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abstract

We present an algorithm for computing the dimensions of higher secant varieties
of minimal orbits. Experiments with this algorithm lead to many conjectures on
secant dimensions, especially of Grassmannians and Segre products. For these two
classes of minimal orbits, we also point out a relation between the existence of
certain codes and non-defectiveness of certain higher secant varieties.

1. Introduction

A generic polynomial of degree d in C[x] can be written as a sum of b(d + 1)/2c
powers (ax+ b)d, a, b ∈ C. A generic n×n-matrix of rank k and trace 0 is the sum
of k matrices of rank 1 and trace 0; in fact, this is true for any trace zero matrix of
rank k, though that doesn’t matter here. But what is the generic rank of a tensor
in (C2)⊗10, i.e., if we want to write a generic element of this tensor power as a sum
of decomposable tensors, then how many do we need?

These are instances of a general type of problem, which has been solved only
in very few cases. In this note we do not solve many instances, either, but we do
present a program for investigating small concrete instances. Also, we will boldly
state some conjectures that our experiments with this program suggest. We hope
that this note will be an incentive for people working in this field, either to prove
or disprove our conjectures, or to use our program and experiment for themselves.

To be more concrete on the type of problem that our program can handle, let
G be a reductive complex algebraic group and let V be a non-trivial irreducible
module for G. The projective space PV contains a unique (Zariski-)closed orbit X,
and we let C ⊆ V be the affine cone over X. For any natural number k, we write
kX for the Zariski closure of the union of all projective (k−1)-spaces spanned by k
points on X; kX is called the (k − 1)st secant variety of X. Often the term secant
variety itself is used for the 1st secant variety, while those for k > 2 are referred to
as higher secant varieties. More concretely, the affine cone over kX is the Zariski
closure of

kC := {v1 + . . . + vk | vi ∈ C}.
In the examples above G is equal to SL2 acting on the space V of binary forms of
degree d, or to SLn acting on its Lie algebra, or to SL10

2 acting on the space (C2)⊗10

of 10-tensors, respectively. Accordingly, C is the set of pure d-th powers of linear
forms, or the set of trace zero matrices of rank at most 1, or the set of all pure
10-tensors.
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One can ask many questions about the sets kX or kC. For instance: what are
polynomial equations for the kX? For the matrix example we know them: kC is
the set of trace zero matrices of rank at most k, and these are characterised (even
scheme-theoretically, see [7]) by the vanishing of all (k + 1)-minors. For the binary
forms and the 10-tensors we do not know equations. Another question: are the sets
kC closed? In the matrix case they are, for the 10-tensors we do not know, and
for the binary forms they are not. One can show, in fact, that a polynomial with a
zero of multiplicity m, 0 < m < d, cannot be written as a sum of less than m + 1
pure d-th powers, so that the sets kC with b(d + 1)/2c ≤ k < d cannot possibly be
closed.

But by far the most modest property of kC to want to determine is its dimension
dim kC := dim kC = dim kX + 1, and this is precisely what our algorithm does.
As the addition map (k − 1)C × C → kC is dominant, dim kC is at most dim C +
dim(k − 1)C; we call the minimum of the latter number and dim V the expected
dimension of kC. If kC has the expected dimension, then kC (and kC and kX)
are called non-defective. Otherwise, kC, kC, and kX are called defective. The
difference min{dim V,dim C + dim(k − 1)C} − dim kC is called the k-defect. If
kC is not defective for any k ≥ 1, then call C and X themselves non-defective;
otherwise, we call them defective.

As we will see below, calculating dim kC in concrete cases boils down to straight-
forward linear algebra computations—at least if one allows for a small error probability—
and only in rare concrete cases does kC not have the expected dimension. And yet
it is very difficult to prove anything substantial in this direction.

First, however, we list some important things that are known about these higher
secant varieties. The standard reference for secant varieties, containing a wealth
of classification results on varieties with constraints on their secant dimensions, is
[19].

(1) Take G = SLn and let V be the space of homogeneous polynomials in
x1, . . . , xn of degree d. Then C is the set of d-th powers of linear forms.
A simple duality shows that dim kC is the codimension of the space of
homogeneous polynomials in x1, . . . , xn of degree d that vanish together
with all their first partial derivatives on k fixed, generic points. This relates
higher secant varieties to the problem of multivariate interpolation, which
was solved in the series of papers [1, 2, 3].

(2) For G a simple algebraic group acting on its Lie algebra g, the set C consists
of all “extremal elements”, that is: elements X ∈ g for which ad(X)2g ⊆
CX. The first secant variety is known in this case ([14, 15]), and for classical
G the higher secant varieties were completely determined in [4].

(3) For G = SLn and V the d-fold exterior power of Cn the set C is the affine
cone over the Grassmannian, in its Plücker embedding, of d-dimensional
vector spaces in Cn. The paper [8] lists some defective Grassmannians,
and proves that for d > 2 and kd ≤ n the variety kC is not defective. In
Subsection 4.1 we generalise this latter result, and conjecture that the list
of defective Grassmannians in [8] is complete.

From here, we proceed as follows: in Section 2 we present our algorithm for
computing dim kC, Section 3 deals with some implementation issues, and Section
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4 lists our conjectures based on experiments with that implementation. These con-
jectures concern Grassmannians and Segre products, as well as a general finiteness
statement.

2. The algorithm

We retain the notation G, V, X, C from the Introduction.

2.1. The highest weight orbit. We reduce the computation of dim kC to straight-
forward linear algebra as follows. First, we recall that X is the orbit of highest
weight vectors. More precisely, let B be a Borel subgroup of G and let T be a
maximal torus of G in B. For standard notions in algebraic group theory such as
these we refer to [5]. Let v0 ∈ V span the unique B-stable line Cv0 in V . Then the
cone C over the minimal orbit X equals C = Gv0∪{0}—recall that V was assumed
non-trivial, so that this really is a cone. Let P ⊇ B be the parabolic subgroup of
G stabilising Cv0, and denote by g, p the Lie algebras of G, P , respectively.

2.2. A dense orbit under a unipotent subgroup. Now let u− be the direct
sum of all T -root spaces in g that are not in p. Then u− is the Lie algebra of a
unique connected (unipotent) subgroup U− of G. Let X1, . . . , Xr be a basis of u−
consisting of T -root vectors. Then the following statements are well known:

(1) The map Cr → U− sending (t1, . . . , tr) to exp(t1X1) · · · exp(trXr) is an
isomorphism of varieties.

(2) The U−-orbit U−v0 is the intersection of C with the affine hyperplane where
the v0-coordinate is 1 (relative to a weight basis of V containing v0).

(3) Hence the image of Uv0 in PV is dense in X.
Our program works, in fact, with elements in Uv0 rather than all of C.

2.3. Terracini’s lemma. Consider the addition map π : Ck → kC, (v1, . . . , vk) 7→∑
i vi. By elementary algebraic geometry the map sending the k-tuple v = (v1, . . . , vk)

to the rank of dvπ is lower semi-continuous, and its generic value is dim(kC) by
the dominance of π. On the other hand, the image of dvπ equals

k∑
i=1

TviC,

where TviC denotes the tangent space to C at vi, regarded as a linear subspace of
V . We conclude that the dimension of this latter space is always a lower bound
for dim kC, while it is equal to dim kC for generic tuples v. This observation is, in
fact, one of the first results in the theory of join and secant varieties, and due to
Terracini [18].

2.4. The algorithm. Now our algorithm, which we have implemented in GAP [9],
is as follows:

Input: (g, λ, k), where g is a split rational semisimple Lie algebra with a dis-
tinguished split Cartan subalgebra h and a distinguished Borel subalgebra
b containing h; λ ∈ h∗ is a b-dominant weight; and k is a natural number.

Output: a lower bound for dim kC which with high probability equals dim kC.
Method:

(1) Construct the irreducible representation ρ : g → gl(V ) of highest
weight λ.
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(2) Denote by v0 the highest weight vector of V , and compute representa-
tives (X1, . . . , Xr) of the negative h-root spaces in g that do not vanish
on v0 (these span u−).

(3) For i ∈ {1, . . . , r} compute those divided powers ρ(Xi)d/(d!) that are
non-zero.

(4) Set T := {0}, the zero subspace of V .
(5) Compute Tv0C := Kv0 + u−v0.
(6) Repeat k times the following steps:

(a) Choose rational numbers t1, . . . , tr at random.
(b) Compute u := exp(t1ρ(X1)) · · · exp(trρ(Xr)) using the divided

powers of the ρ(Xi) for faster computation of the exponentials.
(c) Set T := T + uTv0C.

(7) return dim T .

3. Implementation

We have implemented the algorithm in the computer algebra system GAP4 ([9]),
using the built-in functionality for semisimple Lie algebras and their representa-
tions. All steps are rather straightforward to implement. It turns out that when
working over the field Q, the main bottleneck of the algorithm is the computation
of a basis of the space T in Step 6(c). For example the computation of the secant
dimensions of the Grassmannian of 5-dimensional subspaces in an 11-dimensional
vector space took 362 seconds, of which 309 were spent in the basis computation
of Step 6(c).1 This is due to the fact that the coefficients of the vectors grow very
fast (probably because of their random nature). In the example mentioned before,
the vectors in a triangularised basis were dense, and contained rational numbers of
up to 70 digits in both denominator and numerator.

For this reason we have performed the computations modulo a prime p. This
however presents a new problem: the coefficients of the matrices of the divided
power in Step (3) may not be integral. We can get around this by computing an
“admissible lattice” in the highest weight module V (cf. [12]). An algorithm for this
purpose is not present in GAP4. We have implemented an algorithm for this based
on the theory of crystal bases (cf. [13]). Roughly this works as follows. First we
note that V is also a module for the quantum group Uq(g). Now from the crystal
graph of V we get a set of elements Fi in the negative part of Uq(g), with the
property that {Fi ·v0} spans an admissible lattice (for details we refer to [10], [16]).
Each Fi can be mapped to an element F ′

i of the negative part of the universal
enveloping algebra U(g). Then {F ′

i · v0} spans an admissible lattice of V . This
approach has the advantage that we do not need to check linear independence of
the basis elements. The necessary algorithms for quantum groups are implemented
in the GAP4 package QuaGroup ([11]). With this the computation in the example
above took 71 seconds, with only 3 seconds spent in Step 6(c).

When computing modulo a prime the computed dimensions may be smaller than
the ones over Q. However, we have an upper bound for the dimension of kC (namely
k dim C) which “usually” gives the correct dimension. It rarely happens that this
upper bound is not reached. However, if this happens to be the case, then we
perform the computation modulo a bigger prime, and eventually over Q. If we still

1The computations in this section were done on a 2GHz processor, with 500M RAM memory
for GAP



SECANT DIMENSIONS OF MINIMAL ORBITS: COMPUTATIONS AND CONJECTURES 5

do not attain the upper bound in that case, we conclude that we are in a defective
situation with high probability.

Another problem occurs when the dimension of V gets large (e.g., close to 1000).
Then storing the matrices in Step (3) may lead to memory problems. To get around
this we used an ad-hoc implementation of sparse matrices (only storing the nonzero
entries). This greatly reduces the memory requirements, and for dimensions greater
than roughly 500 leads to a speed-up for the matrix multiplications in Step 6 (b)
as well.

n d total module basis dim V (λ) kmax

11 5 71 60 3 462 14
12 6 222 165 23 924 24
13 6 973 686 160 1716 39
14 7 5456 3249 1380 3432 68

Table 1. Time (in seconds) for the computation of the secant di-
mensions of d-dimensional subspaces in n-space. The third column
has the total time spent. The fourth and fifth have respectively
the time used for the construction of the module along with the
matrices in Step (3), and for the computation of the basis in Step
6(c). The sixth column displays the dimension of the g-module,
and the last column has kmax, which means that dim kC has been
computed for 1 ≤ k ≤ kmax.

Table 1 contains some run-times of the algorithm, when computing the secant
dimensions of the Grassmannian of d-dimensional subspaces of n-space. We see
that the running times increase rather sharply, mainly because the same holds for
the dimensions of the g-modules. Most of the time is spent on the construction of
the module V (λ) and the matrices of Step (3). For small n the time used in Step
6(c) is negligible, but as n increases the percentage of the time spent in that step
also increases.

4. Conjectures

4.1. Grassmannians. For G = SLn and V =
∧d(Cn) the minimal orbit X is the

Grassmannian, in its Plücker embedding, of d-dimensional vector subspaces of Cn,
and the cone C over X is the set of (completely) decomposable wedge-products in
V . For d = 2 the set kC equals is the set of all skew-symmetric matrices of (usual
matrix-) rank at most 2k (see, e.g., [19] or [4]); we therefore exclude d = 2 in the
following conjecture.

Conjecture 4.1. Suppose that d > 2 and also that 2d ≤ n. Then C is defective in
exactly the following cases:

(1) n = 7 and d = 3, in which case (dim kC)k equals (13, 26, ∗34, 35);
(2) n = 8 and d = 4, in which case (dim kC)k equals (17, 34, ∗50, ∗64, 70); or
(3) n = 9 and d = 3, in which case (dim kC)k equals (19, 38, 57, ∗74, 84),

where ∗ indicates the defective dimensions.



6 KARIN BAUR, JAN DRAISMA, AND WILLEM DE GRAAF

We have verified this conjecture with our program for all n up to 14. The
defective Grassmannians in the list above were already found in [8]. In fact, it is
somewhat tedious, but not hard, to prove the following proposition by hand.

Proposition 4.2. In the setting of Conjecture 4.1, write n = qd+r with 0 ≤ r < d.
Then kC is not defective for k = 1, . . . , q, and (q + 1)C is defective if and only if
(n, d, q + 1) ∈ {(7, 3, 3), (8, 4, 3), (9, 3, 4)}.

Outline of proof. In fact, for these k the group SLn has a dense orbit on the k-fold
Cartesian product Xk of X: Choose a basis

e11 . . . e1d

e21 . . . e2d

...
...

eq,1 . . . eq,d

eq+1,1 . . . eq+1,r

.

For i = 1, . . . , q let vi be the wedge product of the i-th row of this array. For
j = r + 1, . . . , d let sj be the sum of the j-th column in this array, and set

vq+1 := eq+1,1 · · · eq+1,rsr+1 · · · sd,

where the product is the wedge product in the Grassmann algebra. Then the orbit
of (Cv1, . . . , Cvk) is dense in Xk for all k ≤ q + 1, so the dimension of kC equals
the dimension of the sum

Tv1C + . . . + Tvk
C.

For k < q + 1 this sum is readily seen to be direct, and we are done. For k = q + 1
we find that kC is defective if and only if Tvk

C contains a non-zero element of⊕
i≤q Tvi

C. Some easy, though tedious, combinatorics and linear algebra shows
that this happens exactly in the cases listed above. �

We conclude with an interesting link between secant dimensions of Grassmanni-
ans and coding theory: a binary code of length n and constant weight d is a subset
of {0, 1}n where every element has exactly d entries equal to 1. The (Hamming)
distance between two elements of {0, 1}n is the number of coordinates where they
differ.

Theorem 4.3. Retain the setting of Conjecture 4.1, and let B be a binary code of
length n and constant weight d with |B| = k. Then the following holds.

(1) If the distance between any two distinct elements of B is at least 6, then
kC is not defective.

(2) If every word in {0, 1}n of weight d has an element of B at distance at most
2, then kC = V .

The second observation is also stated, in a slightly different form, in [17].

Proof. Let e1, . . . , en be a basis of Cn. To every word w in {0, 1}n of weight d we
associate an element of V as follows: if i1 < . . . < id are the coordinates i where
bi = 1, then we set

ew := ei1 · · · eid
∈ V.

Now

Tew
C =

d∑
j=1

ei1 · · · eij−1Cneij+1 · · · eid
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is precisely the span of all eu where u is a word of weight d at distance at most 2
from w. Hence the dimension of

∑
b∈B Teb

C (and therefore that of kC) is at least
the cardinality of the set of all weight-d words in {0, 1}n at distance at most 2 from
B. This implies both statements. �

This observation generalises [8, Theorem 2.1.ii].

4.2. Segre powers. For G = SLd
n and V = (Cn)⊗d the minimal orbit X is (Pn−1)d

in its Segre embedding, and the affine cone C over X is the set of decomposable
tensors in V . For d = 2 the set kC corresponds to the set of n×n-matrices of rank
≤ k, so we leave out this well-understood case from our study. Our conjecture is
as follows.

Conjecture 4.4. Suppose that d 6= 2. The variety C is defective if and only if

(1) n = 2 and d = 4, in which case (dim kC)k equals (5, 10, ∗14, 16); or
(2) n = 3 and d = 3, in which case (dim kC)k equals (7, 14, 21, ∗26, 27),

where ∗ indicates the defective secant dimensions.

We have verified this conjecture with our program for d + n ≤ 8 as well as for
n = 2 and d = 9, 10 and for d = 3 and n ≤ 9. Again, it is not hard but tedious to
prove the following proposition.

Proposition 4.5. In the setting of Conjecture 4.4, kC is not defective for k ≤ n,
and (n + 1)C is defective if and only if (n, d) ∈ {(2, 4), (3, 3)}.

The proof is completely analogous to that of Proposition 4.2: here (SLn)d has
a dense orbit on Xk, hence the rank of the differential of the summation map
Ck → kC need only be computed in a point of Ck over this orbit. We omit
the details, but do report funny numeric coincidence: the same computation that
shows that 3C is defective for the Grassmannian of 4-dimensional subspaces of
an 8-dimensional space, also shows that 3C is defective for the 4th Segre power
of PC2. The same (numeric) connection exists between the defect in 4C for the
Grassmannian of 3-dimensional subspaces of a 9-dimensional space and the defect
in 4C for the 3rd Segre power of PC3.

Again, we conclude with a link to coding theory.

Theorem 4.6. In the setting of Conjecture 4.4 let B be a subset of {1, . . . , n}d of
size k. Then the following holds.

(1) If the Hamming distance between any two elements of B is at least 3, then
kC is not defective.

(2) If every element of {1, . . . , n}d is at distance at most 1 from an element of
B, then kC = V .

Again, the second part is also present in [17].

Proof. Let e1, . . . , en be a basis of V . To an element w = (i1, . . . , id) of {1, . . . , n}d

we associate the element ew := ei1 · · · eid
in V , where the product is taken in the

tensor algebra over Cn. Then TewC is precisely the span of all eu where u is at
distance ≤ 1 from w. Hence dim(kC) is at least the cardinality of the union of all
balls of radius 1 around words in B. This implies both statements. �
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4.3. A finiteness question. The experiments with our program suggest the fol-
lowing question: Fix the complex semisimple group G. Is it true that the set of all
irreducible representations of G whose minimal orbit is defective is finite?

Though we dare not formulate this as a conjecture at this stage, the question
is a very natural one. For instance, from the fundamental work of Alexander and
Hirschowitz [1, 2, 3], we know that for each n only finitely many symmetric powers
of the natural representation of SLn have defective minimal orbits.

We give a conjecturally complete list of “defective highest weights” for some small
groups; note that for G = SL2 the minimal orbit in no irreducible representation is
defective.

Conjecture 4.7. The only irreducible representations of G for which the minimal
orbit is defective are those with the following highest weights (in the labelling of [6]):

(1) for G of type A2:
(a) 2ω1 and 2ω2 with secant dimensions (3, ∗5, 6),
(b) 4ω1 and 4ω2 with secant dimensions (3, 6, 9, 12, ∗14, 15),
(c) ω1 + ω2 with secant dimensions (4, ∗7, 8), and
(d) 2ω1 + 2ω2 with secant dimensions (4, 8, 12, 16, 20, 24, ∗26, 27).

(2) for G of type A3:
(a) ω1 + ω2 and ω2 + ω3 with secant dimensions (6, 12, ∗17, 20),
(b) 2ω1 and 2ω3 with secant dimensions (4, ∗7, ∗9, 10).
(c) ω1 + ω3 with secant dimensions (6, ∗11, ∗14, 15),
(d) 2ω2 with secant dimensions (5, 10, ∗14, ∗17, ∗19, 20),
(e) 4ω1 and 4ω3 with secant dimensions (4, 8, 12, 16, 20, 24, 28, 32, ∗34, 35).

(3) for G of type B2:
(a) 2ω1 with secant dimensions (4, 8, ∗11, ∗13, 14),
(b) 2ω2 with secant dimensions (4, ∗7, ∗9, 10),
(c) ω1 + ω2 with secant dimensions (5, 10, ∗14, 16).
(d) 4ω2 with secant dimensions (4, 8, . . . , 28, 32, ∗34, 35), and

(4) for G of type G2:
(a) 2ω1 with secant dimensions (6, 12, ∗17, ∗21, 24),
(b) ω2 with secant dimensions (6, ∗11, 14), and
(c) 2ω2 with secant dimensions (6, . . . , 72, ∗76, 77).

The conjecture for A2 and B2 has been verified for weights iω1+jω2 with i+j ≤ 6.
For A3 the conjecture has been checked for highest weights iω1 + jω2 + kω3 with
i + j + k ≤ 4, and for G2 the conjecture has been verified for all highest weights
iω1 + jω2 with i + j ≤ 4.

To attack the question posed in this section, one would need completely new
techniques, far beyond our easy algorithm. But we hope that the challenges boldly
posed in this paper as conjectures will be taken up by some of our readers!
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