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ABSTRACT

This paper generalises the cointegrating model of Phillips (1991) to allow
for I (0) , I (1) and I (2) processes. The model has a simple form that permits
a wider range of I (2) processes than are usually considered, including a more
flexible form of polynomial cointegration. Further, the specification relaxes
restrictions identified by Phillips (1991) on the I (1) and I (2) cointegrating
vectors and restrictions on how the stochastic trends enter the system. To
date there has been little work on Bayesian I (2) analysis and so this paper
attempts to address this gap in the literature. A method of Bayesian infer-
ence in potentially I (2) processes is presented with application to Australian
money demand using a Jeffreys prior and a shrinkage prior.

1 Introduction

This paper generalises Phillips’ (1991) triangular model for cointegration in
several directions and also simplifies the specification and analysis of a wide
range of I (2) processes of interest in cointegration studies. In addition, the
identifying restrictions and the form by which the stochastic trends enter
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the system are relaxed, and the model is extended to allow for both a range
of deterministic processes. The range of I (2) processes permitted in this
specification includes some that appear not to have been considered in the
literature previously. Having established the model specification, this paper
takes a Bayesian approach to inference.
The focus of this paper is cointegration analysis. Since the development

of the concept of cointegration by Granger (1983) and Engle and Granger
(1987), many applied papers have investigated equilibrium economic rela-
tions by treating the cointegrating relations among the variables as those
equilibrium relations. That is, their focus was on the cointegrating space as
defined by the cointegrating vectors. Examples of such relations that have
been specified this way include money demand, purchasing power parity, term
structures of interest rates, income-wealth relations, and balanced growth hy-
potheses. The extent of the literature in this area prevents us giving even
a reasonable coverage, but a very small sample of specific examples include
Campbell (1987), Galí (1990), Johansen and Juselius (1990), King, Plosser,
Stock and Watson (1991), Lettau and Ludvingson (2004), and Garratt, Lee,
Pesaran and Shin (2003).
For much of the past decade and a half the most popular model used for

studying cointegrating relations has been the cointegrating vector error cor-
rection (VECM) form of the VAR model. A valid alternative model for coin-
tegration analysis was proposed by Phillips (1991) to permit full information
maximum likelihood analysis. This model has a triangular structure to intro-
duce the stochastic trends and models the cointegrating relations directly as
estimated equations. Short run dynamics are modelled with a flexible vector
autoregressive form and permits the same range of deterministic processes as
can be specified in the VECM. This model treats the cointegrating relations
as the objects of interest, in accordance with the focus in the more applied
papers already mentioned. Phillips (1994) compared the finite sample prop-
erties of estimators of the normalised cointegrating vectors from a triangular
model with those from the reduced rank regression model. In that paper, he
showed that while the density of the former is Gaussian with finite integer
moments, little can be said of the latter except that it has Cauchy-like tails
and no finite integer moments.
The triangular model has proven very useful for theoretical analysis and

for such purposes as the development of data generating processes in Monte
Carlo studies or in asymptotic theory. Stock and Watson (1993) point to a
number of early classical applications using this model by Campbell (1987),
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Campbell and Shiller (1987, 1989) and Bewley (1979). More recently Gael
Martin has used this model in Bayesian cointegration analysis in a series of
papers (Martin & Martin 2000, Martin 2000, and Martin 2001).
Given the success this model has achieved in theoretical work and in

these few applied papers, it would appear that this is an under-appreciated
model worthy of further attention. While little guidance is given in the
literature as to why this model is not employed or even considered more
often, we speculate that it may be the very features of this model that permit
a focus upon cointegration analysis that impose structures economists or
econometricians find inflexible and so unattractive. For example, how the
stochastic trends enter the system or the restrictions chosen to identify the
cointegrating vectors may be perceived as overly inflexible. As discussed
later, Phillips himself noted possible concerns with these restrictions.
A first contribution of this paper, then, is to provide a generalisation

of the of the triangular model to permit investigation of a wide range of
cointegrating processes within a relatively simple, less structured but unified
framework. The approach uses the basic implications of cointegration that if
an n-vector xt is I (1) , there exists an n× r matrix β such that β0xt is I (0)
and the common stochastic trends may be regarded as β0⊥xt ∼ I (1) where
β0β⊥ = 0. From a brief outline of the important features of the triangular
model as first proposed by Phillips (1991), we use the results of Strachan
and van Dijk (2003) to generalise the model so as to relax several of the
more binding restrictions, while retaining the cointegrating relations as the
focus of the analysis. This generalisation removes the triangular structure
proposed by Phillips (1991), but the new specification is shown to encompass
the model of Phillips and map to the standard VECM.
Another significant contribution of this paper is to extend the model to al-

low inference upon more general processes, particularly I (2) processes. The
model is developed to allow for I (0), I (1) or I (2) processes and to allow
for a wide range of deterministic processes within the stochastic trends and
the cointegrating relations. There have been a number of classical applied
studies that have investigated the support for possible I (2) cointegration.
Examples include Paruolo (1996), Rahbek, Kongsted, and Jørgensen (1999),
Fiess and MacDonald (2001), Nielsen (2002), Kongsted (2003), and Geor-
goutsos and Kouretas (2004). We develop a simple method of considering
the form of I (2) relations used in the papers mentioned, but extend to other
interesting possibilities. We also demonstrate how to investigate the support
for restrictions upon the cointegrating space that may be implied by various
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economic theories.
After specifying the general form for the likelihood for the model, we

are able to take either a Bayesian or classical approach in developing of
inferential methods. This paper takes an explicitly Bayesian approach as we
are not aware of any paper that presents a fully Bayesian method of inference
on I (2) processes.
Cointegration analysis involves investigating questions such as: What

is the dimension of the cointegrating space? Are the variables I (0) , I (1)
or I (2)? or, Do a particular set of equilibrium relations form cointegrating
relations? While these questions focus upon the cointegrating relations, a
restriction encountered in Bayesian cointegration analysis using either the
triangular model of Phillips (1991) or the VECM is that improper priors
on the nuisance parameters ‘outside the cointegrating space’ cannot be used
due to Barlett’s paradox. Strachan and van Dijk (2003) demonstrate how to
be uninformative about these nuisance parameters using flat improper pri-
ors by focusing the model upon the cointegrating relations. It is relatively
straightforward to demonstrate that it is possible to use a range of improper
or proper priors for this model that have attractive properties on grounds of
information theoretic justifications, invariance, estimation performance, or
simply familiarity. One prior that is commonly used for Bayesian analysis is
the improper Jeffreys prior and another contribution of this paper is the de-
velopment of the Jeffreys prior for these parameters outside the cointegrating
space.
The plan of this paper is as follows. In Section 2, we present the triangular

model of Phillips (1991) and the basic extensions of Strachan and van Dijk
(2003) for the I(1) model. We build upon this basic model to demonstrate
how to incorporate I(2) analysis, deterministic processes and overidentifying
restrictions. The priors are outlined or, in the case of the Jeffreys prior, devel-
oped in Section 3. In Section 4, we present a brief application to investigate
the evidence in support of a stable money demand relation in Australian
data. Section 5 concludes with some remarks and suggestions for further
directions for research.

2 The model

In this section we present the essential features of the model specification
and then extend this to allow for a range of processes.
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We begin with the assumption that the the n× 1 vector xt is I (1) such
that it can be given the representation

xt = C
tX

i=1

νi + µ0 + zt

where zt ∼ I (0) , νi is an IID zero mean process and C is of reduced rank.
Later in the paper we will relax the assumption that xt is I (1) to allow
for I (0) and I (2) processes. In fact we will relax the assumption that all
elements of xt be integrated of the same order. Let x1,t be the r×1 vector of
the first r elements of xt and x2,t be the (n− r)× 1 vector of the remaining
elements so x0t =

¡
x01,t x

0
2,t

¢
. If the elements of xt cointegrate with an r-

dimensional cointegrating space, then the triangular model of Phillips (1991)
brings the (n− r) stochastic trends into the system by assuming w2,t = ∆x2,t
is I (0) where ∆ = 1−L and L is the lag operator such that Lxt = xt−1. The
cointegrating relations are given by x1,t = Bx2,t + w1,t where w1,t is I (0) .
Thus we have the n× 1, I (0) vector wt =

¡
w01,t w

0
2,t

¢0
described by the two

equations

w1,t = [Ir −B0]xt = β0xt (1)

w2,t = ∆x2,t. (2)

The matrix of cointegrating vectors for the system xt is given in the relations
in w1,t as β = [Ir −B0]0 . With this specification linear restrictions have
been employed to uniquely identify the cointegrating vectors and so permit
estimation of the cointegrating space. Phillips notes that the above speci-
fication of w1,t attaches a specific importance to the variables in x1,t. The
use of linear identifying restrictions requires the assumption that we have
some minimal knowledge of the cointegrating space such that we know the
appropriate restrictions to apply (Strachan, 2003). In various papers such
as Boswijk (1996), Luukkonen et al. (1999) and Strachan (2003), however,
examples of seemingly sensible restrictions of this form are shown, in fact, to
be invalid. To relax this restriction, Strachan and van Dijk (2003) respecify
(1) as w1,t = β0xt where β

0β = Ir such that no structure is imposed a priori
upon the cointegrating relations.
Given the uncertainty over whether certain macroeconomic time series

have unit roots (see discussion in Bauwens, Lubrano & Richard, 1999 with
reference to Sims and Uhlig 1991 and the 1991 special issue of the Journal of
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Applied Econometrics), it would seem overly restrictive to assume we always
know that all variables in a particular vector have unit roots and, if some
do not, that we know which variables these are. Therefore to relax the
assumptions on how the stochastic trends enter the system, we replace (2)
with the specification w2,t = β0⊥∆xt where β

0
⊥β⊥ = In−r and β0β⊥ = 0

1. If
r = n, then β ∈ O (n) and if r = 0, then β⊥ ∈ O (n). This gives us the new
form of equations (1) and (2) as

wt =

∙
w1,t
w2,t

¸
=

∙
β0

β0⊥∆

¸
xt =

∙
β0xt

β0⊥∆xt

¸
∼ I (0) . (3)

In an obvious abuse of notation, we use notation similar to∙
β0

β0⊥∆

¸
xt to represent

∙
β0 0
0 β0⊥

¸ ∙
xt
∆xt

¸
throughout the paper.
As we will later extend the above model to define a number of I (2)

processes to allow I (2) analysis, we will call the process in (3) Process 0.
The equations in (3) describe the most fundamental relations implied by

I (0)− I (1) cointegration and so describe long run behaviour or equilibrium
relations with respect to xt. Phillips does not, in general, place restrictions
upon the short run behaviour of wt beyond the requirement that it be a sta-
tionary process. However, to demonstrate how optimal inference can achieved
with this model he assumes that wt is iid Normal with zero mean and fixed
covariance matrix. We take a specification between these two cases. A rea-
sonably flexible form of short run dynamics that is commonly assumed in
both theoretical and applied work, and which we adopt here, is a vector
autoregressive form. That is, we assume

wt =
lX

i=1

Πiwt−i + εt (4)

and εt ∼ iidN (0,Σ), such that wt = C (L) εt where the polynomial C (L) =
I + C1L + C2L

2 + C3L
3 + ... is such that Cw =

P∞
i=1Ci 6= 0 and full rank

1β⊥ is simply specified as any determinsitic function of β such that β⊥ lies in the
orthogonal complement of the space of β. For example, we may choose β⊥ to be the
(n− r) eigenvectors associated with the unit eigenvalues of In − ββ0.
This condition implies β0β⊥ = 0 and β⊥ given β, is not random.
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so wt ∼ I (0). It can readily be shown using (3) that this model implies
β0xt = [Ir 0]C (L) εt ∼ I (0) while β0⊥xt = [0 In−r]C (L)

P∞
i=1 εt ∼ I (1)

(see Appendix I).
The model in (4) is a generalisation of the triangular model of Phillips

(1991) and we can also show how this specification can be obtained from a
VECM and vice versa. The VECM representation of a cointegrating V AR(l)
model is

∆xt = αβ0xt−1 +
l−1X
i=1

Γi∆xt−i + νt. (5)

If we premultiply the above by B0 where B = [β β⊥] and make use of the
relation I = ββ0+β⊥β

0
⊥, we can rearrange the above equation into (4) to show

that a V AR (l) in xt will map to a V AR (l) in wt with simple restrictions
on the dynamic structure. The reverse approach, beginning from (4) and
mapping to (5), shows that a V AR (l) in wt will map to a V AR (l + 1) in xt
again with simple restrictions on the dynamic structure (see Appendix II for
the exact forms).
The model above gives a representation for the process xt with potential

I (0)− I (1) cointegration. We now need to allow for deterministic processes,
over-identifying restrictions, and the possibility that some elements of xt may
be I (2) .
Restrictions upon the cointegrating space: It is not uncommon

that an economist will have some apriori support for, or belief in, a particu-
lar cointegrating space as representative of a set of possible equilibrium rela-
tions. These relations may, for example, be suggested by theories on financial
relations such as term structures of interest rates or price-dividend relations,
money demand, or reaction functions of policy-makers. Therefore we need
to consider how to obtain inference on potentially interesting cointegrating
spaces. Denote the cointegrating space as p = sp (β) , and the support of this
parameter is the Grassman manifold which we denote by Gr,n−r, such that
p ∈ Gr,n−r. It is common to specify a likely cointegrating space as a matrix
of coefficients. For example, if we believe that a bivariate system xt = (yt zt)

0

will have the cointegrating relation yt− zt, then we would identify this space
with the matrix H =

¡
1 −1

¢0
. For a further example, if we believe that

in a four variable system xt = (ut vt yt zt)
0 the combinations ut− vt− yt, and

yt− zt are either stationary or the variables enter the cointegrating relations
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via these combinations, we would specify the matrix

H =

⎡⎢⎢⎣
1 0
−1 0
−1 1
0 −1

⎤⎥⎥⎦ .
In each case we have specified a n × q (q ≥ r) matrix H and the space is

p0 = sp (H). Since sp (H) = sp
³
H (H 0H)−1/2

´
, and it is mathematically

simpler to work with H as a semiorthogonal matrix, it is suggested that
after specifying H, this matrix be mapped to the Stiefel manifold by H →
H (H 0H)−1/2 before entering it into the model.
To incorporate this restriction on the cointegrating space into the model,

we can specify β = Hκ and p = sp (β) = sp (Hκ) ⊆ sp (H) where κ ∈ Vr.q.
This specification is rather dogmatic as it implies certainty about the location
of the cointegrating space as p = p0 = sp (H) if r = q and p ⊂ p0 if
r < q. If taking a Bayesian approach and a less dogmatic prior is preferred,
then the informative prior developed in Strachan and Inder (2004) can be
used to assign positive mass over all regions in the space Gr,n−r. Nonlinear
restrictions can also be easily implemented as demonstrated in Koop, Potter
and Strachan (2004).
Deterministic processes: To allow for deterministic processes such as

nonzero means and trends in the stationary processes in wt, and linear drifts
in the nonstationary processes in xt, we assume,

β0xt + µ1 + δ1t = w1,t ∼ I (0) and

β0⊥xt + β0⊥x0 + µ2t =
tX

i=1

w2,i ∼ I (1) or

β0⊥∆xt + µ2 = w2,i ∼ I (0)

such that wt =
¡
w01,t w

0
2,t

¢0 ∼ I (0) with nonzero means (we will revisit
this extension when we introduce the I (2) specification). We can now re-
specify the matrix of cointegrating vectors as β0 =

¡
µ1 δ1 β0

¢
, and a

matrix lying in the orthogonal complement of the cointegrating space as
β0⊥ =

³
γ2 µ2 β0⊥

´
. Further, denote any (n− r) columns of β⊥ as β

c
⊥ and
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let xt = (1, t, x
0
t)
0 such that

w1,t =
¡
µ1 δ1 β0

¢
xt = β0xt

w2,t =
³
γ2 µ2 β0⊥

´c
∆xt = βc0⊥∆xt

and again we have

wt =

∙
w1,t
w2,t

¸
=

∙
β0xt

βc0⊥∆xt

¸
∼ I (0) .

Note that the first row of β⊥ does not enter the model since ∆xt =
(0, 1, ∆x0t)

0 and so this vector γ2 is not identified. This implies the likelihood
is not a function of γ2 and, under the usual specifications of parameters with
unbounded support, this lack of identification would pose serious problems for
inference. In classical methods this can imply nonuniqueness of the estimates
while in Bayesian methods nonintegrable posteriors can result. However, we
specify β and β⊥ to be elements of Steifel manifolds such that the matrix
B = [β β⊥] is also an element of a Steifel manifold

2. As the support of β is
compact, integrals over a constant function over this support will be finite
and so posteriors will be proper.
The above specification encompasses the case were there are fewer deter-

ministic terms. These may be simply specified as particular subspaces within
the cointegrating space. For example, if there is no trend in the equilibrium
relations w1,t, this would imply sp (β) ⊆ sp (H) where

H =

⎡⎣ 1 0
0 0
0 In

⎤⎦
and this is imposed by setting β = Hϕ and the (n+ 1)×r matrix ϕ is treated
as the unkown parameter on which we specify the prior and estimate from
the posterior. In practice, however, this is only necessary when the number
of deterministic processes entering w1,t differs from the number entering w2,t.
If, for example, µ2 = 0 while µ1, δ1 and γ2 are all non zero. Otherwise we
simply restrict β to

¡
µ1 β0

¢0
or β as required and define β⊥ accordingly.

On the general issue of identification, β is identified up to its orientation in
the space it spans, however as the posterior is invariant to rotation within this

2If there are no deterministic processes such that β is n × r, then B = [β β⊥] will be
an element of the orthogonal group, B ∈ O (n) .
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space, this simply implies integrals with respect to the posterior need only
be adjusted by a known constant to accomodate the discrepancy between an
integral over the space Vr,n and the an integral over the spaceGr,n−r (Strachan
and Inder 2004 and Strachan and van Dijk 2003). This lack of concern for
the orientation of β within its space is in line with the principal argued in
Strachan and Inder (2004) and Villani (2005) that it is the cointegrating
space spanned by the cointegrating vectors that is the object of interest in
cointegration analysis rather than the cointerating vectors themselves. Once
an estimate of β is obtained, we only require that the vectors in the matrix
β⊥ lie in the orthogonal complement of the space spanned by β, and their
orientation within this space does not matter (again due to invariance).
I(2) processes: There exist a range of different representations of cointe-

grating I (2) processes and we develop simple models of four important cases
of these processes to permit what we will call I (0) − I (1) − I (2) analysis.
While few applications exist, to date, of the first three cases, the fourth and
most complicated case seems to have attracted a reasonable amount of at-
tention in the literature (see for example Paruolo 1996, Haldrup and Salmon
1998, Rahbek, Kongsted, and Jørgensen 1999, Fiess and MacDonald 2001,
Nielsen 2002, Kongsted 2003, and Georgoutsos and Kouretas 2004).
We will use the following general model (see Johansen, 1995) of I (2)

processes to demonstrate the essential features of these processes,

xt = C2

tX
j=1

jX
i=1

νi + C1

tX
i=1

νi + µ0 + zt

where zt ∼ I (0) and νi is an IID zero mean process. The first, and simplest
case (Process I) we consider assumes there exists an n × r matrix β such
that β0C1 = β0C2 = 0 and therefore β0xt ∼ I (0). This process can be
readily accommodated within the model for wt by simply redefining w2,t as
w2,t = β0⊥∆

2xt ∼ I (0) . That is,

wt =

∙
β0

β0⊥∆
2

¸
xt =

∙
β0xt

β0⊥∆
2xt

¸
∼ I (0) .

In the second process (Process II), we assume there exists an n×r matrix
β such that β0C2 = 0 but β

0C1 6= 0 and therefore β0xt ∼ I (1), which defines
xt as cointegrated CI(2,1) in the notation of Engle and Granger (1987). To
extend the model to allow for this case we define

wt =

∙
β0∆
β0⊥∆

2

¸
xt =

∙
β0∆xt
β0⊥∆

2xt

¸
∼ I (0) .
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Process III adopts the same assumption as Process II that β0C2 = 0, but
we further assume that there exists an r × s (s ≤ r) matrix η such that
η0β0C1 = 0 and so the process η0β0xt ∼ I (0) . We will refer to η as the I (2)
cointegrating vectors. A simple example of this case is given in Johansen
(1995, p. 37). The model specification begins with the most basic relations
of similar form to those in (3). That is, we know that xt ∼ I (2) , but there
exists r linearly independent combinations of the elements of xt that are I (1) ,
that is β0xt ∼ I (1) . Further, we know there exists s linearly independent
combinations of the elements of β0xt that are I (0) , that is η0β

0xt ∼ I (0) .
These relations imply

wt =

⎡⎣ η0 0
η0⊥∆ 0
0 In−r∆

⎤⎦∙ β0

β0⊥∆

¸
xt =

⎡⎣ η0β0xt
η0⊥β

0∆xt
β0⊥∆

2xt

⎤⎦ ∼ I (0) .

Again β and β⊥ are n× r and n× (n− r) respectively, and the new matrices
η and η⊥ are r× s and r× (r − s) (s ≤ r) respectively, and we specify these
matrices to be semiorthogonal such that [η η⊥] ∈ O (r).
Notice that at s = 0, then η⊥ ∈ O (r) and since η0⊥β

0C1 6= 0, Process III
collapses down to Process II. At s = r, then η ∈ O (r) and since η0β0C1 =
0, this case collapses down to Process I. Finally, we see that this process
encompasses Process 0 which we obtain if r = n so that β ∈ O (n) and β⊥ is
not defined. In this case the matrix η plays the role of the I (1) cointegrating
vectors, not β.
In the fourth and most general process (Process IV) we begin again with

the matrices β and β⊥ which are n× r and n× (n− r) respectively. These
matrices are assumed to satisfy the conditions β0C2 = 0 and there exists an
n× s matrix η = [η01 η02]

0 where η1 is r × s and η2 is (n− r)× s, such that
η01β

0C1 + η02β
0
⊥C2 = 0.

The implications of these specifications are that premultiplication of xt
by β reduces the process from I (2) to I (1) , such that β0xt ∼ I (1), β0⊥∆xt ∼
I (1) and that the vector

zt =

∙
β0xt

β0⊥∆xt

¸
∼ I (1)

cointegrates with (multiple) cointegrating vector η such that η0zt ∼ I (0). In
this case xt is called polynomially cointegrated and there exists an n×(n− s)
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matrix η⊥ such that η
0
⊥η = 0. The specification of wt ∼ I (0) is then

wt =

∙
w1,t
w2,t

¸
=

∙
η0

η0⊥∆

¸ ∙
β0

β0⊥∆

¸
xt

=

∙
η0

η0⊥∆

¸ ∙
β0xt

β0⊥∆xt

¸
=

∙
η0zt

η0⊥∆zt

¸
.

To explore this process further, we recall the partition of η and partition
η⊥ as

η =

∙
η1
η2

¸
and η⊥ =

∙
η11⊥ η12⊥
η21⊥ η22⊥

¸
such that η1 is r× s, and η11⊥ is r× (r − s) which defines the dimensions of
the remaining submatrices: η2 is (n− r)×s; η21⊥ is (n− r)×(r − s) ; η12⊥ is
r× (n− r) ; and η22⊥ is (n− r)× (n− r). Further, [η η⊥] ∈ O (n). Therefore

wt =

⎡⎣ η01β
0xt + η02β

0
⊥∆xt

η011⊥β
0∆xt + η021⊥β

0
⊥∆

2xt
η012⊥β

0∆xt + η022⊥β
0
⊥∆

2xt

⎤⎦ .
This specification encompasses Process III and collapses to that process
where η2 = 0, η21⊥ = 0, and η12⊥ = 0

3.
We can obtain the specification for polynomial cointegration in many

previous studies if

η1 =

∙
Is
0

¸
. (6)

As most earlier I (2) studies have focussed upon the number and form of
stochastic trends entering the process, deterministic trends in I (2) processes
have recieved little attention relative to that for I (1) processes. Useful ex-
ceptions include Rahbek, Kongsted, and Jørgensen (1999) who develop a
VAR model for I (2) processes with careful consideration of the specification
of the deterministic processes, and the application by Kongsted (2003) to
the analysis of import price determination. To generalise the model in this
paper to permit deterministic process such as nonzero means, linear trends
and drifts in an I (2) process, we take the same approach as in the previous
subsection. Using the specific restrictions in (6) of Process IV as an example,

3Note that the additional ‘restriction’ η22⊥ = In−r is not a restriction since so long as
η22⊥ is any element of O (n− r) the conditions of Process III are met and the likelihood
and posterior will be invariant to choice of η22⊥ from within O (n− r) .
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redefine the β and β⊥ as β and β⊥ respectively, partition β as β =
h
β
1
, β

2

i
where β

1
is n× s and we assume ∆x0 = 0 and

β0xt + µ1 + δ1t ∼ I (1) and

β0⊥xt + β0⊥x0 + µ0t =
tX

j=1

jX
i=1

w2,i ∼ I (2) .

Next, partition µ1 and δ1 conformably with β as µ1 = [µ11, µ12] and δ1 =
[δ11, δ12] such that

β0
1
xt + η02β

0
⊥∆xt + [µ11 + η02µ0] + δ11t ∼ I (0)

β0∆xt + δ1 ∼ I (0) and

β0⊥∆
2xt ∼ I (0) .

We may write the first equation as

η0
∙
β0xt + µ1 + δ1t
β0⊥∆xt + µ0

¸
= η0

" ¡
µ1, δ1, β

0¢³
0, µ0, β

0
⊥

´
∆

#⎛⎝ 1
t
xt

⎞⎠ .

While there are many alternative specifications of the deterministic terms
and even of the I (2) processes, the above design allows us to specify the
deterministic terms for each process of interest directly, and to restrict the
parameters for these processes to a compact space without loss of generality.

3 The Likelihood and The Jeffreys prior

An important component in Bayesian analysis is the specification of the prior
distribution for the parameters in the model. In this section we present the
likelihood and the Jeffreys prior, and discuss another prior with attractive
properties that might also be used for the Πi with this model: the shrinkage
prior. For this discussion, we will find it convenient to rewrite the model
as follows. Beginning with the model in (4), we collect the lags of wt into
ωt =

£
w0t−1, w

0
t−2, . . . , w

0
t−l
¤
and define Π = [Π1Π2 . . . Πl]

0 such that (4) can
be re-expressed as

w0t = ωtΠ+ ε0t.
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Before we develop the priors, however, we bring to the reader’s attention
an attractive feature of the model specification used in this paper. That
is, we are less restricted in the specification of the priors than we would
be if we were using the cointegrating vector error correction model as we
do not encounter the issue of Barlett’s (1957) paradox. Bartlett’s paradox
essentially states that if we use improper priors on all parameters (many
ignorance priors tend to be improper), the posterior probability attached to
the smallest model will be one and all other (larger) models will be assigned
a posterior probability of zero. Strachan and van Dijk (2004) demonstrate
that this issue is linked directly to the relative dimensions of the parameter
spaces in the different models and the subsequent rate of divergence of the
prior normalising constants4 for improper priors.
To explain, we separate the priors into those for parameters determining

the long run behaviour, β and η, and those determining the short run dynam-
ics, Π and Σ. Across the models of cointegrating processes, the dimensions
of Π and Σ do not change. The dimensions of β and η do change, but these
parameters have compact supports such that the most appropriate ignorance
or diffuse priors will be proper. This feature is useful in a Bayesian approach
as it implies we may use ignorance priors upon all parameters and the Bayes
factors and posterior probabilities for the various models will still be well
defined. There are several precedents for using improper priors only for the
common (to all models) parameters and proper priors for the remaining pa-
rameters when computing posterior model probabilities. See for example,
Fernándes, Ley and Steel (2001) and further examples listed in Kass and
Raftery (1995).
Several prior specifications have been proposed in Bayesian cointegration

literature, each having one or more attractive properties. Geweke (1996) pro-
posed a proper Normal-Inverted Wishart prior which permitted an efficient
Gibbs sampling scheme for the VECM. This prior avoids problems of lo-
cal nonidentification in computation and implies a prior on the cointegrating
space that is coherent with the use of linear identifying restrictions. Although
the issue of local nonidentification does not arise in this model specification

4Clearly an improper prior cannot be normalised so by ‘normalising constant for an
improper prior’ we mean the integral of the kernal of the prior over a support of given
diamter.
By rate of divergence, we mean the rate at which the normalising constant diverges to

infinity as the diameter of the support increases to infinity.
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used in this paper, a Normal prior for Π and a Wishart for Σ−1 could be used
that would provide analytical tractability and simplify computation.
Early work by Stein (1956, 1960, and 1962) established that the shrinkage

prior can produce estimates with smallest frequentist loss (smaller than for
the maximum likelihood estimator) and the resultant estimator is therefore

admissible. This prior for π = vec (Π) has the form (π0π)−(n
2l−2)/2 and has

been investigated and employed by several authors (see for example Stein
1956, 1960, 1962, Lindley 1962, Lindley and Smith 1972, Sclove 1968, 1971,
Zellner and Vandaele 1974, Berger 1985, Judge et al. 1985, Mittelhammer et
al. 2000, and Leonard and Hsu 2001). While the early work demonstrated
admissibility in specific situations, in more general models it has also been
shown to produce an estimator with smaller expected frequentist loss than
standard estimators as may result from flat or proper informative priors (see
for example, Zellner 2002 and Ni and Sun 2003). Of particular importance to
this paper is work by Ni and Sun (2003) who provide evidence of improved
performance with this prior for estimating the parameters of a VAR.
In an attempt to reconcile classical and Bayesian evidence on unit roots

in macroeconometric time series, Phillips (1991a) proposed the Jefferys prior
- defined as the square root of the determinant of the information matrix - as
an appropriate objective reference prior to counter a bias introduced by flat
priors. The arguments for this prior are based upon information theoretic
justifications and its invariance properities. Generalising from univariate
analysis of unit roots to cointegrating systems, Kleibergen and van Dijk
(1994) propose the Jeffreys prior for an additional, more practical reason.
That is, as the square root of the determinant of the information matrix,
the Jeffreys prior is zero at points of local non-identification and so excludes
these points from the support under the posterior. As a result, Kleibergen
and van Dijk were able to develop a valid Markov chain sampling scheme to
allow estimation and this approach was successfully adapted to the triangular
model by Martin & Martin (2000), Martin( 2000), and Martin (2001).
Here we develop the Jeffreys prior for the short run dynamics and a prior

that retains many of the attractive properties of the Jeffreys prior for the
long run parameters. As εt ∼ N (0,Σ) , we obtain the contribution to the log
of the likelihood for one observation, lt, as

lt = −
1

2
ln (2π)− 1

2
ln |Σ|− 1

2
trΣ−1εtε

0
t.

The log likelihood for a sample of size T is then l = ΣT
t=1lt. The information
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matrix, I, is defined as the minus the expectation of the Hessian of5 lt.
A problem arises in deriving the full Jeffreys prior when we attempt to

take expectations of the second partial derivatives with respect to the space
of β, p. As these partial derivatives perturb the from space of β, the expecta-
tions of terms such as ∂2lt

∂(vecp)∂(vecp)0
will involve expectations of nonstationary

variables with respect to their unconditional distributions. As these distrib-
utions do not in all cases exist or are not defined (as they are nonstationary),
this component of the information matrix is not generally defined. To give
a feel for the problem, the unconditional expectation E (β0xt) will be well
defined as β0xt has a stationary distribution. However, the derivative with
respect to the elements of β, ∂β

∂p
, will span a different space to β, and so

E
³
∂β
∂p
xt
´
will not be generally6 defined.

Possible solutions to this problem are to condition upon the intial values
or to take E (x0txt) = x0txt. In this paper, we use only the partial Jeffreys
priors for Π and Σ and specify an alternative prior for p which captures the
attractive properties of the Jeffreys prior. Therefore the relevant block of the
information matrix (for Π and Σ) is

I =

⎛⎝ −E ³ ∂2lt
∂(vecΠ)∂(vecΠ)0

´
0

0 −E
³

∂2lt
∂(vechΣ)∂(vechΣ)0

´ ⎞⎠
=

µ
Σ−1 ⊗E (ω0tωt) 0

0 1
2
D0

n (Σ
−1 ⊗ Σ−1)Dn

¶
As ωt is a stationary, zero mean, VAR process, the expectation Γ =

E (ω0tωt) is well defined. The Jeffreys prior for Π and Σ is then

|I|1/2 = |Γ|
n
2 |Σ|−

n(l+1)+1
2 2−

n
2 .

The nl×nl matrix Γ is a symmetric Toeplitz matrix made up of n×n blocks
Γi = E

¡
wtw

0
t−i
¢
, i = 0, . . . , l−1. For given values of Π and Σ, we can readily

5It is common to specify the information matrix in terms of the Hessian for the full log

likelihood l as Fn = −E
³

∂2l
∂(vecΠ)∂(vecΠ)0

´
. However, for forming the Jeffreys prior in this

case Fn = nF, and the two are equivalent because |Fn| = |nF| ∝ |F| .
6Cases in which this expectation is well defined and finite may be found. For example,

if xt were a vector of matingales all with bounded support, the martingale convergence
theorem implies xt will have a convergent distribution with well defined moments. However
result this is not true for all I (1) processes.
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solve for the Γi using the multivariate Yule-Walker equations. As a simple
example, let l = 2 then

Γ = E (ω0tωt) =

∙
Γ0 Γ1
Γ1 Γ0

¸
and from (4) we have the equations

Γ0 −Π1Γ1 −Π2Γ2 = Σ,

Γ1 −Π1Γ0 −Π2Γ1 = 0,

Γ2 −Π1Γ1 −Π2Γ0 = 0.

Vectorising the above equations and using the definitions7 γ0 = vech (Γ0) ,
γ1 = vec (Γ1) and γ2 = vec (Γ2) , we have the solution defined by⎡⎣ In(n+1)/2 −D+

n (In ⊗Π1) −D+
n (In ⊗Π2)

− (In ⊗Π1)Dn In2 − (In ⊗Π1) 0
− (In ⊗Π2)Dn − (In ⊗Π1) In2

⎤⎦⎡⎣ γ0
γ1
γ2

⎤⎦ =
⎡⎣ vech (Σ)

0
0

⎤⎦ .
Of course straightforward substitution for Γ2 with Π1Γ1 +Π2Γ0 reduces the
number of equations to be solved by n2.
In specifying the prior for β and η, we begin with the principle that

the object of interest in cointegration analysis is the cointegrating space, p
(following from arguments in Strachan and Inder 2004, Strachan and van Dijk
2004, and Villani 2005) which is an element of the Grassman manifold. The
same arguments hold for η as for β, so we will only discuss β.As demonstrated
in Strachan and Inder (2004), specifying β as semiorthogonal such that it is an
element of the Stiefel manifold, and specifying a Uniform distribution on the
Stiefel manifold implies a Uniform distribution on the Grassman manifold.
As with the Jeffreys prior, this prior for p is invariant to rescaling of the data
or transformations of β.
To demonstrate this last point, consider two types of transformations.

The first is β∗ = βκ and the second β+ = Pβ where κ and P are full rank.
The first transformation (β∗) implies a rotation of the vector β within the
cointegrating space p = space (β) = space (β∗) such that the space is not
affected. This transformation might arise if we wished to change the way we

7The matrix Dn is a section matrix that solves, for example, vec (Σ) = Dnvech (Σ) ,
and D+

n is the Moore-Penrose inverse of Dn. such that D+
nDn = In(n+1)/2. See Magnus

and Neudecker (1988) for further definitions and explanations of these terms.
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identify the elements of β to enable estimation. For example, we might wish
to employ linear identifying restrictions such that β∗ = [Ir B0]0 . In this
case the Uniform prior for p would be induced by a Cauchy prior for B and
this Cauchy form results directly from the Jacobian for the transformation
β → B. Provided κ is of full rank, the posterior for p will be invariant to
such a transformation.
The second transformation (β+) implies a rotation of the cointegrating

space p. Mapping from β+ to the Stiefel manifold by eβ = β+
¡
β+0β+

¢− 1
2 again

implies a Uniform prior for eβ will induce a Uniform prior for the cointegrating
space. Thus the appropriate ignorance prior remains the same — uniform on
the Grassman manifold. In this case, however, the posterior distribution for
the cointegrating space will not be invariant to this transformation. A space
previously located at p = space (β) will now be located at p+ = space

³eβ´ =
space

¡
β+
¢
6= p = space (β). Of course this result will hold no matter what

identification method is used and is, in fact, desirable. The result is desirable
since the cointegrating space must rotate to accommodate the new linear
combinations that are stationary by xtβ = xtP

−1Pβ = ztβ
+. Consider,

for example, if st = st−1 + (WhiteNoise) is a stochastic trend, vt = ast +
(WhiteNoise) and yt = bst + (WhiteNoise) such that vt and yt are I (1) ,
then b

a
vt − yt ∼ I(0). If however we have data on zt = 100yt = 100bst +

(WhiteNoise), which implies

xtβ =
b

a
vt − yt =

£
vt yt

¤ ∙ b/a
−1

¸
= xtP

−1Pβ

=
£
vt yt

¤ ∙ 1 0
0 100

¸ ∙
1 0
0 .01

¸ ∙
b/a
−1

¸
=

£
vt zt

¤ ∙ b/a
−.01

¸
then b

a
vt − .01zt ∼ I(0) and the cointegrating space has rotated as required.

4 Application

In this section we use the above models to obtain inference upon the integra-
tion and cointegration properties of Australian M1 measure of money, prices
and income to investigate support for a stable money demand relation. We
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have quarterly observations in logs of the measure of M1, mt, the price level,
pt, such that mt − pt measures real money, and real gross national income,
yt. We collect these variables into the vector xt = (mt, pt, yt) . The sample
is from September 1976 to December 2002 sourced from the web site of The
Australian Bureau of Statistics, specifically tables D03, G09 and G02.
As we are interested in the existence of some stable relation among these

variables, a common approach to this question (see for example Johansen,
1995 and Funke, Hall and Beeby, 1997) is to regard the money demand
relation as the cointegrating relation among the variables

zt = β1mt + β2pt + β3yt + µ1 + δ1t = xtβ.

This implies quite a relaxed form of stability as it allows for trends and
possibly unit roots and only requires that this relation be integrated of a
lower level than the original variables. For a more complete investigation of
this type of problem see Fiess and MacDonald (2001). A further question
of interest is whether this stable relation is the velocity of money. From the
money demand relation above we can see that stability of the (negative log)
velocity of money, ν = mt− pt− yt, is implied by the identifying restrictions
β1 = −β2 = −β3 or H = (1,−1,−1)0 in the notation of Section 2.The
data are plotted in Figure (1) and from this plot we can see there is little
evidence of quadratic trends, but certainly there may be linear trends. We
conduct our analysis using the shrinkage and Jeffreys priors described earlier
for the short-run dynamics. Using Theorem 3 of Ni and Sun (2003), with
T = 101, n = 3 and l = 2 in (4), we can show the posterior with the shrinkage
prior will be proper. We estimate the marginal likelihoods using independent
importance sampling. The details of this computation are given in Appendix
III.
Using the Jeffreys prior we find a posterior probability of one for Process

I implying that the variables are I (2) but cointegrate to form a single I (0)
relationship with a nonzero mean. As there is one cointegrating relation, this
suggests that there exists an identifiable money demand relation. However,
the evidence is against the stability of the money demand relation.
The models with more than 1% posterior probabilities are reported for

the shrinkage prior in Table 1 below, along with these probabilities.

Table 1: Posterior probabilities using the shrinkage prior of models.
Probabilities are expressed as percentages.

19



Se
p-

76

Se
p-

78

Se
p-

80

Se
p-

82

Se
p-

84

Se
p-

86

Se
p-

88

Se
p-

90

Se
p-

92

Se
p-

94

Se
p-

96

Se
p-

98

Se
p-

00

Se
p-

02

m

p

y

Figure 1: Plot of quarterly log M1, m, price level, p, and real gross national
income, y. The sample is from September 1976 to December 2002.
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Model Description
Restricted (R) Process Deterministic β Rank P (M |y)

R II E (βxt) = 0, No trend in xt 1 41.1
R II E (βxt) = µ, trend in xt 1 23.9
R 0 E (βxt) = µ, No trend in xt 1 15.9
R 0 E (βxt) = µ, trend in xt 1 6.7
R 0 E (βxt) = 0, No trend in xt 1 3.6
R 0 E (βxt) = µ+ δt, trend in xt 1 1.9
U II E (βxt) = 0, No trend in xt 1 1.5
R in the first column denotes the restriction sp (β) ⊆ sp (H).

The results above agree with those from the Jeffreys prior in that with
posterior probability P (r = 1|y) = 98.9%, there is strong evidence of a single
stable relationship among money, prices and income. Conditional upon there
being one cointegrating relation, the posterior probability that this relation-
ship is the velocity of money is P (sp (β) ⊆ sp (H) |r = 1, y) = 96.8% (the
marginal probability of this restriction is P (sp (β) ⊆ sp (H) |y) = 95.9%).
These two results provide strong evidence that the velocity of money is more
stable than its components: money supply; prices; and income. However,
this does not suggest that the velocity of money is necessarily stable in the
sense of being an I (0) process. The probability of this event, which is the
joint probability of Process 0 and r = 1, is a moderately low 28%.
On the general statistical properties of xt, the posterior probability that

xt is I (d) and β0xt is I (d− 1) (that xt is CI (d, 1) in the notation of Engle
and Granger (1987)) is quite strong with posterior probability of 96.6%. The
evidence suggests it is most likely, with 67.7% probability, that this relation-
ship occurs as the vector xt is I (2) and cointegrates as CI (2, 1) (Process
II). There is, however, a significant probability of 28.9% that xt is I (1) and
cointegrates as CI (1, 1) (Process 0). The evidence on which deterministic
processes are evident is not clear. There is moderate evidence (52.1%) that
there some deterministic process is present, and given this is the case, the
most likely of these is that there is a linear trend in xt with conditional prob-
ability of 61.5%. The conditional probability of a quadratic trend is only
4.4%.
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5 Conclusion

In this paper we have generalised the triangular model of Phillips (1991)
to permit a wide range of cointegrating processes to be investigated within
a simple general specification. Importantly the specification in this paper
incorporates a wide range of I (2) processes some of which do not appear
to have been previously considered. The specification of the cointegrating
relations as variables of interest could lead to other applications outside those
considered in this paper. We conclude with a brief discussion of one possible
new direction.
The specification in (4) provides a simple means of investigating the re-

sponses to shocks to the stationary cointegrating relations and the stochastic
trends. Recent work in applied economic analysis, particularly in macro-
econometrics (see for example, Lettau and Ludvigson 2004, Koop, Potter
and Strachan 2004 or Strachan and van Dijk 2004), has made use of de-
compositions of the variance of processes into permanent and temporary
components in an effort to better understand the behaviour and relation-
ships among variables. There are several valid ways to decompose a series
into temporary and permanent components to permit the computation of
variance decompositions. On the principle that the limit of the effect of a
temporary shock will be zero whereas for a permanent shock will be nonzero,
Gonzalos and Ng (2001) treat β0xt as the temporary component of xt and
α0⊥xt as the permanent component since premultiplication by α

0
⊥ eliminates

the stationary relation αβ0xtin (5). This specification implies the temporary
and permanent shocks may be represented as β0νt and α0⊥νt respectively.
Centoni and Cubadda (2002) use the Wold decomposition to demonstrate
that α0Σ−1νt and α0⊥νt may also be regarded as temporary and permanent
shocks.
Recall the decomposition xt = ββ0xt + β⊥β

0
⊥xt. Since premultiplication

by β eliminates the common stochastic trends, βxt may be regarded as the
temporary component and β0⊥xt can be regarded as the common trends (Jo-
hansen 1995, Corollary 4.4) or the permanent component. This implies that
the temporary shocks will be ε1,t = β0νt, and ε2,t = β0⊥νt will be the per-
manent shocks. Thus the standard variance decomposition for a stationary
VAR in wt will give the proportions due to temporary and permanent shocks
as those due to ε1,t and ε2,t respectively.
Similarly we could decompose the variances of I (2) processes into com-

ponents attributable to I (0) , I (1) and I (2) shocks. This depth of analysis
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does not yet appear to have been conducted.
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7 Appendix I

In this appendix we transform from wt to the implied process generating xt
to show how the stochastic trends enter xt and how premultiplication by β0

removes those trends.
Under the assumption given in the paper that C 6= 0, the process

wt = C (L) εt

is I (0). Premultiply by [β β⊥] where β
0β = Ir and β0⊥β⊥ = In−r,

[β β⊥]wt = ββ0xt + β⊥β
0
⊥∆xt = xt − β⊥β

0
⊥xt−1

= [β β⊥]C (L) εt.

By repeatedly substituting for the lagged value of xt we obtain

xt = β⊥β
0
⊥x0 + [0 β⊥]

T−1X
i=1

C (L) εt−i + [β β⊥]C (L) εt.

Next wemake use of the well known decompositionC (L) = C+C∗ (L) (1− L)
to show how the stochastic trend accumulates in xt by

xt = β⊥β
0
⊥x0+[0 β⊥]C

T−1X
i=1

εt−i+[0 β⊥]
T−1X
i=1

C∗ (L)∆εt−i+[β β⊥]C (L) εt.
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Clearly then, premultiplication be β0 will annihilate the stochastic trend as

β0xt = [Ir 0]C (L) εt and

β0⊥xt = β0⊥x0 + [0 In−r]C
T−1X
i=1

εt−i + [0 In−r]
T−1X
i=1

C∗ (L)∆εt−i + [0 In−r]C (L) εt.

8 Appendix II

We provide the forms when we transform from a V AR in wt to a V AR
in xt with the implied VECM for xt. First, we provide the form of the
transformation of the V AR (l) in wt to the V AR (l + 1) in xt and VECM in
xt. We begin from (4) but add the decomposition∙

w1,t
w2,t

¸
=

lX
i=1

∙
Π11,i Π12,i
Π21,i Π22,i

¸ ∙
w1,t−i
w2,t−i

¸
+ εt.

Premultiplying by B = [β β⊥] and rearrange, we obtain the V AR (l + 1) in
xt

xt = [β β⊥]

∙
Π11,i Π12,1
Π21,1 Π22,1 + In−r

¸ ∙
β0

β0⊥

¸
xt−1 +

lX
i=2

[β β⊥]

∙
Π11,i Π12,i −Π12,i−1
Π21,i Π22,i −Π22,i−1

¸ ∙
β0

β0⊥

¸
xt−i

+ [β β⊥]

∙
0 −Π12,l
0 −Π22,l

¸ ∙
β0

β0⊥

¸
xt−l−1 + εt.

The usual manipulations result in the form for the VECM with l lags of
differences

∆xt = αβ0xt−1 +
lX

i=1

Γi∆xt−i + νt

where, using ββ0 = In − β⊥β
0
⊥,

α = β
¡
Ir + Σl

i=1Π11,i
¢
+ β⊥Σ

l
i=1Π21,i,

Γi = βΠ12,i−1β
0
⊥ + β⊥Π22,i−1β

0
⊥ − βΠ11,iβ

0 − β⊥Π21,iβ
0

for i = 1, ..., l − 1
Γl = [0 βΠ12,i−1β

0 + β⊥Π22,i−1β
0
⊥]
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Next, if we transform from the equation VECM in xt in (5) to the VAR
in wt in (4) we obtain

Π1 =

∙
Ir + β0α+ β0Γ1β β0Γ1β⊥
β0⊥ [α+ Γ1β] β0⊥Γ1β⊥

¸
Πi =

∙
β0 [Γi − Γi−1]β β0Γi−1β⊥
β0⊥ [Γi − Γi−1]β β0⊥Γi−1β⊥

¸
for i = 2, ..., l − 1

Πl =

∙
−β0Γl−1β 0
−β0⊥Γl−1β 0

¸
and εt =

∙
β0νt
β0⊥νt

¸
.

9 Appendix III

We estimate the marginal likelihoods using independent importance sam-
pling. We first draw the cointegrating vectors β and η, then draw the co-
variance matrix from an inverted Wishart distribution that depends upon β
and η. Finally we draw Π from a Normal distribution that depends upon β,
η and Σ. The details are as follows.
Draws of β and η are taken independently from a matrix angular central

Gaussian distribution (MACG) (see Chikuse, 1990) located approximately at
the posterior modal values. These modal values of β and η were determined
from the burn-in sample of 33, 333 draws. During the burn-in period, the
location of the MACG distributions were taken as the first r (in the case of
β) and the first s (in the case of η) co-ordinate vectors. Denote the respective

modes as eβ and eη, and the MACG distributions as p³β|eβ´ and p (η|eη). We
demonstrate how to obtain a draw from the MACG p

³
β|eβ´ and the process

will be similar for p (η|eη) .
Draw X from the matrix Normal with zero mean and covariance matrixeβeβ0 + eβ⊥eβ0⊥τ where we set τ between zero and one. A value of τ close to

zero will tend to produce draws very close to the space of eβ. At τ = 1, the
MACG collapses to the Uniform distribution on the Steifel manifold. Next
decompose the matrix X as X = V κ where V is semiorthogonal and κ is
lower triangular. Then take β = V (and discard κ) as a draw from p

³
β|eβ´.

Having obtained β and η, construct wt and ωt. The covariance matrix is
then drawn from the inverted Wishart conditional upon β and η proportional
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to

|Σ|−(T−k)/2 exp
½
−1
2
trΣ−1S

¾
where k is the number of columns in Π, S =

PT
t=1

³
w0t − ωt

bΠ´0 ³w0t − ωt
bΠ´

and bΠ =
³PT

t=1 ω
0
tωt

´−1PT
t=1 ω

0
tw

0
t. Finally the Π matrix is drawn from

the Normal distribution, conditional upon Σ, β and η, with mean bΠ and

covariance matrix Σ⊗
³PT

t=1 ω
0
tωt

´−1
.

We now have the draws from

g = g (β, η,Σ,Π) = p
³
β|eβ´ p (η|eη) p (Σ|β, η) p (Π|β, η,Σ) .

Collect the free parameters in (β, η,Σ,Π) into the vector θ and denote the
product of the likelihood and the priors as f = f (β, η,Σ,Π|y)8. Now we can
write the marginal likelihood as

R
fdθ = m. Note the relationZ

fdθ =

Z
g
f

g
dθ = m

implies that the expectation of the ratio f
g
is m. That is Eg

³
f
g

´
= m. There-

fore if we take draws of θ(i) for i = 1, . . . , J of θ from g and compute the
average of the ratio f (i)

g(i)
, then we have the approximation to the marginal

likelihood as bEµf
g

¶
=
1

J

JX
i=1

f (i)

g(i)
= bm.

The above specification of g will match the term in the posterior propor-
tional to the likelihood so the term f involves only the terms in the priors.
Note that we must know g completely, including the normalising constants.
The Normal and inverted Wisharts distributions are well known, while ex-
pressions for the MACG are given in Chikuse (1990) and Strachan and Inder
(2004).
A total of 100,000 draws were taken with the first third used as the burn-in

and the remaining draws were used to estimate the marginal likelihoods.

8This expression excludes the normalising constants for the priors for Σ and Π as they
will cancel in any Bayes factor calculation.
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