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HIGH ORDER WENO FINITE VOLUME SCHEMES

USING POLYHARMONIC SPLINE RECONSTRUCTION

TERHEMEN ABOIYAR, EMMANUIL H. GEORGOULIS, AND ARMIN ISKE

Abstract. Polyharmonic splines are utilized in the WENO recon-
struction of finite volume discretizations, yielding a numerical method
for scalar conservation laws of arbitrary high order. The resulting
WENO reconstruction method is, unlike previous WENO schemes us-
ing polynomial reconstructions, numerically stable and very flexible.
Moreover, due to the theory of polyharmonic splines, optimal recon-
structions are obtained in associated native Sobolev-type spaces, called
Beppo Levi spaces. This in turn yields a very natural choice for the
oscillation indicator, as required in the WENO reconstruction method.
The key ingredients of the proposed polyharmonic spline WENO recon-
struction algorithm are explained in detail, and one numerical example
is given for illustration.

1. Introduction

The modelling of many physical problems leads to time-dependent con-
servation laws. Finite volume (FV) schemes are popular conservative nu-
merical methods for solving hyperbolic conservation laws, where classical
FV methods are typically of low order. During the last decade, high order
FV schemes were developed in combination with shock capturing or front

tracking techniques in order to treat sharp gradients or discontinuities of
the solution, shocks, while providing high order convergence rates. Among
such powerful FV discretizations are ENO and WENO reconstructions in
combination with either TVD-like Runge-Kutta methods [22] or with the
more recent high order flux evaluation by using ADER methods [29]. For
a comprehensive treatment of finite volume methods for hyperbolic conser-
vation problems, see [16], for their applications in fluid dynamics, see [30].

Essentially non-oscillatory (ENO) and weighted essentially non-oscilla-

tory (WENO) reconstructions are used in combination with appropriate
time step discretizations to obtain conservative high order finite volume

Key words and phrases. finite volume methods, WENO reconstruction, hyperbolic
conservation laws, polyharmonic splines.
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methods for hyperbolic conservation laws. First ENO reconstructions for
one-dimensional conservation problems were developed by Harten, Eng-
quist, Osher & Chakravarthy [9] in 1987. Somewhat later, ENO methods
on two-dimensional structured meshes were proposed by Abgrall [1], Harten
& Chakravarthy [8], and Sonar [25].

The basic idea behind ENO schemes is to first select, for each cell of the
finite volume discretization, a set of stencils, each comprising a set of neigh-
bouring cells. Then, for each stencil, a recovery polynomial is computed,
which interpolates given cell averages over the cells in the stencil. Amongst
the different recovery polynomials, one for each stencil, the smoothest (i.e.,
least oscillatory) is selected, where the smoothness of the polynomial re-
construction is measured by using a suitable oscillation indicator. ENO
schemes yield high order finite volume methods, provided that high order
polynomial reconstructions are utilized. Moreover, spurious oscillations of
the solution can be avoided.

Later in 1994, WENO schemes were developed to improve ENO schemes.
First WENO schemes for one-dimensional conservation problems date back
to Liu, Osher & Chan [17] and to Jiang & Shu [14], and were later ex-
tended to the two-dimensional case by Friedrich [7] and Hu & Shu [10]. In
the WENO framework, the whole set of stencils and their corresponding
polynomial reconstructions are used to construct a weighted sum of recon-
struction polynomials to approximate the solution over a control volume of
the finite volume method. The required weights are determined by using
the above mentioned oscillation indicator of the ENO scheme.

As observed in numerical experiments [1], ENO and WENO schemes
using polynomial reconstruction may lead to severe numerical instabilities.
Although several alternative reconstruction schemes were proposed [1, 2, 7,
11, 24, 26, 28], both the lack of numerical stability and the high computa-
tional complexity are still critical points for WENO reconstruction schemes,
especially for unstructured meshes.

This paper proposes WENO reconstructions over conforming unstruc-
tured triangulations by using polyharmonic splines rather than polynomi-
als. Polyharmonic splines yield numerically stable reconstruction schemes,
which are based on radial basis functions, being traditional and power-
ful tools from multivariate scattered data approximation. WENO recon-
struction by polyharmonic splines is, in comparison with polynomial recon-
struction not only more stable, but also more flexible. Moreover, polyhar-
monic splines yield optimal reconstructions (in the sense of Micchelli and
Rivlin [19]) in their associated native Sobolev-type spaces, called Beppo

Levi spaces. The semi-norm of the Beppo Levi spaces gives rise to a natu-
ral choice for the required oscillation indicator. More details on these and
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other important features of polyharmonic splines are explained in Section 3.
Further properties of polyharmonic splines, especially concerning WENO
reconstruction, are discussed in Section 4. Supporting numerical examples
are finally provided in Section 5. But let us first provide a short discussion
on the finite volume method.

2. Finite Volume Formulation

We consider solving the two dimensional scalar conservation law

(1)
∂u

∂t
+ ∇ · F (u) = 0

numerically by using standard finite volume discretization on a compu-
tational domain Ω ⊂ R

2 with polygonal boundary and for compact time
interval I ⊂ R, subject to appropriate initial and boundary conditions.
The solution u : I × Ω → R

2 of (1) denotes the density (or concentra-
tion) of a physical quantity being subject to a conservation law. Moreover,
F (u) = (f1(u), f2(u))T in (1) denotes the flux function, which we assume
to be sufficiently smooth. It is well known that for nonlinear flux F the
solution u of (1) may spontaneously develop discontinuities in finite time,
even at smooth input data (i.e., for smooth initial and boundary conditions
and smooth domain boundaries).

For the solution of (1) we consider using the finite volume method on un-
structured triangulations. In this classical discretization scheme, the com-
putational domain Ω is partitioned through a triangulation T = {T}T∈T

containing finitely many closed triangles with disjoint interior and whose
union is Ω. Moreover, the intersection of two distinct triangles in T may
either be empty, or an edge in T , or a vertex in T . The latter states that
T is a conforming triangulation of Ω.

For any triangle T ∈ T , the semi-discrete scheme, based on the integral
form of (1), has the form

(2)
d

dt
ūT +

1

|T |

∫

∂T

F · n ds = 0, for T ∈ T ,

where

ūT ≡ ūT (t) =
1

|T |

∫

T

u(t, x) dx, for T ∈ T , t ∈ I,

denotes the cell average of u over triangle T ∈ T at time t ∈ I. Moreover,
n in (2) is the outward unit normal vector of the triangle’s boundary ∂T
and |T | is the area of triangle T .



4 T. ABOIYAR, E.H. GEORGOULIS, AND A. ISKE

2.1. Spatial Discretization. The boundary ∂T of triangle T ∈ T is given
by the union of three edges, say Γ1, Γ2, Γ3, in the triangulation T , i.e.,

∂T =

3
⋃

j=1

Γj ,

so that the line integral in (2) can be represented as

(3)

∫

∂T

F · n ds =
3

∑

j=1

∫

Γj

F (u(t, s)) · nj ds,

where nj is the outward unit normal vector for edge Γj . We discretize the
integral on the right hand side of (3) by using a q-point Gaussian integration
formula, for some specific q ∈ N which determines the order of the resulting
quadrature rule.

Now let G1, . . . , Gq and w1, . . . , wq denote the Gaussian points and weights
for the triangle’s edge Γj . Then, the Gaussian quadrature formula

∫

Γj

F (u(t, s)) · nj ds ≈ |Γj |

q
∑

ℓ=1

wℓF (u(t, Gℓ)) · nj , j = 1, 2, 3,

yields high order approximation to the line integral (3), and so (2) becomes

d

dt
ūT (t) +

1

|T |

3
∑

j=1

|Γj |

q
∑

ℓ=1

wℓF (u(t, Gℓ)) · nj = 0.

Finally, we replace the terms F (u(t, Gℓ)) · nj , 1 ≤ ℓ ≤ q, by a numerical

flux function to approximate the flux across the boundary of neighbouring
triangles to T ∈ T . In our implementation, we decided to work with the
Lax-Friedrichs flux, given by

F (u(t, Gℓ)) · n ≈ F̃ (u(t, Gℓ)) · n =

1

2
[(F (uin(t, Gℓ)) + F (uout(t, Gℓ))) · n − σ(uin(t, Gℓ) − uout(t, Gℓ))] ,(4)

where σ is an upper bound for the eigenvalues of the flux function’s Jacobian
matrix in the normal direction n. Moreover, for time t ∈ I, uin(t, Gℓ) in (4)
is the function value of the solution’s representation over triangle T , and
uout(t, Gℓ) is the function value of the corresponding representation over
the neighbouring triangle that shares the edge Γj with T .

According to the finite volume discretization (see [16]), approximations
to the spatial cell averages ūT are at any time step given by a one-step
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update of the form

LT (ūT (t)) =
1

|T |

3
∑

j=1

|Γj |

q
∑

ℓ=1

wℓF̃ (u(t, Gℓ)) · nj ,

for some specific univariate function LT , see (5).
To this end, the spatial integration requires a suitable reconstruction

from the current cell averages {ūT }T∈T , where traditional reconstruction
methods are based on polynomial interpolation. Especially in combination
with unstructured meshes, however, polynomial reconstruction schemes of-
ten suffer from their lack of flexibility. Moreover, polynomial reconstruc-
tions may lead to severe numerical instabilities [1]. Our preferred recon-
struction method is based on interpolation by polyharmonic splines, as
further discussed in Sections 3 and 4.

2.2. Time Discretization. When it comes to numerical flux evaluation,
commonly used approximations methods rely on a set of ordinary differen-
tial equations (ODEs) of the form

(5)
d

dt
ūT (t) = LT (ūT (t)), for T ∈ T ,

where each LT : R → R, T ∈ T , is a univariate function. The system (5)
of ODEs is solved by using a suitable total variation diminishing (TVD)
Runge-Kutta (RK) method, which was first introduced by Shu & Osher [23].

Here we use for any T ∈ T the third order TVD-RK method,

ū
(1)
T = ūn

T + τLT (ūn
T ),

ū
(2)
T =

3

4
ūn

T +
1

4
ū

(1)
T +

1

4
τLT (ū

(1)
T ),

ūn+1
T =

1

3
ūn

T +
2

3
ū

(2)
T +

2

3
τLT (ū

(2)
T ),(6)

where τ denotes the time step. Further details are immaterial for the
purposes of this paper. Therefore, we refer the interested reader to [23].

3. Polyharmonic Spline Reconstruction from Cell Averages

Let us first discuss the more general radial basis function method, before
we turn to the special case of reconstruction by polyharmonic splines.

3.1. Reconstruction by Radial Basis Functions. Given a conforming
triangulation T = {T}T∈T and a triangle T ∈ T , consider a stencil

S = {T1, T2, . . . , Tn} ⊂ T
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of size #S = n, containing T , i.e., T ⊂ S. Suppose the triangles in stencil
S are associated with linearly independent functionals {λT }T∈S ,

λT (u) =
1

|T |

∫

T

u(x) dx, for T ∈ T and u(x) ≡ u(t, x),

where for any T ∈ T the linear functional λT is referred to as the cell

average operator for triangle T .
Now on given cell averages {λT (u)}T∈S for any stencil S ⊂ T , we consider

solving the reconstruction problem u
∣

∣

S
= s

∣

∣

S
, i.e.,

(7) λT (u) = λT (s), for all T ∈ S,

with assuming

(8) s(x) =
∑

T∈S

cT λy
T φ(‖x − y‖) + p(x), p ∈ Pd

k ,

for the form of the reconstruction s, where φ : [0,∞) → R is a fixed radial

basis function, where ‖·‖ is the Euclidean norm on R
d, and where Pd

k is the
linear space of all d-variate polynomials of order at most k (i.e., of degree

at most k− 1). Recall that the dimension of Pd
k is q = dim(Pd

k ) =
(

k−1+d
d

)

.
Moreover, λy

T in (8) denotes the action of the linear functional λT w.r.t.
variable y, i.e.,

λy
T φ(‖x − y‖) =

1

|T |

∫

T

φ(‖x − y‖) dy.

The order k of p ∈ Pd
k is given by the order k ≡ k(φ) of the radial basis

function φ. Possible choices for φ are, along with their order k, shown in
Table 1. For further details on radial basis function, we refer to the recent
textbooks [5, 13, 27].

Table 1. Radial basis functions (RBFs) and their orders.

RBF φ(r) Parameters Order

Polyharmonic Splines r2k−d for d odd k ∈ N, k > d/2 k
r2k−d log(r) for d even k ∈ N, k > d/2 k

Gaussians exp(−r2) 0

Multiquadrics (1 + r2)ν ν > 0, ν 6∈ N ⌈ν⌉

Inverse Multiquadrics (1 + r2)ν ν < 0 0
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Note that the reconstruction s in (8) contains n+ q parameters, n for its
major part and q for its polynomial part, but at only n = #S interpolation
conditions in (7). To eliminate the additional q degrees of freedom, we
consider solving (7) under linear constraints

(9)
∑

T∈S

cT λT (p) = 0, for all p ∈ Pd
k ,

where λT is the cell average operator of triangle T . This leads us to the
(n + q) × (n + q) linear system

(10)

[

A P
P T 0

] [

c
d

]

=

[

u
∣

∣

S
0

]

,

where

A = (λx
T λy

Rφ(‖x−y‖))T,R∈S ∈ R
n×n and P = (λT (xα))T∈S,0≤|α|<k ∈ R

n×q,

and u
∣

∣

S
= (λT (u))T∈S ∈ R

n.
The linear system (10) has for any radial basis function φ in Table 1 a

unique solution for the unknown coefficients c ∈ R
n (for the major part

of s) and d ∈ R
q (for the polynomial part of s), provided that the set

{λT }T∈S of cell average operators is Pd
k -unisolvent, i.e., for p ∈ Pd

k we have

λT (p) = 0 for all T ∈ T =⇒ p ≡ 0,

in which case any polynomial from Pd
k can uniquely be reconstructed from

its values {λT (p)}T∈S . This standard result dates back to the seminal work
of Micchelli [18].

3.2. Reconstruction by Polyharmonic Splines. Now let us turn to
polyharmonic splines, whose reconstruction scheme is due to the ground-
breaking work of Duchon [6]. Polyharmonic splines are our preferred choice
for φ when solving (7),(9). This particular choice is justified by several
relevant reasons, as it will become obvious in the ensuing discussion of this
paper.

In the polyharmonic spline reconstruction method, the radial basis func-
tion φ ≡ φd,k : [0,∞) → R in (8) is, for d, k ∈ N with 2k > d, given
by

φd,k(r) =

{

r2k−d for d odd;
r2k−d log(r) for d even;

where d denotes the space dimension and k is the order of the basis function
φd,k, see Table 1. Note that the function φd,k is a fundamental solution of
the k-th iterated Laplacian, i.e.,

∆kφd,k(‖x‖) = C · δx,
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for some specific constant C and where δx denotes the usual Dirac point
evaluation functional at x ∈ R

d.
To make one important example, the special case d = k = 2 leads us

to the popular thin plate spline φ2,2(r) = r2 log(r), which is a fundamental
solution of the biharmonic equation on R

2. In this case, the reconstruction
s in (8) has the form

s(x) =
∑

T∈S

cT λy
T

(

‖x − y‖2 log(‖x − y‖)
)

+ d1 + d2ξ + d3η,

where we let ξ and η denote the two coordinates of x = (ξ, η)T ∈ R
2.

3.3. Optimal Reconstruction in Beppo Levi Spaces. One important
feature of the polyharmonic spline method, with using φd,k, is their optimal
reconstruction property in the Beppo Levi space

BLk(Rd) = {u : Dαu ∈ L2(Rd) for all |α| = k} ⊂ C(Rd),

being equipped with the semi-norm

|u|BLk(Rd) =
∑

|α|=k

(

k

α

)

‖Dαu‖2
L2(Rd).

This variational property, due to Duchon [6], says that for φ ≡ φd,k the

reconstruction s ∈ BLk(Rd) in (8) minimizes the energy |·|BLk(Rd) among all

elements in BLk(Rd) satisfying (7). This implies that for any u ∈ BLk(Rd),
we have

(11) |s|BLk(Rd) ≤ |u|BLk(Rd), with u
∣

∣

S
= s

∣

∣

S
,

where s ∈ BLk(Rd) is the reconstruction of u from data {λT (u)}T∈S , i.e.,
s satisfies (7).

For thin plate splines, where d = k = 2, the semi-norm | · |BL2(R2) of the

corresponding Beppo Levi space BL2(R2) is for any u ∈ BL2(R2) given by
the bending energy

|u|2
BL2(R2)

=

∫

R2

[

(

∂2u

∂ξ2

)2

+ 2

(

∂2u

∂ξ∂η

)2

+

(

∂2u

∂η2

)2
]

dξ dη

of a thin plate of infinite extent, which explains the naming “thin plate
spline” for the minimizer s in (11) .



HIGH ORDER WENO SCHEMES USING POLYHARMONIC SPLINES 9

3.4. Numerical Stability and Arbitrary Approximation Order. As
shown in our previous paper [12], the implementation of the polyharmonic
spline reconstruction scheme requires particular care, especially for the sake
of numerical stability. This is mainly because a direct solution of (7), (9)
may lead to coefficient matrices in (10), whose spectral condition number
is very large in situations where the barycenters of two distinct triangles
in stencil S ⊂ T are very close. This important observation, due to Nar-
cowich & Ward [20] has motivated the construction of a preconditioner for
the linear system (10) in [12]. The bottom line message of [12] is that there
is a stable solution for solving (7),(9), whenever the reconstruction prob-
lem is well-conditioned. A concrete choice for a very simple and effective
preconditioner is proposed in [12]. In summary, polyharmonic splines are,
in combination with the preconditioner in [12] stable methods for solving
(7),(9), unlike any other radial basis function in Table 1.

Furthermore, it is shown in [12] that the local approximation order of
the polyharmonic spline reconstruction method is arbitrarily high. More
precisely, when working with φ ≡ φd,k the local approximation order is k,
and so the smoothness parameter k in φd,k can be used to obtain a desired
target approximation order k. For further details, we refer to [12].

4. Features of Polyharmonic Spline WENO Reconstruction

To explain further important features and advantages of polyharmonic
spline reconstruction, let us first briefly recall the general form of the
WENO reconstruction scheme.

Algorithm 1. (WENO Reconstruction)

Input: triangle T ∈ T , stencils S = {Si}i satisfying T ⊂ Si ⊂ T for all i.

(1) FOR each stencil Si DO

(1a) Compute reconstruction si from {λT (u)}T∈Si
satisfying s

∣

∣

Si
= u

∣

∣

Si
;

(1b) Compute oscillation I(si) of si according to oscillation indicator I;

(2) Compute non-negative weights ωi satisfying
∑

i ωi = 1 from values I(si).

Output: WENO reconstruction

(12) s(x) =
∑

i

ωisi(x).

4.1. Enhanced Flexibility in Stencil Selection. Note that the solution
of (10) consists of n + q conditions, where we merely require n ≥ q for the
well-posedness of the reconstruction problem (8),(9). But otherwise, there
is no further restriction on the number n = #S of given data {λT (u)}T∈S .
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This makes up a main difference to polynomial reconstruction, where we
require n = q, in which case the number of given data (i.e., number of
cell averages) is for any individual stencil dictated by the chosen degree
of the polynomial space. In fact, this severe restriction is considered as a
major drawback of the polynomial reconstruction scheme. In contrast, the
polyharmonic spline reconstruction scheme is much less restrictive, when
it comes to the selection of the individual stencils and their sizes. Indeed,
the additional freedom allows for more flexible construction strategies for
the stencil selection.

4.2. Natural Oscillation Indicator. According to the WENO recon-
struction scheme, Algorithm 1, we need to work with an oscillation indicator
I which measures for any stencil Si the smoothness of the corresponding re-
construction si. To this end, recall that the Beppo Levi spaces BLk(Rd) are
the optimal recovery spaces for polyharmonic splines (see Subsection 3.3),
which gives rise to define the oscillation indicator I as

I(s) = |s|2
BLk(Rd)

, for s ∈ BLk(Rd).

For each triangle T ∈ T we use the oscillation indicator I to compute
for any polyharmonic spline reconstruction si its corresponding weight ωi.
To this end, we first compute intermediate values

(13) γi =
1

(ǫ + I(si))ρ
for some ǫ, ρ > 0.

The non-negative weights for the polyharmonic spline WENO recon-
struction s in (12) are then for any i given by ωi = γi/

∑

j γj . Note that

the weights ωi form a partition of unity, i.e.,
∑

i ωi = 1.
For any reference triangle T ∈ T , the resulting approximation s ≡ sT to

u over T is used to replace u in the numerical flux (4), where in particular
uin is replaced by sin and uout is replaced by sout.

The basic idea of the WENO reconstruction method is that for stencils Si

lying in regions around triangle T , where the solution u is smooth, the
corresponding weights ωi should be large. In contrast, for stencils Si in
regions where the solution u is subject to strong variation (e.g. due to
sharp gradients or discontinuities), the corresponding weights ωi should be
close to zero. In this case, the resulting WENO reconstruction s in (12) is
essentially non-oscillatory by construction, as desired.

5. Numerical Results

We consider solving the two-dimensional linear advection equation

(14) ut + uξ + uη = 0, for u ≡ u(t, x) with x = (ξ, η) ∈ R
2,
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in combination with the initial condition

(15) u0(x) = u(0, x) = sin(2π(ξ + η)), for x ∈ Ω,

on the computational domain Ω = [−0.5, 0.5] × [−0.5, 0.5] ⊂ R
2, d = 2,

by using the proposed finite volume method of this paper. We decided to
take this particular numerical example from our previous paper [15]. This
is mainly for the purpose of comparison with the finite volume method
in [15], where polynomials are used in the WENO reconstruction.

In the WENO reconstruction, Algorithm 1, we work with thin plate
splines, k = 2. Moreover, we let I = [0, 1] for the time interval and we
use periodic boundary conditions, so that the reference solution ũ(1, x)
coincides at final time t = 1 with the initial condition u0 in (15), so that
u0(x) ≡ ũ(1, x).

The numerical experiments are performed by using a sequence A1–A3

of three mildly distorted triangular meshes of decreasing mesh width h =
1/16, 1/32, 1/64. We denote the obtained numerical solution of (14),(15)
by uh. The triangulations A1–A3 are shown in Figure 1.
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A1 (h = 1/16) A2 (h = 1/32) A3 (h = 1/64)

Figure 1. Mesh sequence A1–A3 and their mesh widths h.

Following [7, 15], we let ρ = 4 and ǫ = 10−5 in (13) for the construction
of the WENO weights ωi. Our numerical results are reflected by Table 2,
where the resulting approximation error and the corresponding convergence
rates

Ep(h) = ‖uh − ũ‖p and kp =
log[Ep(h)/Ep(h/2)]

log(2)
, for p = 1, 2,∞,

are shown for the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞.
Note that the proposed WENO reconstruction attains, in combination

with the fourth order Lax-Friedrichs flux approximation (4) and the third
order TVD-RK method (6) convergence rates of up to order four, which
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Table 2. WENO reconstruction by thin plate splines.
Approximation errors and corresponding convergence rates.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/16 1.8417 · 10−5 − 1.1968 · 10−4 − 9.6658 · 10−4 −
1/32 4.1100 · 10−6 4.12 6.8725 · 10−6 4.12 6.8089 · 10−5 3.82
1/64 2.5679 · 10−7 4.00 5.5042 · 10−7 3.64 8.4387 · 10−6 2.69

exceeds the expected order k = 2 of the thin plate spline reconstruction
scheme. But our numerical results are consistent with earlier numerical
observations concerning bivariate interpolation from periodic input data
over regular grids. Moreover, the obtained results comply with theoretical
results in [3, 4, 21] where higher order convergence is proven for thin plate
spline interpolation from sufficiently smooth bivariate target functions. For
details on the analysis and the different underlying assumptions on the
target function, we refer to [3, 4, 21] and [27, Section 11].

Let us finally remark that our obtained convergence rates are comparable
to those in [15] obtained by fourth order ADER finite volume methods (for
the norms ‖ · ‖1, ‖ · ‖2) and third order ADER finite volume methods (for
the norm ‖ · ‖∞), each relying on polynomial WENO reconstructions of
order four and three, respectively. For a detailed documentation, see the
numerical results in [15].

6. Conclusion

Polyharmonic splines are applied in WENO reconstruction to obtain high
order finite volume methods. Unlike traditional WENO schemes, where
polynomial reconstructions are used, polyharmonic spline WENO recon-
structions

• are numerically stable;
• allow for flexible stencil constructions;
• yield optimal reconstructions in associated Beppo Levi spaces;
• provide natural choices for the oscillation indicator I.

Moreover, polyharmonic spline reconstruction is, like polynomial recon-
struction, of arbitrary high local approximation order, see Subsection 3.4.
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