
A Method for Automated Web Service Selection

Hong Qing Yu and Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester, UK
{hqy1,srm13}@mcs.le.ac.uk

Abstract

Automated Web service selection is a key challenge in
Service Oriented Architecture (SOA) research. With SOA
becoming more popular in industry, and more Web
services becoming available in the e-business market, the
main issue changes from service discovery to service
selection and ranking. In this paper, we propose a novel
nonfunctional property-based service selection method by
modifying the Logic Scoring Preference (LSP) method
with Ordered Weighted Averaging (OWA) Operators.
Moreover, the dynamic mechanism for evaluating
metadata based QoS criteria of each service is presented
for this method.

1. Introduction

Web services are a technology designed to support
interoperable machine to machine software interactions.
The execution of services takes place on remote system(s)
hosting the requested service(s). The typical architecture
of Web services includes three roles, namely service
requestor, service broker and service provider. Once the
requestor sends a service request to the broker, a matched
service provider should be sent back as a WSDL URL by
the broker searched from a UDDI or published service
metadata repository. Finally the requestor can invoke the
provided service through the SOAP message protocol.
One of the crucial issues is the automated service ranking
for dynamic service selection environment [1]. When the
broker finds a set of services which all satisfy the
functional requirements of a service request, then the non-
functional requirements can be used as service ranking
criteria.

Consequently, the problem can be recast into an
automated multicriteria decision problem for multiple
entities. The solution to this problem requires a selection
method such that each single criterion can be evaluated
and multiple criteria can be properly aggregated. The final
quantitative results should reflect the best suitable service
based on the request. The main challenges discussing in
this paper are:

 (1) Automated QoS-based service ranking
mechanism: most of the selection methods strongly rely
on human intervention. For example, criteria used for
selection are typical tightly bound to a priori defined

evaluation mappings; changing preferences and criteria
requests for manually retuning the evaluation mapping.
Meanwhile, the changes of criteria and preferences are
unavoidable in the dynamic environment. Predefining the
service selection criteria and preferences can not reflect
the evaluation of the system at run-time.

 (2) Dynamic retuning of aggregation functions: most
aggregation functions cannot show relations between
individual criterions. Currently, the aggregation functions
used for service ranking are based on the simple
operations such as arithmetic metrics (essentially
weighted sums) or geometric metric (essentially weighted
products. However, these functions are not enough to
represent logic relations such as simultaneity and
replaceability.

To explain the concepts of simultaneity and
replaceability, let us consider an example. A car buyer
may say that they simultaneously need good performance
and a good price with performance being more important
(weight is 0.7) than price (0.3). If there are two cars
evaluated as (0.9, 0.0) and (0.6, 0.5), then the first car (0.7
0.9 + 0.3 0.0 = 0.63) is better than second car (0.7 0.6 +
0.3 0.5 = 0.57) by using the traditional weighted sum
aggregation function. However, this does not reflect the
simultaneity relation of “performance and price both are
important criteria”. The correct aggregation function
should penalize the first car choice. On the other hand,
people can argue that the geometric function can do this.
However, if the requirements change to replaceability,
which means that the criteria (performance and price) can
replace each other (e.g. a lower performance is acceptable
if the price is good). As result, the correct aggregation
function should only penalize the car if both of the
evaluation scores are 0. In this situation the weighted
product is not the correct aggregation function. In a more
realistic scenario, we may have more complex relations
on the range between simultaneity and replaceability.

In the literature, the Logic Scoring Preference (LSP)
method is introduced to solve the second problem by
adding a parameter to retune the aggregation function [2],
which is defined by domain experts for each situation.
However, we need to define a way to dynamically obtain
the value of this parameter. The parameter is influenced
by the combination of simultaneity (conjunction) and
replaceability (disjunction) referred to as degree or orness
degree in LSP. Meanwhile, the Ordered Weighted

Averaging (OWA) operators introduced in [3] can be
proven to reason the orness degree on the fly in the fuzzy
logic research area.

The main contributions of this paper are (1) a novel
multicriteria-based automated Web service selection
method and a ranking approach and (2) a type-based
evaluation mapping system to address the issue of
automated service evaluations. The method includes a
multi-criteria aggregation function which combines LSP
metrics with OWA Operators.

The rest of the paper is organized as follows. Section 2
introduces the background information and techniques we
use in this paper. Firstly, the inContext dynamic service
selection platform is explained to show the service
ranking requirements. Secondly, the Logic Scoring
Preference method and Ordered Weighted Averaging
operators are introduced. Then, the relation between LSP
and OWA will be discussed. Section 3 illustrates a novel
way of applying OWA concepts to deal with problems
occurring when automating LSP. Section 4 discusses the
technique for dynamically selecting evaluation methods.
Based on these new techniques, Section 5 proposes the
new LSP method for automated Web service selection.
Section 6 illustrates the implementation. Section 7 will
discuss some related work and Section 8 draws the
conclusion and future work.

2. Background

2.1 “inContext” Research Project

The complexity of business processes and the dynamic
nature of the co-operations make it difficult for the
business modeler to select appropriate services, manage
the compositions efficiently and understand requirements
within a dynamic context correctly. The "inContext"
project [4] platform provides dynamic context
information which affects the Web service measurement
at run-time; Figure 1 shows an overview of the
architecture. The most interesting part of this platform for
this paper is the user context based service selection
process (the core logic of which is encapsulated in the
Relevance Engine). On the one hand, the platform has the
ability to supply the current context status of the end-
users such as “location”, “availability”, “devices”, “task”
and “budget” (the details of users’ context model can be
found in [5]). Thus, the criteria for measuring Web
service can be gained by reasoning on the context data.
On the other hand, the platform also dynamically stores
the QoS metadata of registered services and allows
updating this at any time. We are involved in this project
to design the QoS-aware Web service selection
mechanism. Thus, this paper will only concentrate on
discussing the service selection part of the whole
framework. However, it is worthwhile noting here that the

user context data is gathered during the execution of the
system automatically by mining past activities and
monitoring current events, hence (and crucially) not
providing an extra burden on the user. The service meta
data is provided by the service provider and is then
augmented with monitored run-time data.

The platform makes use of weights in the ranking of
criteria; these are encapsulated in a user profile which is
seen as part of the context (it can be changed
dynamically); however this is where the user needs to
specify some data at least once to express their wishes.

Fig. 1 The inContext platform

2.2 The modified LSP method

Logic Scoring Preference (LSP) introduced in [2, 6] is
one professional evaluation method initially designed for
solving hardware selection problems [7]. LSP extends the
traditional scoring techniques [8] and at its core is an
evaluation function (1). The traditional scoring techniques
only consider the semantics of importance but ignore the
relation between criteria such as replaceability,
simultaneity and mandatory-ness, which normally are
observable properties of human reasoning [9] – we gave
an insight in the car selection example in the introduction.
To capture these relations, Conjunction/Disjuction (GCD)
operators were introduced in LSP to represent the relation
of requirements.

ܮ = (| ଵ߱|ܧଵ

௥ + |߱ଶ|ܧଶ
௥ + ⋯ + |߱௡|ܧ௡

௥)ଵ ௥ൗ (1)

where 0 ≤ ௜ܧ ≤ 1, ∑ |߱௜|௡
௜ୀଵ = 1, and  is the weight of

each criterion.  < 0 means that a lower evaluation result
is better (e.g. for cost),  > 0 means a higher result is
preferable (e.g. for speed). E is the defined evaluation

function for providing the scores of the service for each
criterion. The r presents the logic relation between
different criteria. The complete table of GCD operators
with accepted symbols, degrees and values for parameter
r are given in Table 1 [7]. The definition of the GCD
operators is the disjunction/conjunction degree d (also
known as orness degree) of combining simultaneity and
replaceability. The idea here is that at the ends of the
spectrum we have conjunction (and) and disjunction (or)
respectively. Values in the range are closer to or, and
hence have a higher degree of ‘orness’ – that is they
behave more like or (we could provide a similar definition
for ‘andness’). We will use these defined operators
without adding more new operators. We will use the
closest values of d when a calculated degree value result
is not found in Table 1. Moreover, r2 is the r value for a 2
criteria situation, r3 for 3 criteria situation and so on. The
d indicates the orness degree as explained above.

Table 1: GCD operators, orness degree and parameter r

For this paper, we only use up to 5 criteria and hence the
table is only shown to that depth. Meanwhile, Fodor and
Marichal independently propose the LSP definition as
formula to measure the orness of any mean operator M
by studying Dujmovic's degree of conjunction and
disjunction [10, 11]:

൯(ݔ)ܯ൫ܦݏݏ݁݊ݎܱ = ∫ ெ(௫)ௗ௫೙
బ ି∫ ெ௜௡(௫)ௗ௫బ

೙
∫ ெ௔௫(௫)ௗ௫೙

బ ି∫ ெ௜௡(௫)ௗ௫೙
బ

 (2)

where M(x) is a GCD operator, Max(x) is the pure
conjunction (C) and Min(x) is the pure disjunction (D).
However, this definition does not solve the problem of
dynamically calculating the orness degree without
knowing the selected GCD operator, it is more a
replacement for the lookup table (Table 1).

LSP aims to evaluate quantitative features for the
comparison of different entities. Recently, LSP has been
used to deal with Hardware/Software systems, Data
Management systems and web site evaluation and
selection problems [7, 12, 13]. The four main steps of
LSP evaluation method are: (1) specifying evaluation
variables, (2) defining elementary criteria, (3) analyzing
degree decision and (4) analyzing cost/preference. Note
that these are steps involving much human decision
making. The LSP method certainly has lots of power to
evaluate the quantitative aspects of competitive Web
services and support selection decision making. However,
when consumers' preferences are changing because of
their different context status, the LSP method does not
support fully automatic service selection methodology.
The first problem is that the orness degree changes when
the preferences (weights and criteria) are changed in the
unpredictable environment. Therefore, we cannot
predefine the orness in the evaluation formula. The
second major problem is identifying criteria evaluation
methods dynamically. In the static environment, the
evaluation methods can be predefined for the specified
criteria and the mapping relations are also static for the
finite criteria. However, if we have a large set of criteria,
then the evaluation methods are very difficult to design
and to be mapped. We start to discuss the solution of the
first issue in section 3 and the second issue in section 4.
Before these discussions, we will introduce an important
definition used in this paper.

2.3 Ordered Weighted Averaging Operators

Ordered Weighted Averaging operators are introduced in
the area of fuzzy logic [3], and have been shown to allow
to determine the orness degree on the fly. The Ordered
Weighted Averaging (OWA) operators are defined as
follows:

Definition: OWA operator
Let W=(w1, w2, …, wn) with ∑ ୧ݓ = 1୬

௜ୀ଴ .
Let A=(a1, a2, …,an) and B=(b1, b2, …,bn) be bags
 where bi is the i-th largest element of A.
An OWA operator of dimension n is a mapping

:ܨ ℝ௡ → ℝ
such that

,ଵܽ)ܨ ܽଶ, … , ܽ௡) = ෍ ௜ݓ

௡

௜ୀଵ

ܾ௜

For example, W = (0.4, 0.3, 0.2, 0.1), then F (0.7, 1, 0.3,
0.6)=(0.4)(1)+(0.3)(0.7)+(0.2)(0.6)+(0.1)(0.3)=0.76.

A fundamental aspect of this operator is the re-ordering
step. An aggregate ai is not associated with a particular
weight wi but rather a weight is associated with a
particular ordered position of the aggregate [14]. In [3],

the orness measure of any kind of OWA operator is
defined as follows:

(ܣܹܱ)ݏݏ݁݊ݎܱ = ଵ

௡ିଵ
∑ (݊ − ௝ݓ(݆

௡
௝ୀଵ (3)

Also, a link between orness as defined for Fuzzy Logic
(OWA) and orness as defined by formula (2) has been
shown in [15]:

Theorem:
If the problem can be expressed as and OWA
problem, then:

OrnessD(M(x)) = Orness(OWA)

This theorem gives a tool for linking the LSP method and
OWA operators, by bridging the gap between the discrete
orness definition of formula (2) and the contributions of
formula (3) as we will discuss in the next section.

3. Applying OWA Orness Measure to LSP
Method

On the one hand, we argued that the original LSP method
does not support an automatic mechanism to select a
suitable value for r for the aggregation function. On the
other hand, [15] proved that if the ranking problem can be
transformed into an OWA problem, then we can use the
OWA orness definition to automatically calculate the LSP
orness degree. Therefore, we need to show that the
ranking problem can be transformed into an OWA
problem, which we will do now.

In general an OWA problem is characterized by being
expressible by two bags: one with weights and one with
evaluation values. The latter comes in two forms: A and
B, where A is ordered in the same order as the weights
and B in order of the value of the elements.

Considering the services ranking problem we naturally
have a bag of weights, but we have multiple bags of
values as we have one set of criteria evaluation values.
From this we can conclude that we can computer an
orness degree per service, which is of course not what we
want as we are looking for an overall aggregator which
should differentiate the services.

The solution is to compute a bag of values that contains
the average score for each criteria across all services
evaluated.

Assume that we are considering m services and n
evaluation criteria. Furthermore, ܹ = ଵݓ } , ,ଶݓ … , ௡} isݓ
a bag of weights and ଵܸ = ଵଵݒ} , ଶଵݒ , … , ௡ଵ} … ௡ܸݒ =
ଵ௠ݒ} , ଶ௠ݒ , … , ௡௠} are the evaluation results of eachݒ
mapped criteria for the different services, with each
vector presenting results for the n criteria of one service.
Then:

ܸ = ቄ∑ ௩భ೔
೘
೔సభ

௠
,

∑ ௩మ೔
೘
೔సభ

௠
, … ,

∑ ௩೙೔
೘
೔సభ

௠
ቅ (4)

is the set of average evaluation scores for our n criteria.
Using W and V as the respective sets, we have recast

the service selection problem into an OWA problem, and
hence can use Orness(OWA) to compute our orness
degree, which in turn allows us to extract the value r to be
used in the global aggregation function (1).

We will now show some very small examples that show
the computed orness degree and provide insight about the
operator expected for correct aggregation.

Criterion C1 C2 C3
Weight 0.7 0.2 0.1
Service1 0.3 0.2 0.1
Service2 0.1 0.7 0.9

Example 1

Recall that when calculating overall scores, we do not
want the evaluation results of less import criteria to
outweigh the important ones; we referred to this as
simultaneity earlier on. In Example 1 we can see that both
services have low evaluation values for the most
important criterion C1 – which means that to ensure
simultaneity we require a conjunction LSP operator. By
using formula (4) and (3), we calculate the orness degree
as 0.2 which maps to the strong quasi conjunction
operator.

 w1=0.7 w2=0.2 W3=0.1
Service1 0.9 0.2 0.1
Service2 0.7 0.7 0.9

Example 2

Example 2 shows a typical case of replacebility, where a
good match on an important criterion is making a service
preferable. In the example, we can see that both services
have higher evaluation results for the most import
criterion. Recall that for replacebility we would expect a
disjunction operator. Again, by applying our formulae we
can compute the orness degree (this time as 0.75) and we
find that this maps to medium quasi disjunction.

4. Type-based Evaluation Mapping Methods

Most of the traditional criteria selection methods strongly
rely on human intervention. For example, criteria used for
selection are typical tightly bound to a priori defined
evaluation mapping; changing criteria require manually
retuning the evaluation mapping. Meanwhile, changes of
criteria and preferences are unavoidable in the dynamic
environment encountered in web service selection. Thus,
predefining the service selection criteria and preferences
cannot reflect the evaluation requirements of the system at
run-time. We propose a type-based evaluation mapping
method which is related to the types of the criteria, rather

than being dependent on the criteria themselves. We
define three types of criteria and each type has a related
evaluation method. The three types are “Numerical type”,
“Boolean type” and “Set overlap type”. Further types
could of course be defined if required, but we have not
encountered a need for them so far.

The Numerical type is used for criteria which take
numerical input to the evaluation method such as cost,
time and measurement values. The mapped evaluation
method is given by (5), where w is the weight of the
criterion. When the criterion is of numerical type, the
weight can be in the range [-1…0]. In this case, it means
that a smaller numerical value is desired (as e.g. for price
properties).

vmax is the maximum value of all competitive services
for the criterion, v is the value for the service under
evaluation. vmin is the minimum value of all competitive
services.

ܧ = ቐ
1 − (௩೘ೌೣି௩

௩೘ೌೣି௩೘೔೙
) iff ݓ ≥ 0

(௩೘ೌೣି௩
௩೘ೌೣି௩೘೔೙

) otherwise
� (5)

The Boolean type is used for criteria which have a value
that is evaluated to 1 or 0. The method is:

ܧ = ቄ1 if the criteria is met
0 otherwise

� (6)

The Set overlap type is to define criteria which are
measured by the size of the evaluation objects’
satisfaction subset:

ܧ = (݁ଵ + ݁ଶ + ⋯ + ݁௡) ݊⁄ (7)

with ei being a score for each element of the set.

Now, whenever the criteria are changing or values are
being updating at runtime, the system automatically
applies the correct evaluation functions based on the
detected criteria’s type.

5. The Ranking Approach

We will now present the modified LSP method used for
quantitative aspects of automatic Web service ranking.
This method includes 5 steps developed from [16, 17].

I. Service users specify the weights to a set of

desired criteria.
II. System obtains the user's context and sets the

evaluation values to the criteria.
III. System obtains the metadata of each competitive

service related to the desired criteria.
IV. Individual criteria for all services are evaluated

to values in the [0, 1] interval by applying the
type-based measurement formulae (5), (6) and
(7).

V. The criteria are re-ordered according to their
combined weights. The value for parameter r is
automatically gained by calculating the orness
using formulae (3) and (4).

VI. The overall score for each service is calculated
using formula (1) and all services are ranked by
their aggregated evaluation scores.

Note that step I is manual: the user’s preferences must be
captured. Typically users would do this once as part of
their user profile which is then using data (in step II)
adapted based on the context. Further, the weighted
desired criterion set is a subset of criteria which are
defined inside a particular service category. The criteria
can be divided into two groups: hard criteria (the weight
of the criterion is 1) and soft criteria (the weight of the
criterion is in the range]-1, 1[).

Also note that in step III metadata not only describes
the service's functional properties such as input, output,
precondition and effect (IOPE), but also indicates non-
functional properties, such as cost, speed, security and so
on. The Semantic Web service concept is designed to
organize the service metadata. The Web Ontology
Language (OWL) [18] is one published ontology standard
for constructing Semantic Web services. Moreover, the
tools for retrieving information from the OWL standard
are developed based on SPARQL techniques [19]. These
tools can be used for obtaining and reasoning about the
specified metadata. The metadata is inserted by service
providers in their service description, and is then
augmented with runtime information.

6. Prototype Implementation

We developed a prototype to demonstrate the proposed
nonfunctional property-based service selection approach
[20]. Service providers can register their services with
different operations through an online interface (depicted
in Figure 2). This essentially allows the registration of a
service in a repository and does not diverge much from
current practice with web services: it requires a WSDL
file and a service description.

Fig. 2 Register and service search page

Once a service operation has been registered, the

metadata can be edited or new data can be entered (see
Figure 3).

Fig. 3 Metadata management page

Service operations are assigned categories, which have an
influence on which metadata attributes are expected: e.g.
a printing service might have metadata to express print
queue length, while a communications service might have
metadata regarding online status of a user. All services
might have metadata such as price. Service providers can
create new categories (Figure 4). The evaluation
mechanism uses the service categories when deciding
which criteria to consider in the ranking. When searching,
users (or workflow engines, etc) provide key words to
describe the functionality that they are after.

Fig. 4 Category management page

The lookup in conjunction with the relevance engine will
search the best suitable service based on user’s context
(we will not illustrate how users register their context
information to the system). If this is done through the
interface shown in Figure 5, users would tick the “ranking
option” box. For instance, the user may search for “SMS”
services, then a ranked or unranked (depending on tick
box) list of service will be displayed and the most suitable
service is at the top of the list.

Fig. 5 Service Selection result

The search with ranking is of course somewhat slower
when compared to an unranked search. We have not
evaluated the details as in the current setting with only
small numbers of services of a specific category available
the difference is nearly not noticeable. More general, it is
worth pointing out a few facts that allow for a somewhat
slower mechanism to be satisfactorily in this context:
 Services often tend to be long-running units of work,

possibly involving human interaction themselves. So
when considering execution time of business services
we are thinking in timeframes of hours and days –
hence whether suggestions for services take seconds
or a few minutes to appear is generally not an issue.

 Compared to manually pouring over service
descriptions and then making a decision as to which
service to use, we feel it is easy to argue that any
automated method is of benefit.

 Finally, previous work in social science and
telecommunications service selection has shown that
users are generally happy to wait a little for a service
to be selected if it guarantees better satisfaction.

Saying this, it is of course important that the mechanism
runs reasonably fast, which we believe to be the case as
much of the evaluation is calculation of relatively simple
formulae and so far we have not seen much delay in the
distributed setting in which we use the method.

7. Related Work

Currently Web service measurements consider using
QoS as non-functional properties. They focus on defining
QoS ontology languages and vocabularies, and
identifying various QoS metrics and their measurements
with respect to semantic services. Some of the work only
concentrates on defining ontologies. For example, [21]
and [22] propose QoS ontology frameworks aimed at
formally describing QoS attributes. To our understanding,
these works have defined neither the matched metrics for
different non-functional properties nor schemes to

quantify the attributes. Meanwhile [23] enumerates a
large number of non-functional properties and organizes
them into several categories, such as run-time related,
transaction support related, configuration management,
cost-related QoS, and security-related QoS. However, the
work assumes that all measured values are available
somewhere. Thus, it fails to illustrate the quantifiable
measurements.

There is other related work in [24], [25], and [26]
attempting to conduct a detailed evaluation and proposing
QoS-based service selection. However, they do not
explicit how to define the desired QoS properties and
where they come from. In terms of automated Web
service selection, all the current work has two major
disadvantages.

(1) They do not define the proper quantitative
aggregation metrics for obtaining the final evaluation
scores. The final score usually calculated by using only
the average of all individual evaluation values of the
criteria or conducted by weighted arithmetic mean
method.

(2) Most of them are human oriented processes. They
do not provide an automatic mechanism to facilitate the
dynamic metric invocation and aggregation.

Our work addresses both of these shortcomings by
presenting an automated process where the human
intervention involved is restricted to providing the
categorization of services and their metadata as well as
obtaining user preferences. The automated method uses a
run-time evaluation framework to score services taking
into account delicate relations between weights and
values.

8. Conclusion and Future Work

This paper proposed a novel method for automatically
measuring and selecting Web services in a dynamic
environment. The theory has been implemented as part of
the “inContext” project platform. The method is
implemented by combining the LSP metrics and OWA
operators for calculating aggregate scores for each service
and capturing criteria based scores based on a type-based
evaluation mapping system. For the former, we apply
OWA operators to automatically measure the value of the
orness degree required by LSP. For the latter, we define
three types of evaluation functions which are selected
dynamically based on the type of the criteria to be
evaluated. Comparing to other Web service selection
methods, our method (1) can capture the high level
satisfaction semantics in terms of fuzzy relations between
different criteria (e.g. simultaneity and replaceability) and
(2) requires minimal human intervention. Once service
metadata is available and the selection criteria are defined
(these are based on the categories of the operations, so the
overhead is minimal), the ranking scores for individual
service are computed completely automatically.

We have evaluated a first version prototype within the
inContext project. One limitation of this method is that it
only ranks services in single service selection scenario
(local service ranking). In ongoing research, we are
extending the method be used in service composition
workflows (global ranking) where a service should be
selected within the context of other preceeding and
following services.

A further avenue of future work is to explore
mechanisms to capture user requirements in more user
friendly and flexible ways that would supercede the
current user profiles.

9. Acknowledgement

This work is partially supported by the EU inContext
(Interaction and Context Based Technologies for
Collaborative Teams) project: IST-2006-034718. The
authors would like to thank the project partners for
stimulating discussion. Particular thanks are due to
Marcel Tilly and Sebastien Peray at the European
Microsoft Innovation Centre for their collaboration on the
implementation and Dr. Emilio Tuosto at the University
of Leicester for his comments.

10. References

[1] W3C Working Group, “Web Services Architecture”,
http://www.w3.org/.

[2] Dujmovic, J.J. Mixed Averaging by Levels (MAL) –A
System and Computer Evaluation Method. In Proceedings
of the Informatica Conference, Bled, Yugoslavia, 1973.

[3] Yager, R.R. On Ordered Weighted Averaging
Aggregation Operators in Multi-criteria Decision Making,
IEEE Transactions on Systems, Man and Cybernetics,
vol. 18, pp. 183-190, 1988.

[4] inContext project: Unleash Team Power,
http://www.in-context.eu, 2007.

[5] inContext project WP2 Deliverable 2.1: Analysis and
specification and context modeling techniques,
http://www.in-context.eu/page.asp?PageRef=10. 2007.

[6] Dujmovic, J.J. Extended Continuous Logic and the
Theory of Complex Criteria. In Journal of the University
of Belgrade, EE Dept., Series Mathematics and Physics,
No. 537, pp. 97-216, 1975.

[7] Dujmovic, J.J. A Method for Evaluation and Selection
of Complex Hardware and Software Systems. In
Proceedings of 22nd International Conference for the

Resource Management and Performance Evaluation of
Enterprise Computer Systems. New Jersey, 1996.

[8] Miller III, J.R. Professional Decision-Making, Praeger
Publishers, 1970.

[9] Dujmoviæ, J.J. and Larsen, H. Properties and
Modeling of Partial Conjunction/Disjunction. In B. De
Baets et al (eds): Proceedings of Eurofuse Workshop on
Data and Knowledge Engineering, published as Current
Issues in Data and Knowledge Engineering. pp. 215-224,
Exit Publishers, Warsaw (2004).

[10] Fodor, J.C. and Roubens, M. Modelling and
Multicriteria Decision Support. Kluwer, Dordrecht, 1994.

[11] Marichal, J.L. Aggregation operations for
multicriteria decision aid. PhD. Thesis, Institute of
Mathematics, University of Liege, Belgium, 1998.

[12] Su, S.Y.W., Dujmovic, J.J., Batory, D.S., Navathe,
S.B and Elnicki, R. A Cost-Benefit Decision Model:
Analysis, Comparison, and Selection of Data
Management Systems. ACM Transactions on Database
Systems, 12(3), pp. 472-520, 1987.

[13] Olsina, L. A. and Rossi, G. Measuring Web
application quality with WebQEM, IEEE Multimedia,
9(4), pp. 20-29, 2002.

[14] Carlsson, C. and Fuller, R. OWA operators for
decision Support. In Proceedings of EUFIT'97
Conference, vol. II, pp. 1539-1544, 1997.

[15] Fenandez Salido, J.M. and Murakami, S. Extending
Yager's orness concept for the OWA aggregators to other
mean Operators. Fuzzy Sets and Systems. Elsevier B.V.
vol. 139, pp. 515-542, 2003.

[16] Yu, H.Q. and Molina, H. A Modified LSP method
for services evaluation and selection. In S. Gorton, M.
Solanki and S. Reiff-Marganiec (eds): Proceedings of the
2nd European Young Researchers Workshop on Service
Oriented Computing, pp. 87-93, 2007.

[17] Reiff-Marganiec, S., Yu, H.Q. and Tilly, M. Service
Selection based on Non-Functional Properties, In
Proceedings of Non Functional Properties and Service
Level Agreements in Service Oriented Computing
Workshop NFPSLA-SOC'07. 2007.

[18] W3C Working Group, “OWL Web Ontology
Language Overview”, W3C Recommendation,
http://www.w3.org/TR/owl-features/.

[19] W3C RDF Working Group, “SPARQL syntax and
specification”, http://www.w3.org/TR/rdf-sparql-query/,
2006.

[20] inContext Project, Service Lookup Engine,
http://213.239.218.49/RegistryManager, 2008.

[21] Papaioannou, I.V., Tsesmetzis, D.T., Roussaki, I.G.
and Miltiades, E.A., A QoS Ontology Language for Web-
Services. In 20th International Conference on Advanced
Information Networking and Applications - vol 1
(AINA'06), pp. 101-106. 2006.

[22] Tsesmetzis, D.T., Roussaki, I.G., Papaioannou, I.V.,
and Anagnostou, M.E. QoS awareness support in Web-
Service semantics. In Advanced International Conference
on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT-
ICIW'06), pp. 128-128. 2006.

[23] Ran, S.P., A Model for Web Services Discovery with
QoS. ACM SIGecom Exchanges, 4(1), pp.1-10, 2003.

[24] Liu, Y., Ngu, A.H.H. and Zeng, L., QoS
Computation and Policing in Dynamic Web Service
Selection. In Proceeding 13th International Conference,
World Wide Web, pp. 66-73, 2004.

[25] Mou, Y., Cao, J., Zhang, S.S. and Zhang, J.H.,
“Interactive Web Service Choice-Making Based on
Extended QoS Model”, CIT (2005), pp.1130-1134.

[26] Menasce, D.A., QoS Issues in Web Services, IEEE
Internet Computing, 6(6), pp.72-75, 2002.

[27] Canfora, G., PentaRaffaele, M.D., Esposito, R. and
Villani, M.L, An approach for QoS-aware service
composition based on genetic algorithms. In Proceedings
of the 2005 Conference on Genetic and Evolutionary
Computation, pp. 1069-1075, 2005.

[28] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M.,
Kalagnanam, J. and Chang, H., QoS-aware middleware
for web services composition. IEEE Transactions on
Software Engineering, 30(5), 2005.

