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RHOMBUS FILTRATIONS AND RAUZY ALGEBRAS

ALEX CLARK, KARIN ERDMANN, AND SIBYLLE SCHROLL

Abstract. Peach introduced rhombal algebras associated to quivers given by tilings of
the plane by rhombi. We develop general techniques to analyze rhombal algebras, including
a filtration by what we call rhombus modules.

We introduce a way to relate the infinite-dimensional rhombal algebra corresponding
to a complete tiling of the plane to finite-dimensional algebras corresponding to finite
portions of the tiling. Throughout, we apply our general techniques to the special case of
the Rauzy tiling, which is built in stages reflecting an underlying self-similarity. Exploiting
this self-similar structure allows us to uncover interesting features of the associated finite-
dimensional algebras, including some of the tree classes in the stable Auslander-Reiten
quiver.

1. Introduction

Peach introduced rhombal algebras in his thesis [10] by imposing certain relations on quivers

corresponding to tilings of the plane by rhombi. He shows that quotients of these rhombal

algebras model parts of weight 2 blocks of symmetric groups. Ringel [12] and Turner [13]

have further analysed these rhombal algebras, and Chuang and Turner [5] generalised them

to higher dimensions. Among the general methods to analyse infinite-dimensional rhombal

algebras we develop, the most important tool is a filtration by rhombus modules. In partic-

ular, to each rhombus in the quiver we associate a module, which we call a rhombus module.

We then determine how the projective indecomposable modules and others are filtered. In

addition to more precise information on the module structure of the modules analysed,

these rhombus filtrations provide insight into the structure of the module category.

We apply our methods to the infinite-dimensional rhombal algebra associated to a special

rhombal tiling known as the Rauzy tiling. The Rauzy tiling is constructed in stages by a

substitution rule that reflects the underlying self-similarity of the tiling. The dynamics and

combinatorics of the Rauzy tiling have been extensively studied (see, for example, [1],[4] or

[6]), and we make use of its special properties for the solution of many of the representation

theoretic problems we encounter.

More precisely, we develop techniques relating the infinite-dimensional Rauzy algebra to

finite-dimensional algebras related to the finite portions of the complete tiling that occur in

its construction. Comparing different possible truncation methods for making such relations
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leads to a natural choice of truncating the infinite-dimensional algebra by an idempotent

associated to the finite portions, resulting in what we call the finite-dimensional Rauzy

algebras. Applying our technique of rhombus filtrations to analyse Rauzy algebras leads to

an understanding of many of the modules that arise in this setting. Special features of the

Rauzy tiling and our general techniques allow us to reveal many interesting properties of

the finite-dimensional Rauzy algebras. In particular, we are able to identify modules with

periodic orbits under application of the Heller operator. These periodic orbits occur along

lines in the quiver that are analogues of the ‘induced lines’ introduced in [8]. Modules with

periodic orbits are crucial for understanding the graph structure of the stable Auslander-

Reiten quivers of the finite-dimensional Rauzy algebras. Through our results we are able

to identify the tree classes and hence the graph structure of many components. Some of

the features which we found lead to a general conjecture, including the occurrence of trees

of class A∞
∞.

2. The Rauzy tiling

Rauzy [11] introduced a fractal domain arising in a natural way from a substitution. Both

the fractal and the substitution now bear his name. To better understand the Rauzy fractal

and its dynamics, alternative geometric interpretations have been introduced. As shown

in [1], [6, Chapt. 8], there is an increasing sequence of patches Pi of tiles whose union
⋃Pi forms a complete tiling of the plane. Appropriate renormalizations of the patches Pi

converge to the Rauzy fractal, but we shall only be interested in the tiling of the plane,

which we refer to as the Rauzy tiling. We shall describe a recursive method for obtaining the

increasing sequence of patches Pi, the edges and vertices of which yield the quivers used to

construct the Rauzy algebra. This recursive construction reflects the original substitution

and produces a tiling with a hierarchical, self-similar structure.

The tiles in Pi are projections of faces of unit cubes in R
3 with vertices in Z

3. Specifically,

we define the linear map p : R
3 → R

2 by

p (e1) =

(

−
√

3

2
,−1

2

)

, p (e2) =

(√
3

2
,−1

2

)

, and p (e3) = (0, 1) = − (p (e1) + p (e2)) ,

where the ei are the standard basis elements of R
3. Then p projects the lattice Z

3 onto the

planar lattice

L = {m p (e2) + n p (e3) : m, n ∈ Z} ,

and all tiles will be rhombi with vertices in L.

In fact, each rhombus of the tiling is a translation of one of the three rhombi R1, R2 or R3

of the initial patch P0 pictured below, where the common point of all three is the origin.

We shall describe a rhombus in Pi as a translation of one of the original rhombi of the
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Figure 1. P0

form p (z) + Rk for some z ∈ Z
3. As p is not injective, this representation is not unique.

However, to each rhombus we will recursively assign a specific representation of this form,

where we identify Rk with p (0) + Rk. The recursive process in going from Pi to Pi+1 is

determined by the function R from the set of rhombi in Pi to the collection of rhombi in

Pi+1. A key element in the definition of R is the matrix M =





0 1 0
0 0 1
1 −1 −1



 derived

from the Rauzy substitution. We denote the columns of M by ci, considered as elements of

Z
3. Then one obtains the rhombi in P1 by taking the union of the following sets of rhombi:

R (R1) = {R3, p (c2) + R1, p (c3) + R2} , R (R2) = {R1} , and R (R3) = {R2}

In general, once the rhombi in Pi have been determined, one defines on each rhombus

p (z) + Rk ∈ Pi

R (p (z) + Rk) := p (Mz) + R (Rk) ,

where the translation by p (Mz) applies to each rhombus in R (Rk), and one represents

p (Mz) + p (ck+1) + Rk as p (Mz + ck+1) + Rk. One then obtains the rhombi in Pi+1 by

taking the union of all the rhombi in R applied to the rhombi in Pi.

Figure 2. P0 through P6, with Ri (Rk) in Pi in darkness descending as k increases.

3. Rhombal algebras associated to the Rauzy tiling

3.1. Overview of path algebras of quivers. We survey the properties of the represen-

tation theory of quivers and paths algebras of quivers vital to our investigations. For a

more detailed reference, we refer the reader to [2] and [3].
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A quiver Q is an oriented graph. A path in the quiver is a sequence of arrows such that

each arrow begins at the vertex at which the preceding arrow ended. Furthermore, to each

vertex z we associate a trivial path ez. For a field k, the path algebra kQ of the quiver is

the algebra generated by the set of all paths of Q, where the multiplication of two paths is

given by concatenation of the two paths if they concatenate and by zero otherwise. Note

that for each vertex z of Q, ez is an idempotent in kQ.

Given a set of relations R on the paths of Q, we can define a two sided ideal I generated by

R, leading to the quotient algebra kQ/I. Then by a fundamental theorem of Gabriel [9],

every basic algebra over an algebraically closed field is isomorphic to the path algebra of a

quiver with relations.

The radical of kQ/I is spanned by the image of all paths of length ≥ 1. The socle of kQ/I

is spanned by all paths b such that ab = 0 for all arrows a.

Furthermore, for every vertex z of Q, there is a simple kQ/I-module Sz of dimension

one associated to z such that Szez = Sz and Szex = 0 for all x 6= z, and for any arrow

of Q the corresponding element in kQ/I acts as zero. Then ez(kQ/I) is the projective

indecomposable corresponding to Sx. For each vertex x, the dimension of ez(kQ/I)ex is

equal to the composition multiplicity of Sx as a composition factor of ez(kQ/I).

3.2. Infinite-dimensional Rauzy algebra. The graph formed by the edges and vertices

of the Rauzy tiling is a member of the family of graphs investigated by Peach [10]. We form

a quiver Q from the Rauzy tiling by replacing each edge with a double arrow in opposite

directions. In representing quivers, letters towards the end of the alphabet are reserved for

vertices, while letters towards the beginning of the alphabet are used for arrows. When

focusing on a particular vertex z, arrows in figures will be drawn with tail given by the

vertex that is closest to z, and arrows and vertices around z will be labelled with indices

increasing in the counter-clockwise direction, as indicated in figure 3. The arrow pointing

in the opposite direction from the arrow b is denoted b̄.

For the path algebra kQ associated to the field k, following Peach [10] we define a set of

relations R on kQ as follows:

1. (Two rhombus relation) Any path of length two in kQ that borders more than one

rhombus is zero.

2. (Mirror relation) Any two paths of length two connecting opposite vertices of the same

rhombus are equal.

3. (Star relation) For any vertex z and labelling as indicated in figure 3, the following

relations hold, where we replace a path by zero if there is no corresponding edge in the



RHOMBUS FILTRATIONS AND RAUZY ALGEBRAS 5

c2

y2

d2

x2

c1

y1

d1

x1

b1

b2

b3

z

d6

y6

c6

b5

b6

b4

x6

c5

d5

x5

c4

x4

c3

x3

d3

y3

d4

y4

y5

Figure 3. Labelling of the vertices and paths neighbouring z

quiver.

b2b̄2 − b5b̄5 =
|
εz(b4b̄4 − b1b̄1)

b6b̄6 − b3b̄3 =
�
εz(b2b̄2 − b5b̄5)

b4b̄4 − b1b̄1 =
�
εz(b6b̄6 − b3b̄3)

where
|
εz,

�
εz,

�
εz ∈ {−1, 1} and

|
εz

�
εz

�
εz = 1. A choice of signs at a single vertex z determines

the signs at all vertices of Q. For more detail we refer the reader to [10].

Definition 1. The infinite-dimensional Rauzy algebra A is defined to be kQ/I, where I is

the ideal generated by the relations R.

Let z be a vertex and Pz = ezA the corresponding projective module of A. Peach [10, Ch.

2] has shown many facts about paths in A and Pz that we list here for convenience.

Any path which does not border a single rhombus is zero in A. Furthermore, all paths

of length ≥ 5 are zero in A, and all paths of length 4 which do not start and end at the

same vertex are zero in A. The socle of Pz is simple and isomorphic to Sz. In fact, A is a

symmetric algebra. The image of any path p of length four around a rhombus starting and

ending at z spans the socle of Pz. Any two paths of length 3 around a single rhombus are

linearly dependent. In particular, if x is a vertex such that there is an arrow b from z to

x, then the space ezAex has dimension 2, and it is spanned by b together with any path of

length three around a rhombus which has corners z, x.



6 ALEX CLARK, KARIN ERDMANN, AND SIBYLLE SCHROLL

3.3. Finite-dimensional Rauzy algebras. Each patch Pi in the formation of the Rauzy

tiling as described in section 2 gives rise to a quiver Qi with vertex set Vi . Since Pi ⊂ Pi+1

for each i and since the Rauzy tiling itself is given by ∪Pi, the underlying graph of each Qi

embeds naturally in the infinite graph given by the Rauzy tiling. Two natural possibilities

then arise for relating the finite-dimensional path algebras associated to the Qi with the

Rauzy algebra A. We can either truncate the vertices but allow all paths that start and

end in a given Vi, or we can truncate the relations together with the vertices.

The first option corresponds to cutting A by idempotents given by the sum of the primitive

idempotents of the vertices in Vi . With this approach, Qi yields the algebra

Ai = eiAei, where ei =
∑

v∈Vi
ev and ev is the primitive idempotent at v.

Thus, there will be paths which are non-zero in Ai that go through a vertex not contained

in Vi . The dotted lines in figure 4 indicate possible edges for non-zero paths of A0 starting

and ending at vertices in V0 which are not paths of Q0 .

y2

x3
x1

y3

y1

x2

z

Figure 4. The vertices xi, yi and z are the vertices of Q0

The second option corresponds to a truncation of the underlying graph on which we then

impose the relations R, yielding the algebras Bi = kQi/(I ∩ kQi) with the relations R.

To decide which of these approaches to choose in order to define the finite-dimensional path

algebras, we examine the indecomposable projective modules.

3.4. Which type of truncation? Let z be a vertex and Pz = ezA the corresponding

indecomposable projective module of A, where ez is the primitive idempotent at z. The

star relations imply that the crucial portion of Pz is the space ezPzez. More precisely, the

following subspace of ezPzez and Pz proves to be most important.
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Definition 2. Let Xz be the subspace of Pz spanned by paths of length two starting and

ending at z.

We calculate the dimension of Xz as a subspace of A and as a subspace of the finite-

dimensional algebras Ai = eiAei. In fact, we show that in the latter case, Xz is also a

subspace of a projective module at z if the primitive idempotent at z is a summand of

the idempotent ei. We wil also show that imposing the star relations on Bi produces a

finite-dimensional algebra which is not symmetric, which we will therefore not consider in

later sections.

The key difference in the relations for the two types of truncations lies in the star relations.

(I) Cutting A by the idempotent ei. Recall that ei is the sum of the primitive idempotents

in Qi and that Ai = eiAei. In this case the star relations are as given in section 3.2. Let

z be a vertex such that ezei = ez. Then ez is a primitive idempotent of the algebra eiAei,

and we have the indecomposable projective modules Pz = ezA of A, and ezAei = ez(eiAei)

of eiAei. We now compare Xz with the subspace of ezAei given by paths of length two.

Since eiez = ezei = ez, we have ezAezei = ezAez, and as a vector space ezAez decom-

poses into ezAez = 〈ez〉 ⊕ Xz ⊕ 〈X2
z 〉. It follows from [10, 2.4.12] that the last summand

is 1-dimensional. The decomposition still holds when we multiply by ei on both sides.

Therefore, in ezAei the space spanned by paths of length two beginning and ending at z is

equal to Xz, and Xz has the following dimensions:

dim(Xz) =















1 z is a 3-vertex
2 z is a 4-vertex
3 z is a 5-vertex
4 z is a 6-vertex

To examine the second type of truncation, the following definition is essential.

Definition 3. Let z be a vertex of Qi. We say that z is a (k, n)-vertex if z is an n-vertex

in the untruncated quiver Q and a k-vertex in Qi.

For example, z in figure 7 is a (3, 4)-vertex, where the dotted arrows are outside Qi.

We label the patch in the quiver around z as indicated in figure 5, with the same condition

on arrows as before. Then if for example z is a three vertex, the patch in the quiver around

z will be labelled as in figure 6.
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x3

c2

y2

d2

x2

c1

y1

d1

x1

cn

b1

b2

b3

z

bn

xn

dn

yn

Figure 5.

c2

y2

d2

c1

y1

d1

z

d3

y3

c3

b1

x1

x2

b2

x3

b3

Figure 6.

(II) Imposing the relations on Qi. Recall that Bi = kQi/(I ∩ kQi); that is, we impose the

relations R on the truncated quiver. If z is a vertex of Qi, we calculate the dimension of

Xz as a subspace of Bi.

(a) Suppose z is a (2, 5)-vertex in Qi. Then Xz is spanned in A by two paths, and one pair

of opposite paths is completely missing. Also, the opposite of each existing path is missing.

If we now impose the star relation on the truncated quiver Qi, all of the two paths in Xz

are actually equal to zero.

(b) Suppose z is a (6, 3)-vertex in Qi. Then as a subspace of A, Xz is spanned by three

paths. If we impose the star relations on Qi, then any two of these paths are linearly

dependent, and thus Xz as a subspace of Bi is 1-dimensional.

(c) Suppose z is a (4, 3)-vertex in Qi.
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z

x1

x2

x3

x4

b1

b2

b3

b4

Figure 7. (4,3)-vertex

With the notations of figure 7 the star relations in A for such a vertex are

−b3b̄3 =
|
εz(−b1b̄1)

b4b̄4 − b2b̄2 =
�
εz(−b3b̄3)

−b1b̄1 =
�
εz(b4b̄4 − b2b̄2)

However, in the truncated quiver b2 does not exist. So the imposed star relations give that

any two of the three paths are linearly dependent and Xz as a subspace of Bi is again

1-dimensional.

As a special case, we consider the following.

Imposing star relations on Q1.

Let z be the (5, 2)-vertex of Q1. Then with the notation established in section 3.2, we get

a labelling as in figure 8.

Now consider the space P ′
z := ez(B1). We have seen that for the vertex z, the paths

b3b̄3 = 0 = b4b̄4, where b3, b̄3, b4 and b̄4 are paths inside B1. By the mirror relation,

b3d3 = b4c3. Thus, for a basis of Pz the only path of length two we need is b3d3. Now

consider paths of length three. There are only two such paths to consider: b3d3d̄3 and

b3d3c̄3 (all others are zero). But d3d̄3 occurs in a star relation starting at x3, and from

II(c) above we know that any two paths of length two are dependent. So d3d̄3 = eē, where

e 6= d3 is some path starting at x3. But then b3d3d̄3 = b3eē = 0.

By the mirror relation b3d3c̄3 = b4c3c̄3. We have an imposed star relation at x4 of the form

(0 − f f̄) =
|
εx4

(c3c̄3 − 0).

Hence, by the two rhombus relation, b4c3c̄3 = ±b4f f̄ = 0.

This has proved that (b3d3)J = 0 (with J = rad(e1Ae1), and thus b3d3 lies in the (right)

socle. So the projective P ′
z has Loewy length at most 3 (most likely, it is 3); and, moreover,
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z

b4

e
x3

b3

d3

y3

c3

x4

f

Figure 8. The solid arrows are in B1 and the dotted lines represent arrows
that are in A but not in B1. The arrows are defined with respect to z, and
we have only indicated at most one direction for each arrow.

the socle is not isomorphic to the top. Therefore, this is not a projective module for a

symmetric algebra! (Although, the algebra is quite possibly self-injective).

Conclusion : Imposing the star relations on the truncated quiver does not produce sym-

metric algebras, and hereafter the only finite-dimensional algebras we consider are the Ai.

4. Rhombus modules and rhombus filtrations

In this section we develop a general technique that applies to all infinite-dimensional rhom-

bal algebras. We describe how to associate modules, which we call rhombus modules, to

any rhombus of the quiver associated to the algebra. These modules may be thought of

as building blocks of the rhombal algebras. We show that the projective modules of the

algebra A have filtrations by such rhombus modules.

4.1. Rhombus modules. Consider a rhombus in the quiver labelled as in figure 9.

Lemma 1. For any rhombus in the quiver, there is a unique module R with top isomorphic

to Sy and socle isomorphic to Sz and rad(R)/soc(R) ∼= Sx1
⊕ Sx2

. Explicitly, R = b1dA =

b2cA.
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z

b1

x1

c

d

y

x2

b2

Figure 9.

Definition 4. We say that a module R such as in Lemma 1 is a rhombus module and

denote it by R = Ry
z .

Proof (1) Existence: The space ezAey is the 1-dimensional space spanned by b1d. The

module R := (b1d)A is contained in ezA and therefore has socle Sz. The top of R is

isomorphic to Sy as it is generated by an element x with x = xey. Furthermore, R has

basis

b1d, b1dd̄, b1dc̄, b1dd̄ b̄1

That the elements listed are all non-zero follows from [10, 2.4.13].

(2) Uniqueness: Any such module must be isomorphic to a submodule of the injective

module with socle Sz; that is, a submodule of ezA. As it is generated by an element of

ezAey and this is 1-dimensional and spanned by b1d, it follows that R ∼= b1dA. �

Remark There are four such rhombus modules for each rhombus in the quiver. (This may

be considered as an analogue of the modelling of different O-forms for a liftable module

with an irreducible character.)

4.2. Rhombus filtrations. We shall show that several modules that arise naturally in

our setting, including the modules generated by arrows and indecomposable modules, have

rhombus filtrations as defined below.

Definition 5. We say that a module M has a rhombus filtration if there is a sequence of

submodules 0 = M0 ⊂ M1 ⊂ . . .Mk = M , where Mi/Mi−1 is a rhombus module for each i.

However, as the following lemma shows, ‘rhombus filtration multiplicities’ are not well-

defined if one allows all rhombus modules as quotients.

Throughout this section we refer to figure 5 for notation.

Lemma 2. (Arrow Lemma) Suppose b is an arrow in the quiver. Then the module bA has

two rhombus filtrations, each with two quotients.
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Proof Use the standard labelling of vertices and arrows as defined in figure 5 and set b = b1.

(1) There is an exact sequence

0 → bcnA → bA → b̄2bA → 0.

Clearly bA contains the rhombus module bcnA, and furthermore left multiplication by b̄2

induces a surjection π : bA → b̄2bA. We also have b̄2bcn = 0, so bcnA ⊆ ker π. Then

equality holds by dimensions, since bA/(bcn)A has basis the cosets of b, bd1, bb̄, bd1c̄1.

(2) Similarly there is an exact sequence

0 → bd1A → bA → b̄nbA → 0.

�

Next we consider submodules of projectives which are generated by two arrows.

Lemma 3. (Two-arrow lemma) With the notation of figure 5, assume z is an n-vertex and

n ≥ 4. Then the module b1A + b2A has a rhombus filtration, with three rhombus quotients.

Explicitly, we have an exact sequence

0 → b1d1A → b1A + b2A → b̄nb1A ⊕ b̄3b2A → 0

Proof Since b1d1 = b2c1, we have a commutative diagram with exact rows and columns

0 0 0




y





y





y

0 −−−→ ker p1 −−−→ ker p −−−→ ker φ −−−→ 0




y





y





y

0 −−−→ b1d1A ⊕ b2c1A −−−→ b1A ⊕ b2A −−−→ b̄nb1A ⊕ b̄3b2A −−−→ 0

p1





y





y

p





y

φ

0 −−−→ b1d1A
j−−−→ b1A + b2A −−−→ C −−−→ 0





y





y





y

0 0 0
Namely, take as the middle row the direct sum of the two arrow sequences. Then take

for p and p1 the addition maps, and the map j is inclusion. Then the left lower square

commutes, and hence it induces the map φ making the right lower square commute as well.

Clearly, p and p1 are surjective, and then φ is also surjective. Thus, the top row is exact

by the Snake Lemma.
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By definition, we have ker p = {(x,−x) : x ∈ b1A∩ b2A}, which is isomorphic to b1A∩ b2A.

Similarly, ker p1 = (b1d1,−b2c1)A ∼= b1d1A, which is a rhombus module.

If n ≥ 4, we now show that b1A ∩ b2A = b1d1A. To see this, note that b1d1 = b2c1, and

b1d1A is thus contained in the intersection.

Suppose to the contrary that the intersection were not contained in b1d1A. Then there

would be a simple module contained in both b1A/b1d1A and b2A/b2c1A. From the Two-

arrow Lemma, we know that b1A/b1d1A ∼= b̄nb1A and that it has simple socle isomorphic

to Sxn
. Similarly, b2A/b2c1A ∼= b̄3b2A, which has simple socle isomorphic to Sx3

. For n ≥ 4

the vertices xn and x3 are distinct, and then Sxn
is not isomorphic to Sx3

, a contradiction

that demonstrates the desired equality.

Hence in this case, ker φ = 0 and φ is therefore an isomorphism. �

Remark. The condition that n ≥ 4 is necessary. If z is a 3-vertex, then the intersection

of b1A and b2A properly contains the rhombus b1d1A and φ has a kernel of dimension two.

We now prove a ‘dual’ version of the previous lemma. As the arrow b̄1 starts at the vertex

x1 and the arrow b̄2 starts at the vertex x2, (b̄1, b̄2)A is a submodule of ex1
A ⊕ ex2

A.

Lemma 4. (Dual two-arrow lemma) Suppose z is an n-vertex with n ≥ 4. Then (b̄1, b̄2)A

has a rhombus filtration with three rhombus quotients. Explicitly, there is an exact sequence

0 → b̄1bnA ⊕ b̄2b3A → (b̄1, b̄2)A → d̄1b̄1A → 0

Proof We have a commutative diagram with exact rows and columns

0 0 0




y





y





y

0 −−−→ ker π1 −−−→ (b̄1, b̄2)A
π1−−−→ (d̄1b̄1, c̄1b̄2)A −−−→ 0

φ





y

j





y

j1





y

0 −−−→ b̄1bnA ⊕ b̄2b3A −−−→ b̄1A ⊕ b̄2A
π−−−→ d̄1b̄1A ⊕ c̄1b̄2A −−−→ 0





y





y





y

0 −−−→ Cok φ −−−→ Cok j −−−→ Cok j1 −−−→ 0




y





y





y

0 0 0
Namely, start with the middle row which is a direct sum of the two arrow sequences. Then

take for j and j1 the inclusion and for π1 the restriction of π. Then the top right square

commutes and induces the map φ, which then also is 1-1. Now the Snake Lemma gives
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the lower row. Since d̄1b̄1A = c̄1b̄2A, it follows that Coker j ∼= d̄1b̄1A which is a rhombus

module. If n ≥ 4, then we check that Cok j ∼= Cok j1 (for example, by dimensions), and

then φ is an isomorphism. �

As before, when n = 3 this does not hold.

Lemma 5. (Three-arrow lemma) Suppose n ≥ 5. Then the module M = b1A + b2A + b3A

has a rhombus filtration with four quotients. Explicitly, we have an exact sequence

0 → b1A + b2A → M → b̄4b3A → 0.

Proof The module M is contained in ezA. Define π : M → b̄4A to be multiplication by

b̄4, a homomorphism from M onto b̄4b3A. From [10] (see the summary in section 3.2), we

know that b1A+b2A is contained in the kernel of π. It remains to show that equality holds.

Restrict π to b3A, the Arrow Lemma shows that ker π∩b3A = b3c2A. But b3c2 = b2d2 ∈ b2A,

and so the intersection of ker π with b3A is contained in b1A + b2A. Now it follows that

ker π ⊆ b1A + b2A. The claim follows. �

Below is a dual version. The proof, which is similar, is left to the reader.

Lemma 6. (Dual three-arrow lemma) Let n ≥ 5. The module M := (b̄1, b̄2, b̄3)A has a

rhombus filtration with four quotients, and we have an exact sequence

0 → b̄3b4A → M → (b̄1, b̄2)A → 0.

4.3. Indecomposable projective modules. First we observe that the composition fac-

tors of projective modules have an easy description in terms of possible rhombus filtrations.

For this we use the following standard notation from the representation theory of quivers:

for an A module M , dim M = (mx)x, where x ranges over the set of vertices of Q and

mx = dim Mex for the primitive idempotent ex at x.

Recall that [ezA : Sx] = dim ezAex. For this to be nonzero, there must be a rhombus which

has corners z and x. As noted in 3.2, if there is an arrow from z to x, the dimension is

2. If z and x are opposite corners, then the dimension is 1; specifically, any two paths of

length 2 are the same by the mirror relation, and there are no non-zero paths of length

> 2. Furthermore, the dimension of ezAez is n if z is an n-vertex. Together these facts

imply the following lemma.

Lemma 7. (Multiplicity Lemma) The composition factors of ezA are given by

dim ezA =
∑

i

dim (Rz
ai

).
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That is, [ezA : Sz] = n where z is an n-vertex, [ezA : Sxi
] = 2 and [ezA : Syi

] = 1, for each

i.

The same applies to the modules ezAi in Ai for z sufficiently far from the boundary of Qi.

We now describe rhombus filtrations of indecomposable projectives with the aid of the

the Heller operator Ω. Recall that for a module M with projective cover p : PM → M ,

Ω(M) = ker p. As the number of rhombi at a given vertex depends on the type of vertex,

we must deal with the cases individually.

Lemma 8. (3-vertex projectives) Suppose z is a 3-vertex. Then we have

0 → b1A → ezA → c̄2b̄3A → 0

and

0 → d̄1b̄1A → ezA → b3A → 0.

In particular, Ω(c̄2b̄3)A ∼= b1A and Ω(b3A) ∼= d̄1b̄1A.

Proof Left multiplication by c̄2b̄3 gives an epimorphism from ezA onto c̄2b̄3A, and since

c̄2b̄3b1 = 0 we know that b1A is contained in the kernel of this map. The description of

the multiplicities of ezA from the Multiplicity Lemma, together with the Arrow Lemma

show that dim ezA = dim b1A + dim c̄2b̄3A, and hence the first sequence is exact. Similar

arguments yield the second sequence. �

Lemma 9. (4-vertex projectives) Suppose z is a 4-vertex. Then there is a short exact

sequence

0 → b1A → ezA → b̄3A → 0

In particular, Ω(b1A) ∼= b̄3A.

Proof The arrow b̄3 ends at vertex z, and we have a surjection ezA → b̄3A given by left

multiplication with b̄3. Since b̄3b1 = 0, we see that b1A is contained in the kernel of this

map. Again, the Multiplicity Lemma and the Arrow Lemma imply that b1A must be equal

to the kernel. �

Lemma 10. (5-vertex projectives) We have a short exact sequence of A-modules

0 → b1A + b2A → ezA → b̄4A → 0

Hence ezA has a rhombus filtration. Moreover, Ω(b̄4A) ∼= b1A + b2A.
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Proof We have a surjective homomorphism ezA → b̄4A given by left multiplication. Then

b1A+ b2A is contained in the kernel. It follows from the Two-arrow Lemma that b1A+ b2A

has a rhombus filtration with three quotients. Furthermore, from the Arrow Lemma we

know that b̄4A has a rhombus filtration with two quotients. In each case we know the

composition factors, and it follows that the sequence is exact. In particular, ezA has a

rhombus filtration. �

Lemma 11. (6-vertex projectives) Assume z is a 6-vertex. There is a short exact sequence

0 → b1A + b2A → ezA → (b̄4, b̄5)A → 0.

The kernel and the cokernel both have a rhombus filtration with three quotients.

Proof There is an obvious surjection from ezA onto W := (b̄4, b̄5)A, and b1A + b2A is

contained in the kernel. From the Dual two-arrow Lemma it follows that W has a rhombus

filtration with three quotients, and we also know that b1A + b2A has a rhombus filtration

with three quotients (see the Two-arrow Lemma). The Multiplicity Lemma now shows

that the sequence is exact. �

Remark By the same arguments as in the proofs of Lemmas 9 and Lemmas 10, if z is a

6-vertex, then there also is a short exact sequence

0 → b1A + b2A + b3A → ezA → b̄5A → 0

such that the kernel has a rhombus filtration with four quotients, the cokernel a rhombus

filtration with one quotient and Ω(b̄5A) ∼= b1A + b2A + b3A.

5. Truncations

We now examine the finite-dimensional Rauzy algebras Ai = eiAei in the light of rhombus

filtrations. Recall that if z is a vertex in Vi, then ezei = ez, and furthermore we have that

ezAei is the indecomposable projective (and injective) module of Ai corresponding to z. In

particular, it has simple top and socle.

The functor (−)ei from the module category of right A-modules to the module category

of right Ai-modules is exact. As a result, for any vertex z of Qi, the projective ezAi

has a filtration by truncations of rhombus modules, and these are easy to write down.

Furthermore, if R is a rhombus module and Rei 6= 0, then Rei is indecomposable (this

follows from the shape of Qi).
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5.1. Truncation of arrow modules. The truncation of an arrow module bA when the

arrow b starts or ends at some vertex z in Qi has interesting properties. If b starts at vertex

z, then bAei is a submodule of ezAei, and hence bAei has a simple socle. Similarly, if b

ends at z, then bAei has a simple top. In either case, bAei is indecomposable.

The module bA has a filtration different from the rhombus filtration which gives more

precise information about bAei.

Let b = b1 with b : z → x1. We need to distinguish between two cases determined by the

angles at z of the two rhombi which have b in common (see figure 10).

b2

x2

c1

y1

d1

x1

bn

xn

dn

yn

cn

x2

x1

d1

y1

c1

cn

yn

dn

xn

bn

b2z

z

b1

b1

Figure 10. An illustration of adjacent acute and obtuse angles

(i) either both angles are obtuse, or both angles are acute;

(ii) one of the angles is obtuse, and the other is acute.

(i) Consider the first case. Then we have an exact sequence

(1i). 0 → b̄bd1A + b̄bcnA → b̄A → bb̄A → 0.

The kernel is 3-dimensional with a simple socle and top of length two, and its composition

factors are Sy1
, Syn

and Sx1
. There is also an exact sequence

(2i) 0 → b̄bA → b̄A → (b̄2bb̄, b̄nbb̄)A → 0.

Here, the cokernel is 3-dimensional with a simple top and socle of length two. Its compo-

sition factors are Sx2
, Sxn

and Sz.

Dually, we have exact sequences

(3i) 0 → bb̄bnA + bb̄b2A → bA → b̄bA → 0
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with kernel of length three and composition factors Sxn
, Sx2

and Sz; and

(4i) 0 → bb̄A → bA → (d̄1b̄b, c̄nb̄b)A → 0

with cokernel of length three, and composition factors Sy1
, Syn

and Sx1
.

(ii) Consider the second case, which can only occur if z is a 5-vertex or a 4-vertex.

(a) Assume b starts at a 5-vertex z, as in the right of figure 10 with n = 5 and b = b1.

Then the star relation at the vertex z gives

bb̄ − b4b̄4 = ±b3b̄3.

Since b̄4b = 0 and b̄3b = 0, right multiplication by b shows that bb̄b = 0.

Similarly we have b̄b4 = 0 and b̄b3 = 0, and hence b̄bb̄ = 0.

(b) Assume b starts at a 4-vertex z and a rhombus adjacent to b has an obtuse angle at z.

As follows from the general list of possible configurations of rhombi as detailed in Table 1 of

section 7.2, the only type of 4-vertex which occurs in the Rauzy algebra is the completition

to a 4-vertex as in the left of figure 10.

Assume b = b2. Then the star relation at z gives

bb̄ = ±b3b̄3,

and b̄3b = 0 implies bb̄b = 0.

Now we have seen that in case (ii) bb̄b = 0, and similarly b̄bb̄ = 0. Therefore we have the

exact sequences

(1ii) 0 → b̄bA → b̄A → bb̄A → 0,

(2ii) 0 → bb̄A → bA → b̄bA → 0.

Lemma 12. (Arrow truncation) Let z be a 4-vertex.

(a) Suppose ex1
ei = 0 = ey1

ei = ey4
ei but ezei 6= 0. Then we have bAei = bb̄Aei = bb̄Ai =

b̄Aei.

(b) Suppose ezei = 0 = ex4
ei = ex2

ei but ex1
ei 6= 0. Then we have bAei = b̄bAei = b̄bAi =

b̄Aei.

Note that b and b̄ do not belong to Ai, but in part (a) we have bb̄ ∈ Ai and in part (b) we

have b̄b ∈ Ai.

Proof (i) Assume first that z is as in case (i).

For part (a), apply the exact functor (−)ei to the exact sequence (1i). The kernel becomes

zero by the hypotheses of part (a), and therefore

b̄Aei = bb̄Aei = bb̄Ai.
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Furthermore, we take the exact sequence (4i), which has bA as the middle term, and apply

the functor (−)ei. By the hypotheses of part (a), this time the cokernel becomes zero. So

we have bAei = bb̄Aei = bb̄Ai.

Part (b) is proved similarly by using the exact sequences (2i) and (3i).

(ii) Now assume z is as in case (ii).

We apply the exact functor (−)ei to the exact sequences (1ii) and (2ii). With the hypotheses

of part (a), we have b̄bAei = 0, and the claim follows. To prove (b), we note that bb̄Aei = 0

in this case. �

Suppose 0 6= β = b̄b ∈ Ai, with b and b̄ arrows in A but not in Ai, then β may or may not

belong to rad 2Ai. This leads to the following definition.

Definition 6. We call β ∈ Ai a loop whenever β = b̄b, β /∈ rad 2Ai, and b and b̄ are arrows

in A but not in Ai.

5.2. Identifying loops in Ai. To properly understand the structure of Ai, we must de-

termine which vertices of Qi admit loops.

Definition 7. We call a (k, n)-vertex z isolated if k = 2. We call an isolated vertex acute

(resp. obtuse) if the corresponding angle at z is acute (resp. obtuse).

Note that isolated vertices always lie on the boundary of the corresponding Pi. We use

the notation of section 2, and rhombi are considered to be of type 1, 2 or 3 as indicated in

figure 1.

A C-patch denotes a translation of P0 occuring as a patch in some Pi. And a C′-patch

denotes a translation of the patch corresponding to R (R1) .

Lemma 13. If a rhombus R in Pi occurs as the image under either one or two iterations

of R of a rhombus in some C-patch or C′-patch, then there is no acute isolated vertex in R.

Proof The function R induces a function on patches as well as on individual tiles. Since

the image under either one or two iterations of R on either a C-patch or a C′-patch has no

isolated vertex and since the occurence of a patch in Pi can only transform isolated vertices

into unisolated vertices, one obtains the lemma. �

Lemma 14. For any i ≥ 0, no acute isolated vertex occurs in Pi.
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Proof The proposition is clear for i = 0.

For i ≥ 1, a rhombus in Pi of type 3 can only occur as the image of a rhombus of type

1. Hence, any type 3 rhombus in Pi must occur as part of a C′-patch, which can have no

acute isolated vertex.

For i ≥ 1, a rhombus R of type 2 can only occur as an image of a rhombus of type 1 or 3.

If R is the image of type 1 rhombus, R must occur as part of a C′-patch. If R occurs as the

image of a rhombus R′ of type 3 in Pi−1, then R′ must be part of a C-patch or a C′-patch,

and so by lemma 13 R can have no isolated acute vertex.

For i ≥ 1, a rhombus R of type 1 can only occur as an image of a rhombus of type 1 or 2.

If R is the image of a type 1 rhombus, R must occur as part of a C′-patch. If R occurs as

the image of R′ of type 2, by considering the previous case, one sees that lemma 13 applies

to R as well. �

Lemma 15. For any (k, n)-vertex z, n − k ≤ 3.

Proof As every vertex is the vertex in a rhombus, there are always at least two edges and

at most six edges at z; thus, 2 ≤ n, k ≤ 6. Therefore we always have n − k ≤ 4, and

we only have to check that n − k = 4 does not occur. As n ≥ k, the only possibility is

a (2, 6)-vertex. But a (2, 6)-vertex corresponds to an acute isolated vertex in Pi, which

cannot occur by lemma 14. �

Proposition 16. The (k, n)-vertex z yields a loop in Ai if and only if k < n − 2.

Proof As there are n different paths of length two from and to z in Q and there are two

independent relations, the dimension of the space Xz is n − 2.

Then rad 2(Ai) ∩Xz is spanned by k elements and hence has dimension ≤ k. If k < n − 2,

then this space is strictly contained in Xz and there are loops. If n− 2− k = 1 then there

is just one.

Suppose k ≥ n − 2. One checks easily, case by case, that always rad 2(Ai) ∩ Xz = Xz, and

hence there is no loop in this case. �

By lemma 15, (3, 6)-vertices and (2, 5)-vertices are the only such vertices. In these cases

there is just one loop at such a vertex.

If P is indecomposable projective and injective, the subquotient radP/socP is often called

the ‘heart’ of P .

Proposition 17. If there is a loop at the vertex z, then the projective Pz has decomposable

heart, and one of the summands is simple and isomorphic to Sz.
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Proof Suppose z is a (3, 6)-vertex. Let x1, x2, x3 be the neighbouring vertices of z in Qi and

let y1, y2, b1, . . . be as before (see figure 3). Assume that b1, b2, b3 are neighbouring arrows

which are nonzero in Ai. Then Xz ∩ (
∑3

i=1
biA) is spanned by bib̄i for i = 1, 2, 3, and they

are linearly independent. But Xz has dimension four, so we need some element in Xz to

generate the radical of ezAi.

We can take as the additional generator the path γ = b5b̄5. Then γb1 = γb2 = γb3 = 0.

Let M :=
∑3

i=1
biA, then radPz = M + γAi and M ∩ γAi = γ2Ai = socPz. That

is, radPz/socPz is the direct sum of a 1-dimensional module with M/socPz, and the 1-

dimensional summand is isomorphic to Sz.

Similarly, if z is a (2, 5)-vertex, then the loop gives rise to a 1-dimensional direct summand

of rad(Pz)/soc(Pz). �

6. The stable Auslander-Reiten quiver of Ai

The Auslander-Reiten quiver Γ(Λ) for a finite-dimensional symmetric k-algebra Λ is the

quiver with vertices the isomorphism classes of indecomposable A-modules and arrows

[M ] → [N ] corresponding to irreducible maps f : M → N , where [M ] is the class of the

module M . Thus, by providing generators and some relations, Γ(Λ) may be thought of

as yielding part of a presentation of the module category of Λ. The irreducible maps are

occur in the setting of almost split sequences. The almost split sequence ending in N is a

non-split short exact sequence of A-modules

0 → Ω2(N)
g→ X

h→ N → 0

such that any map Ω2(N) → Y which is not a split monomorphism factors through g.

Equivalently, any map Y → N which is not a split epimorphism factors through h.

There is an irreducible map M → N if and only if M is isomorphic to a direct summand

of X, and if so then the irreducible map occurs as a component of h. Dually, there is an

irreducible map Ω2(N) → M if and only if M is a direct summand of X, and if so then the

irreducible map occurs as a component of g; see, for example, [2] or [3].

Any indecomposable projective module P of Λ with simple top S has a unique almost split

sequence where P occurs, namely

(∗) 0 → Ω(S) → P ⊕ radP/socP → Ω−1(S) → 0

The stable Auslander-Reiten quiver Γs(Λ) of Λ is obtained from Γ(Λ) by removing the

projective modules and adjacent arrows. Any connected component of Γs(Λ) is, as a graph,

isomorphic to ZT/Π, where Π is some admissible group of automorphisms. The graph T̄
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associated to T is uniquely determined by the component, and is called its tree class, hence

one wants to identify T̄ . The main method to do this, for symmetric (or self-injective)

algebras, uses subadditive functions, and for these one needs to establish the existence

of suitable Ω-periodic modules, which we herafter refer to as periodic modules. For more

detail, see [3] and [7].

Lemma 18. ([7]) Suppose Θ is a component of the stable Auslander-Reiten quiver of a

symmetric algebra. If there is some periodic module W such that HomΛ(W, X) 6= 0 for

some module X in Θ, then the tree class of Θ is Dynkin, Euclidean, or one of the infinite

trees A∞, A∞
∞, D∞, or possibly B∞ or C∞.

With this hypothesis, one takes as (sub)additive function the map

dW (−) := dim(Hom(Ŵ ,−),

where Ŵ is the direct sum of all distinct Ω-translates of W .

Types B∞ or C∞ cannot occur for algebraically closed fields. For group algebras or other

symmetric algebras arising naturally where tree classes are known, one usually has the tree

class of A∞, and one might expect this to be the case more generally. Now we focus our

attention again on the algebras Ai to determine whether suitable (sub)additive functions

exist and to see if the tree classes of simple modules can be identified.

Proposition 19. Suppose x is a vertex of the quiver of Ai, and assume that there is a

periodic module W such that Hom(W, Sx) 6= 0. Let Hx := rad(Px)/soc(Px), and let T̄ be

the tree class of the stable component containing Sx. If T̄ is an infinite tree, we have the

following dichotomy.

(a) If Hx is indecomposable, then T̄ ∼= A∞.

(b) If Hx is decomposable, then the tree class is not A∞.

Proof (a) We work over k̄, the algebraic closure of k. In this case, B∞ and C∞ are excluded.

If T̄ = A∞ over k̄, then it follows from ‘Galois descent’ (see [3]) that T̄ = A∞ over k as

well.

The components of Sx and of Hx have the same tree class. This holds since Hx is in

the component of Ω(Sx), as the standard sequence shows, and Ω induces a stable self-

equivalence of Ai, hence it induces a graph isomorphism of the stable Auslander-Reiten

quiver.

So we consider the tree class of the component of Hx and therefore of Ω(Sx). Recall that the

vertices of T̄ correspond to the Ω2-orbits on the component. Since Hx is indecomposable,
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the middle term of the almost split sequence starting in Ω(Sx) has indecomposable non-

projective part. This means that the corresponding vertex of T̄ must be an end vertex.

Suppose T̄ 6= A∞, then the only other possibility is D∞. Since the vertex of T̄ corresponding

to Ω(Sx) is an end vertex, it follows that the vertex of T̄ corresponding to Hx is the branch

vertex. Therefore, by the definition of ZD∞, there is an almost split sequence of the form

(∗∗) 0 → Ω2(U) → Hx

g→ U → 0

where U 6∼= Ω−1(Sx).

We have soc(Hx) ∼= ⊕Sxi
, where xi ranges over all the neighbours of x in Qi. Now,

soc(Ω2(U)) is contained in soc(Hx). On the other hand, we have Ext1(U, Sx) 6= 0, and a

non-zero element in this space exists, namely the inverse image of U in Px. But

Ext1(U, Sx) ∼= Hom(Ω(U), Sx) ∼= Hom(Ω(U), Sx)

and hence Sx occurs in the top of Ω(U), which is isomorphic to the socle of Ω2(U), a

contradiction.

(b) Suppose now that Hx is a direct sum. This happens only when the quiver of Ai has

a loop at vertex x. In this case we know that Hx has a direct summand isomorphic to

Sx. Then by considering the standard sequence (*) we see that there is an irreducible map

Ω(Sx) → Sx. This shows that the graph automorphism of the stable Auslander-Reiten-

quiver fixes the component of Sx, but it induces a non-trivial automorphism of the tree

T̄ as the Ω2-orbits of Sx and of Ω(Sx) are distinct. But A∞ does not have a non-trivial

automorphism. �

By Auslanders’s theorem, an indecomposable agebra of infinite type does not have a com-

ponent where the tree class is Dynkin.

Conjecture (a) For any simple module Sx there is a periodic module W with Hom(W, Sx) 6=
0 .

(c) Euclidean components do not occur in the stable Auslander-Reiten-quiver of Ai.

(c) If Ai has a loop at the vertex x, then the tree class of the component of Sx is A∞
∞.

To prove this, we would need suitable periodic modules. We will next show that we have

periodic modules, and this will allow us to identify tree classes of some components of

simple modules.

7. Search for periodic modules

In this section we examine when arrow modules are periodic.
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7.1. Ω-Translates of arrow modules. For an arrow b : v → z, the arrow module depends

on z. Below is a list of the different possibilities.

Arrow translates:

(1) If b is an arrow which ends at a 5-vertex z (see figure 5 with n = 5 and b = b̄1),

then we have seen that Ω(bA) = b3A + b4A.

(2) If b ends at a 4-vertex (see figure 10 with b = b̄1), then Ω(bA) = b4A. (This then

determines the Ω-translates for arrow modules along any path in the quiver that

goes only between 4-vertices).

(3) If the arrows b3 and b4 in (1) bound the same rhombus and both end at a 3-vertex,

then Ω(b3A + b4A) = (c3,−d3)A.

(4) If two adjacent arrows b̄1 and b̄2 end at a 5-vertex (see figure 5 with n = 5 with an

obtuse angle between b4 and b5 or b3 and b4), then Ω
(

(b̄1, b̄2)A
)

= b4A.

(5) If two adjacent arrows b̄1 and b̄2 end at a 6-vertex (see figure 3), then Ω
(

(b̄1, b̄2)A
)

=

b4A + b5A.

7.2. Horizontal lines. In order to identify periodic modules, we need to introduce some

terminology that describes the geometry of the Ω-translates of arrow modules.

We call an edge in Pi horizontal if it is not vertical; that is, if it is parallel to p (e1) or

p (e2). We say that two vertices are on the same level if there is a sequence of horizontal

edges joining them. Then we refer to a collection of edges between two vertices v and z on

the same level as a horizontal line if it contains all horizontal edges joining vertices that

are on the same level as and between v and z. Figures 11 and 12 provide some examples of

horizontal lines in bold. Finally, the width of Qi at the level of a vertex z is the minimum

number of horizontal edges joining boundary points on the same level as z.

This new terminology allows us to describe the results of the previous section in greater

detail as follows.

Proposition 20. If b is a horizontal arrow in Qi which starts at the left or right boundary

of Qi and if k is the width of Qi at the level of b, then the first k Ω-translates of bA are

one of the arrow translates as described in section 7.1 and lie along a horizontal line.

We now study the Ω-translate of a module as the horizontal line reaches the boundary of

Qi. The important question is whether the Ω-translates after step k are still small.
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Lemma 21. Let b be an arrow in Qi starting at a 4-vertex and ending at the 4-vertex z.

Suppose that in A we have Ω(bA) = hA for some path h of A such that hei = 0. Then

Ω(bAi) ∼= hh̄Ai and Ω2(bAi) ∼= b̄Ai.

Proof We then have an exact sequence of A-modules

0 → hA → ezA → bA → 0.

The module bAei = bAi is still an arrow module in the algebra Ai. The functor (−)ei is

exact, and therefore ezAei, the projective indecomposable attached to z in Ai, is a projective

cover of bAi. Hence in Ai the Ω-translate of bAi is equal to hAei. It follows from the Arrow

truncation Lemma that

hAei = hh̄Aei = h̄Aei.

Furthermore, we have an exact sequence in A

0 → b̄A → ezA → h̄A → 0.

Applying the exact functor (−)ei gives the projective cover for h̄Aei, demonstrating that

Ω(h̄Aei) = b̄Ai. �

Hence, we have the following.

Theorem 22. Suppose the horizontal line L in Qi joins two 4-vertices on the boundary.

Let b be an arrow on L starting or ending at a 4-vertex. Then bAi is periodic of period

2k + 2, where k is the width of the quiver at this level. Furthermore, the Ω-translates of

bAi lie along L: two modules are as in lemma 21 (corresponding to the ends of L), while

the other translates are as described in section 7.1.

Thus, we have an entirely combinatorial criterion for periodicity that allows us to identify

periodic modules in each Ai for sufficiently large i.

Theorem 23. For each i ≥ 6, Ai contains a periodic module.

Proof We demonstrate the existence of periodic modules in each algebra Ai for i ≥ 6

directly. First, we show how to find horizontal lines corresponding to two such modules

in Ai 6 ≤ i ≤ 9, then we describe how the construction of Ai+1 from Ai guarantees the

existence of two similar horizontal lines for all i ≥ 9. Finally, by examining the limited

number of configurations of tiles in the Rauzy tiling, we show that these horizontal lines

will always yield periodic modules.

Consider the two indicated horizontal lines in P6 that end in what can be seen to be 4-

vertices by examining the surrounding tiles in P9 as illustrated in figure 11. These horizontal

lines correspond to periodic modules. Translations of these horizontal lines can be found
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Figure 11. P6 within P9 and two horizontal lines corresponding to periodic modules.

in P7 and P8 joining 4-vertices on the boundary. But in P9, there are such horizontal lines

in each R9 (Rk) joining 4-vertices of the boundary of the corresponding patch R9 (Rk), as

indicated in figure 12.

Figure 12. P9 with relevant horizontal lines indicated in each R9 (Ri)

Since R10 (Rk) for k = 2, 3 are simply R9 (Rk) for k = 1, 2, these patches will also contain

such horizontal lines joining 4-vertices on the boundary. As R10 (R1) is formed as a combi-

nation of translations of the R9 (Rk), it too will have such horizontal lines. By induction,

this will be the case for each subsequent Pi. Then for each such i, Pi will have at least

two horizontal lines going from one boundary vertex to another. (Precisely which patches

Ri (Rk) contribute these horizontal lines depends on the class of i mod 3).
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However, in order to conclude that these horizontal lines correspond to periodic modules,

we must know that each of these horizontal lines begin and end at a 4-vertex. For this we

will need the results of [4], which tells us how many configurations of rhombi of a certain

size the Rauzy tiling contains. Recall the lattice L, on which the vertices of the rhombi lie,

has basis {b1 = p (e2) ,b2 = p (e3)} . When we consider the rhombi of the three types to

have bases as indicated in figure 14, each vertex of L is the base for exactly one rhombus [4].

Figure 13. Each Rk with its base indicated

Then there are mn + m + n different configurations of rhombi based in (m, n)-sections of

L composed of vertices of the form

{(k + i)b1 + (ℓ + j)b2 : i = 1, . . . , m ; j = 1, . . . , n}

for some k and ℓ [4].

Figure 14. Example of a (3, 2)-section of L

Below we include a table of these configurations for select (m, n), where the entry aij of the

matrix representing a configuration corresponds to the type of rhombus (1, 2 or 3) based

at (k + i)b1 + (ℓ + (n − j))b2.
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(m, n) P (m, n) List of possible configurations of rhombi

(1, 1) 3 (1), (2), (3)

(1, 2) 5

(

1
1

)

,

(

2
2

)

,

(

1
3

)

,

(

2
1

)

,

(

3
2

)

(2, 1) 5 (1, 1), (1, 2), (3, 1), (2, 1), (2, 3)

(2, 2) 8

(

1 2
1 2

)

,

(

2 1
2 3

)

,

(

1 2
1 1

)

,

(

1 2
3 1

)

,

(

1 1
3 1

)

,

(

2 3
1 2

)

,
(

3 1
2 3

)

,

(

3 1
2 1

)

(3, 2) 11

(

1 2 1
1 2 3

)

,

(

1 1 2
3 1 2

)

,

(

1 2 3
1 1 2

)

,

(

1 2 3
3 1 2

)

,
(

2 1 1
2 3 1

)

,

(

2 1 2
2 3 1

)

,

(

2 3 1
1 2 1

)

,

(

2 3 1
1 2 3

)

,
(

3 1 2
2 1 1

)

,

(

3 1 2
2 1 2

)

,

(

3 1 2
2 3 1

)

Table 1

Each of the horizontal lines under consideration ends on the right with a

(

3
2

)

configura-

tion above, and so consideration of the possible (2, 2)-configurations and geometry forces

this to be completed as

(

3 1
2 1

)

, corresponding to the desired 4-vertex. On the left, the

horizontal lines end cutting through a

(

1 2
1 1

)

configuration, and so consideration of the

possible (3, 2)-configurations shows that it must be completed on the left as

(

3 1 2
2 1 1

)

.

This means that the configuration on the left end of the horizontal line containing the type

1 rhombus based at the left endpoint has the form

(

2 1
x y

)

, which can only be completed

as

(

2 1
2 3

)

, yielding the desired 4-vertex. �

We call a horizontal line periodic if it corresponds to a periodic orbit. In what follows, L

denotes a periodic line in Qi.

Definition 8. We say that an Ai-module W is along L if it has arrow translates as described

in 7.1 or if it is of the form W = (bb̄)Ai, where b starts at L but does not belong to Ai and

bb̄ is in Ai.

By theorem 22, the modules along L form one Ω-orbit.

Corollary 24. Suppose M is an indecomposable non-projective Ai-module and suppose for

some W along the line L we have Hom(W, Ωt(M)) 6= 0 for some t ≥ 0. Then the tree class

of the component of M belongs to the list as in lemma 18.



RHOMBUS FILTRATIONS AND RAUZY ALGEBRAS 29

We can completely answer for which simple modules this applies.

Theorem 25. Suppose S is a simple module. Then there is a periodic W along a periodic

line L such that Hom(W, Ωt(S)) 6= 0 for some t if and only if S = Sx and x is a vertex on

L.

Proof (1) Suppose S = Sx, where x is a 4-vertex or 5-vertex on a periodic line L. Then

Ω(S) contains W = bAi for b an arrow starting at x, hence W is along L. An inclusion

map does not factor through a projective module, and hence

0 6= Hom(W, Ω(S)).

(2) Suppose S = Sx where x is a 6-vertex on a periodic line L. Then Ω(S) contains

W = hAi + kAi, where h, k are arrows starting at x and W is along L. Then similarly

Hom(W, Ω(S)) 6= 0.

(3) Suppose S = Sx where x is a 3-vertex which occurs along a periodic line L. Then S is

a top composition factor of W = hAi + kAi, where W is along L and where either h or k

ends at x. The epimorphism from W onto S does not factor through a projective module.

Hence, as before, Hom(W, S) 6= 0.

For the converse, suppose that S is a simple module and that there is some W along L

such that Hom(W, Ωt(S)) 6= 0 for some t. This space is isomorphic to

Hom(Ω−t(W ), S) ∼= Hom(Ω−t(W ), S)

where the first isomorphism is by dimension shift, and the second holds because S is a

simple module of a symmetric algebra and Ω−t(W ) does not have a projective summand.

Now, Ω−t(W ) also is a module along L. Since there is a non-zero homomorphism from this

module onto S it follows that S is a top composition factor. But all modules along L have

top composition factors Sx with x on L. Hence S = Sx as stated. �
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[1] P. Arnoux, V. Berthé, A. Siegel, Two-dimensional iterated morphisms and discrete planes. Theoret.
Comput. Sci. 319 (2004), no. 1-3, 145–176. Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, 181–207.

[2] M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras. Cambridge Studies in
Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1997

[3] D. J. Benson, Representations and cohomology. I. Cambridge Studies in Advanced Mathematics, 30.
Cambridge University Press, Cambridge, 1998.

[4] V. Berth, L. Vuillon, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian
sequences. Discrete Math. 223 (2000), no. 1-3, 27–53.

[5] J. Chuang, W. Turner, Cubist algebras, preprint.
[6] N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics. Edited by V. Berth, S. Ferenczi,
C. Mauduit and A. Siegel. Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.

[7] K. Erdmann, M. Holloway, N. Snashall, Ø. Solberg, R. Taillefer, Support varieties for selfinjective
algebras. K-Theory 33 (2004), no. 1, 67–87.



30 ALEX CLARK, KARIN ERDMANN, AND SIBYLLE SCHROLL

[8] K. Erdmann, S. Martin, Quiver and relations for the principal p-block of Σ2p. J. London Math. Soc.
(2) 49 (1994), no. 3, 442–462.

[9] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras. Representation theory I,
Ottawa 1979. Lecture Notes in Mathematics 831, Springer-Verlag, Berlin/New York 1980.

[10] M. Peach, Rhombal Algebras, PhD, University of Bristol, August 2004.
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