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Abstract. We consider a norm-preconditioning approach for the solution of discontinuous Galerkin finite element
discretizations of second order PDE with non-negative characteristic form. In particular, we perform an analysis for
the general case of discontinuous hp-finite element discretizations. Our solution method is a norm-preconditioned three-
term GMRES routine. We find that for symmetric positive-definite diffusivity tensors the convergence of our solver is
independent of discretization, while for the semidefinite case both theory and experiment indicate dependence on both h

and p. Numerical results are included to illustrate performance on several test cases.

1. Introduction. Recent years have seen an increasing interest in a class of non-conforming finite
element approximations of elliptic boundary-value problems with hyperbolic nature, usually referred
to as discontinuous Galerkin finite element methods. Various families of discontinuous Galerkin finite
element methods (DGFEMs) have been proposed, particularly for the numerical solution of convection-
diffusion problems, due to the many attractive properties they exhibit. In particular, DGFEMs admit
good stability properties, they offer flexibility in the mesh design (irregular meshes are admissible)
and in the imposition of boundary conditions (Dirichlet boundary conditions are weakly imposed), and
they are increasingly popular in the context of hp-adaptive algorithms. The increase in popularity for
DGFEMs has created a corresponding demand for developing linear solvers.

Existing approaches to solving systems arising in DGFEMs include domain decomposition, either
non-overlapping [12], [13] or overlapping [23] and multigrid [19], [5]. Another favoured approach consists
in reformulating the problem as a system of PDE which is then solved using a mixed finite element
method for which block-preconditioners can be devised [29], [24], [22].

Remarkably, preconditioned Krylov methods feature rarely and have been mostly employed for
the case of time-dependent problems, whether using time-discontinuous discretizations [10], or space-
discontinuous ones [3]. One of the reasons for this notable absence may be explained through the
ill-conditioning the resulting linear systems suffer from [7] coupled with a need for preconditioner design.

In this work we extend results available for the case of standard finite element methods to the hp-
discontinuous case. More precisely, it is known that finite element matrices belong to a framework that
allows the design of useful preconditioners [11], [26], as well as meaningful monitoring of convergence
(e.g., see [1]). In particular, it is now known that the norms associated with the finite element analysis
can be employed as preconditioners. The analysis of their performance was first carried out using the
concept of norm-equivalence.

The concept of norm-equivalence was formally introduced in [11] in the context of preconditioning
for standard finite element discretisation of elliptic problems. The authors of [11] realized that finite
element matrices usually are provided with useful preconditioners in the form of the matrix-norm
associated with the finite element spaces involved in the solution process. In particular, they were
concerned with (and showed mesh-independence for) the distribution of eigenvalues and singular values
of the norm-preconditioned system with a view to employing an expensive method, such as Conjugate
Gradients on the Normal Equations (CGNE). However, modern methods such as GMRES, cannot be
analysed in terms of the distribution of the spectrum alone. Thus, norm-equivalence had to be replaced
by a stronger property, field-of-value equivalence, which can be shown to be relevant in the convergence
analysis of GMRES. This is the concept we employ in order to identify a useful preconditioner as well
as to derive useful analytical results regarding convergence properties of our iterative scheme.
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The paper is structured as follows. We first introduce the formulation of the problem, together
with notation. In section 4 we derive some (continuous) norm-equivalences which we need in order to
perform the analysis of our preconditioners. Section 5 describes our iterative approach and includes
theoretical convergence results which are then verified in section 6.

2. Model Problem. Let Ω be a bounded open (curvilinear) polygonal domain in R
d, and let Γ∂

signify the union of its one-dimensional open edges, which are assumed to be sufficiently smooth (in a
sense defined rigorously later). We consider the convection-diffusion-reaction equation

Lu ≡ −∇ · (ā∇u) + b · ∇u + cu = f in Ω, (2.1)

where f ∈ L2(Ω), c ∈ L∞(Ω), b is a vector function whose entries are Lipschitz continuous real-valued
functions on Ω̄, and ā is the symmetric diffusion tensor whose entries are bounded, piecewise continuous
real-valued functions defined on Ω̄, with

ζT ā(x)ζ ≥ 0 ∀ζ ∈ R
d, a.e. x ∈ Ω̄. (2.2)

Under this hypothesis, (2.1) is termed a partial differential equation with nonnegative characteristic
form. By n we denote the unit outward normal vector to Γ∂ . We define

Γ0 =
{

x ∈ Γ∂ : n(x)T ā(x)n(x) > 0
}

,

Γ− = {x ∈ Γ∂\Γ0 : b(x) · n(x) < 0} , Γ+ = {x ∈ Γ∂\Γ0 : b(x) · n(x) ≥ 0} .

The sets Γ− and Γ+ are referred to as inflow and outflow boundary, respectively. We can also see that
Γ∂ = Γ0 ∪ Γ− ∪ Γ+. If Γ0 has positive one-dimensional Hausdorff measure, we also decompose Γ0 into
two parts ΓD,ΓN and we impose Dirichlet and Neumann boundary conditions, respectively, via

u = gD on ΓD ∪ Γ−,

(ā∇u) · n = gN on ΓN, (2.3)

where we adopt the (physically reasonable) hypothesis that b · n ≥ 0 on ΓN, whenever the latter is
nonempty.

Existence and uniqueness of solutions (in the weak sense) for the corresponding homogeneous prob-
lem were considered by Houston & Süli [21] (cf. also [27] and the references therein, for existence and
uniqueness results for classical solutions), under the assumption that there exists a positive constant γ0

such that

c − 1

2
∇ · b ≥ γ0 almost everywhere in Ω. (2.4)

3. Discontinuous Galerkin Finite Element Method. We denote by Lp(ω), 1 ≤ p ≤ ∞, the
standard Lebesgue spaces, ω ⊂ R

d with corresponding norms ‖ · ‖Lp(ω); the norm of L2(ω) will be
denoted by ‖·‖ω for brevity. We also denote by Hs(ω), the standard Hilbertian Sobolev space of index
s ≥ 0 of real-valued functions defined on ω ⊂ R

d.
Let T be a subdivision of Ω into disjoint open elements κ ∈ T such that each side of κ has at most

one regular hanging node. We assume that the subdivision T is constructed via mappings Fκ, where
Fκ : κ̂ := (−1, 1)2 → κ is a C1-diffeomorphism, with non-singular Jacobian. The above mappings are
assumed to be constructed so as to ensure that the union of the closures of the elements κ ∈ T forms
a covering of the closure of Ω, i.e., Ω̄ = ∪κ∈T κ̄.

We assign to the subdivision T the broken Sobolev space of order s,

Hs(Ω, T ) :=
{

u ∈ L2(Ω) : u|κ ∈ Hs(κ) for all κ ∈ T
}

,
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equipped with the standard broken Sobolev norm.
For a nonnegative integer p, we denote by Qp(κ̂), the set of all tensor-product polynomials on

κ̂ of degree p in each coordinate direction. To each κ ∈ T we assign nonnegative integers pκ (the
local polynomial degree), we collect the pκ and Fκ into piecewise continuous functions p : Ω → R and
F : Ω → R, with p|κ = pκ and F|κ = Fκ, κ ∈ T , respectively, and consider the finite element space

S ≡ Sp(Ω, T ,F) := {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Qpκ
(κ̂), κ ∈ T }. (3.1)

Similarly, we introduce the mesh quantities h⊥ : ∪κ∈T ∂κ → R and r : Ω → R where (h⊥)|e⊂∂κ = |κ|/|e|,
for all elemental faces e ⊂ Γ, and (r⊥)|κ = ρκ, κ ∈ T , respectively, where ρκ denotes the radius of the
largest inscribed circle in the element κ.

We assume that the discretisation parameters satisfy the following conditions: on each elemental
face e = ∂κ∩∂κ′, with e having positive (d−1)-dimensional measure, and κ, κ′ two generic neighbouring
elements of the subdivision T , we have

c−1
1 ≤ pκ/pκ′ ≤ c1, c−1

2 ≤ h⊥|e⊂∂κ/h⊥|e⊂∂κ′ ≤ c2, c−1
3 ≤ ρκ/ρκ′ ≤ c3,

for all e ⊂ Γ, with c1, c2, c3 positive constants.
By Γ we denote the union of all one-dimensional element faces associated with the subdivision

T (including the boundary). Further we decompose Γ into three disjoint subsets Γ = Γ∂ ∪ Γint =
ΓD ∪ ΓN ∪ Γint, where Γint := Γ\Γ∂ .

Next, we introduce some trace operators. Let κ, κ′ be two (generic) elements sharing a face
e := κ̄ ∩ κ̄′ ⊂ Γint. Define the outward normal unit vectors n+ and n− on e corresponding to ∂κ and
∂κ′, respectively. For functions q : Ω → R and φ : Ω → R

2 that may be discontinuous across Γ, we
define the following quantities. For q+ := q|∂κ, q− := q|∂κ′ and φ+ := φ|∂κ, φ− := φ|∂κ′ , we set

{{q}} :=
1

2
(q+ + q−), {{φ}} :=

1

2
(φ+ + φ−), [[q]] := q+n+ + q−n−, [[φ]] := φ+ · n+ + φ− · n−;

if e ∈ ∂κ ∩ Γ∂ , these definitions are modified to

{{q}} := q+, {{φ}} := φ+, [[q]] := q+n, [[φ]] := φ+ · n.

Further, we divide the union of all open edges ∂κ of every element κ into two subsets

∂−κ := {x ∈ ∂κ : b(x) · n(x) < 0}, ∂+κ := {x ∈ ∂κ : b(x) · n(x) > 0},

where n(·) denotes the unit outward normal vector function associated with the element κ; we call these
the inflow and outflow parts of ∂κ respectively. Then, for every element κ ∈ T , we denote by u+

κ the
trace of a function u on ∂κ taken from within the element κ (interior trace). We also define the exterior
trace u−

κ of u ∈ H1(Ω, T ) for almost all x ∈ ∂−κ\Γ to be the interior trace u+
κ′ of u on the element(s)

κ′ that share the edges contained in ∂−κ\Γ of the boundary of element κ. Then, the upwind jump of u
across ∂−κ\Γ is defined by

⌊u⌋κ := u+
κ − u−

κ .

We note that this definition of jump is not the same as the one above; here the sign of the jump
depends on the direction of the flow, whereas [[·]] depends only on the element-numbering. We note that
the subscript in this definition will be suppressed when no confusion is likely to occur.

The broken weak formulation of the problem (2.1), (2.3), from which the interior penalty DGFEM
will emerge, reads

find u ∈ A such that B(u, v) = l(v) ∀v ∈ H3/2+ǫ(Ω, T ), (3.2)
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where

A := {u ∈ H3/2+ǫ(Ω, T ) : u, ā∇u · n are continuous across Γint},

B(u, v) :=
∑

κ∈T

∫

κ

(

ā∇u · ∇v + (b · ∇u) v + c u v
)

dx

−
∑

κ∈T

∫

∂−κ∩(Γ−∪ΓD)

(b · n)u+v+ds −
∑

κ∈T

∫

∂−κ\Γ∂

(b · n)⌊u⌋v+ds

+

∫

ΓD∪Γint

(

θ{{ā∇v}} · [[u]] − {{ā∇u}} · [[v]] + σ[[u]] · [[v]]
)

ds,

and

l(v) : =
∑

κ∈T

∫

κ

fv dx −
∑

κ∈T

∫

∂−κ∩(Γ−∪ΓD)

(b · n)gDv+ds

+

∫

ΓD

θ(ā∇v · n + σv)gD ds +

∫

ΓN

gNv ds, (3.3)

for θ ∈ {−1, 1}, with the function σ defined by

σ|e := Cσ{{
ap2

h⊥
}},

where p and h⊥ as above, and a : Ω → R with a|κ = ‖|
√

ā|2‖L∞(κ), κ ∈ T where | · |2 denotes the
matrix-2-norm, and Cσ positive constant. Here and in the sequel, we assume that there exists a constant
α > 0, such that

α−1 ≤ a|κ/a|κ′ ≤ α,

for all pairs of neighbouring elements κ and κ′ having a common face e, whenever a is non-zero.
Then, the interior penalty DGFEM for the problem (2.1), (2.3) is defined as follows:

find uDG ∈ S such that B(uDG, v) = l(v) ∀v ∈ S. (3.4)

We refer to the DGFEM with θ = −1 as the symmetric interior penalty DGFEM (SIPG), whereas for
θ = 1 the DGFEM will be referred to as the non-symmetric interior penalty DGFEM (NIPG). This
terminology stems from the fact that when b ≡ ~0, the bilinear form B(·, ·) is symmetric if and only if
θ = −1. Various types of error analysis for the variants of interior penalty DGFEMs can be found in
[2, 28, 20, 14, 18, 16].

We make some assumptions on the regularity of the solution and on the functions in the finite ele-
ment space S. We assume that pκ

i ≥ 1, i = 1, 2, κ ∈ T , whenever diffusion is present, in order to ensure
that the matrix of the system of linear algebraic equations that arises from (3.4) is nonsingular. When
the analytical solution u ∈ A, the following Galerkin orthogonality property holds: B(u − uDG, v) = 0
for every v ∈ S. If the continuity assumptions involved in the definition of A are violated, as is the
case, for example, in an elliptic transmission problem, the DGFEM has to be modified accordingly.

We conclude this section by introducing the notion of inverse property for the diffusion tensor ā.
Definition 3.1 (inverse property). We shall say that the tensor ā has the inverse property if an

inverse inequality of the form

‖
√

ā∇v‖2
e ≤ Cinvp

2
κ|e|/|κ|‖

√
ā∇v‖2

κ, (3.5)
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holds, for all v ∈ Qp(κ), where e is a face of the element κ, and Cinv is a positive constant independent
of ā and the discretisation parameters.

We refer to [15] for a detailed discussion on diffusion tensors satisfying the inverse property. For
a discussion on how to circumvent the necessity of the inverse property assumption, by modifying the
DGFEM, we refer to [16].

4. Norm Equivalences. We define the energy norm |‖·|‖ by

|‖w|‖ : =

(

∑

κ∈T

‖
√

ā∇w‖2
κ + ‖c0w‖2

Ω +
1

2
‖bn[[w]]‖2

Γ + ‖
√

σ[[w]]‖2
ΓD∪Γint

)
1
2

,

where c0 :=
√

c − 1/2∇ · b, bn :=
√

|b · n|, with n on ∂κ denoting the outward normal to ∂κ and σ as
above.

We are interested in studying the symmetric and the skew-symmetric parts of the bilinear form
B(·, ·). For this reason, we rewrite the numerical fluxes for the convection part of the boundary as
described in the following lemma.

Lemma 4.1. Using the notation above, the following identity holds:

−
∑

κ∈T

(

∫

∂−κ∩(ΓD∪Γ−)

(b · n)u+v+ds +

∫

∂−κ\Γ∂

(b · n)⌊u⌋v+ds
)

=

∫

Γ

(1

2
|b · n|[[u]] · [[v]] − [[u]] · {{bv}}

)

ds +
1

2

∫

Γ∂

(b · n)u+v+ds. (4.1)

Proof. On each elemental inflow boundary, we have −(b · n) = |b · n|. Thus, on each ∂−κ\Γ∂ , we
have

−(b · n)⌊u⌋v+ = |b · n|⌊u⌋v+ =
1

2
|b · n|⌊u⌋⌊v⌋ + |b · n|⌊u⌋{{v}}

=
1

2
|b · n|[[u]] · [[v]] − (b · n)⌊u⌋{{v}} =

1

2
|b · n|[[u]] · [[v]] − [[u]] · {{bv}}

Hence,

−
∑

κ∈T

∫

∂−κ\Γ∂

(b · n)⌊u⌋v+ds =

∫

Γint

(1

2
|b · n|[[u]] · [[v]] − [[u]] · {{bv}}

)

ds. (4.2)

Recalling the definitions of [[·]] and {{·}} on the boundary Γ∂ , along with −(b·n) = |b·n| and (b·n) = |b·n|
on the inflow and outflow parts of the boundary, respectively, it is immediate that

∫

Γ∂

(1

2
|b · n|[[u]] · [[v]]− [[u]] · {{bv}}

)

ds +
1

2

∫

Γ∂

(b · n)u+v+ds = −
∑

κ∈T

∫

∂−κ∩(ΓD∪Γ−)

(b · n)u+v+ds. (4.3)

Summing (4.2) and (4.3), the result follows.
2

Splitting ideas for the numerical fluxes of DGFEM for first order hyperbolic problems are presented
in [6] when the convection is in divergence form; here we modified the argument presented in that work
for the case where the convection is of the form b · ∇u (cf. also Section 2.7 in [14]).

Motivated by identity (4.1), we decompose B(·, ·) into symmetric and skew-symmetric components.
Lemma 4.2. The bilinear form can be decomposed into symmetric and skew-symmetric parts:

B(u, v) = Bsymm(u, v) + Bskew(u, v),
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for all u, v ∈ H3/2+ε(Ω, T ), where

Bsymm(u, v) :=
∑

κ∈T

∫

κ

(

ā∇u · ∇v + c2
0 u v

)

dx +
1

2

∫

Γ

|b · n|[[u]] · [[v]]ds

+

∫

ΓD∪Γint

(θ − 1

2

(

{{ā∇v}} · [[u]] + {{ā∇u}} · [[v]]
)

+ σ[[u]] · [[v]]
)

ds, (4.4)

and

Bskew(u, v) :=
1

2

∑

κ∈T

∫

κ

(

(b · ∇u) v − (b · ∇v)u
)

dx +
1

2

∫

Γint

(

[[v]] · {{bu}} − [[u]] · {{bv}}
)

ds

+
θ + 1

2

∫

ΓD∪Γint

(

θ{{ā∇v}} · [[u]] − {{ā∇u}} · [[v]]
)

ds.

Proof. Straightforward calculation yields that

B(u, v) = Bsymm(u, v) +
∑

κ∈T

∫

κ

(

(b · ∇u) v +
∇ · b

2
u v

)

dx −
∫

Γ

[[u]] · {{bv}}ds

+
θ + 1

2

∫

ΓD∪Γint

(

θ{{ā∇v}} · [[u]] − {{ā∇u}} · [[v]]
)

ds,

with Bsymm(u, v) as defined in (4.4). Integration by parts of the second term in the first integral on the
right-hand side of (4.5) yields

∑

κ∈T

∫

κ

∇ · b
2

u v dx = −1

2

∑

κ∈T

∫

κ

(

(b · ∇u) v + (b · ∇v)u
)

dx +
1

2

∑

κ∈T

∫

∂κ

(b · n)u+v+ds.

The result now follows by making use of the (standard) identity (see, e.g., [6])

∑

κ∈T

∫

∂κ

(b · n)u+v+ds =

∫

Γ

[[u]] · {{bv}}ds +

∫

Γint

{{u}}[[bv]]ds,

and observing that {{u}}[[bv]] = {{bu}} · [[v]].
2

Note that for the skew-symmetric part of the bilinear form we have Bskew(u, u) = 0, for all u ∈
H3/2+ε(Ω, T ).

Lemma 4.3. Let the domain Ω, its subdivision T and the positive function σ be defined as above,
with the constant Cσ sufficiently large when θ = −1 (see [2, 14] for details). Let also ā satisfy the
inverse property. Then, the following equivalence holds

κ1|‖u|‖2 ≤ B(u, u) ≤ κ2|‖u|‖2, (4.5)

for all u ∈ S, where κ1 and κ2 are positive constants independent of the mesh parameters.
Proof. We have

B(u, u) = Bsymm(u, u) = |‖u|‖2 + (θ − 1)

∫

ΓD∪Γint

{{ā∇u}} · [[u]] ds.

Thus, when θ = 1, (4.5) holds with κ1 = 1 = κ2. When θ = −1, we work as follows. Using the
Cauchy-Schwarz inequality together with the inverse inequality (3.5), we obtain

2

∫

ΓD∪Γint

{{ā∇u}} · [[u]] ds = 2

∫

ΓD∪Γint

{{
√

ā∇u}} · [[
√

āu]] ds

≤ 1

2

∑

κ∈T

‖
√

ā∇u‖2
κ +

1

2
‖
√

σ[[u]]‖2
ΓD∪Γint

, (4.6)
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using Young’s inequality and choosing Cσ sufficiently large. Thus, the left inequality in (4.5) holds with
κ1 = 1

2 and the right inequality holds with κ2 = 3
2 .

2

Along the same lines, we can show the continuity for the full bilinear form B(·, ·).
Theorem 4.4. Let the domain Ω, its subdivision T and the positive function σ be defined as above,

with the constant Cσ sufficiently large when θ = −1 (see [2, 14] for details). Let also ā satisfy the
inverse property. Further assume that c0(x) ≥ γκ

0 > 0 for all x ∈ κ, for each κ ∈ T . Then, for u, v ∈ S
and C > 0 constant, independent of the problem and the mesh parameters, we have

|B(u, v)| ≤ C max
κ∈T

{1, Cκ}|‖u|‖ |‖v|‖,

where Cκ := min{‖(γκ
0

√
ā)−1b‖L∞(κ), ‖

p2b

(γκ
0 )2r

‖L∞(κ)}, assuming the convention

‖(γκ
0

√
ā)−1b‖L∞(κ) = +∞

on the elements where
√

ā is not positive definite.
Proof. We have

Bsymm(u, v) ≤ |‖u|‖|‖v|‖ +
θ − 1

2

(∣

∣

∣

∫

ΓD∪Γint

{{ā∇u}} · [[v]] ds
∣

∣

∣
+

∣

∣

∣

∫

ΓD∪Γint

{{ā∇v}} · [[u]] ds
∣

∣

∣

)

. (4.7)

Using Cauchy-Schwarz inequality together with the inverse inequality (3.5), and working as in (4.6), we
conclude that

∫

ΓD∪Γint

{{ā∇u}} · [[v]] ds ≤ 1

2

∑

κ∈T

‖
√

ā∇u‖2
κ +

1

2
‖
√

σ[[v]]‖2
ΓD∪Γint

, (4.8)

and similarly for the last term on the right-hand side of (4.7).
Next, we bound each of the terms of Bskew(·, ·) separately, for every κ ∈ T . To this end, we consider

2 cases:
Case 1. ā is positive definite.

We have

∣

∣

∣

∫

κ

b · ∇u v dx
∣

∣

∣
=

∣

∣

∣

∫

κ

bT∇u v dx
∣

∣

∣
≤ ‖(γκ

0

√
ā)−1b‖L∞(κ)‖

√
ā∇u‖κ‖c0v‖κ;

for e ⊂ Γint, where e = κ̄+ ∩ κ̄−, for two (generic) elements κ+, κ− ∈ T , we have

∣

∣

∣

∫

e

[[u]] · {{bv}}ds
∣

∣

∣
≤

∫

e

|{{|
√

ā|2}}
p√
h⊥

[[u]]||(
√

ā)−1b|
√
h⊥

p
|{{v}}|ds

≤
∑

κ∈{κ+,κ−}

‖(γκ
0

√
ā)−1b‖L∞(κ)‖

√
σu‖e‖c0v‖κ,

and similarly for the skew-symmetric counterparts. If θ = 1, the remaining terms of the skew-symmetric
part of the bilinear form are bounded using (4.8).

Case 2. ā is positive semi-definite, but not positive definite.
We have

∣

∣

∣

∫

κ

b · ∇u v dx
∣

∣

∣
≤ ‖b‖L∞(κ)‖∇u‖κ‖v‖κ ≤ C‖(γκ

0 )−2b‖L∞(κ)
p2

r

∣

∣

κ
‖c0u‖κ‖c0v‖κ.
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Also, for e ⊂ Γint, where e = κ̄+ ∩ κ̄−, for two (generic) elements κ+, κ− ∈ T , we have

∣

∣

∣

∫

e

[[u]] · {{bv}}ds
∣

∣

∣
≤ ‖b‖L∞(e)‖[[u]]‖e‖{{v}}‖e

≤ C
∑

κ∈{κ+,κ−}

‖ p2b

(γκ
0 )2h⊥

‖L∞(κ)‖c0v‖κ‖c0u‖κ

≤ C
∑

κ∈{κ+,κ−}

‖ p2b

(γκ
0 )2r

‖L∞(κ)‖c0v‖κ‖c0u‖κ,

where the last inequality follows by observing that r|κ = r|e⊂∂κ ≤ h⊥|e⊂∂κ. Similarly we can bound
the rest of the terms. If θ = 1, the remaining terms of the skew-symmetric part of the bilinear form are
bounded using (4.8). Summing up the resulting bounds, and using the discrete version of the Cauchy-
Schwarz inequality, the result follows.

2

Next we consider the case when c0 ≡ 0 on Ω. This includes the case of pure convection-diffusion
where the wind b is an incompressible vector field.

Theorem 4.5. Let the domain Ω, its subdivision T and the positive function σ be defined as above,
with the constant Cσ sufficiently large when θ = −1 (see [2, 14] for details). We assume that the
diffusion tensor ā is positive definite, and that c0 ≡ 0 in Ω. Let also the mesh-regularity assumption

|e|1/(1−d) ≤ C̃
p2

h⊥

∣

∣

e⊂∂κ

hold for all elemental faces e ⊂ Γint, for some constant C̃ > 0 independent of the problem and the mesh
parameters. Then, for u, v ∈ S, we have

B(u, v) ≤ C max
κ∈T

{1, ‖(
√

ā)−1b‖L∞(κ)}‖|(
√

ā)−1|2‖L∞(Ω)|‖u|‖|‖v|‖,

for C > 0 constant independent of the problem and the mesh parameters
Proof. The symmetric part of the bilinear form along with the face integrals that contain the

diffusion tensor can be bounded as in the proof of Theorem 4.4. We bound each of the terms of
Bskew(·, ·) separately, for every κ ∈ T . We have

∣

∣

∣

∫

κ

b · ∇u v dx
∣

∣

∣
=

∣

∣

∣

∫

κ

bT∇u v dx
∣

∣

∣
≤ ‖(

√
ā)−1b‖L∞(κ)‖

√
ā∇u‖κ‖v‖κ.

Also, for e ⊂ Γint, where e = κ̄+ ∩ κ̄−, for two (generic) elements κ+, κ− ∈ T , we have

∣

∣

∣

∫

e

[[u]] · {{bv}}ds
∣

∣

∣
≤

∫

e

|{{|
√

ā|2}}
p√
h⊥

[[u]]||(
√

ā)−1b|
√
h⊥

p
|{{v}}|ds

≤
∑

κ∈{κ+,κ−}

‖(
√

ā)−1b‖L∞(κ)‖
√

σu‖e‖v‖κ,

and similarly for the skew-symmetric counterparts. Summing up and using the discrete version of the
Cauchy-Schwarz inequality, we deduce

B(u, v) ≤ C max
κ∈T

{1, ‖(
√

ā)−1b‖L∞(κ)}(|‖u|‖2 + ‖u‖2
Ω)

1
2 (|‖v|‖2 + ‖v‖2

Ω)
1
2 ,

Using the Poincaré-Friedrichs inequality for broken H1-functions

‖w‖2
Ω ≤ C

(

∑

κ∈T

‖∇w‖2
κ +

∑

e⊂Γint

|e|1/(1−d)‖[[w]]‖2
e + ‖w‖2

ΓD

)
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presented in [4] (inequality (1.8) therein; following the notation of that work we have chosen Γ to be
the Dirichlet boundary ΓD), along with the mesh-regularity assumption, we deduce

‖w‖2
Ω ≤ C‖|(

√
ā)−1|2‖2

L∞(Ω)

(

∑

κ∈T

‖
√

ā∇w‖2
κ + ‖

√
σ[[w]]‖2

Γint
+ ‖

√
σw‖2

ΓD

)

,

i.e., ‖w‖2
Ω ≤ C‖|(

√
ā)−1|2‖2

L∞(Ω)|‖w|‖2, which yields the result.
2

5. Norm preconditioners. We now turn to the issue of preconditioner-design by first considering
an analysis tool for GMRES. In the following, we use the standard definition ‖x‖2

H = 〈x,x〉H = xT Hx
where H ∈ R

n×n is symmetric and positive-definite and x ∈ R
n. We also introduce the following

definition.
Definition 5.1. Field-of-values (FOV ) equivalence Non-singular matrices A,B ∈ R

n×n are
said to be FOV -equivalent if there exist constants ξ1, ξ2 independent of n such that for all x ∈ R

n \ {0}

ξ1 ≤
〈

x, AB−1x
〉

H

〈x,x〉H
,

‖AB−1x‖H

‖x‖H
≤ ξ2.

We write

A ≈H B.

We remark here that FOV -equivalence implies that ξ1 <
∣

∣λ(AB−1)
∣

∣ < ξ2, where λ(AB−1) denote
the eigenvalues of AB−1. This is usually a desirable property in the context of preconditioning.
The above definition was introduced with the following convergence result in mind.

Lemma 5.2. If A ≈H B the GMRES algorithm converges with respect to 〈·, ·〉H in a number of
iterations independent of n. Moreover, the residuals satisfy [9], [30, Thm 6.7]

‖rk‖H

‖r0‖H
≤

(

1 − ξ2
1

ξ2
2

)k/2

, (5.1)

where ξ1, ξ2 are the constants in Definition 5.1.
The requirements of Definition 5.1 can be shown to be satisfied for the matrices resulting from our

DG formulation. We first note that the coercivity result of Lemma 4.3 and the continuity result of
Thms 4.4 have the following discrete counterparts

min
w∈Rn\{0}

wtKw

‖w‖2
H

≥ η1 (5.2a)

max
w∈Rn\{0}

max
v∈Rn\{0}

wtKv

‖w‖H‖v‖H
≤ η2 (5.2b)

where η1 = κ1 and η2 is the continuity constant either in Thm 4.4 or in Thm 4.5. We denoted here the
matrix representation of the discrete bilinear form B(·, ·) by K and by H the discrete representation of
norm |‖·|‖. Furthermore, the equivalence (4.5) has the following discrete version

κ1‖u‖2
H ≤ ‖u‖2

Ks
≤ κ2‖u‖2

H , (5.3)

where Ks = (K + KT )/2. The following two results taken from [26] are sufficient to ensure that H is
FOV -equivalent to K and therefore represents a good preconditioning candidate.

Proposition 5.3. Let (5.2) hold. Then K ≈H−1 H.

9



Given equivalence (5.3), one deduces that (5.2) holds also with H replaced by Ks so that we get
the following

Proposition 5.4. Let (5.2), (5.3) hold. Then K ≈K−1
s

Ks.
The last two results suggest that both H and Ks are candidates for optimal preconditioning inside

a GMRES algorithm (cf. Lemma 5.2). However, only the latter can be employed in an efficient fashion,
as we describe below.

5.1. Three-term GMRES. It is well-known that while GMRES is one of the most robust meth-
ods available, it is not also the most efficient. In particular, the construction and storage of orthonormal
Arnoldi vectors is the main hindrance in a practical context. A short (m-)term recurrence for GMRES
(which entails the storage of only m vectors) is not guaranteed to exist for any given matrix. However,
there is a certain class of matrices which affords a 3-term recurrence, as the following result shows. For
a proof see [1]. See also [8] for related work on preconditioning with the symmetric part of a matrix.

Lemma 5.5. Let A = I + S, where S = −ST . Then the GMRES algorithm applied to matrix A
is a 3-term recurrence. Given the above result, it is straightforward to choose a preconditioner for K
since

K−1/2
s KK−1/2

s = I + S

where S is a skew-symmetric matrix. From an implementation point of view, employing GMRES with

system matrix K
−1/2
s KK

−1/2
s is equivalent to running GMRES in the Ks-inner product and using

Ks as a left-preconditioner (see [26] for more details). This is our approach below. We end with the
theoretical bound on GMRES convergence for the DG convection-diffusion problem.

Theorem 5.6. Let (5.2) hold. Then the residuals of the 3-term GMRES algorithm in the Ks-inner
product satisfy

‖rk‖K−1
s

‖r0‖K−1
s

≤
(

1 − η2
1

η2
2

)k/2

. (5.4)

The above bound is discretization-independent only if the diffusion tensor ā is positive definite. In
this case, the constant η2 is independent of both h and p, though it remains dependent on the PDE
coefficients. For the case when the diffusion tensor is positive semi-definite we cannot expect optimal
performance. While the constant η1 is still innocuous, the continuity constant η2 depends effectively
on both discretization and coefficients. In particular, for uniform meshes of size h with constant degree
p of the approximating polynomials, we essentially have at points where the diffusion vanishes

η2 =
p2

h
max
κ∈T

‖b/(γκ
0 )2‖L∞(κ).

This is a pessimistic estimate, as we shall see below.

6. Numerical Examples. We now demonstrate the validity of our theoretical bounds on two
classes of problems. The first corresponds to a diffusion tensor which is positive-definite. For this
class we chose to present standard convection-diffusion problems, given their ubiquitous nature in fluid
modelling. We note that for non-diagonal diffusion tensors the results are expected to be similar. The
second class of problems corresponds to a singular diffusion tensor. In this case, performance should
deteriorate with the discretization.

6.1. The positive definite case. Our first example is that of a standard convection-diffusion
operator. In this case ā = ǫI2 is positive definite. We chose the work with two values for b: constant
and circular. We solved

−ǫ∆u + b · ∇u = f for (x, y) ∈ (0, 1)2,

10



with b = (1, 1), subject to a Dirichlet boundary condition, which, along with the forcing function f , is
chosen so that the analytical solution is

u(x, y) = x + y(1 − x) +
e−

1
ǫ − e−

(1−x)(1−y)
ǫ

1 − e−
1
ǫ

.

This problem was considered in [20] (Example 3). The solution exhibits boundary layer behaviour
along x = 1 and y = 1, and the layers become steeper as ǫ → 0. Note that the theory developed above
includes this case, as here ∇ · b = 0 on Ω.

We solved the problem for a range of ǫ. Discretisations for a range of uniform h (meshsize) and p
(degree of polynomial approximation) were employed. The results are presented Table 6.1.

p n ǫ = 0.5 ǫ = 0.1 ǫ = 0.05 ǫ = 0.01

2,500 7 15 22 77

1 10,000 7 15 22 80

40,000 7 14 22 80

5,625 7 14 22 80

2 22,500 6 14 22 80

90,000 6 14 21 78

10,000 6 14 22 79

3 40,000 6 14 22 78

160,000 6 13 21 78

Table 6.1
GMRES iterations for DGFEM-discretisation of the convection diffusion problem with constant wind b = (1, 1) and

with preconditioner Ks.

As predicted by theory, the number of iterations is independent of discretisation parameters. The
dependence of ǫ of bound (5.4) gives also a description of convergence behaviour.

p n ǫ = 0.5 ǫ = 0.1 ǫ = 0.01

2,500 12 13 7

1 10,000 36 40 29

40,000 124 117 69

5,625 18 17 12

2 22,500 61 59 60

90,000 235 231 137

10,000 39 29 23

3 40,000 112 114 100

160,000 > 300 > 300 > 300

Table 6.2
GMRES iterations for DGFEM-discretisation of the convection diffusion problem with ILU(10−2) preconditioning.

For comparison purposes, we included the corresponding GMRES runs for the choice of a black-
box preconditioner such as ILU. The results are presented in Table 6.2. We can see that while the
number of iterations is low for some values of the parameters, the overall convergence behaviour is
quite undesirable, with iteration counts growing with both discretisation parameters. Thus, while the
number of iterations appears to be decreasing with ǫ, it is exactly for this range that the discretisation
parameters have to be increased in order to resolve layers. The resulting convergence behaviour becomes
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rapidly too costly to implement in practice. We note here that the ILU preconditioner is implemented
with a standard full GMRES routine, which means that the storage increases with every iteration.

We now consider the “driven cavity lid” singularly perturbed convection-diffusion equation

−ǫ∆u + b · ∇u = 0 for (x, y) ∈ (0, 1)2,

with 0 < ǫ ≤ 1 and

bT =
(

2(2y − 1)(1 − (2x − 1)2) , −2(2x − 1)(1 − (2y − 1)2
)

,

subject to the Dirichlet boundary conditions

u(x, y) = xy(1 − y), for (x, y) ∈ ∂Ω.

The solution exhibits boundary layer behaviour along x = 1 and the layers become steeper as ǫ → 0.
We note that c0 = −1/2∇ · b ≡ 0 on Ω. The iteration count for this case is presented in Table 6.3. We
remark here that the same behaviour is expected and observed.

p n ǫ = 0.5 ǫ = 0.1 ǫ = 0.05 ǫ = 0.01

2,500 5 12 20 67

1 10,000 5 11 19 67

40,000 5 11 19 66

5,625 5 11 19 66

2 22,500 5 11 19 65

90,000 5 11 18 65

10,000 5 11 18 65

3 40,000 5 11 18 64

160,000 5 10 17 64

Table 6.3
GMRES iterations for DGFEM-discretisation of the convection diffusion problem with circular wind and with pre-

conditioner Ks.

6.2. The positive semi-definite case. The second class of examples we consider is that for
symmetric positive semidefinite diffusion tensors. We first consider the Grušin-type boundary-value
problem

−uxx − 16x6uyy + (1 − y)uy = f in Ω ≡ (−1, 1)2,

u = 0 on ∂Ω, (6.1)

with f is chosen so that the analytical solution is

u(x, y) = (1 − x2)(1 − y2)(x8 + y2)1/4. (6.2)

The diffusion tensor is positive-definite everywhere except at x = 0. Note that the analytical solution
does not belong globally to H1(Ω) due to a singularity of the gradient at the origin; nevertheless, it
is analytic in Ω̄\{(0, 0)}. The iteration count for this case is presented in Table 6.4. As expected, the
results depend on both discretization parameters. However, while the dependence of the number of
iterations is roughly like h−1, the p−dependence is better than the predicted p2.

12



p n its

2,304 22

1 10,000 39

40,000 67

5,184 42

2 22,500 74

90,000 121

9,216 62

3 40,000 107

160,000 183

Table 6.4
GMRES iterations for DGFEM-discretisation of the degenerate convection diffusion problem with preconditioner Ks.

Finally, we consider the following equation on Ω = (−1, 1)2

−x2uyy + ux + u = 0, for − 1 ≤ x ≤ 1, y > 0,

ux + u = 0, for − 1 ≤ x ≤ 1, y ≤ 0,

with analytical solution

u(x, y) =







sin
(

1
2π(1 + y)

)

exp
(

−
(

x + π2

4
x3

3

))

, for − 1 ≤ x ≤ 1, y > 0;

sin
(

1
2π(1 + y)

)

exp(−x), for − 1 ≤ x ≤ 1, y ≤ 0,

along with an appropriate Dirichlet boundary condition. This problem is of changing-type, as there
exists a second order term for y > 0, which is no longer present for y ≤ 0. Moreover, we can easily verify
that its analytical solution u exhibits a discontinuity along y = 0, although the derivative of u, in the
direction normal to this line of discontinuity in u, is continuous across y = 0. We test the performance
of DGFEM with θ = 1 by employing various meshes. As mentioned at the end of Section 3, we have
to modify the method by setting σ|e = 0 for all element edges e ⊂ (−1, 1) × {0}, where σe denotes the
discontinuity-penalisation parameter; this is done in order to avoid penalising physical discontinuities.
Note that the diffusive flux (

√
ā∇u) ·n is still continuous across y = 0, and thus the method still applies.

The results are shown in Table 6.5. While the dependence on parameters h and p has not changed
radically, the actual iteration count is much greater, highlighting the fact that coercivity is weaker in
that part of the domain for which y ≤ 0.

6.3. Implementation issues. We used the 3-term GMRES algorithm in the Ks-inner product
with zero initial guess and a tolerance of 10−6 for the relative residual measured in the norm ‖ · ‖K−1

s
.

We note here that this norm is relevant from the point of view of finite element convergence (see [1]
for more details). Regarding the implementation of our preconditioner, we have to point out that this
is not necessarily a cheap procedure. In fact, our preconditioning strategy has shifted the focus from
the original non-symmetric linear system involving matrix K to solving a problem with a symmetric
and positive-definite matrix Ks. Apart from allowing for a storage-free method, this is an easier task
which can be approached in a variety of ways. Moreover, one can suitably relax this procedure, without
deterioration in the GMRES convergence. We describe this procedure in greater detail in [17]. Our solver
of choice, is a generalization of that described in [25] for standard finite element methods. Essentially,
this is domain decomposition nested inside a GMRES routine and with adaptive preconditioning on
the internal boundary which exhibits convergence independent of discretisation parameters. For more
details see [17].
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p n its

576 51

1 2,304 120

9,216 287

1,296 120

2 5,184 301

20,736 727

2,304 197

3 9,216 535

36,684 1,247

Table 6.5
GMRES iterations for DGFEM-discretisation of the degenerate convection diffusion problem with preconditioner Ks.

7. Summary. Discontinuous Galerkin methods raise new challenges with regard to the solution
of the ensuing linear system. Due to the nature of the discretisation, the problems can become very
quickly very large, particularly when the degree of the polynomial approximation is also increased. In
the case of general elliptic problems, useful iterative methods can be designed by taking into account
the finite element formulation. In this work we devised a preconditioner based on equivalence to the
norm inherited from the finite element space. The preconditioner is employed together with a 3-term
GMRES routine in order to maintain storage at a minimum. The resulting solver was applied to the
case of DGFEM discretizations of problems with non-negative characteristic form. Theoretical results
were derived to explain the convergence behaviour.
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[20] P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction

problems, SIAM J. Numer. Anal., 39 (2002), pp. 2133–2163 (electronic).
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