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Abstract

This paper investigates the problem of helicopter
dynamic modelling using time-domain system iden-
tification techniques. The paper begins with a brief
introduction to the state-space form of the pertur-
bation model for helicopters, based on which, sys-
tem identification modelling is performed. Then
the MOESP (Multivariable Output-Error State
sPace) subspace identification method is described.
Computer simulations are carried out to illustrate
the operation and performance of the method us-
ing concatenated data sets. The method is then
applied to real data from EH101 helicopter flight
tests and some preliminary results of identifying
an extended dynamic model about the cruise con-
dition are presented.

Introduction

A prerequisite for the design of a satisfactory heli-
copter flight control system is an appropriate model
capable of capturing the main characteristics of
the helicopter dynamic behaviour. Fig. 1 shows
the block schematic representation of the helicopter
flight control loop configuration. The helicopter
flight dynamics to be modelled in physical com-
ponent terms includes the fuselage dynamics, rotor
dynamics and engine and transmission system dy-
namics.

System identification is a modelling method
where the model of the system under considera-
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tion is obtained from input/output measurement
data. The identification can be performed either in
the time-domain or in the frequency-domain, but
most results of system identification for helicopter
applications that have been reported in the liter-
ature use frequency-domain methods (see e.g. [1]
[2] [3]). Though well-suited for single-input single-
output (SISO) model identification, the use of the
frequency-domain identification method with time-
domain data for multiple-input multiple-output
(MIMO) state-space model identification is cum-
bersome. This is particularly so when multiple in-
puts are present in the excitation, as in most he-
licopter flight tests; because, in addition to the
conversion of time-domain measurement data to
frequency-domain data, a considerable amount of
data conditioning is required to remove the contam-
inating effects of partially-correlated control inputs
from the extracted frequency responses. For this
reason, this paper will focus on the development
and application of time-domain methods for state-
space helicopter dynamic modeling via exploita-
tion of recent innovations in system identification
techniques. The rest of the paper is organized as
follows. Next section briefly introduces the state-
space perturbation model for helicopters, based on
which the system identification is performed. Then
the subspace-based system identification strategy
used in this paper is described, which is followed by
the simulation studies. The results of helicopter dy-
namic modelling via subspace-based system iden-
tification using real flight test data are presented
with concluding remarks in the last section.
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Figure 1: Schematic representation of a helicopter flight control loop configuration

Modelling helicopter flight
dynamics

Unlike fixed-wing aircraft, the dynamic behaviour
of a helicopter is very complex with strong inter-
axis and fuselage-rotor coupling as well as inherent
nonlinearities. Therefore, the overall dynamic be-
haviour of a helicopter is best described by a nonlin-
ear MIMO state-space model. The basic equations
of motion for a model of helicopter dynamics are
developed from the application of Newton’s laws of
motion to the fuselage that is free to rotate and
translate simultaneously in all six degrees of free-
dom (DoF). This model can then be extended to
include appropriate rotor and other dynamics, for
example, for high-bandwidth controller design or
for accurate handling quality evaluations where it
is essential to account for the dynamic coupling be-
tween the rotor and the fuselage. In general, a heli-
copter dynamic model is of the following nonlinear
form [4]:

ẋ = F(x,u, t) (1)
where x is the state vector that is composed of the
fuselage states such as the translational and rota-
tional velocities, the Euler angles defining the ori-
entation of the fuselage axes relative to the earth,

the rotor states such as rotor flapping angles etc. u
is the control input and F is a vector-valued non-
linear function of the states and control inputs. To
develop rational explanations for the dynamic be-
havour of a helicopter and to facilitate the heli-
copter flight control system design, it is often neces-
sary to use a simplified model that is able to capture
the main characteristics of the helicopter dynamic
behaviour whilst being mathematically tractable.
This is achieved by linearizing equation (1) with
small perturbation theory, where it is assumed that,
during disturbed motion, the helicopter behaviour
can be described as a perturbation from the trim
condition, written in the form:

x = xe + δx and u = ue + δu

where xe is the trim state vector and ue is the con-
trol vector required to maintain the trim condition.
The trim condition can, in principle, be obtained
by letting the rate of change of the state vector (i.e
the left hand side of equation (1)) be identically
zero.

A fundamental assumption of linearization is
that the function F in (1) can be represented as
a vector valued analytic function of the disturbed
state variables, control inputs and their derivatives;



linearization then amounts to neglecting all except
the linear terms in the Taylor series expansions of
this function about the known trim point (xe, ue).
The linearized model describing perturbed motion
of a helicopter about a general trim condition, can
then be written as

δẋ−Aδx = Bδu (2)

where the system (or stability) and control matri-
ces A and B in (2) are derived from the partial
derivatives of the nonlinear function F, i.e.(see e.g.
[4])

A =
[
∂F
∂x

]
x = xe

u = ue

(3)

and

B =
[
∂F
∂u

]
x = xe

u = ue

(4)

For simplicity, the perturbation notation will be
dropped in the following sections. That is, referring
to the perturbed variables δx and δu by their reg-
ular characters x and u, the linearized state space
form of the helicopter dynamic model about a trim
point is given by:

ẋ = Ax + Bu (5)

For a helicopter, there are in general four control
inputs that can be used by a pilot to cope with six
degrees of freedom. These are the main rotor col-
lective θ0, longitudinal cyclic θ1s, lateral cyclic θ1c

and tail rotor collective θ0T or their correspond-
ing stick inputs δcol, δlon, δlatand δped, as shown
in Fig.1. They are collected in the input vector u.
The measured outputs are a “standard” set of suit-
able variables that have physical significance, such
as: airspeed, linear accelerations, angular informa-
tion (rates and attitudes) etc (see e.g. [5]). They
are either the state variables or can be approxi-
mated as known linear combinations of the states
and inputs. Thus the measured output vector can
be written as:

y = Cx + Du + v (6)

where v is the measurement noise vector, and ma-
trices C and D can usually be derived from A and
B with the help of the knowledge of the sensor lo-
cations.

System identification strategy

As can be seen, the linearized helicopter dynamic
model about a trim condition is a continuous-time
LTI state-space form as shown in (5). The aim of
modelling is to determine the stability and control
matrices A and B in (5) using the available mea-
surements defined by (6) and the input u. For most
practical applications, the measurements are usu-
ally sampled-data (i.e. discrete), and so the system
identification algorithm will then be implemented
in the discrete-time domain. Suppose that the in-
put is constant over the sampling interval T , the
sampling/discrete version of the model (5)∼(6) is
then given by (see e.g. [6]):

xk+1 = Φxk + Guk + wk (7)
yk = Cxk + Duk + vk (8)

where xk ∈ <n, uk ∈ <m, yk ∈ <l, Φ = eAT and
G =

∫ T

0
eAτBdτ ; wk and vk are zero-mean white

Gaussian sequences of appropriate strength and are
independent of the input uk. The additional term
wk is added in the state equation (7) as process
noise to represent possible atmospheric and other
disturbances or the modelling errors due to approx-
imations. Helicopter dynamic model identification
then amounts to the determination of matrices Φ,
G (thus A, B), C and D using the measurement
sequences Z = {uk,yk}j

k=1.
Conventionally, the identification of the above

helicopter dynamic model is formulated as a pa-
rameter estimation problem. It is essentially a
“grey-box” modelling approach, in which a partic-
ular model structure and parameterization is pre-
specified from physical considerations. Model iden-
tification then amounts to the estimation of the
parameters with which the model is parameter-
ized using either time-domain or frequency-domain
methods (see e.g. [5] [1] [2] [3]). Though the
physically-relevant model can directly be identified
in this way, there are a number of difficulties as-
sociated with the application of such a parameter
estimation-based method in the identification of a
state-space helicopter dynamic model. The first
such difficulty lies in the determination of an iden-
tifiable model structure or parametrization with re-
spect to the measurements available. This is not a



trivial problem, in fact, there is no general method
to determine the identifiability of the parameters
in a state-space model for the given measurements
(except for some state space models of “canonical”
forms). The second difficulty stems from the large
number of the unknown model parameters result-
ing from model extension; this may render the pa-
rameter estimation-based approach for helicopter
modelling impractical. The third difficulty comes
from the sensitivity of the conventional nonlinear
optimization-based parameter estimation method
to the initial values. However, if a “black-box”
model structure is assumed or only an input/output
relation is of interest, we can then just estimate
any matrices Φ, G (thus A, B), C and D that
give a good description of the input-output char-
acteristics of the system such as its frequency re-
sponse, or realization-independent features such as
its poles/eigenvalues. In such cases, the subspace-
based system identification method (see e.g. [7],
[8], [9], [10]) provides an attractive alternative.

Subspace identification is the name for a general
class of relatively new system identification meth-
ods; it is essentially a kind of “black-box” mod-
elling technique where the system model is identi-
fied without trying to model the internal physical
mechanism. The past decade has witnessed signif-
icant progress in this field, as can be seen from a
large number of survey papers (see e.g. [8], [10]),
special issues of journals (see e.g. [11], [12], [13])
and the book by Van Overschee and De Moor [9].
Among the main advantages of such a method, we
mention numerical robustness and efficiency, the
ability to deal with MIMO problems in a straight-
forward way and its ease of use due to its simplic-
ity with only a few design parameters that need to
be chosen by the user. The method simplifies the
identification step and is particularly attractive for
high-order MIMO state-space model identification.
In the rest of this section, some background on
subspace-based identification methods (with par-
ticular reference to the MOESP class of algorithm
[7]) is presented.

Preliminaries

By repeated substitution of (7) and (8), it is not
difficult to obtain the following structured input-

output equation:

Yk,s,N = ΓsXk,N +HsUk,s,N +EsWk,s,N +Vk,s,N

(9)
where

Yk,s,N =




yk yk+1 · · · yk+N−1

yk+1 yk+2 · · · yk+N

...
...

. . .
...

yk+s−1 yk+s · · · yk+s+N−2




sl×N

(10)

Hs =




D 0 0 · · · 0
CG D 0 · · · 0
CΦG CG D · · · 0
...

...
...

. . .
...

CΦs−2G CΦs−3G CΦs−4G · · · D




sl×sm

(11)
Uk,s,N , Wk,s,N and Vk,s,N are constructed in a
manner similar to Yk,s,N and Es similar to Hs (see
e.g. [7] for details). Γs is the extended observability
matrix for the system to be identified and Xk,N is
formed by consecutive state vectors:

Γs =
[

CT (CΦ)T · · · (CΦs−1)T
]T

(12)

Xk,N =
[

xk xk+1 · · · xk+N−1

]
n×N

(13)

The indices (k, s, N) of the data Hankel matri-
ces Yk,s,N and Uk,s,N determine their size and
what part of the I/O sequences is stored in them.
The structured input-output equation (9) is the
starting point for subspace-based methods, and all
subspace-based algorithms performing state-space
model identification are derived from it. From (9),
it can be observed that the output block Hankel
matrix Yk,s,N depends in a linear way on the input
block Hankel matrix Uk,s,N and the state sequence
Xk,N . The key to subspace identification is to try
to recover the term ΓsXk,N in (9) as either the
knowledge of Γs or Xk,N enables the state-space
model matrices in (7) and (8) to be determined.
Furthermore, ΓsXk,N is a rank deficient term (of
rank n, i.e. the system order) which means that
once ΓsXk,N is obtained, Γs and Xk,N can be
found simply from an SVD. The model matrices
Φ, G, C and D can then be determined (up to
a similarity transformation) with the known Γs or
Xk,N .

As a black-box model structure is assumed in the
subspace-based method, i.e. the parameterization



of the model is not specified before identification,
the identified matrices Φ, G, C and D will not be
the same as those in the original physically-relevant
model. Suppose that the original system is de-
scribed by (7) and (8) with quadruple [Φ̄, Ḡ, C̄, D̄]
and a physically relevant state vector x̄, we then
have:

Φ = T−1Φ̄T G = T−1Ḡ C = C̄T D = D̄ (14)

where T is an invertible matrix (similarity transfor-
mation). This corresponds to the change of basis
xk = T−1x̄k in the state space. It is easy to show
that quadruples [Φ,G,C,D] and [Φ̄, Ḡ, C̄, D̄] de-
scribe the same input-output relationship based on
which a controller can be designed.

Since the appearance of subspace system iden-
tification in the literature, different subspace al-
gorithms have been derived and used for solving
practical problems. A typical algorithm contains
two steps: 1.) estimation of the extended observ-
ability matrix (12) or the states (13) from the Han-
kel matrices constructed by the input-output data;
and 2.) calculation of state-space matrices from ei-
ther this extended observability matrix or the esti-
mated states. The MOESP subspace identification
algorithm that implements these two steps will be
described next.

MOESP type subspace-based state-
space model identification

The MOESP (which stands for Multivariable
Output-Error State sPace) identification scheme
described here was originally proposed in [7] and
addresses the problem of identification of the deter-
ministic part of a MIMO state-space model given
by (7) and (8). This scheme is chosen because it
can be straightforwardly adapted to processing con-
catenated data sets from multiple tests. This is
very helpful for helicopter dynamic modelling for
two reasons. Firstly, a helicopter is a MIMO sys-
tem; as mentioned before, there are four control
inputs for a pilot to cope with 6 DoF. A pilot may
apply each input in turn during flight tests, and
thus we will have a number of data sets with each
containing the response generated with mainly one
control input. Secondly, the length of a single data
run is usually limited due to helicopter instabilities.
As a result, a data set may only contain a short pe-

riod of oscillatory modes which have long time con-
stants, e.g. the phugoid mode. In these cases, we
will have to process the multiple or concatenated
data sets and it is required that the identification
algorithm should be able to identify a single model
using such data sets.

To identify a MIMO state space model of (7) and
(8) with the MOESP identification algorithm, the
I/O equation (9) is split into two parts, a “past” one
denoted by subscript p and a “future” one denoted
by subscript f :

Yp = ΓsXp + HsUp + EsWp + Vp (15)
Yf = ΓsXf + HsUf + EsWf + Vf (16)

where the “past” data Hankel matrices are Yp =
Y1,s,N and Up = U1,s,N as defined in (10) with
k = 1; the “future” data Hankel matrices are Yf =
Ys+1,s,N and Uf = Us+1,s,N as defined in (10)
with k = s + 1; Wp, Wf and Vp, Vf are noise
Hankel matrices formed from the noise sequences
wk and vk in a manner similar to Yp, Yf , and Xp,
Xf are defined as in (13) with k = 1 and k = s + 1
respectively.

The MOESP subspace identification scheme de-
scribed here is based on the use of both the past
input and past output as instrumental variables to
remove the effect of noise. The overall algorithm
can be summarized as follows (see [7] for details):

Step 1 Perform RQ decomposition of the follow-
ing compound matrix constructed by the “past”
and “future” data Hankel matrices defined in (15)
and (16):




Uf

Up

Yp

Yf


=




R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44







Q(ms,N)
1

Q(ms,N)
2

Q(ls,N)
3

Q(ls,N)
4


 (17)

Step 2 Compute the singular value decomposi-
tion (SVD) of the compound matrix [R42 R43] as
follows:

[
R42 R43

]
=

( n ls−n

ls Un U⊥
n

)(
n ls−n ms

Sn 0 0
0 S2 0

)

︸ ︷︷ ︸
S

VT

(18)
where n is the actual order of the system model
to be identified and U⊥

n stands for the orthogonal



complement of Un (i.e. (U⊥
n )T Un = 0). S in (18)

is a ls×(ms+ ls) matrix with the singular values of
the compound matrix [R42 R43] along the diagonal
in decreasing order and zeros elsewhere. It can be
shown (see [7]) that the column space of the matrix
Un is a consistent estimate of that of Γs.

If the model order n is also unknown, it can be
determined by inspection of the singular values in
matrix S of (18). In the ideal case where the mea-
surements are generated by model (7) and (8) of
order n without noise contamination (i.e. wk = 0,
vk = 0), the compound matrix will have exactly
rank n and only the first n singular values will be
non-zero (i.e. S2 = 0). In practice, the S matrix in
(18) will typically have all its singular values non-
zero due to the noise. The first n will be supported
by Γs, while the remaining ones will stem from the
noise. If the noise is small, one should expect that
the latter are significantly smaller than the former.
Therefore, the singular values obtained by the SVD
specified by (18) provide users with the information
for the determination of the order of the underlying
system model.

Step 3 By making use of the shift invariance prop-
erty of Γs, the matrices Φ and C of state space
model (7) and (8) can be determined as follows:

C = Un(1 : l, :) (19)
Φ = Un(1 : l(s− 1), :)+Un(l + 1 : ls, :)(20)

In these two equations, the standard Matlab nota-
tion to select a subpart of a matrix is adopted and
(·)+ denotes the pseudo-inverse of a matrix.

Step 4 It was shown in (e.g. [7],[14]) that the
matrices G and D in (7) and (8) can be deter-
mined by solving a least squares problem derived
from I/O equations (15) and (16) with the help of
the RQ decomposition (17) and the estimated Φ
and C in the last step. However, the simulation
studies have shown that the estimates obtained in
this way may become sensitive to the noise. In an
attempt to overcome the problem, an alternative
method is presented here, in which the estimation
of the elements in B and D and initial state x0 as
well is formulated as a standard linear regression
problem.

The state-space model (7) can be rewritten as:

xk = Φxk−1 + (In ⊗ uT
k−1)vec(G) + wk−1 (21)

where ⊗ denotes the Kronecker product and
vec(G) is vectorized G matrix along its rows. The

output measurement defined by (8) can then be
represented as:

yk = CΦxk−1 + C(In ⊗ uT
k−1)vec(G)

+(Il ⊗ uT
k )vec(D) + Cwk−1 + vk

= CΦ2xk−2+
C[Φ(In ⊗ uT

k−2)+(In ⊗ uT
k−1)]vec(G) +

(Il ⊗ uT
k )vec(D) + C[Φwk−2 + wk−1]+vk

...

= CΦkx0+
k−1∑

j=0

CΦj(In ⊗ uT
k−1−j)vec(G)

+(Il ⊗ uT
k )vec(D) +

k−1∑

j=0

CΦjwk−1−j + vk

(22)

For the given and fixed Φ and C, equation (22) is
of the standard linear regression form in terms of
vec(G), vec(D) and initial state x0 and therefore,
once Φ and C are determined in step 3, matrices
G, D and initial state x0 can then be estimated by
solving the above linear regression problem using
LS.

Remarks

The structured “past” and “future” I/O equations
(15) and (16) hold for arbitrary initial conditions,
therefore non-zero initial states have no effect at all
on the calculations of the quadruples [Φ,G,C,D].
As such, concatenating different data sets for iden-
tification introduces no additional problems. This
can be illustrated for two different data sets Z1 =
{u1

k,y1
k}N1

k=1 and Z2 = {u2
k,y2

k}N2
k=1. The struc-

tured “past” and “future” I/O equations for these
two data sets are as follows:

Y1
p = ΓsX1

p + HsU1
p + EsW1

p + V1
p (23)

Y1
f = ΓsX1

f + HsU1
f + EsW1

f + V1
f (24)

Y2
p = ΓsX2

p + HsU2
p + EsW2

p + V2
p (25)

Y2
f = ΓsX2

f + HsU2
f + EsW2

f + V2
f (26)

where Y1
p = Y1,s,N1−2s+1, U1

p = U1,s,N1−2s+1,
Y1

f = Ys+1,s,N1−2s+1 and U1
f = Us+1,s,N1−2s+1

are constructed as in (10) with the data from Z1;
and Y2

p, U2
p, Y2

f and U2
f are constructed in a sim-

ilar way with the data from Z2. The two “past”



data equations (23) and (25) and the two “future”
data equations (24) and (26) can readily be com-
bined into the following compact form respectively:

[
Y1

p Y2
p

]
= Γs

[
X1

p X2
p

]
+ Hs

[
U1

p U2
p

]

+Es

[
W1

p W2
p

]
+

[
V1

p V2
p

]
(27)[

Y1
f Y2

f

]
= Γs

[
X1

f X2
f

]
+ Hs

[
U1

f U2
f

]

+Es

[
W1

f W2
f

]
+

[
V1

f V2
f

]
(28)

These combined “past” and “future” data equa-
tions are of the same structure as the original
“past” and “future” data equations (15) and (16)
apart from the fact that the combined or con-
catenated I/O data matrices [Y1

p|Y2
p], [Y1

f |Y2
f ],

[U1
p|U2

p] and [U1
f |U2

f ] are no longer Hankel. How-
ever, as the Hankel property is not exploited in the
derivation of the MOESP algorithm, the main body
of the algorithm described above can still be used
when starting with an RQ decomposition of the fol-
lowing data matrix:




U1
f U2

f

U1
p U2

p

Y1
p Y2

p

Y1
f Y2

f


 (29)

As such, the MOESP algorithm can be readily
modified for helicopter dynamic model identifica-
tion using concatenation of data sets from multiple
tests.

As can be seen, the basic computational steps
in the MOESP algorithm described are amazingly
simple, being based on the QR decomposition and
SVD for which numerically efficient and stable al-
gorithms and software are available. An additional
advantage of the aforementioned algorithm is that
there is essentially only one design parameter which
needs to be specified by the user, i.e. the dimen-
sioning parameter s of the data Hankel matrix. The
basic requirement for the parameter is s > n, which
indicates that the selection of this parameter only
requires a rough estimate of the underlying system
order.

Applicability studies via
simulations

To study the applicability and to illustrate the op-
eration of the identification scheme described in the

last section for helicopter dynamic modelling, the
problem of identifying an extended dynamic model
for a small-scale unmanned rotorcraft is considered
in this section. The data is generated from a 13th
order unmanned rotorcraft (Yamaha R-50) model
taken from [3]. The model describes the dynamics
of the perturbed motion about the hover condition
of the vehicle and is extended to include the ad-
ditional dynamics from the rotor and control aug-
mentation such as the active yaw damping system
and the stabilizer bar. The model is of the form of
(5) where the 13-dimensional state vector is defined
as (see [3] for details):

x =
[
u v p q φ θ a b w r rfb c d

]T (30)

where u, v, w and p, q, r are the translational
and rotational velocities of the 6 DoF fuselage; φ
and θ are the roll and pitch angle of the fuselage;
a and b denote the longitudinal and lateral rotor
flapping angles; c and d denote the longitudinal
and lateral stabilizer bar flapping angles and rfb is a
state variable for the active yaw damping dynamics.
The input vector includes the four stick inputs as
shown in Fig. 1, i.e. u = [δlat δlon δped δcol]T .
The true system eigenvalues are calculated with the
parameter values provided in [3] and are listed in
the first column of Table 1.

The measured outputs available for identifica-
tion are the rigid-body fuselage states including the
translational velocities u, v, w and rotational rates
p, q, r; roll and pitch angles φ, θ and the acceler-
ations u̇, v̇, ẇ as well. Therefore the measurement
vector is defined as:

y =
[
u v p q φ θ w r u̇ v̇ ẇ

]T (31)

In the present simulation studies, a doublet signal
is applied to each one of the four control channels in
turn and the data are then concatenated for model
identification using the MOESP scheme.

The design parameter of the MOESP identifica-
tion scheme is selected as s = 20 in the following
simulation studies. To demonstrate the capabil-
ities of the MOESP scheme in handling concate-
nated data sets, the data sets are processed one
after the other. The singular values obtained from
equation (18) in the MOESP identification scheme
using different concatenations of the measurements
specified by (31) are plotted in Fig.2 for the deter-
mination of model order, where a “+” indicates a



singular value obtained by processing the data set
due to δlat only; a “∗” indicates a singular value ob-
tained by processing data sets due to δlat and δlon;
a “o” indicates a singular value obtained by pro-
cessing data sets due to δlat, δlon and δped; a “×”
indicates a singular value obtained by processing
all four data sets.
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Figure 2: Singular values computed by the MOESP
identification scheme using different concatenated
data sets

Although all singular values are non-zero due to
noise as can be seen from Fig.2, the following ob-
servations can be made:

1. There is no clear gap between the 13th and
14th singular values after processing the data
set due to δlat only, as shown by the singular
values specified by “+” in Fig.2. The model
order would probably be determined as 9 from
this data set alone as a clear gap can be ob-
served between the 9th and 10th singular val-
ues (as specified by “+” in Fig.2).

2. For the same reason as described above, the
model order would be set to 11 from the sin-
gular values obtained by processing data sets
due to δlat and δlon as specified by “∗” in Fig.2.

3. The correct model order can be determined af-
ter processing the data sets due to δlat, δlon

and δped or all four data sets because a clear
gap can be seen between the 13th and 14th sin-
gular values specified by “o” or “×” in Fig.2.
It also can be observed that the singular val-
ues due to noise (i.e. from 14th singular value
onwards) have approximately the same magni-
tudes.

Based on the above observations, we may conclude
that the concatenation of the data sets due to dif-
ferent control inputs is necessary for identification
of a coupled full state-space helicopter model.

Once the model order is determined, the system
matrices can be computed as described in last sec-
tion. The MOESP identification method produces
a discrete-time “similarity” state-space model that
describes the same input-output relationship as the
original system model. To facilitate comparison,
the identified discrete-time model is transformed to
a continuous-time model and the eigenvalues com-
puted from this continuous-time model are com-
pared with the nominal ones from which the data
was generated. The eigenvalue estimates computed
using all four data sets are listed in the second col-
umn of Table 1. A good match between the es-
timated eigenvalues and the nominal ones can be
observed. Fig.3 shows a comparison between the
frequency responses computed from the identified
model and those computed from the true model
that generates the data. It can be seen, from these
figures, that the predicted frequency responses from
the identified model match quite well with the true

Table 1: Comparison of identified eigenvalues with the true eigenvalues
true eigenvalues identified eigenvalues

λi(A) =





0.306± j0.094
−0.401± j0.086
−0.608
−1.698± j8.189
−6.198± j8.197
−2.661± j11.557
−20.313± j4.743

λi(Â) =





0.306± j0.094
−0.400± j0.084
−0.608
−1.595± j8.146
−6.190± j8.201
−2.642± j11.540
−20.943± j4.955
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Figure 3: Comparison between the frequency responses derived from the identified model (solid-line)
and those computed from true model(dashed-line)



ones computed with the model that generates the
data in most cases, the noticeable mismatch can
only be observed at the high frequency parts of the
off-axis angular responses (p to δlon and q to δlat).

Results from real flight test
data

As part of the DARP research project “Towards
Robust and Cost Effective Approaches to Rotor-
craft Design”, the MOESP identification scheme
was applied to the identification of an extended dy-
namic model in cruise condition for the EH101 he-
licopter using real flight test data from Westland
Helicopters Ltd (WHL).

The linearised EH101 helicopter dynamic model
is assumed to be of the state-space form of (5).
The available measured inputs to the system are
the main rotor collective blade angle θ0, main ro-
tor pitch blade angle θ1s, main rotor roll blade an-
gle θ1c and tail rotor collective blade angle θ0T as
shown in Fig. 1. The measured outputs available
for identification include: the perturbed fuselage
longitudinal velocity u; the fuselage rotational rates
p, q, r; the fuselage roll and pitch attitudes φ, θ;
and the fuselage lateral and vertical accelerations
v̇ and ẇ. Therefore, the measured output vector is
defined as:

y =
[
u p q r φ θ v̇ ẇ

]T (32)

These I/O data are collected with a constant cruise
speed around 80 knots. The singular values con-
taining the information on the model order com-
puted by the MOESP scheme are plotted in Fig.4.
The results are obtained with the design parameter
chosen as s = 26.

From prior knowledge, the order of a full heli-
copter dynamic model must be greater than six.
We can therefore specify the model order as n = 13
because a clear large gap between the 13th and 14th
singular values can be identified in Fig.4. The cor-
responding eigenvalue estimates are listed below:

λi(Â)=





0.0816± j0.2281
−0.1171± j5.5117
−0.1171
−0.5402± j0.7872
−0.0624± j22.293
−3.2434± j40.302
−0.5700± j44.506

(33)
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Figure 4: Singular values computed by the MOESP
identification scheme using data from EH101 heli-
copter flight tests

Concluding Remarks

The problem of identifying a state-space helicopter
dynamic model using a time-domain system identi-
fication technique is studied. The MOESP type of
subspace identification method is used. Simulation
studies have been carried out to assess the perfor-
mance of the method and the main results can be
summarized as follows:

• The subspace identification method is essen-
tially a “black-box” modelling approach where
no prior parameterization of the model to be
identified is required. This is very helpful for
helicopter dynamic modelling as the determi-
nation of an identifiable parameterization for
the helicopter dynamic model is far from triv-
ial, especially when only limited measurement
channels are available.

• The method is computationally efficient and
numerically reliable. This makes it particu-
larly attractive here because the identification
of a high order state-space helicopter dynamic
model is required.



• The MOESP identification scheme is easy to
use (only one simple design parameter needs to
be specified by the user) and can deal with the
concatenation of the data sets from multiple
tests in a straightforward way.

As a “black-box” model structure is assumed, no
attempt is made to identify the internal structure
of the real system that generates the data in the
proposed identification scheme. The method only
produces a model that describes the input-output
relationship of the original system model. If a par-
ticular parametric helicopter model structure or the
values of the parameters themselves are of interest,
then parameter estimation-based modelling meth-
ods (such as e.g. [15],[16]) need to be used. In
such cases, a valid identifiable parametric model
structure needs to be determined before proceed-
ing to the parameter estimation stage. Subspace-
based method as described in this paper can then
be used to get some information of the underlying
state-space model, such as the possible order of the
system, from flight test data.

In the paper, the MOESP identification scheme
was also applied to real flight test data from WHL
and an extended state-space dynamic model for the
cruise condition of an EH101 helicopter was iden-
tified. Further work is being carried out to vali-
date the identified model and research is also be-
ing performed to develop the practical methods for
determining uncertainty in the helicopter dynamic
models identified by subspace-based method.
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