
Paper Preprint – To Appear In:
Proceedings of the 20th Euromicro RTS Conf. 2008

Exploring the Impact of Task Preemption on Dependability in
Time-Triggered Embedded Systems: a Pilot Study

Michael Short, Michael J. Pont and Jianzhong Fang
Embedded Systems Laboratory, University of Leicester, Leicester, UK.

{mjs61, mjp9}@leicester.ac.uk, fang_jz@yahoo.com

Abstract

In this paper, we explore the impact of task

preemption on the dependability of a single-processor
embedded control system. Our particular focus in this
exploratory study is on static–priority, time-triggered
scheduler architectures. The study is empirical in
nature and we employ a hardware-in-the-loop (HIL)
testbed, representing a cruise control system for a
passenger vehicle, in conjunction with fault-injection
to perform the dependability comparisons. The results
we have obtained suggest that the presence of
preemption may have a negative influence on
dependability; however further work is needed in this
area before more general conclusions may be drawn.

1. Introduction

Modern control systems are almost invariably
implemented using some form of digital computer
system [1]. The dominance of digital systems in this
field is a consequence of the low cost, increased
flexibility, greater ease of use, and increased
performance of digital control algorithms when
compared with equivalent analogue implementations
[2] [3]. As such systems are increasingly employed in
applications where their correct functioning is vital,
particular attention must be focused on the
dependability of such systems.

Dependability in this sense covers many attributes,
for example reliability, security, timeliness and
schedulability [4] [5]. In this paper, we are specifically
concerned with the operational dependability (i.e. the
level of software fault tolerance and reliability) of
control systems implemented using a single resource-
constrained embedded processor, as employed in the
field. As such, we assume that appropriate analysis

has been undertaken during system verification to
ensure the functional correctness and schedulability of
the design (e.g. [5] [6] [7]).

The particular focus is on systems in which time-
triggered (TT) schedulers are employed to control the
release of periodic tasks, which are in turn employed to
implement the control algorithm. Often, to keep the
software environment as simple as possible, instead of
employing a full “real-time operating system” to
dispatch the tasks, some form of scheduler is
employed. In this paper, we are concerned with
schedulers whose task priority are assigned during the
system design phase and remain static during
operation; these ‘fixed priority’ schedulers are
generally recognized as being the most suitable for
designs when dependability is a key design goal [5]
[8].

The simplest form of practical TT scheduler is a
“cyclic executive” (e.g. [9] [10]): this has a “time-
triggered co-operative” (or “time-triggered non-
preemptive”) architecture. Such time-triggered co-
operative (TTC) architectures have been found to be a
good match for a wide range of low-cost, resource-
constrained applications. TTC architectures also
demonstrate very low levels of task jitter [10], and –
provided that an appropriate implementation is used –
can maintain their low-jitter characteristics even when
techniques such as dynamic voltage scaling (DVS) are
employed to reduce system power consumption [11].

Although it has many useful characteristics, a simple
TTC solution is not always appropriate. As Allworth
has noted: “[The] main drawback with this [co-
operative] approach is that while the current process is
running, the system is not responsive to changes in the
environment. Therefore, system processes must be
extremely brief if the real-time response [of the]
system is not to be impaired” [12]. We can formally

express this concern by noting that if a system is being
designed which must execute one or more tasks of
execution time e and also respond within an interval t
to external events then, in situations where t < e, a pure
co-operative scheduler will not generally be suitable.

Time-triggered preemptive (TTP) scheduling has
been proposed as an appropriate alternative for use in
such circumstances [5] [6] [13]. Of the various options
available, the rate monotonic algorithm has been
shown by Liu and Layland to be optimal: that is - if it
is possible to schedule a task set using a fixed-priority
algorithm and meet all of its timing constraints – then a
rate-monotonic algorithm can achieve this [6]. More
specifically, it can be shown that every task can meet
its deadline if the total CPU utilization is <= 69% and
the following assumptions are met: (1) all tasks are
periodic and independent of each other, (2) the
deadline of every task is equal to its period and (3) the
worst-case execution time of all tasks is known, and
(4) context switching time can be ignored ([5] [6] [10]
[14]). Where such assumptions can be shown to be
realistic, RM can be an attractive option. In many
cases, such assumptions cannot be assumed to hold; a
more complete analysis (which includes CPU
overheads for example) is discussed by Katcher et al.
[15].

With the increased processing power and
architectural design of many commercial low-cost
microcontrollers, the main drawback of the purely co-
operative approach is somewhat alleviated; complex
tasks can be coded to have relatively short execution
times, and many time-consuming operations (such as
sending multiple characters over a slow serial link) can
be offloaded to dedicated on-chip hardware. In
situations where task execution times may still be
prohibitively long, techniques have been proposed to
effectively manage these situations and automate the
creation of a suitable schedule (e.g. [8] [16] [17]). In
light of this, system designers may have a wider range
of scheduling algorithms to select from in current
designs.

Numerous papers have considered the impact of
scheduling on the performance and stability of digital
control systems, from theoretical, empirical and
simulation-based perspectives (e.g. [18] [19] [20]). In
this paper, in addition to assuming that the task set for
a given implementation is both correct and
schedulable, we also make the following assumptions:
(1) A controller C(s) has been designed for a plant P(s)
such that a required performance and stability margin
has been achieved; (2) The continuous controller C(s)

has been discretised into a suitable digital controller
C(z); (3) The sampling rate T of the controller C(z) has
been selected such that under worst-case jitter
conditions the lower bound on the sampling rate given
by the Nyquist stability criterion is not broken [2] [3]
[19].

Although several studies have sought to investigate
the dependability of systems designed around both
TTP and TTC architectures (e.g. see Fuchs [21] and
Aidemark et al. [22] for an example of each), we have
not succeeded in finding previous studies in which a
direct comparison (utilizing identical hardware, task
specifications and fault-tolerance mechanisms) has
been made of these two approaches.

It is known that – since preemptive schedulers
require task context switching - they will generally
have both larger CPU overheads and RAM/ROM
requirements than “equivalent” co-operative
schedulers (e.g. see [9] [10] [15] [16]). As a
consequence, it has also been argued that the timing
properties of software code in non-preemptive designs
are both easier to inspect and verify than preemptive
code [5] [8] [17].

Previous research has demonstrated that both the
manifestation rate of transient errors and the
effectiveness of transient fault detection mechanisms
in an embedded system are related (in part) to the
functionality and resource requirements of its software
[23] [24] [25] [26]. It thus follows that as schedulers
are largely implemented in software1, different designs
may therefore directly influence the fault-tolerance
properties of the resulting system.

In addition, the increases in both CPU and inter-task
communication overheads in a TTP design (over a
TTC design) will typically result in an increase in CPU
utilization when a given system specification is
implemented. Previous research has investigated a
link between CPU utilization and microcontroller
failure rate when a microprocessor is employed to
perform cyclic control actions [27] [28] [29]; it has
been suggested that an increased utilization leads to an
increased failure rate due to effects such as electro-
migration and increased power consumption.

In this paper, we explore these issues. More
specifically, our empirical study considers the use of
“standard” TTC and TTP schedulers in the
implementation of a Cruise Control System (CCS) for

1 This may not be the case for all system-on-chip designs (where,

for example, the operating system kernel is implemented in
hardware). Such designs raise a different set of questions about
reliability: these issues are not considered in this paper.

a passenger car, and explores the differences in
resource requirements and dependability of the
resulting designs with ‘all other things being equal’.
The studies are carried out using a suitable hardware-
in-the-loop (HIL) testbed, which has facilities for
injecting transient faults.

2. Experimental methodology

2.1 Test facility

As noted in the introduction, the study described in
this paper involved the use of a HIL simulator; the
principle of HIL simulation is shown in Figure 1. The
simulator is currently set up to represent the dynamics
of a passenger vehicle in real-time, iterated at a rate of
1 kHz. The nature of the testbed itself, and the
dynamic models used to represent the vehicle have
been described elsewhere [30] [31]; we provide only a
brief summary here.

Figure 1. HIL simulation principle

Although the dynamic model of the vehicle is non-

linear, it can be approximated in the operating range of
the CCS by the following transfer function:

115
02.0

)(
)(

+
=

ssF
sv

(1)

… where v(s) is the velocity of the vehicle in meters

per second, and F is the accelerating force (which is
dependant on the accelerator setting, engine RPM and
wheel slip conditions).

The main requirement of the CCS, which is
implemented by the embedded system under test, is to
provide the vehicle driver with an option of
maintaining the vehicle at a desired speed without
further intervention, by automatically controlling the
vehicle throttle setting. It performs this function by
measuring the current vehicle speed from a sensor and
performing a PID calculation to determine the throttle

setting. The classical form of the PID algorithm
employed in this study is as follows:

dt
tdeTKdtte

T
KteKtu dc

t

i

c
c

)()()()(
0

++= ∫

(2)

… where u(t) is the commanded throttle setting, e(t)

is the error between reference (desired) speed and
actual (measured) speed, and Kc, Ki and Kd are the
system gains, chosen to give the desired closed loop
performance [1] [2] [3]. Additionally, the module is
required to indicate the current speed of the vehicle
and the status of the control system to the driver, via a
serial interface to an LCD. It also must interface to a
number of switches to receive commands from the
driver (“CCS enable”, “CCS disable”, “Speed up”,
etc).

The microprocessor employed in this study to
implement each version of the CCS was the 16-bit
Infineon C167 with a 20 MHz clock speed [34]. Such
a device is representative of the type of embedded
system currently found in many passenger vehicles.
Digital signals from this device are interfaced into the
simulation PC via standard parallel port interfaces;
analog (sensor) signals are synthesized by the PC using
low-cost AD7394 DAC chips from Analog Devices.

Overall, the CCS testbed summarized here was
chosen as a representative system as it can be
considered to be a critical application [32], and
previous studies have shown that transient effects and
processor faults (amongst other things) can be a major
contributory cause to potential dangerous system
failures [33].

2.2 Fault injection

In order to evaluate the dependability of each system

under test, a reliable, non-intrusive and high
performance fault injection protocol was created. The
protocol itself operates via the PC serial port and on-
chip UART of the microcontroller under test, and is
based on the well-understood ‘bit-flip’ or ‘upset’
model. Such an approach has been shown to be
representative of a wide range of transient faults in
embedded systems [26].

The protocol operates as follows. Three control
bytes are sent by the PC, invoking a high priority
interrupt in the microcontroller. Fault injection is
achieved by the use of pointer indirection to achieve

the bit flips; bit flips in the C167 internal RAM
(IRAM) areas can corrupt the system stack, registers,
special function registers (SFRs) and program counter.
Bit flips in the external RAM (XRAM) areas can
corrupt the user stack and also the task data areas. To
ensure a fair comparison between the two systems, for
each fault injected in this study a random bit to flip
was selected in a random memory address location
from a 4.5 KB area of IRAM or a 4.5 KB area of
XRAM; thus implementing a wide variety of data,
control flow and CPU / peripheral configuration errors.

2.3 Overall methodology

In each of the experiments performed in this paper,
the vehicle cruise control was initially enabled at 50
MPH (80.5 KPH). The ‘driver’ then commanded
periodic speed changes from 50 MPH to 40 MPH
(64.4 KPH), and vice versa, every 10 seconds. One
second prior to this commanded speed change, a fault
was injected into the system under test by the
simulation PC. After the injection of each fault, the
resulting system behavior was automatically classified
using a simple model-based performance monitor to
gauge the operation of the system in real-time2. The
performance monitor compares the real system
behavior with the desired system behavior, as shown in
Figure 2, to detect deviations from the specification
that are indicative of a system failure (e.g. sluggish /
oscillatory performance, out of range or ‘stuck at’
errors). The performance monitor is an adapted
version of the design presented by Li et al. [35]. After
each resulting fault has been classified, the results are
logged into a text file by the PC for later analysis.

Figure 2. Performance monitor

This test strategy was employed to allow for a

maximum possible coverage of critical code (sampling,
control, actuation, response to driver commands)
following the injection of the fault. It must be noted
that there was no explicit synchronization when
injecting faults; they could occur at any point in the
embedded system’s execution, and could not be

2 To eliminate any ‘probe effects’, the performance monitor was

implemented entirely on the PC.

‘blocked’ in any way. In each of the tests described in
this paper, the experimentation was allowed to run
autonomously until 100,000 faults had been injected
into the system under test, the resulting failure modes
classified by the monitor, and logged into the text file.
The overall testing strategy that was employed is
shown schematically in Figure 3.

Figure 3. Overall experimental methodology

3. Scheduler and task designs

3.1 TTC system

To implement the system, the first scheduler used in

this study was a form of cyclic executive. The specific
implementation used was based on that described
previously by Pont [16], with very minor changes
made to match the C167 processor employed in this
study.

Please note that - because of the co-operative nature
of this scheduler - no locking mechanisms were
required, and inter-task communication was by means
of “global” variables.

3.2 TTP system

The time-triggered preemptive (TTP) scheduler used
in this study was a fully preemptive design, which was
used to implement a rate-monotonic (RM) schedule of
the task set described in the following section. The
fast context switching mechanism of the C167 was
employed in the implementation; full details of the
scheduler design are documented by Fang [36].

Please note that – as discussed in the introduction - a
“pure” RM schedule assumes that all tasks are
independent: this was not the case in our system
(indeed, it is very rarely the case in any practical
design) and our scheduler implementation could

therefore only provide an approximation of the RM
theory. To avoid conflicts, locking mechanisms were
implemented (to protect shared hardware resources).
These locking mechanisms approximated the “Priority
Ceiling Protocol” [37]. In “PCP”, a ceiling priority is
defined as the maximum priority of those tasks that
take part in a priority comparison. When using PCP,
the intention is to ensure that the task which is
currently using the resource completes as quickly as
possible.

In addition to the locking mechanism, the RM
scheduler also requires a mechanism for transmitting
data between tasks (the possibility of task preemption
means that we cannot simply use global variables for
this purpose, as we can with the co-operative design).
Various mechanisms can be used for inter-task data
transfers in such designs: for example, we could use
the lock mechanism and global variables. A more
popular technique is a message queue (e.g. see Simon
[38]): such an approach was employed in this study.

3.3 Task software

Six periodic software tasks were created to

implement the control system. A sensor task (T1)
sampled the vehicle speed (as a voltage) through an
analog-to-digital (ADC) port, re-scaled the voltage to
the required speed range and performed range and
range-rate sanity checks. The control task (T2)
performed the PID calculation; a digitized version of
(2):

)(1
0

−
=

−++= ∑ jjd

j

m
mijPj eeKeKeKu

(3)

… where uj is the commanded throttle setting at

sample j, and ej is the error at sample j. The three
system gains were chosen (manually) to give the
desired closed loop performance; a critically damped
95% settling-time of approximately 6 seconds. The
actuation task (T3) performed a further sanity check on
the resulting throttle command and translated this
output to a parallel port of the C167, to control a
throttle servo actuator. These three tasks were
scheduled to execute sequentially with a period of
20 ms, giving an overall sampling rate of 50 Hz.

A status-update task (T4) was executed once every
100 ms. This task monitored and “de-bounced” the
“cruise enable” and “resume” switches. It also

monitored switches on both the accelerator and brake
pedals: if either of the pedal switches was depressed,
the cruise control was disengaged. In addition, a
display update task (T5) was also executed every
100 ms and sent a string of display characters to the
LCD (serial protocol). Note that in the co-operative
scheduler, we broke the LCD update task evenly up
into smaller segments (as discussed in Pont [16]).

The final system task was the safety task (T6), also
executed every 100 ms. This task serviced the
watchdog timer, and also verified the system
configuration (such as timer reload value, I/O
configuration and interrupt settings).

These tasks and their periods T and duration D
(expressed in ms) are summarized in Table I.

Table I. Task set summary

Name Task ID T (ms) D (ms)

Sensor T1 20 0.5

Control T2 20 1.2

Actuator T3 20 0.5

Status T4 100 9

LCD – P T5 100 25

LCD – C T5 20 5

Safety T6 100 0.1

Prior to experimentation both software
implementations were verified using bounded model
checking3 techniques to ensure that run-time failures
were not due to simple coding errors.

3.4 Timer tick interval

In a system based on periodic scheduler “ticks”
(timer interrupts), the tick interval must be set
according to the application requirements. If the tick
interval is too long, the system will be unable to
respond at an appropriate rate and will not – for
example – be able to meet data-sampling requirements.
If the tick interval is too short, the scheduling load will
be unnecessarily high: this may increase both jitter
levels and system power consumption.

From an analysis of the schedule, for the co-
operative system we chose a timer interrupt rate of
10 ms, as this is the largest common divisor of the
tasks that is also greater than the longest task duration.

3 Please see http://www-2.cs.cmu.edu/~modelcheck/cbmc for

further details of the model checker that was employed.

From Katcher et al. [15], we calculated timer bounds
for the tick rate TTIC of the preemptive system to be
between 1.14 ms < TTIC < 18.25 ms. The actual value
taken was thus the integer mid point of 10 ms, identical
to the co-operative system.

3.5 Transient protection mechanism

In order to increase realism of the study, a number
of identical hardware and software based mechanisms
were utilized (in both TTC and TTP implementations)
in order to detect and correct transient errors. These
mechanisms included the use of a 200 ms watchdog
timer, duplex implementation of critical data with
comparison, sanity checks of control signals, and a
task overrun detection mechanism. The on-chip
exception traps of the C167 processor were also
employed, allowing detection of: stack overflow;
stack underflow; illegal operands; illegal word access;
protected instruction faults; and, illegal bus access.

The unused areas of FLASH memory and RAM in
each design were filled with illegal operands to
provide an addition means of detecting control-flow
errors. On activation of any of these traps, a full
system reset was forced. Finally, on system boot-
up/reset, the system performed the following software-
based self-tests [39]:

1. Internal RAM/register/stack validation.
2. External RAM validation.
3. ROM checksum.
4. Peripheral test (e.g. ports, timer).

This approach to fault-tolerance is illustrated in

Figure 4.

4. Results and discussion

In this section we discuss the results that were
obtained in the study; we begin with a comparison of
the required memory resources and CPU utilization of
each implementation.

4.1 CPU and memory requirements

As mentioned in the introduction, TTP schedulers

are expected to have larger CPU overheads and
memory requirements than equivalent TTC designs.
Table 2 shows the requirements for each of the designs
employed in this study. The CPU utilization U and
scheduler overhead W were both experimentally
determined (by directly measuring both the idle time of
the microcontroller and the time spend executing

scheduler code) over several thousand hyper periods of
the task set, during (normal) fault-free operation.
Table II also shows the percentage increase between
the TTC and TTP designs.

Figure 4. Transient protection mechanisms

Table II. System resource comparison

System U (%) W (μs) RAM (B) ROM (B)

TTC 45.36 39.5 650 4,774

TTP 51.44 262.2 4,882 5,030

% Increase 13.4 563.8 651.1 5.4

4.2 Fault injection results

As mentioned, in this study we were concerned
with operational dependability of the systems under
test. After the injection of each fault, the resulting
failure behavior was therefore categorized as one of
the following:

1. Effect-less: the fault was either not activated, or was
tolerated by the employed fault mechanisms; it did not
cause a measurable deviation of performance from the
system specification.

2. Failure: the fault was neither detected nor corrected
and resulted in a permanent deviation of performance
from the system specification.

Based on this classification, the probability of

failure PF following a transient fault was estimated.
The results we obtained for each system are
summarized in Table III.

Table III. Fault injection comparison

System
Faults

Injected
Effect
Less Failures PF

TTC 100,000 99942 58 5.8 x 10-4

TTP 100,000 99755 245 2.45 x 10-3

4.3 Discussion

Based on the results shown in the previous two
sections, it can be seen that for the two systems,
exhibiting identical functionality, several noticeable
differences can be observed. Firstly, as expected all
measures of system resources were larger for the TTP
system. The most significant differences being the
increase in RAM requirements (651.1 %) and
scheduler overheads (563.8 %), followed by an
increased CPU utilization (13.4 %). The smallest
increase was in the system ROM requirements, with a
5.4 % increase in size.

Secondly, as the fault injection results demonstrate,
despite both systems exhibiting relatively good
transient error recovery properties a significant
difference in the failure behavior of the two systems
was observed. A 322.4 % increase in the number of
recorded dangerous failures was observed in the TTP
system over the TTC. Thus as can be seen from the
table, there is a measurably greater risk that the TTP
system will exhibit dangerous failure behavior
following a transient disturbance. Given that the main
difference between the two system implementations
was the choice of scheduler, we hypothesize that the
increased complexity, overheads and resource usage in
the TTP system had a direct influence on its transient
error failure rate.

Based on these results, it is possible to calculate an
expected mean-time-to-dangerous-failure (MTTDF)
for each system implementation. Taking the
probability of a transient bit flip to be approximately
10-9 / bit / hour for a ground based mobile installation
[40], the probability of a transient error λT occurring in
the 9KB area of memory that was considered in this
study is therefore approximately 7.4 x 10-5.

Previous works suggest a linear relationship
between CPU failure rate λCPU and utilization; this
relationship can be expressed as follows [27] [28] [29]:

UMINCPU U Δ⋅+= λλ
(4)

… where ΔU is the change in failure rate due to

power consumption between 0 and 100% CPU
utilization. Thus the failure rates per 10-6 hours for the
C167 CMOS technology microcontroller with 111
pins, a 128K Flash EEPROM and 256K SRAM can be
calculated as shown in Table IV [41].

Table IV. Component failure rates

Component Failure Rate
CPU (λMin) 0.69393
CPU (ΔU) 0.00067

EEPROM (λE) 0.16490
RAM (λR) 0.24320

Considering that the failure of the CPU or memory

devices will result in an unpredictable failure that will
cause a significant deviation of system performance
from the specification, the dangerous failure rate λSYS
for each system may then be calculated as follows:

()fTRECPUSYS P⋅+++= λλλλλ

(5)

Applying (4) and (5) to the results we have

obtained, the failure rates for the TTP and TTC
systems can then be calculated as shown:

6

6

10317.1

10175.1
−

−

×=

×=

TTP

TTC

λ

λ

(6)

From this, it can be seen that in this study, with ‘all
other things being equal’, the TTC implementation of
the CCS was significantly more dependable than the
TTP design. This is further illustrated when
comparing the MTTDF of each system: the MTTDF of
the TTC system is 97.14 years, and the MTTDF of the
TTP system is 86.67 years. Although both of these
values may be deemed acceptable for a CCS system, it
is clear from these results that the use of task
preemption in this experimental study has had a

measurable impact on the dependability of the
resulting system implementation, with a 12.1 %
increase in the expected MTTDF in the TTC design.

5.0 Conclusions

In this paper, we have explored the impact of
preemption on the operational dependability of a
single-processor embedded control system,
implemented using a static time-triggered scheduler.
The study was empirical in nature and we employed a
hardware-in-the-loop (HIL) testbed, combined with
fault-injection experimentation, to perform the
comparisons. The results obtained in this initial study
suggest that preemption may have a measurable effect
on dependability and fault-tolerance in embedded
systems; however at this early stage it cannot be said
that these results will generalize further.

Further work is required to investigate if the results
found here will generalize to other processor
platforms, scheduler implementations and application
areas. Additionally it is unclear if more advanced fault
detection schemes than those employed in this paper
will minimize the differences we have described. One
other point to note is that this paper has not directly
considered the effects of corruptions in the program
ROM in the systems under test; this may well have an
additional influence on the obtained results.

Further work in this area will consider these
effects, and will also consider additional case studies
in which the effects of preemption rate may also be
investigated. It is also planned to investigate
preemption effects on dependability in dynamic
schedulers (primarily EDF), and also its effects in
multi-processor, distributed embedded systems. It is
hoped that such studies may shed further light on the
important issues raised in this paper.

6.0 Acknowledgements

The project described in this paper was supported

by the Leverhulme Trust (Grant F/00212/D).

7. References

[1] Kilian, C.T. Modern control technology: components and
systems. Delmar Thomson Learning, 2000. ISBN:
076682358X.

[2] Virk, G.S. Digital computer control systems. McGraw-
Hill, 1991. ISBN: 0070675120.

[3] Astrom, K. and Wittenmark, B. Computer Controlled
Systems: Theory And Design. Prentice Hall, 1997. ISBN:
0133148998.

[4] Storey, N. Safety Critical Computer Systems. Addison
Wesley Publishing, 1996.

[5] Bate, I.J. Scheduling and Timing Analysis for Safety
Critical Real-Time Systems. PhD Dissertation, University of
York, U.K., November 1998.

[6] Liu and, C. L. and Layland, J. W. Scheduling algorithms
for multiprogramming in a hard real-time environment.
Journal of the ACM 20(1), 1973.

[7] Burns, A. and Lin, T.M. An engineering process for the
verification of real-time systems. Formal Aspects of
Computing, Vol. 19, pp. 111-136, 2007.

[8] Xu, J. On Inspection and Verification of Software with
Timing Requirements. IEEE Transactions on Software
Engineering, Vol. 29, No. 8, pp. 705-720, 2003.

[9] Baker, T. P. and Shaw, A. The cyclic executive model
and Ada. Real-Time Systems, Vol. 1, No. 1, pp. 7-25, 1989.

[10] Locke, C. D. Software architecture for hard real-time
applications: Cyclic executives vs. fixed priority executives.
Real-Time Systems, 4(1): 37-52, 1992.

[11] Phatrapornnant, T. and Pont, M. J. Reducing jitter in
embedded systems employing a time-triggered software
architecture and dynamic voltage scaling. IEEE Transactions
on Computers, 55 (2): 113-124, 2006.

[12] Allworth, S. Introduction to real-time software design.
Springer-Verlag, 1981.

[13] Audsley, N., Burns, A., Richardson, M., Tindell, K., and
Wellings, A. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering
Journal 8(5), pp. 284-292 September 1993.

[14] Buttazzo, G., Marinoni, M., and Guidi, G. Energy-aware
strategies in real-time systems for autonomous robots. In:
Proc. of the 19th International Symposium on Computer and
Information Sciences (ISCIS 2004), Turkey, 2004.

[15] Katcher, D. I., Arakawa, H., and Strosnider, J. K.
Engineering and analysis of fixed-priority schedulers. IEEE
Trans. on Software Engineering, Vol. 19, No. 9, pp. 920-934,
1993.

[16] Pont, M. J. Patterns for time-triggered embedded
systems: Building reliable applications with the 8051 family
of microcontrollers. ACM Press / Addison-Wesley, 2001.
ISBN: 0-201-331381.

[17] Xu, J. and Parnas, D.L. Fixed Priority Scheduling versus
Pre-Run-Time Scheduling. Real-Time Systems, Vol. 18, pp.
7-23, 2000.

[18] Palopoli, L., Pinello, C., Bicchi, A. and Sangiovanni-
Vincentelli, A. Maximizing the Stability Radius of a Set of
Systems Under Real-Time Scheduling Constraints. IEEE
Transactions on Automatic Control, Vol. 50, No. 11, pp.
1790-1795, 2005.

[19] Bate, I., McDermid, M. and Nightingale, P. Establishing
timing requirements for control loops in real-time systems.
Microprocessors and Microsystems, Vol. 27, pp. 159-169,
2003.

[20] Fang, J. and Pont, M.J. Exploring the links between
software architecture and PID parameters in embedded
control systems. In: Proceedings of the 6th UKACC Control
Conference, Glasgow, Scotland, 30 August to 1 September,
2006.

[21] Fuchs, E. An Evaluation of the Error Detection
Mechanisms in MARS Using Software-Implemented Fault
Injection. In: Proc. of the European Dependable Computing
Conference, Springer-Verlag, Lecture Notes in Computer
Science, Volume 1150, pp. 73-90, 1996.

[22] Aidemark, J., Folkesson, P. and Karlsson, J.
Experimental Dependability Evaluation of the Artk68-FT
Real-time Kernel. In: Proc. of the International Conference
on Real-Time and Embedded Computer Systems and
Applications, Göteborg, Sweden, August 2004.

[23] Rajabzadeh, A. and Miremadi, S.G. Transient detection
in COTS processors using software approach.
Microelectronics Reliability, Vol. 46, pp. 124-133, 2006.

[24] Benso, A., di Carlo, S., di Natale, G., Prinetto, P. and
Tagliaferri, L. Control-Flow Checking Via Regular
Expressions. In: Proc. IEEE Asian Test Symposium, pp. 299-
303, 2001.

[25] Elder J.H. A Method for Characterising a
Microprocessor’s Vulnerability to SEU. IEEE Trans. on
Nuclear Science, Vol. 35, No. 6, December 1988.

[26] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-
C., Laprie, J.-C., Martins, E. and Powell, D. Fault Injection
for Dependability Validation—A Methodology and Some
Applications. IEEE Trans. Software Eng., vol. 16, no. 2, pp.
166-182, Feb. 1990.

[27] Ting, Y., Shan, F.M., Lu, W.B. and Chen, C.H.
Implementation and evaluation of failsafe computer-
controlled systems. Computers & Industrial Engineering,
Vol. 42, pp. 401-415, 2002.

[28] Kapur, K.C. and Lamberson, L.R. Reliability in
engineering design. New York: Wiley & Sons, 1977.

[29] Krishnan, R.V. The Impact of Workload On The
Dependability Of Microprocessors Used In Control
Applications. MSC Thesis, University of Illinois at Urbana-
Champaign, USA, 1996.

[30] Ayavoo, D., Pont, M. J., Fang, J., Short, M., and Parker,
S. A ‘Hardware-in-the Loop’ testbed representing the
operation of a cruise-control system in a passenger car. In:
Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 60-90, 2005.
Published by University of Newcastle upon Tyne [ISBN: 0-
7017-0191-9].

[31] Short, M. J. and Pont, M. J. Hardware in the loop
simulation of embedded automotive control systems. In:
Proceedings of the 8th IEEE International Conference on
Intelligent Transportation Systems (IEEE ITSC 2005) held in
Vienna, Austria, pp. 226-231, 2005.

[32] Castelli, J., Nash, C., Ditlow, C. and Pecht, M. Sudden
acceleration – the myth of driver error. University of
Maryland, CALCE EPSC Press, ISBN 0-9707174-5-8.

[33] Mauser, H. and Thurner, E. Electronic Throttle Control
– A Dependability Case Study. Journal of Universal
Computer Science, Vol. 5, No. 10, pp. 730 – 741, 1999.

[34] Infineon Technology AG. C167CS Derivatives: 16-bit
single-chip microcontroller. User's Manual, V2.0, 2000.

[35] Li, Q., Whiteley, J.R., and Rhinehart, R.R. A relative
performance monitor for process controllers. Int. Journal of
Adaptive Control and Signal Processing, Vol. 17, pp. 685-
708, 2003.

[36] Fang, J. The design of a pre-emptive scheduler for the
C167 Microcontroller. Technical Report ESL 06/01,
University of Leicester, 2006.

[37] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority
Inheritance Protocol: An approach to real-time
synchronization. IEEE Trans. On Computers 39: 1175-1185,
1990.

[38] Simon, D.E. An embedded software primer. Addison-
Wesley, 1999. ISBN: 0-201-61569X.

[39] Sosnowski, J. Software-based self-testing of
microprocessors. Journal of Systems Architecture, Vol. 52,
pp. 257-271, 2006.

[40] Normand, E. Single Event Effects in Avionics. IEEE
Trans. on Nuclear Science, Vol. 43, No. 2, 1996.

[41] MIL-HDBK-217F. Military Handbook - Reliability
Prediction of Electronic Equipment. Department of Defence,
Washington DC, 1990.

