. 

As a solution concept, strategic dominance is warmly accepted by decision theorists and 
game theorists and, like motherhood and apple pie, it is seldom questioned. Its persuasive 
force seems overwhelming when dominance is strong – when a strategy yields a strictly 
better payoff than any alternative against all possible counter-strategies, as in the Prisoner’s 
Dilemma Game. In those circumstances, it seems obvious that it is the uniquely rational way 
of acting. Attempts to justify cooperation in the one-shot Prisoner’s Dilemma Game are 
laughed to scorn by game theorists (see Binmore, 1994, chap. 3). Even if a strategy only 
weakly dominates all other strategies – if it is at least as good against all counter-strategies 
and strictly better against at least one – that seems a knock-down argument for choosing it. 
But there are games that pose bigger challenges to the strategic dominance principle than the 
Prisoner’s Dilemma Game. 

The most notorious is Newcomb’s problem, discovered by William A. Newcomb and 
published by Robert Nozick (1969), with the footnote: ‘It is a beautiful problem. I wish it 
were mine’. For a detailed analysis of the problem from various angles, see Campbell and 
Sowden (1985). Here is a simple version of it. On the table is a transparent box containing 
£1000 and an opaque box containing either £1m or nothing. A player is offered the choice of 
taking both boxes or only the opaque box. The player is told, and believes, that a behavioural 
predictor, such as a sophisticated computer programmed with psychological information 
about the player, has already put £1m in the opaque box if and only if it has predicted that the 
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player will take only that box, and not the transparent box as well. The player knows that the 
predictor is always correct or (if it is more credible) correct in 95 per cent of cases, say, 
although the exact figure is not critical. The problem is summarized in Figure 12.7. 

 

  Predictor 
  Add £1m No £1m 

One box £1m £0 
Player 

Both boxes £1m + £1000 £1000 
 

Figure 12.7 Newcomb’s problem. 
 
The predictor’s payoffs are not shown in Figure 12.7, because they are assumed to play 

no part in the dilemma. The strategy of taking both boxes is strongly dominant, because it 
yields more than taking only one box against both of the predictor’s counter-strategies – if 
the predictor has added £1m to the opaque box, then it yields £1m + £1000 rather than just 
£1000, and if the predictor has not added £1m to the opaque box, then it yields £1000 rather 
than nothing. That might seem to settle the matter, but the problem is that expected utility 
theory appears to require a rational player to take only one box. If the player takes both 
boxes, then the predictor will probably have left the opaque box empty, therefore the player 
will probably get only £1000, whereas if the player takes only one box, then the predictor 
will probably have left £1m in it. The player will therefore probably receive a much higher 
payoff by taking only one box. Thus seemingly irrefutable arguments appear to justify both 
the one-box and the two-box strategies – expected utility theory appears to justify taking only 
one box, and strategic dominance taking both. Most people, after pondering the problem, 
consider the rational strategy to be perfectly obvious, but they are divided as to which 
strategy that is (Nozick, 1969). 

Rational players, by definition, maximize expected utility. Newcomb’s problem 
represents a clash between two different ways of reasoning about expected utility, called 
evidential and causal expected utility respectively (Nozick, 1993, pp. 41-63). A player who 
maximizes evidential expected utility uses standard conditional probabilities (such as the 
probability that the opaque box contains £1m given that it is chosen) and infers that players 
who take only one box usually earn a fortune, whereas people who take both boxes usually 
do not. If you are a one-box type of person, then the conditional probability that the predictor 
has put £1m in it is high, and it follows that taking only one box is likely to net you a fortune, 
whereas if you are a two-box type of person, then there is probably nothing in the opaque 
box. According to evidential reasoning, the one-box strategy maximizes conditional expected 
utility and is therefore rational. A player who maximizes causal expected utility uses causally 
conditional probabilities, reasoning that taking only one box cannot cause £1m to appear in it, 
if it is not there already, therefore causal expected utility is maximized by taking both boxes. 
This is often illustrated with the smoking gene example. The statistician Ronald A. Fisher 
(1959) argued that cigarette smoking is a form of behaviour caused by a gene that also causes 
lung cancer. If this is true, then rational smokers should consider their smoking behaviour as 
unwelcome evidence that they probably have the gene and are likely to get lung cancer, but it 
would be futile for them to give up smoking on that account, because doing so would not 
cause the gene to disappear. On this view, it is equally futile to take only the opaque box in 
Newcomb’s problem, because that cannot make money appear in it – the two-box strategy 
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maximizes causal expected utility. 
Although causal rather than evidential reasoning obviously applies in the smoking gene 

case, both evidential and causal reasoning can be defended in the right circumstances 
(Nozick, 1993). After Newcomb’s problem was aired in Scientific American magazine in 
1973, no fewer than 148 people wrote to the magazine, and 60 per cent of them favoured the 
one-box strategy (Nozick, 1974). Experimental evidence (Anand, 1990) has confirmed that 
many intelligent and well educated people favour the one-box strategy. Human decision 
makers evidently do not consider strong strategic dominance to be a knock-down argument in 
Newcomb’s problem, and evidential reasoning is has also been found in other problems 
(Quattrone and Tversky, 1984). 

In some games, strategic dominance is more obviously irrational. These are games in 
which players’ strategies are not independent each other. I shall illustrate this with a game 
described in Luke 10: 30-37 that I shall call the Good Samaritan Game. An onlooker comes 
across a victim of a mugging. The onlooker has two available strategies, namely to help the 
victim, like the Good Samaritan, or pass by on the other side, like the Levite. The mugger is 
still lurking in the vicinity and may violently assault anyone who intervenes. The onlooker’s 
utilities, taking into account the pain, suffering, and humiliation associated with being 
mugged (valued at –10 units of utility) and the warm glow that would arise from acting 
compassionately (worth 5 units of utility), are as shown in the Figure 12.8. 

 

  Mugger 
  Assault Leave 

On-looker Help –5 5 
 Pass –10 0 

 
Figure 12.8 Good Samaritan Game. 

 
The onlooker’s payoff from helping the victim is higher than the payoff from passing by on 

the other side whether or not the mugger chooses the assaulting strategy. This suggests that 
helping the victim is a strongly dominant strategy and must therefore be unconditionally best 
for a rational onlooker. The onlooker may reason as follows. 

The mugger may assault me whether or not I help the victim. If I’m to be assaulted, then 
I’m better off helping the victim than passing by on the other side, because then at least my 
bruises will not be in vain. On the other hand, if the mugger leaves me alone, I’m also better 
off helping the victim than passing by, because then I’ll have done something good. I receive a 
higher payoff from helping in either case, therefore it must be rational for me to help the 
victim. 

This argument is seductive but (alas) subtly flawed, because helping the victim may cause 
the onlooker to be assaulted, and passing by may result in the onlooker being left alone. The 
problem here is that the condition of act independence does not hold. As mentioned near the 
beginning of the section on Nash equilibrium, an explicit assumption of non-cooperative game 
theory is that the players choose their strategies independently. In the Good Samaritan Game, 
the onlooker’s actions are not independent of the mugger’s and may have the capacity to 
influence the mugger’s. In the extreme, if the onlooker knew that helping the victim would 
certainly elicit an assault from the mugger and passing by would certainly not, then the 
outcomes (Help, Assault) and (Pass, Leave) on the main diagonal of the payoff matrix would 
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be the only relevant ones and, given the onlooker’s utility function, passing by would seem 
prudent, because (Pass, Leave) yields a better payoff to the onlooker than (Help, Assault) does. 

Formally, according to evidential expected utility reasoning, if the conditional probabilities 
of the onlooker being assaulted are 1 if the onlooker helps the victim and 0 if the onlooker 
passes by, then Prob(Assault | Help) = 1, Prob(Leave | Help) = 0, Prob(Assault | Pass) = 0, 
Prob(Leave | Pass) = 1, and the conditional expected utility (CEU) of helping and of passing 
by can be calculated from the payoff matrix shown in Figure 12.8 using standard rules of 
probability: 

 
CEU(Help) = [–5 × Prob(Assault | Help)] + [ 5 × Prob(Leave | Help)] = –5 + 0 = –5 
CEU(Pass) = [–10 × Prob(Assault | Pass)] + [0 × Prob(Leave | Pass)] = 0 + 0 = 0 
 
It is clear that passing by on the other side yields a higher conditional expected utility 

than helping. This shows why the argument from strong strategic dominance is fallacious 
when act independence does not hold. In my opinion, it also exposes the crux of Newcomb’s 
problem. If the actions of the player and the predictor in Figure 12.7 are truly independent, 
then the dominance argument is valid and a rational player should take both boxes, whereas if 
act independence is violated by the specification of the problem, then evidential reasoning 
based on conditional expected utilities apply, and a rational player should take only the 
opaque box. Differences of opinion about Newcomb’s problem seem to me to arise from 
disagreements about whether or not the specification of the problem implies act 
independence – if the predictor has paranormal powers, for example, then it might not. 
 
STABLE SETS AND THE CORE 
 
This chapter has been concerned mainly with non-cooperative games, but a few comments 
about cooperative games will help to place the earlier sections in perspective. In cooperative 
games, players are not constrained to choose strategies independently but are able to 
negotiate coalitions based on binding and enforceable agreements with one another. 

The modern history of game theory is often traced to the publication of Games and 
Economic Behavior by von Neumann and Morgenstern (1944). These pioneering theorists 
failed to derive a generalized equilibrium concept and devoted most of their attention to 
cooperative games, which they modelled in terms of different ways of dividing a payoff 
among the players, but it is fair to say that cooperative game theory is still poorly understood. 
Divisions of the payoff that satisfy conditions of individual and collective rationality are 
called imputations. These are divisions in which the individual players receive at least as 
much as they could guarantee for themselves by acting independently, and the grand coalition 
of all players receives the whole payoff, so that nothing is wasted. Von Neumann and 
Morgenstern struggled to find a solution concept that would prescribe a uniquely rational 
imputation for every cooperative game, but they succeeded only in showing that certain 
stable sets of imputations were rational in a specially defined sense. They interpreted these 
stable sets as ‘standards of behaviour’ governed by social and moral conventions, providing 
no rational criteria for choosing particular imputations as solutions, and it subsequently 
transpired that there are games with no stable sets. 

Nash (1950b) developed a more radical technique of modelling cooperative games as 
non-cooperative games and then applying his equilibrium solution concept. This proposed 
unification of game theory became known as the Nash programme, and it attracted 
considerable support, but its edge was blunted by Nash indeterminacy, as it emerged that 
reformulated non-cooperative games typically have multiple equilibrium points. 
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The most influential solution concept for cooperative games is the core, a natural 
extension of the imputation concept discovered by a postgraduate student (Gillies, 1953). The 
core of a cooperative game is an imputation in which every possible coalition of players 
receives at least as much as it could guarantee for itself by acting collectively. This would 
provide a convincing solution concept were it not for the unfortunate fact that many 
cooperative games gave empty cores, in the sense that no imputation satisfies all three 
requirements of individual, coalition, and collective rationality. The simplest example of this 
is the game of dividing a fixed sum of money among three players by majority vote. For 
every possible imputation, there is a coalition with the motive and the power to overturn it. 
For example, if Players I and II agree to take half the payoff each, then Player III can form a 
coalition with Player I in which Player I gets 60 per cent and Player III 40 per cent, and this 
coalition has the power to impose its will. I discussed a literary example of an empty core, 
taken from Harold Pinter’s play, The Caretaker, in Colman (1995, pp. 169-75). 
 
CONCLUSIONS 
 
A noted game theorist once warned that ‘the foundations of game theory are a morass into 
which it is not wise to wander if you have some place you want to get to in a hurry’ 
(Binmore, 1994, p. 142). This is a salutary warning, but in this volume we are not in a hurry, 
and the foundations need to be secured to understand reasoning about interactive decision 
making. What can be seen clearly through the muddy waters of the morass is that the 
foundations are in need of maintenance work. The foundations should support whatever 
theoretical superstructure is required, but in their current state they cannot even support the 
payoff-dominance principle, leaving unexplained the intuitively obvious solutions to games 
such as the Hi-Lo Matching Game shown in Figure 12.5(a). 

What is surprising and impressive is that we can make any progress at all in 
understanding reasoning in games. Instrumental rationality, which has a clear and simple 
interpretation in individual decision making, and can be defined rigorously in terms of 
expected utility maximization, is difficult to apply in interactive decision making, where the 
outcomes of a player’s decisions depend partly on the decisions of other players. In spite of 
this, some progress has been made. I have outlined the major solution concepts, and I have 
discussed some of the problems that they raise. 

The leading solution concept for non-cooperative games is undoubtedly Nash 
equilibrium. It follows logically from the standard knowledge and rationality assumptions of 
game theory that any uniquely rational solution to a game must be a Nash equilibrium. In the 
special case of strictly competitive games, this yields determinate and persuasive solutions, 
but in other classes of games, it narrows down the search for a rational solution without 
generally yielding determinate solutions. Application of the Nash equilibrium solution 
concept therefore leaves us with a residual problem of equilibrium selection. 

The most compelling solution concept of all is strategic dominance. Nothing seems more 
obvious than the rationality of choosing a strategy that yields a higher payoff than any other 
against every possible counter-strategy or combination of counter-strategies. If one course of 
action is unconditionally best in all circumstances that might arise, then it seems obvious that 
a rational player will invariably choose it. Although this may seem controversial in certain 
special cases, such as Newcomb’s problem, it is unassailable in games that clearly satisfy the 
condition of act independence. Provided that the players’ actions are truly independent, this is 
therefore a good place to start when seeking a solution to a game. If a player has strategies 
that are even weakly dominated by others, then delete the dominated strategies. In the 
resulting reduced game, it may turn out that another player has dominated strategies that can 
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be deleted, and if this process of iterated deletion of dominated strategies is continued, it 
sometimes converges on a unique solution. If act independence does not hold, then before 
beginning this process, the game should first be reformulated as a sequential game, with each 
player having perfect knowledge of any preceding move(s). It is useful to know that when 
simultaneous-choice games are reformulated as sequential games in this way, they often 
become soluble by iterated deletion of weakly dominated strategies. 

The strategic dominance solution concept is not always helpful, however. In the 
Assurance Game of Figure 12.1 and the Hi-Lo Matching Game of Figure 12.5(a), for 
example, it gets us nowhere. In such cases, ad-hoc methods of equilibrium selection such as 
the payoff-dominance principle may have to be applied. If a game with multiple equilibrium 
points has one yielding a higher payoff to every player than any other, then it seems obvious 
that rational players will play their parts in it. Team reasoning and Stackelberg reasoning 
provide possible mechanisms to explain the payoff-dominance principle, but the principle is 
not implied by the standard knowledge and rationality assumptions. Harsanyi and Selten 
(1988) introduced it into their general theory of equilibrium selection rather inelegantly as an 
axiom, though they did so with some reluctance (see their comments on pp. 355-63). In time, 
the fundamental assumptions of game theory may be amended to imply payoff dominance. 
But even that will not necessarily help us to understand strategic interactions in cooperative 
games in which binding and enforceable coalitions can be negotiated. When analysing a 
cooperative game, we can only hope that it has a core, because if it does not, then it may lack 
any determinate solution. Perhaps some games simply do not have uniquely rational 
solutions. If that is the case, it would be good to have a rigorous proof of it. Let us put on our 
wellington boots –there is work to be done. 
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