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Abstract 

 
In this paper, we explore the impact of task 

preemption on the dependability of a single-processor 
embedded control system.  Our particular focus in this 
exploratory study is on static–priority, time-triggered 
scheduler architectures.  The study is empirical in 
nature and we employ a hardware-in-the-loop (HIL) 
testbed, representing a cruise control system for a 
passenger vehicle, in conjunction with fault-injection 
to perform the dependability comparisons.  The results 
we have obtained suggest that the presence of 
preemption may have a negative influence on 
dependability; however further work is needed in this 
area before more general conclusions may be drawn.  
 
1. Introduction 
 

Modern control systems are almost invariably 
implemented using some form of digital computer 
system [1].  The dominance of digital systems in this 
field is a consequence of the low cost, increased 
flexibility, greater ease of use, and increased 
performance of digital control algorithms when 
compared with equivalent analogue implementations 
[2] [3].  As such systems are increasingly employed in 
applications where their correct functioning is vital, 
particular attention must be focused on the 
dependability of such systems. 

Dependability in this sense covers many attributes, 
for example reliability, security, timeliness and 
schedulability [4] [5].  In this paper, we are specifically 
concerned with the operational dependability (i.e. the 
level of software fault tolerance and reliability) of 
control systems implemented using a single resource-
constrained embedded processor, as employed in the 
field.  As such, we assume that appropriate analysis 

has been undertaken during system verification to 
ensure the functional correctness and schedulability of 
the design (e.g. [5] [6] [7]).   

The particular focus is on systems in which time-
triggered (TT) schedulers are employed to control the 
release of periodic tasks, which are in turn employed to 
implement the control algorithm.  Often, to keep the 
software environment as simple as possible, instead of 
employing a full “real-time operating system” to 
dispatch the tasks, some form of scheduler is 
employed.  In this paper, we are concerned with 
schedulers whose task priority are assigned during the 
system design phase and remain static during 
operation; these ‘fixed priority’ schedulers are 
generally recognized as being the most suitable for 
designs when dependability is a key design goal [5] 
[8]. 

The simplest form of practical TT scheduler is a 
“cyclic executive” (e.g. [9] [10]): this has a “time-
triggered co-operative” (or “time-triggered non-
preemptive”) architecture.  Such time-triggered co-
operative (TTC) architectures have been found to be a 
good match for a wide range of low-cost, resource-
constrained applications.  TTC architectures also 
demonstrate very low levels of task jitter [10], and – 
provided that an appropriate implementation is used – 
can maintain their low-jitter characteristics even when 
techniques such as dynamic voltage scaling (DVS) are 
employed to reduce system power consumption [11]. 

Although it has many useful characteristics, a simple 
TTC solution is not always appropriate.  As Allworth 
has noted: “[The] main drawback with this [co-
operative] approach is that while the current process is 
running, the system is not responsive to changes in the 
environment.  Therefore, system processes must be 
extremely brief if the real-time response [of the] 
system is not to be impaired” [12].  We can formally 



express this concern by noting that if a system is being 
designed which must execute one or more tasks of 
execution time e and also respond within an interval t 
to external events then, in situations where t < e, a pure 
co-operative scheduler will not generally be suitable. 

Time-triggered preemptive (TTP) scheduling has 
been proposed as an appropriate alternative for use in 
such circumstances [5] [6] [13].  Of the various options 
available, the rate monotonic algorithm has been 
shown by Liu and Layland to be optimal: that is - if it 
is possible to schedule a task set using a fixed-priority 
algorithm and meet all of its timing constraints – then a 
rate-monotonic algorithm can achieve this [6].  More 
specifically, it can be shown that every task can meet 
its deadline if the total CPU utilization is <= 69% and 
the following assumptions are met: (1) all tasks are 
periodic and independent of each other, (2) the 
deadline of every task is equal to its period and (3) the 
worst-case execution time of all tasks is known, and 
(4) context switching time can be ignored ([5] [6] [10] 
[14]).  Where such assumptions can be shown to be 
realistic, RM can be an attractive option.  In many 
cases, such assumptions cannot be assumed to hold; a 
more complete analysis (which includes CPU 
overheads for example) is discussed by Katcher et al. 
[15].  

With the increased processing power and 
architectural design of many commercial low-cost 
microcontrollers, the main drawback of the purely co-
operative approach is somewhat alleviated; complex 
tasks can be coded to have relatively short execution 
times, and many time-consuming operations (such as 
sending multiple characters over a slow serial link) can 
be offloaded to dedicated on-chip hardware.  In 
situations where task execution times may still be 
prohibitively long, techniques have been proposed to 
effectively manage these situations and automate the 
creation of a suitable schedule (e.g. [8] [16] [17]).  In 
light of this, system designers may have a wider range 
of scheduling algorithms to select from in current 
designs. 

Numerous papers have considered the impact of 
scheduling on the performance and stability of digital 
control systems, from theoretical, empirical and 
simulation-based perspectives (e.g. [18] [19] [20]).  In 
this paper, in addition to assuming that the task set for 
a given implementation is both correct and 
schedulable, we also make the following assumptions: 
(1) A controller C(s) has been designed for a plant P(s) 
such that a required performance and stability margin 
has been achieved; (2) The continuous controller C(s) 

has been discretised into a suitable digital controller 
C(z); (3) The sampling rate T of the controller C(z) has 
been selected such that under worst-case jitter 
conditions the lower bound on the sampling rate given 
by the Nyquist stability criterion is not broken [2] [3] 
[19]. 

Although several studies have sought to investigate 
the dependability of systems designed around both 
TTP and TTC architectures (e.g. see Fuchs [21] and 
Aidemark et al. [22] for an example of each), we have 
not succeeded in finding previous studies in which a 
direct comparison (utilizing identical hardware, task 
specifications and fault-tolerance mechanisms) has 
been made of these two approaches.   

It is known that – since preemptive schedulers 
require task context switching - they will generally 
have both larger CPU overheads and RAM/ROM 
requirements than “equivalent” co-operative 
schedulers (e.g. see [9] [10] [15] [16]).  As a 
consequence, it has also been argued that the timing 
properties of software code in non-preemptive designs 
are both easier to inspect and verify than preemptive 
code [5] [8] [17]. 

Previous research has demonstrated that both the 
manifestation rate of transient errors and the 
effectiveness of transient fault detection mechanisms 
in an embedded system are related (in part) to the 
functionality and resource requirements of its software 
[23] [24] [25] [26].  It thus follows that as schedulers 
are largely implemented in software1, different designs 
may therefore directly influence the fault-tolerance 
properties of the resulting system. 

In addition, the increases in both CPU and inter-task 
communication overheads in a TTP design (over a 
TTC design) will typically result in an increase in CPU 
utilization when a given system specification is 
implemented.  Previous research has investigated a 
link between CPU utilization and microcontroller 
failure rate when a microprocessor is employed to 
perform cyclic control actions [27] [28] [29]; it has 
been suggested that an increased utilization leads to an 
increased failure rate due to effects such as electro-
migration and increased power consumption. 

In this paper, we explore these issues.  More 
specifically, our empirical study considers the use of 
“standard” TTC and TTP schedulers in the 
implementation of a Cruise Control System (CCS) for 

                                                           
1   This may not be the case for all system-on-chip designs (where, 

for example, the operating system kernel is implemented in 
hardware).  Such designs raise a different set of questions about 
reliability: these issues are not considered in this paper.   



a passenger car, and explores the differences in 
resource requirements and dependability of the 
resulting designs with ‘all other things being equal’.  
The studies are carried out using a suitable hardware-
in-the-loop (HIL) testbed, which has facilities for 
injecting transient faults. 
 
2. Experimental methodology 
 
2.1 Test facility 
 

As noted in the introduction, the study described in 
this paper involved the use of a HIL simulator; the 
principle of HIL simulation is shown in Figure 1.  The 
simulator is currently set up to represent the dynamics 
of a passenger vehicle in real-time, iterated at a rate of 
1 kHz.  The nature of the testbed itself, and the 
dynamic models used to represent the vehicle have 
been described elsewhere [30] [31]; we provide only a 
brief summary here. 

 

 
 

Figure 1. HIL simulation principle 
 
Although the dynamic model of the vehicle is non-

linear, it can be approximated in the operating range of 
the CCS by the following transfer function: 
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… where v(s) is the velocity of the vehicle in meters 

per second, and F is the accelerating force (which is 
dependant on the accelerator setting, engine RPM and 
wheel slip conditions). 

The main requirement of the CCS, which is 
implemented by the embedded system under test, is to 
provide the vehicle driver with an option of 
maintaining the vehicle at a desired speed without 
further intervention, by automatically controlling the 
vehicle throttle setting.  It performs this function by 
measuring the current vehicle speed from a sensor and 
performing a PID calculation to determine the throttle 

setting.  The classical form of the PID algorithm 
employed in this study is as follows: 
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… where u(t) is the commanded throttle setting, e(t) 

is the error between reference (desired) speed and 
actual (measured) speed, and Kc, Ki and Kd are the 
system gains, chosen to give the desired closed loop 
performance [1] [2] [3].  Additionally, the module is 
required to indicate the current speed of the vehicle 
and the status of the control system to the driver, via a 
serial interface to an LCD.  It also must interface to a 
number of switches to receive commands from the 
driver (“CCS enable”, “CCS disable”,  “Speed up”, 
etc).   

The microprocessor employed in this study to 
implement each version of the CCS was the 16-bit 
Infineon C167 with a 20 MHz clock speed [34].  Such 
a device is representative of the type of embedded 
system currently found in many passenger vehicles.  
Digital signals from this device are interfaced into the 
simulation PC via standard parallel port interfaces; 
analog (sensor) signals are synthesized by the PC using 
low-cost AD7394 DAC chips from Analog Devices. 

Overall, the CCS testbed summarized here was 
chosen as a representative system as it can be 
considered to be a critical application [32], and 
previous studies have shown that transient effects and 
processor faults (amongst other things) can be a major 
contributory cause to potential dangerous system 
failures [33]. 

 
2.2 Fault injection 

 
In order to evaluate the dependability of each system 

under test, a reliable, non-intrusive and high 
performance fault injection protocol was created.  The 
protocol itself operates via the PC serial port and on-
chip UART of the microcontroller under test, and is 
based on the well-understood ‘bit-flip’ or ‘upset’ 
model.  Such an approach has been shown to be 
representative of a wide range of transient faults in 
embedded systems [26].   

The protocol operates as follows.  Three control 
bytes are sent by the PC, invoking a high priority 
interrupt in the microcontroller.  Fault injection is 
achieved by the use of pointer indirection to achieve 



the bit flips; bit flips in the C167 internal RAM 
(IRAM) areas can corrupt the system stack, registers, 
special function registers (SFRs) and program counter.  
Bit flips in the external RAM (XRAM) areas can 
corrupt the user stack and also the task data areas.  To 
ensure a fair comparison between the two systems, for 
each fault injected in this study a random bit to flip 
was selected in a random memory address location 
from a 4.5 KB area of IRAM or a 4.5 KB area of 
XRAM; thus implementing a wide variety of data, 
control flow and CPU / peripheral configuration errors. 

 
2.3 Overall methodology 
 

In each of the experiments performed in this paper, 
the vehicle cruise control was initially enabled at 50 
MPH (80.5 KPH).  The ‘driver’ then commanded 
periodic speed changes from 50 MPH to 40 MPH 
(64.4 KPH), and vice versa, every 10 seconds.  One 
second prior to this commanded speed change, a fault 
was injected into the system under test by the 
simulation PC.  After the injection of each fault, the 
resulting system behavior was automatically classified 
using a simple model-based performance monitor to 
gauge the operation of the system in real-time2.  The 
performance monitor compares the real system 
behavior with the desired system behavior, as shown in 
Figure 2, to detect deviations from the specification 
that are indicative of a system failure (e.g. sluggish / 
oscillatory performance, out of range or ‘stuck at’ 
errors).  The performance monitor is an adapted 
version of the design presented by Li et al. [35].  After 
each resulting fault has been classified, the results are 
logged into a text file by the PC for later analysis. 

 

 
Figure 2. Performance monitor 

 
This test strategy was employed to allow for a 

maximum possible coverage of critical code (sampling, 
control, actuation, response to driver commands) 
following the injection of the fault.  It must be noted 
that there was no explicit synchronization when 
injecting faults; they could occur at any point in the 
embedded system’s execution, and could not be 
                                                           
2  To eliminate any ‘probe effects’, the performance monitor was 

implemented entirely on the PC. 

‘blocked’ in any way.  In each of the tests described in 
this paper, the experimentation was allowed to run 
autonomously until 100,000 faults had been injected 
into the system under test, the resulting failure modes 
classified by the monitor, and logged into the text file.  
The overall testing strategy that was employed is 
shown schematically in Figure 3. 

 

 
 
Figure 3. Overall experimental methodology 
 

3. Scheduler and task designs 
 

3.1 TTC system 
 
To implement the system, the first scheduler used in 

this study was a form of cyclic executive.  The specific 
implementation used was based on that described 
previously by Pont [16], with very minor changes 
made to match the C167 processor employed in this 
study.   

Please note that - because of the co-operative nature 
of this scheduler - no locking mechanisms were 
required, and inter-task communication was by means 
of “global” variables. 
 
3.2 TTP system 
 

The time-triggered preemptive (TTP) scheduler used 
in this study was a fully preemptive design, which was 
used to implement a rate-monotonic (RM) schedule of 
the task set described in the following section.  The 
fast context switching mechanism of the C167 was 
employed in the implementation; full details of the 
scheduler design are documented by Fang [36]. 

Please note that – as discussed in the introduction - a 
“pure” RM schedule assumes that all tasks are 
independent: this was not the case in our system 
(indeed, it is very rarely the case in any practical 
design) and our scheduler implementation could 



therefore only provide an approximation of the RM 
theory.  To avoid conflicts, locking mechanisms were 
implemented (to protect shared hardware resources).  
These locking mechanisms approximated the “Priority 
Ceiling Protocol” [37].  In “PCP”, a ceiling priority is 
defined as the maximum priority of those tasks that 
take part in a priority comparison.  When using PCP, 
the intention is to ensure that the task which is 
currently using the resource completes as quickly as 
possible. 

In addition to the locking mechanism, the RM 
scheduler also requires a mechanism for transmitting 
data between tasks (the possibility of task preemption 
means that we cannot simply use global variables for 
this purpose, as we can with the co-operative design).  
Various mechanisms can be used for inter-task data 
transfers in such designs: for example, we could use 
the lock mechanism and global variables.  A more 
popular technique is a message queue (e.g. see Simon 
[38]): such an approach was employed in this study. 

 
3.3 Task software 

 
Six periodic software tasks were created to 

implement the control system.  A sensor task (T1) 
sampled the vehicle speed (as a voltage) through an 
analog-to-digital (ADC) port, re-scaled the voltage to 
the required speed range and performed range and 
range-rate sanity checks.  The control task (T2) 
performed the PID calculation; a digitized version of 
(2): 
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… where uj is the commanded throttle setting at 

sample j, and ej is the error at sample j.  The three 
system gains were chosen (manually) to give the 
desired closed loop performance; a critically damped 
95% settling-time of approximately 6 seconds.  The 
actuation task (T3) performed a further sanity check on 
the resulting throttle command and translated this 
output to a parallel port of the C167, to control a 
throttle servo actuator.  These three tasks were 
scheduled to execute sequentially with a period of 
20 ms, giving an overall sampling rate of 50 Hz. 

A status-update task (T4) was executed once every 
100 ms.  This task monitored and “de-bounced” the 
“cruise enable” and “resume” switches.  It also 

monitored switches on both the accelerator and brake 
pedals: if either of the pedal switches was depressed, 
the cruise control was disengaged.  In addition, a 
display update task (T5) was also executed every 
100 ms and sent a string of display characters to the 
LCD (serial protocol).  Note that in the co-operative 
scheduler, we broke the LCD update task evenly up 
into smaller segments (as discussed in Pont [16]). 

The final system task was the safety task (T6), also 
executed every 100 ms.  This task serviced the 
watchdog timer, and also verified the system 
configuration (such as timer reload value, I/O 
configuration and interrupt settings). 

These tasks and their periods T and duration D 
(expressed in ms) are summarized in Table I.   

 
Table I. Task set summary 

 
Name Task ID T (ms) D (ms) 

Sensor T1 20 0.5 

Control T2 20 1.2 

Actuator T3 20 0.5 

Status T4 100 9 

LCD – P T5 100 25 

LCD – C T5 20 5 

Safety T6 100 0.1 
 

Prior to experimentation both software 
implementations were verified using bounded model 
checking3 techniques to ensure that run-time failures 
were not due to simple coding errors. 
 
3.4 Timer tick interval 
 

In a system based on periodic scheduler “ticks” 
(timer interrupts), the tick interval must be set 
according to the application requirements.  If the tick 
interval is too long, the system will be unable to 
respond at an appropriate rate and will not – for 
example – be able to meet data-sampling requirements.  
If the tick interval is too short, the scheduling load will 
be unnecessarily high: this may increase both jitter 
levels and system power consumption. 

From an analysis of the schedule, for the co-
operative system we chose a timer interrupt rate of 
10 ms, as this is the largest common divisor of the 
tasks that is also greater than the longest task duration.  

                                                           
3  Please see http://www-2.cs.cmu.edu/~modelcheck/cbmc for 

further details of the model checker that was employed. 



From Katcher et al. [15], we calculated timer bounds 
for the tick rate TTIC of the preemptive system to be 
between 1.14 ms < TTIC < 18.25 ms.  The actual value 
taken was thus the integer mid point of 10 ms, identical 
to the co-operative system. 
 
3.5 Transient protection mechanism 

 

In order to increase realism of the study, a number 
of identical hardware and software based mechanisms 
were utilized (in both TTC and TTP implementations) 
in order to detect and correct transient errors.  These 
mechanisms included the use of a 200 ms watchdog 
timer, duplex implementation of critical data with 
comparison, sanity checks of control signals, and a 
task overrun detection mechanism.  The on-chip 
exception traps of the C167 processor were also 
employed, allowing detection of:  stack overflow; 
stack underflow; illegal operands; illegal word access; 
protected instruction faults; and, illegal bus access. 

The unused areas of FLASH memory and RAM in 
each design were filled with illegal operands to 
provide an addition means of detecting control-flow 
errors.  On activation of any of these traps, a full 
system reset was forced.  Finally, on system boot-
up/reset, the system performed the following software-
based self-tests [39]: 

 
1. Internal RAM/register/stack validation. 
2. External RAM validation. 
3. ROM checksum. 
4. Peripheral test (e.g. ports, timer). 
 
This approach to fault-tolerance is illustrated in 

Figure 4. 
 

4. Results and discussion 
 

In this section we discuss the results that were 
obtained in the study; we begin with a comparison of 
the required memory resources and CPU utilization of 
each implementation. 

 
4.1 CPU and memory requirements 

 
As mentioned in the introduction, TTP schedulers 

are expected to have larger CPU overheads and 
memory requirements than equivalent TTC designs.  
Table 2 shows the requirements for each of the designs 
employed in this study.  The CPU utilization U and 
scheduler overhead W were both experimentally 
determined (by directly measuring both the idle time of 
the microcontroller and the time spend executing 

scheduler code) over several thousand hyper periods of 
the task set, during (normal) fault-free operation.  
Table II also shows the percentage increase between 
the TTC and TTP designs. 

 

 
 

Figure 4. Transient protection mechanisms 
 

Table II. System resource comparison 
 
System U (%) W (μs)  RAM (B) ROM (B) 

TTC 45.36 39.5 650 4,774 

TTP 51.44 262.2 4,882 5,030 

% Increase 13.4 563.8 651.1 5.4 
 

4.2 Fault injection results 
 

As mentioned, in this study we were concerned 
with operational dependability of the systems under 
test.  After the injection of each fault, the resulting 
failure behavior was therefore categorized as one of 
the following: 

 
1. Effect-less: the fault was either not activated, or was 
tolerated by the employed fault mechanisms; it did not 
cause a measurable deviation of performance from the 
system specification. 



 
2. Failure: the fault was neither detected nor corrected 
and resulted in a permanent deviation of performance 
from the system specification. 

 
Based on this classification, the probability of 

failure PF following a transient fault was estimated.  
The results we obtained for each system are 
summarized in Table III. 

 
Table III. Fault injection comparison 

 

System 
Faults  

Injected 
Effect  
Less Failures PF 

TTC 100,000 99942 58 5.8 x 10-4 

TTP 100,000 99755 245 2.45 x 10-3 
 
4.3 Discussion 
 

Based on the results shown in the previous two 
sections, it can be seen that for the two systems, 
exhibiting identical functionality, several noticeable 
differences can be observed.  Firstly, as expected all 
measures of system resources were larger for the TTP 
system.  The most significant differences being the 
increase in RAM requirements (651.1 %) and 
scheduler overheads (563.8 %), followed by an 
increased CPU utilization (13.4 %).  The smallest 
increase was in the system ROM requirements, with a 
5.4 % increase in size. 

Secondly, as the fault injection results demonstrate, 
despite both systems exhibiting relatively good 
transient error recovery properties a significant 
difference in the failure behavior of the two systems 
was observed.  A 322.4 % increase in the number of 
recorded dangerous failures was observed in the TTP 
system over the TTC.  Thus as can be seen from the 
table, there is a measurably greater risk that the TTP 
system will exhibit dangerous failure behavior 
following a transient disturbance.  Given that the main 
difference between the two system implementations 
was the choice of scheduler, we hypothesize that the 
increased complexity, overheads and resource usage in 
the TTP system had a direct influence on its transient 
error failure rate. 

Based on these results, it is possible to calculate an 
expected mean-time-to-dangerous-failure (MTTDF) 
for each system implementation.  Taking the 
probability of a transient bit flip to be approximately 
10-9 / bit / hour for a ground based mobile installation 
[40], the probability of a transient error λT occurring in 
the 9KB area of memory that was considered in this 
study is therefore approximately 7.4 x 10-5. 

Previous works suggest a linear relationship 
between CPU failure rate λCPU and utilization; this 
relationship can be expressed as follows [27] [28] [29]: 

 
 

UMINCPU U Δ⋅+= λλ  
(4) 

 
… where ΔU is the change in failure rate due to 

power consumption between 0 and 100% CPU 
utilization.  Thus the failure rates per 10-6 hours for the 
C167 CMOS technology microcontroller with 111 
pins, a 128K Flash EEPROM and 256K SRAM can be 
calculated as shown in Table IV [41]. 

 
Table IV. Component failure rates 

 
Component Failure Rate 
CPU (λMin) 0.69393 
CPU (ΔU) 0.00067 

EEPROM (λE) 0.16490 
RAM (λR) 0.24320 

 
Considering that the failure of the CPU or memory 

devices will result in an unpredictable failure that will 
cause a significant deviation of system performance 
from the specification, the dangerous failure rate λSYS 
for each system may then be calculated as follows: 

 
( )fTRECPUSYS P⋅+++= λλλλλ  

(5) 
 
Applying (4) and (5) to the results we have 

obtained, the failure rates for the TTP and TTC 
systems can then be calculated as shown: 

 

6

6

10317.1

10175.1
−

−

×=

×=

TTP

TTC

λ

λ
 

(6) 
 

From this, it can be seen that in this study, with ‘all 
other things being equal’, the TTC implementation of 
the CCS was significantly more dependable than the 
TTP design.  This is further illustrated when 
comparing the MTTDF of each system: the MTTDF of 
the TTC system is 97.14 years, and the MTTDF of the 
TTP system is 86.67 years.  Although both of these 
values may be deemed acceptable for a CCS system, it 
is clear from these results that the use of task 
preemption in this experimental study has had a 



measurable impact on the dependability of the 
resulting system implementation, with a 12.1 % 
increase in the expected MTTDF in the TTC design. 

 
 

5.0 Conclusions 
 

In this paper, we have explored the impact of 
preemption on the operational dependability of a 
single-processor embedded control system, 
implemented using a static time-triggered scheduler.  
The study was empirical in nature and we employed a 
hardware-in-the-loop (HIL) testbed, combined with 
fault-injection experimentation, to perform the 
comparisons.  The results obtained in this initial study 
suggest that preemption may have a measurable effect 
on dependability and fault-tolerance in embedded 
systems; however at this early stage it cannot be said 
that these results will generalize further. 

Further work is required to investigate if the results 
found here will generalize to other processor 
platforms, scheduler implementations and application 
areas. Additionally it is unclear if more advanced fault 
detection schemes than those employed in this paper 
will minimize the differences we have described.  One 
other point to note is that this paper has not directly 
considered the effects of corruptions in the program 
ROM in the systems under test; this may well have an 
additional influence on the obtained results. 

Further work in this area will consider these 
effects, and will also consider additional case studies 
in which the effects of preemption rate may also be 
investigated. It is also planned to investigate 
preemption effects on dependability in dynamic 
schedulers (primarily EDF), and also its effects in 
multi-processor, distributed embedded systems. It is 
hoped that such studies may shed further light on the 
important issues raised in this paper. 
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