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Abstract 
 
Automated Web service selection is a key challenge in 
Service Oriented Architecture (SOA) research. With SOA 
becoming more popular in industry, and more Web 
services becoming available in the e-business market, the 
main issue changes from service discovery to service 
selection and ranking. In this paper, we propose a novel 
nonfunctional property-based service selection method by 
modifying the Logic Scoring Preference (LSP) method 
with Ordered Weighted Averaging (OWA) Operators. 
Moreover, the dynamic mechanism for evaluating 
metadata based QoS criteria of each service is presented 
for this method. 
 
1. Introduction 
 
Web services are a technology designed to support 
interoperable machine to machine software interactions. 
The execution of services takes place on remote system(s) 
hosting the requested service(s). The typical architecture 
of Web services includes three roles, namely service 
requestor, service broker and service provider. Once the 
requestor sends a service request to the broker, a matched 
service provider should be sent back as a WSDL URL by 
the broker searched from a UDDI or published service 
metadata repository. Finally the requestor can invoke the 
provided service through the SOAP message protocol. 
One of the crucial issues is the automated service ranking 
for dynamic service selection environment [1]. When the 
broker finds a set of services which all satisfy the 
functional requirements of a service request, then the non-
functional requirements can be used as service ranking 
criteria. 

Consequently, the problem can be recast into an 
automated multicriteria decision problem for multiple 
entities. The solution to this problem requires a selection 
method such that each single criterion can be evaluated 
and multiple criteria can be properly aggregated. The final 
quantitative results should reflect the best suitable service 
based on the request. The main challenges discussing in 
this paper are: 

  (1) Automated QoS-based service ranking 
mechanism: most of the selection methods strongly rely 
on human intervention. For example, criteria used for 
selection are typical tightly bound to a priori defined 

evaluation mappings; changing preferences and criteria 
requests for manually retuning the evaluation mapping. 
Meanwhile, the changes of criteria and preferences are 
unavoidable in the dynamic environment. Predefining the 
service selection criteria and preferences can not reflect 
the evaluation of the system at run-time. 

  (2) Dynamic retuning of aggregation functions: most 
aggregation functions cannot show relations between 
individual criterions. Currently, the aggregation functions 
used for service ranking are based on the simple 
operations such as arithmetic metrics (essentially 
weighted sums) or geometric metric (essentially weighted 
products. However, these functions are not enough to 
represent logic relations such as simultaneity and 
replaceability.  

To explain the concepts of simultaneity and 
replaceability, let us consider an example. A car buyer 
may say that they simultaneously need good performance 
and a good price with performance being  more important 
(weight is 0.7) than price (0.3). If there are two cars 
evaluated as (0.9, 0.0) and (0.6, 0.5), then the first car (0.7 
0.9 + 0.3 0.0 = 0.63) is better than second car (0.7 0.6 + 
0.3 0.5 = 0.57) by using the traditional weighted sum 
aggregation function. However, this does not reflect the 
simultaneity relation of “performance and price both are 
important criteria”. The correct aggregation function 
should penalize the first car choice. On the other hand, 
people can argue that the geometric function can do this. 
However, if the requirements change to replaceability, 
which means that the criteria (performance and price) can 
replace each other (e.g. a lower performance is acceptable 
if the price is good). As result, the correct aggregation 
function should only penalize the car if both of the 
evaluation scores are 0. In this situation the weighted 
product is not the correct aggregation function. In a more 
realistic scenario, we may have more complex relations 
on the range between simultaneity and replaceability. 

In the literature, the Logic Scoring Preference (LSP) 
method is introduced to solve the second problem by 
adding a parameter to retune the aggregation function [2], 
which is defined by domain experts for each situation. 
However, we need to define a way to dynamically obtain 
the value of this parameter. The parameter is influenced 
by the combination of simultaneity (conjunction) and 
replaceability (disjunction) referred to as degree or orness 
degree in LSP. Meanwhile, the Ordered Weighted 



Averaging (OWA) operators introduced in [3] can be 
proven to reason the orness degree on the fly in the fuzzy 
logic research area.  

The main contributions of this paper are (1) a novel 
multicriteria-based automated Web service selection 
method and a ranking approach and (2) a type-based 
evaluation mapping system to address the issue of 
automated service evaluations. The method includes a 
multi-criteria aggregation function which combines LSP 
metrics with OWA Operators.   

The rest of the paper is organized as follows. Section 2 
introduces the background information and techniques we 
use in this paper. Firstly, the inContext dynamic service 
selection platform is explained to show the service 
ranking requirements. Secondly, the Logic Scoring 
Preference method and Ordered Weighted Averaging 
operators are introduced. Then, the relation between LSP 
and OWA will be discussed. Section 3 illustrates a novel 
way of applying OWA concepts to deal with problems 
occurring when automating LSP. Section 4 discusses the 
technique for dynamically selecting evaluation methods. 
Based on these new techniques, Section 5 proposes the 
new LSP method for automated Web service selection. 
Section 6 illustrates the implementation. Section 7 will 
discuss some related work and Section 8 draws the 
conclusion and future work. 

 
2. Background 
 
2.1 “inContext” Research Project 
 
The complexity of business processes and the dynamic 
nature of the co-operations make it difficult for the 
business modeler to select appropriate services, manage 
the compositions efficiently and understand requirements 
within a dynamic context correctly. The "inContext" 
project [4] platform provides dynamic context 
information which affects the Web service measurement 
at run-time; Figure 1 shows an overview of the 
architecture. The most interesting part of this platform for 
this paper is the user context based service selection 
process (the core logic of which is encapsulated in the 
Relevance Engine). On the one hand, the platform has the 
ability to supply the current context status of the end-
users such as “location”, “availability”, “devices”, “task” 
and “budget” (the details of users’ context model can be 
found in [5]). Thus, the criteria for measuring Web 
service can be gained by reasoning on the context data. 
On the other hand, the platform also dynamically stores 
the QoS metadata of registered services and allows 
updating this at any time. We are involved in this project 
to design the QoS-aware Web service selection 
mechanism. Thus, this paper will only concentrate on 
discussing the service selection part of the whole 
framework. However, it is worthwhile noting here that the 

user context data is gathered during the execution of the 
system automatically by mining past activities and 
monitoring current events, hence (and crucially) not 
providing an extra burden on the user. The service meta 
data is provided by the service provider and is then 
augmented with monitored run-time data. 

The platform makes use of weights in the ranking of 
criteria; these are encapsulated in a user profile which is 
seen as part of the context (it can be changed 
dynamically); however this is where the user needs to 
specify some data at least once to express their wishes. 

 
 

 
Fig. 1 The inContext platform 

 
 

2.2 The modified LSP method 
 
Logic Scoring Preference (LSP) introduced in [2, 6] is 
one professional evaluation method initially designed for 
solving hardware selection problems [7]. LSP extends the 
traditional scoring techniques [8] and at its core is an 
evaluation function (1). The traditional scoring techniques 
only consider the semantics of importance but ignore the 
relation between criteria such as replaceability, 
simultaneity and mandatory-ness, which normally are 
observable properties of human reasoning [9] – we gave 
an insight in the car selection example in the introduction. 
To capture these relations, Conjunction/Disjuction (GCD) 
operators were introduced in LSP to represent the relation 
of requirements. 

 
ܮ = (| ଵ߱|ܧଵ

௥ + |߱ଶ|ܧଶ
௥ + ⋯ + |߱௡|ܧ௡

௥ )ଵ ௥ൗ               (1) 
 

where 0 ≤ ௜ܧ ≤ 1, ∑ |߱௜|௡
௜ୀଵ = 1, and  is the weight of 

each criterion.  < 0 means that a lower evaluation result 
is better (e.g. for cost),  > 0 means a higher result is 
preferable (e.g. for speed). E is the defined evaluation 



function for providing the scores of the service for each 
criterion. The r presents the logic relation between 
different criteria. The complete table of GCD operators 
with accepted symbols, degrees and values for parameter 
r are given in Table 1 [7]. The definition of the GCD 
operators is the disjunction/conjunction degree d (also 
known as orness degree) of combining simultaneity and 
replaceability. The idea here is that at the ends of the 
spectrum we have conjunction (and) and disjunction (or) 
respectively. Values in the range are closer to or, and 
hence have a higher degree of ‘orness’ – that is they 
behave more like or (we could provide a similar definition 
for ‘andness’). We will use these defined operators 
without adding more new operators. We will use the 
closest values of d when a calculated degree value result 
is not found in Table 1. Moreover, r2 is the r value for a 2 
criteria situation, r3 for 3 criteria situation and so on. The 
d indicates the orness degree as explained above.  

 

 
 

Table 1: GCD operators, orness degree and parameter r 
 

For this paper, we only use up to 5 criteria and hence the 
table is only shown to that depth. Meanwhile, Fodor and 
Marichal independently propose the LSP definition as 
formula  to measure the orness of any mean operator M 
by studying Dujmovic's degree of conjunction and 
disjunction [10, 11]: 

 

൯(ݔ)ܯ൫ܦݏݏ݁݊ݎܱ = ∫ ெ(௫)ௗ௫೙
బ ି∫ ெ௜௡(௫)ௗ௫బ

೙
∫ ெ௔௫(௫)ௗ௫೙

బ ି∫ ெ௜௡(௫)ௗ௫೙
బ

                 (2) 

 
where M(x) is a GCD operator, Max(x) is the pure 
conjunction (C) and Min(x) is the pure disjunction (D). 
However, this definition does not solve the problem of 
dynamically calculating the orness degree without 
knowing the selected GCD operator, it is more a 
replacement for the lookup table (Table 1). 

LSP aims to evaluate quantitative features for the 
comparison of different entities. Recently, LSP has been 
used to deal with Hardware/Software systems, Data 
Management systems and web site evaluation and 
selection problems [7, 12, 13]. The four main steps of 
LSP evaluation method are: (1) specifying evaluation 
variables, (2) defining elementary criteria, (3) analyzing 
degree decision and (4) analyzing cost/preference. Note 
that these are steps involving much human decision 
making. The LSP method certainly has lots of power to 
evaluate the quantitative aspects of competitive Web 
services and support selection decision making. However, 
when consumers' preferences are changing because of 
their different context status, the LSP method does not 
support fully automatic service selection methodology. 
The first problem is that the orness degree changes when 
the preferences (weights and criteria) are changed in the 
unpredictable environment. Therefore, we cannot 
predefine the orness in the evaluation formula. The 
second major problem is identifying criteria evaluation 
methods dynamically. In the static environment, the 
evaluation methods can be predefined for the specified 
criteria and the mapping relations are also static for the 
finite criteria. However, if we have a large set of criteria, 
then the evaluation methods are very difficult to design 
and to be mapped. We start to discuss the solution of the 
first issue in section 3 and the second issue in section 4. 
Before these discussions, we will introduce an important 
definition used in this paper. 

 
2.3 Ordered Weighted Averaging Operators 

 
Ordered Weighted Averaging operators are introduced in 
the area of fuzzy logic [3], and have been shown to allow 
to determine the orness degree on the fly. The Ordered 
Weighted Averaging (OWA) operators are defined as 
follows: 

 
Definition: OWA operator 
Let W=(w1, w2, …, wn) with ∑ ୧ݓ = 1୬

௜ୀ଴ .  
Let A=(a1, a2, …,an) and B=(b1, b2, …,bn) be bags 
     where bi is the i-th largest element of A. 
An OWA operator of dimension n is a mapping 

:ܨ ℝ௡ → ℝ  
such that  

,ଵܽ)ܨ ܽଶ, … , ܽ௡) = ෍ ௜ݓ

௡

௜ୀଵ

ܾ௜ 

 
For example, W = (0.4, 0.3, 0.2, 0.1), then F (0.7, 1, 0.3, 
0.6)=(0.4)(1)+(0.3)(0.7)+(0.2)(0.6)+(0.1)(0.3)=0.76. 
     
A fundamental aspect of this operator is the re-ordering 
step. An aggregate ai is not associated with a particular 
weight wi but rather a weight is associated with a 
particular ordered position of the aggregate [14]. In [3], 



the orness measure of any kind of OWA operator is 
defined as follows: 

 
(ܣܹܱ)ݏݏ݁݊ݎܱ = ଵ

௡ିଵ
∑ (݊ − ௝ݓ(݆

௡
௝ୀଵ                       (3) 

 
Also, a link between orness as defined for Fuzzy Logic 
(OWA) and orness as defined by formula (2) has been 
shown in [15]: 

 
Theorem:  
If the problem can be expressed as and OWA 
problem, then: 

OrnessD(M(x)) = Orness(OWA) 
 

This theorem gives a tool for linking the LSP method and 
OWA operators, by bridging the gap between the discrete 
orness definition of formula (2) and the contributions of 
formula (3) as we will discuss in the next section. 

 
3. Applying OWA Orness Measure to LSP 
Method 
 
On the one hand, we argued that the original LSP method 
does not support an automatic mechanism to select a 
suitable value for r for the aggregation function. On the 
other hand, [15] proved that if the ranking problem can be 
transformed into an OWA problem, then we can use the 
OWA orness definition to automatically calculate the LSP 
orness degree. Therefore, we need to show that the 
ranking problem can be transformed into an OWA 
problem, which we will do now. 

In general an OWA problem is characterized by being 
expressible by two bags: one with weights and one with 
evaluation values. The latter comes in two forms: A and 
B, where A is ordered in the same order as the weights 
and B in order of the value of the elements.   

Considering the services ranking problem we naturally 
have a bag of weights, but we have multiple bags of 
values as we have one set of criteria evaluation values. 
From this we can conclude that we can computer an 
orness degree per service, which is of course not what we 
want as we are looking for an overall aggregator which 
should differentiate the services. 

The solution is to compute a bag of values that contains 
the average score for each criteria across all services 
evaluated. 

Assume that we are considering m services and n 
evaluation criteria. Furthermore, ܹ = ଵݓ } , ,ଶݓ … ,  ௡} isݓ
a bag of weights and ଵܸ = ଵଵݒ} , ଶଵݒ , … , ௡ଵ} … ௡ܸݒ =
ଵ௠ݒ} , ଶ௠ݒ , … ,  ௡௠} are the evaluation results of eachݒ
mapped criteria for the different services, with each 
vector presenting results for the n criteria of one service. 
Then: 

ܸ = ቄ∑ ௩భ೔
೘
೔సభ

௠
,

∑ ௩మ೔
೘
೔సభ

௠
, … ,

∑ ௩೙೔
೘
೔సభ

௠
ቅ                         (4) 

is the set of average evaluation scores for our n criteria.  
Using W and V as the respective sets, we have recast 

the service selection problem into an OWA problem, and 
hence can use Orness(OWA) to compute our orness 
degree, which in turn allows us to extract the value r to be 
used in the global aggregation function (1).  

We will now show some very small examples that show 
the computed orness degree and provide insight about the 
operator expected for correct aggregation.  

 
Criterion C1 C2 C3 
Weight 0.7 0.2 0.1 
Service1 0.3 0.2 0.1 
Service2 0.1 0.7 0.9 

Example 1 
 
Recall that when calculating overall scores, we do not 
want the evaluation results of less import criteria to 
outweigh the important ones; we referred to this as 
simultaneity earlier on. In Example 1 we can see that both 
services have low evaluation values for the most 
important criterion C1 – which means that to ensure 
simultaneity we require a conjunction LSP operator. By 
using formula (4) and (3), we calculate the orness degree 
as 0.2 which maps to the strong quasi conjunction 
operator.  
 
 w1=0.7 w2=0.2 W3=0.1 
Service1 0.9 0.2 0.1 
Service2 0.7 0.7 0.9 

Example 2 
 
Example 2 shows a typical case of replacebility, where a 
good match on an important criterion is making a service 
preferable. In the example, we can see that both services 
have higher evaluation results for the most import 
criterion. Recall that for replacebility we would expect a 
disjunction operator. Again, by applying our formulae we 
can compute the orness degree (this time as 0.75) and we 
find that this maps to medium quasi disjunction.  
 
4. Type-based Evaluation Mapping Methods 
 
Most of the traditional criteria selection methods strongly 
rely on human intervention. For example, criteria used for 
selection are typical tightly bound to a priori defined 
evaluation mapping; changing criteria require manually 
retuning the evaluation mapping. Meanwhile, changes of 
criteria and preferences are unavoidable in the dynamic 
environment encountered in web service selection. Thus, 
predefining the service selection criteria and preferences 
cannot reflect the evaluation requirements of the system at 
run-time. We propose a type-based evaluation mapping 
method which is related to the types of the criteria, rather 



than being dependent on the criteria themselves. We 
define three types of criteria and each type has a related 
evaluation method. The three types are “Numerical type”, 
“Boolean type” and “Set overlap type”. Further types 
could of course be defined if required, but we have not 
encountered a need for them so far. 

The Numerical type is used for criteria which take 
numerical input to the evaluation method such as cost, 
time and measurement values. The mapped evaluation 
method is given by (5), where w is the weight of the 
criterion. When the criterion is of numerical type, the 
weight can be in the range [-1…0]. In this case, it means 
that a smaller numerical value is desired (as e.g. for price 
properties). 

vmax is the maximum value of all competitive services 
for the criterion, v is the value for the service under 
evaluation. vmin is the minimum value of all competitive 
services. 

ܧ = ቐ
1 − ( ௩೘ೌೣି௩

௩೘ೌೣି௩೘೔೙
) iff ݓ ≥ 0

( ௩೘ೌೣି௩
௩೘ೌೣି௩೘೔೙

) otherwise
� (5)

 
The Boolean type is used for criteria which have a value 
that is evaluated to 1 or 0. The method is: 

ܧ = ቄ1 if the criteria is met
0 otherwise

�                                (6) 

The Set overlap type is to define criteria which are 
measured by the size of the evaluation objects’ 
satisfaction subset: 

ܧ = (݁ଵ + ݁ଶ + ⋯ + ݁௡) ݊⁄                                         (7) 

with ei being a score for each element of the set. 
 

Now, whenever the criteria are changing or values are 
being updating at runtime, the system automatically 
applies the correct evaluation functions based on the 
detected criteria’s type. 

 
5. The Ranking Approach 
 
We will now present the modified LSP method used for 
quantitative aspects of automatic Web service ranking. 
This method includes 5 steps developed from [16, 17]. 

 
I. Service users specify the weights to a set of 

desired criteria. 
II. System obtains the user's context and sets the 

evaluation values to the criteria. 
III. System obtains the metadata of each competitive 

service related to the desired criteria. 
IV. Individual criteria for all services are evaluated 

to values in the [0, 1] interval by applying the 
type-based measurement formulae (5), (6) and 
(7). 

V. The criteria are re-ordered according to their 
combined weights. The value for parameter r is 
automatically gained by calculating the orness 
using formulae (3) and (4). 

VI. The overall score for each service is calculated 
using formula (1) and all services are ranked by 
their aggregated evaluation scores.  

 
Note that step I is manual: the user’s preferences must be 
captured. Typically users would do this once as part of 
their user profile which is then using data (in step II) 
adapted based on the context. Further, the weighted 
desired criterion set is a subset of criteria which are 
defined inside a particular service category. The criteria 
can be divided into two groups: hard criteria (the weight 
of the criterion is 1) and soft criteria (the weight of the 
criterion is in the range ]-1, 1[ ). 

Also note that in step III metadata not only describes 
the service's functional properties such as input, output, 
precondition and effect (IOPE), but also indicates non-
functional properties, such as cost, speed, security and so 
on. The Semantic Web service concept is designed to 
organize the service metadata. The Web Ontology 
Language (OWL) [18] is one published ontology standard 
for constructing Semantic Web services. Moreover, the 
tools for retrieving information from the OWL standard 
are developed based on SPARQL techniques [19]. These 
tools can be used for obtaining and reasoning about the 
specified metadata. The metadata is inserted by service 
providers in their service description, and is then 
augmented with runtime information. 
 
6. Prototype Implementation 
 
We developed a prototype to demonstrate the proposed 
nonfunctional property-based service selection approach 
[20]. Service providers can register their services with 
different operations through an online interface (depicted 
in Figure 2). This essentially allows the registration of a 
service in a repository and does not diverge much from 
current practice with web services: it requires a WSDL 
file and a service description.  

 

 
Fig. 2 Register and service search page 



 
Once a service operation has been registered, the 

metadata can be edited or new data can be entered (see 
Figure 3). 

 

 
Fig. 3 Metadata management page 

 
Service operations are assigned categories, which have an 
influence on which metadata attributes are expected: e.g. 
a printing service might have metadata to express print 
queue length, while a communications service might have 
metadata regarding online status of a user. All services 
might have metadata such as price. Service providers can 
create new categories (Figure 4). The evaluation 
mechanism uses the service categories when deciding 
which criteria to consider in the ranking. When searching, 
users (or workflow engines, etc) provide key words to 
describe the functionality that they are after.  

 
 

 
Fig. 4 Category management page 

 
The lookup in conjunction with the relevance engine will 
search the best suitable service based on user’s context 
(we will not illustrate how users register their context 
information to the system). If this is done through the 
interface shown in Figure 5, users would tick the “ranking 
option” box. For instance, the user may search for “SMS” 
services, then a ranked or unranked (depending on tick 
box) list of service will be displayed and the most suitable 
service is at the top of the list. 

 

 
Fig. 5 Service Selection result 

 
The search with ranking is of course somewhat slower 
when compared to an unranked search. We have not 
evaluated the details as in the current setting with only 
small numbers of services of a specific category available 
the difference is nearly not noticeable. More general, it is 
worth pointing out a few facts that allow for a somewhat 
slower mechanism to be satisfactorily in this context: 
 Services often tend to be long-running units of work, 

possibly involving human interaction themselves. So 
when considering execution time of business services 
we are thinking in timeframes of hours and days – 
hence whether suggestions for services take seconds 
or a few minutes to appear is generally not an issue. 

 Compared to manually pouring over service 
descriptions and then making a decision as to which 
service to use, we feel it is easy to argue that any 
automated method is of benefit. 

 Finally, previous work in social science and 
telecommunications service selection has shown that 
users are generally happy to wait a little for a service 
to be selected if it guarantees better satisfaction. 

Saying this, it is of course important that the mechanism 
runs reasonably fast, which we believe to be the case as 
much of the evaluation is calculation of relatively simple 
formulae and so far we have not seen much delay in the 
distributed setting in which we use the method. 

 
7. Related Work 
 

Currently Web service measurements consider using 
QoS as non-functional properties. They focus on defining 
QoS ontology languages and vocabularies, and 
identifying various QoS metrics and their measurements 
with respect to semantic services. Some of the work only 
concentrates on defining ontologies. For example, [21] 
and [22] propose QoS ontology frameworks aimed at 
formally describing QoS attributes. To our understanding, 
these works have defined neither the matched metrics for 
different non-functional properties nor schemes to 



quantify the attributes. Meanwhile [23] enumerates a 
large number of non-functional properties and organizes 
them into several categories, such as run-time related, 
transaction support related, configuration management, 
cost-related QoS, and security-related QoS.  However, the 
work assumes that all measured values are available 
somewhere. Thus, it fails to illustrate the quantifiable 
measurements.  

There is other related work in [24], [25], and [26] 
attempting to conduct a detailed evaluation and proposing 
QoS-based service selection. However, they do not 
explicit how to define the desired QoS properties and 
where they come from. In terms of automated Web 
service selection, all the current work has two major 
disadvantages. 

(1) They do not define the proper quantitative 
aggregation metrics for obtaining the final evaluation 
scores. The final score usually calculated by using only 
the average of all individual evaluation values of the 
criteria or conducted by weighted arithmetic mean 
method.   

(2) Most of them are human oriented processes. They 
do not provide an automatic mechanism to facilitate the 
dynamic metric invocation and aggregation. 

Our work addresses both of these shortcomings by 
presenting an automated process where the human 
intervention involved is restricted to providing the 
categorization of services and their metadata as well as 
obtaining user preferences. The automated method uses a 
run-time evaluation framework to score services taking 
into account delicate relations between weights and 
values. 

 
8. Conclusion and Future Work 
 

This paper proposed a novel method for automatically 
measuring and selecting Web services in a dynamic 
environment. The theory has been implemented as part of 
the “inContext” project platform. The method is 
implemented by combining the LSP metrics and OWA 
operators for calculating aggregate scores for each service 
and capturing criteria based scores based on a type-based 
evaluation mapping system. For the former, we apply 
OWA operators to automatically measure the value of the 
orness degree required by LSP. For the latter, we define 
three types of evaluation functions which are selected 
dynamically based on the type of the criteria to be 
evaluated. Comparing to other Web service selection 
methods, our method (1) can capture the high level 
satisfaction semantics in terms of fuzzy relations between 
different criteria (e.g. simultaneity and replaceability) and 
(2) requires minimal human intervention. Once service 
metadata is available and the selection criteria are defined 
(these are based on the categories of the operations, so the 
overhead is minimal), the ranking scores for individual 
service are computed completely automatically. 

We have evaluated a first version prototype within the 
inContext project. One limitation of this method is that it 
only ranks services in single service selection scenario 
(local service ranking). In ongoing research, we are 
extending the method be used in service composition 
workflows (global ranking) where a service should be 
selected within the context of other preceeding and 
following services. 

A further avenue of future work is to explore 
mechanisms to capture user requirements in more user 
friendly and flexible ways that would supercede the 
current user profiles. 

 
9. Acknowledgement 
 

This work is partially supported by the EU inContext 
(Interaction and Context Based Technologies for 
Collaborative Teams) project: IST-2006-034718. The 
authors would like to thank the project partners for 
stimulating  discussion. Particular thanks are due to 
Marcel Tilly and Sebastien Peray at the European 
Microsoft Innovation Centre for their collaboration on the 
implementation and Dr. Emilio Tuosto at the University 
of Leicester for his comments. 
 
10. References 
 
[1] W3C Working Group, “Web Services Architecture”, 
http://www.w3.org/. 
 
[2] Dujmovic, J.J. Mixed Averaging by Levels (MAL) –A  
System and Computer Evaluation Method. In Proceedings 
of the Informatica Conference, Bled, Yugoslavia, 1973. 
 
[3] Yager, R.R. On Ordered Weighted Averaging 
Aggregation Operators in Multi-criteria Decision Making, 
IEEE Transactions on Systems, Man and Cybernetics, 
vol. 18, pp. 183-190, 1988. 
 
[4] inContext project: Unleash Team Power, 
http://www.in-context.eu, 2007. 
 
[5] inContext project WP2 Deliverable 2.1: Analysis and 
specification and context modeling techniques, 
http://www.in-context.eu/page.asp?PageRef=10. 2007. 
 
[6] Dujmovic, J.J. Extended Continuous Logic and the 
Theory of Complex Criteria. In Journal of the University 
of Belgrade, EE Dept., Series Mathematics and Physics, 
No. 537, pp. 97-216, 1975. 
 
[7] Dujmovic, J.J. A Method for Evaluation and Selection 
of Complex Hardware and Software Systems. In 
Proceedings of 22nd International Conference for the 



Resource Management and Performance Evaluation of 
Enterprise Computer Systems. New Jersey, 1996. 
 
[8] Miller III, J.R. Professional Decision-Making, Praeger 
Publishers, 1970. 
 
[9] Dujmoviæ, J.J. and Larsen, H. Properties and 
Modeling of Partial Conjunction/Disjunction. In B. De 
Baets et al (eds): Proceedings of Eurofuse Workshop on 
Data and Knowledge Engineering, published as Current 
Issues in Data and Knowledge Engineering. pp. 215-224, 
Exit Publishers, Warsaw (2004). 
 
[10] Fodor, J.C. and Roubens, M. Modelling and 
Multicriteria Decision Support. Kluwer, Dordrecht, 1994. 
 
[11] Marichal, J.L. Aggregation operations for 
multicriteria decision aid. PhD. Thesis, Institute of 
Mathematics, University of Liege, Belgium, 1998. 
 
[12] Su, S.Y.W., Dujmovic, J.J., Batory, D.S., Navathe, 
S.B and Elnicki, R. A Cost-Benefit Decision Model: 
Analysis, Comparison, and Selection of Data 
Management Systems. ACM Transactions on Database 
Systems, 12(3), pp. 472-520, 1987. 
 
[13] Olsina, L. A. and Rossi, G. Measuring Web 
application quality with WebQEM, IEEE Multimedia, 
9(4), pp. 20-29, 2002. 
 
[14] Carlsson, C. and Fuller, R. OWA operators for 
decision Support. In Proceedings of EUFIT'97 
Conference, vol. II, pp. 1539-1544, 1997. 
 
[15] Fenandez Salido, J.M. and Murakami, S. Extending 
Yager's orness concept for the OWA aggregators to other 
mean Operators. Fuzzy Sets and Systems. Elsevier B.V. 
vol. 139, pp. 515-542, 2003. 
 
[16] Yu, H.Q. and Molina, H. A Modified LSP method 
for services evaluation and selection. In S. Gorton, M. 
Solanki and S. Reiff-Marganiec (eds): Proceedings of the 
2nd European Young Researchers Workshop on Service 
Oriented Computing, pp. 87-93, 2007. 
 
[17] Reiff-Marganiec, S., Yu, H.Q. and Tilly, M. Service 
Selection based on Non-Functional Properties, In 
Proceedings of Non Functional Properties and Service 
Level Agreements in Service Oriented Computing 
Workshop NFPSLA-SOC'07. 2007. 

 
[18] W3C Working Group, “OWL Web Ontology 
Language Overview”, W3C Recommendation, 
http://www.w3.org/TR/owl-features/. 
 
[19] W3C RDF Working Group, “SPARQL syntax and 
specification”, http://www.w3.org/TR/rdf-sparql-query/, 
2006. 
 
[20] inContext Project, Service Lookup Engine, 
http://213.239.218.49/RegistryManager, 2008. 
 
[21] Papaioannou, I.V., Tsesmetzis, D.T., Roussaki, I.G. 
and Miltiades, E.A., A QoS Ontology Language for Web-
Services. In 20th International Conference on Advanced 
Information Networking and Applications - vol 1 
(AINA'06), pp. 101-106. 2006. 
 
[22] Tsesmetzis, D.T., Roussaki, I.G., Papaioannou, I.V., 
and Anagnostou, M.E. QoS awareness support in Web-
Service semantics. In Advanced International Conference 
on Telecommunications and International Conference on 
Internet and Web Applications and Services (AICT-
ICIW'06), pp. 128-128. 2006. 
 
[23] Ran, S.P., A Model for Web Services Discovery with 
QoS. ACM SIGecom Exchanges, 4(1), pp.1-10, 2003. 
 
[24] Liu, Y., Ngu, A.H.H. and Zeng, L., QoS 
Computation and Policing in Dynamic Web Service 
Selection. In Proceeding 13th International Conference, 
World Wide Web, pp. 66-73, 2004. 
 
[25] Mou, Y., Cao, J., Zhang, S.S. and Zhang, J.H., 
“Interactive Web Service Choice-Making Based on 
Extended QoS Model”, CIT (2005), pp.1130-1134. 
 
[26] Menasce, D.A., QoS Issues in Web Services, IEEE 
Internet Computing, 6(6), pp.72-75, 2002. 
 
[27] Canfora, G., PentaRaffaele, M.D., Esposito, R. and 
Villani, M.L, An approach for QoS-aware service 
composition based on genetic algorithms. In Proceedings 
of the 2005 Conference on Genetic and Evolutionary 
Computation, pp. 1069-1075, 2005. 
 
[28] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., 
Kalagnanam, J. and Chang, H., QoS-aware middleware 
for web services composition. IEEE Transactions on 
Software Engineering, 30(5), 2005. 

 


