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Abstract—We consider the problem of small-gain analysis biological systems that fail to satisfy these requirements
of asymptotic behavior in interconnected nonlinear dynamé  Furthermore, as the methods of control expand from purely
systems. Mathematical models of these systems are allowen t engineering applications into wider areas of science,ether

be uncertain and time-varying. In contrast to standard smal- . df intaini behavior that fail t bev th
gain theorems that require global asymptotic stability of exch IS a need for maintaining behavior that fail o obey the

interacting component in the absence of inputs, we consider Usual notion of Lyapunov stability [8]. Here are few exam-
interconnections of systems that can be critically stable md  ples of systems in whiclexplorative, searching rather than
have infinite input-output Lo gains. For this class of systems |yapunov-unstable behavior is considered useful or inftere
we derive small-gain conditions specifying state boundediss Example 1. In problems ofnonlinear output regulation

of the interconnection. The estimates of the domain in which

the system's state remains are also provided. Conditions g1 ~ Lyapunov-unstable convergence allowed to address the ques
follow from the main results of our paper are non-uniform tion of minimal information about the plant that is to be
in space. That is they hold generally only for a set of initial made available in order to designing an adaptive controller
conditions in the system's state space. We show that under 9] [10] solving the adaptive output regulation probleneT
some mild continuity restrictions this set has a non-zero Vame, proposed solution has been called the universal algoritm f

hence such bounded yet potentially globally unstable motits dati | d . f1h led
are realizable with a non-zero probability. Proposed resus can ~ 2daptive control, and equations of the controlled systeen ar

be used for the design and analysis of intermittent, itinerat ~ as follows:
and meta-stable dynamics which is the case in the domains of .

control of chemical kinetics, biological and complex physial &= f(z,\) +g(z, t)u, f:R" xR —R"
systems, and non-linear optimization. u= BNz (1)

I. INTRODUCTION A= |h(z)P, v € Ryg

Small-Gain theorems are widely recognized as effectivey (1) « is a control input,\ is a dynamic variable of the
tools for the analysis of asymptotic behavior of the cassadgeedback,3 : R — R™*" is a dense trajectory iflx C

and interconnections of linear and nonlinear systems 21], [ Rm*» 1, : R™ — R is a Lipschitz function, and there exists

They are especially advantageous in those situations whgn ¢ ;- such that the origin of

mathematical models of systems are uncertain, and only

estimates of the input-output properties of each component = f(x,\) + gz, t)5%x (2)

are available. The latter property together with the nation

of input-output andinput-to-state stability [1], [3], [4] makes is exponentially stable.

the small-gain technique a promising instrument in the Example 2. Systems with Lyapunov-unstable yet bounded

analysis of complex biological and physical systems, see fsolutions emerge imodels of decision-making and recogni-

instance, [5], [6], [7]. tion in neural systems [11], [12]. These models are networks
Conventional small-gain results often require (globalpf nonlinear oscillators [13]:

Lyapunov asymptotic stability of unperturbed dynamics of

each interacting subsystems [4]. Yet, there are physiadl an . N
9 Y ¥ Py =i |hi— |2+ Y pirs | | +mi(t)
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dissipative saddles. Saddle-node heteroclinic connectioe

among possible configurations in such systems:
= f(z,\t), fR"XRxR—-R" 3)
A= Yllz|l, v € Rso.

In (3) the origin of& = f(=,0,t) is assumed uniformly
asymptotically stable, and(z, A,t) be locally Lipschitz in

of invariance is defined fo, (in our case a steady-state
characteristic), a weak, Milnor attracting set [15] emesrge
Its location is completely determined by the zeros of the
steady-state response of systém

Due to space limitation we concentrate on presenting the
main ideas and applications of our approach rather than
technical details. Proofs of the statements can be found in

A uniformly in ¢. Controlling and determining domain of [16], [17].

attraction for the point attractor at the origin of (3) is cial
for this concept.
Example 3. Analysis of kinetic equations:

-1 (t):vl +c (wg, t) +u
—)\Q(t)xg + Cg(wl,t),

(4)
()

Ty =

Ty =

where the function\; : R>¢ — Ry is separated from zero,

ie. 3N € Roo: A(t) > A%, and Az : R>p — R>0 can
assume zero values ov&s,. The functionsc;,cz : R X

R>¢ — R are globally Lipschitz incy, z2, andca(z1,t) is

non-negative (non-positive) in; . Variableu € R constitutes
an external regulatory input.

The paper is organized as follows. Section Il describes
notational agreements. In Section Il we specify the class
of systems of our study and formally state the problem.
Section IV contains main results of our paper. Namely,
Theorem 1 provides a set of general sufficient conditions
for non-uniform convergence, and Corollary 1 shapes these
conditions into the usual small-gain formulae for a widessla
of nonlinear systems. Section V provides discussion ofethes
results and concludes the paper.

1. NOTATION

Throughout the paper we use the following notational
conventions.

All these examples share common characterization — Symbol R denotes the field of real numbers, symbol

asymptotically stable dynamics (stable subsystem) is cou-
pled with explorative motions in the system state space
(explorative subsystem). Furthermore, right-hand sidélseo
equations governing these subsystems are likely to bedubje
of external perturbations. For instance, thét), A2(¢) in (4),

(5) may vary with time, and functiong(z, A), f(z, A\, ¢) in

(1), (3) may be unknown. When precise knowledge of ordi-
nary differential equations governing the system dynamics
is not available the system can be thought of as a mere,
interconnection of input-output maps. Small-gain theaem
[1], [2] are usually efficient in this case. These results,
however, apply only under the assumption of stability of
each component in the interconnection. The latter conditio
is violated for (1) — (5).

In the present study we aim to find a proper balance
between the generality of input-output approaches [1], [2]
in the analysis of convergence and the specificity of the
fundamental notions of limit sets and invariance. The dbjec
of our study is a class of systems that can be decomposed into
an attracting, or stable, compone$if and an exploratory,
generally unstable, pa&,. Typical systems of this class are
nonlinear systems in cascaded form

S, x=1(x,2),

Sw: z= q(Z,X)
where the zero solution of the-subsystem is asymptotically
stable in the absence of input and the state of the-

subsystem are functions qfo |lx(7)||dT. Even when both
subsystems in (6) are stable and thesubsystem does not

(6)

R, stands for the following subset &: R, = {z €
R| z > 0}; N andZ denote the set of natural numbers
and its extension to the negative domain respectively.

« SymbolC* denotes the space of functions that are at

leastk times differentiable.

K denotes the class of all strictly increasing continuous
functionsk : Ry — Ry such thatx(0) = 0. If, in
addition,lim;_, k(s) = oo we say thatk € K.

Symbol L denotes the class of functions: Ry x

Ry — Ry such thatg(-,s) € K for eachs € Ry,
and(r, -) is monotonically decreasing to zero for each
re R+.

« Let x € R” andx can be partitioned into two vectors

x1 € RY, x4 (Ill,...,xlq)T, Xy € RP, x9 =
(z21,...,22p)" With ¢ + p = n, then& denotes their
concatenationk = x; @ xs.

The symbol|x|| denotes the Euclidian norm ine R™.
By L [to, T] we denote the space of all functiofis
R, — R™ such that|/f||o i, = sup{[|f(t)],t €
[to, T|} < oo, and||f||s ¢, Stands for thel.7 [to, T']
norm of £(¢).

Let A be a set inR™ and|| - || be the usual Euclidean
norm inR". By the symbol-|| , we denote the follow-
ing induced norm:

kel g = inf {llx — al}

I1l. PROBLEM FORMULATION

Similar to [16], we consider a system that can be decom-

depend on state, the cascade can still be unstable [14]. wé?0sed into two interconnected subsysteisand S,

show, however, that for unstable interconnections (6)eund
certain conditions that involve only input-to-state projes
of S, andS,,, there is a seV in the system state space, such

S,
Sy

(ta; X0) = x(1)

(uw’ ZO) = Z(t)

()

that trajectories starting iw remain bounded. The result is whereu,, € U, C Lo [to, o0], Uy € Uy C Loo[to, 00| are the
formally stated in Theorem 1. In case an additional measuspaces of inputs t&, andS,,, respectivelyxy € R™, zg €



R™ represent initial conditions, andt) € X C L% [to, oo, Now consider the interconnection of (8), (9) with coupling
z(t) € Z C L [to, oc] are the system states. uq(t) = h(z(t)), andus(t) = ||x(¢)|| . Equations for the
System S, represents the contracting dynamics. Moreombined system can be written as:

recisely, we require tha, is input-to-state stable [18] with
e o e s HEIWIR c(t) |y < B(Ux(t0) L = t0) + ellAa)] 1.

Assumption 1 (Globally stable dynamics): /tt (x| )dr < h(z(to)) — h(z(t) 12
Sui Ix®lla < Blx(to)4 st —to) + ® t
e @ty ¥ o € R £> to < [ ollx(r)1 gar
where the functiors(-,-) € KL, and¢ > 0 is some positive A diagram illustrating the general structure of the entire
constant. system (12) is given in figure 1.
In what follows we will assume that the functigi-, -) and In what follows we aim to derive simple small-gain condi-

Assumption 1 holds for (4). In particular, whet = 0 the State boundedness of the system. Given that conventional

function G(||x(to)|| 4, — to) is defined as3(|a: (to)|,t — notion of the input-output gain hardly applies to subsystem
to) = e (=10 |21 (t0)|, and coefficient = Cy/A\* where Sw, W€ do not wish to present these conditions in the
C, is the Lipschitz constant of; (2, ¢) with respect taz,. ~ Standard form, e.g. thahe loop gain is less than unit [1].
The systemS,, stands for a critically stable, explorative, We rather search for conditions that can be formulated as
wandering subsystem (compartment). We will restrict outollows:
attention to those systemS, that satisfy the following c-G(B,7,m) <1, (13)
constramt;: . , . where G(-) is a functional 5(-), vo(-) and v1(-) in (12).
Assumption 2 (Critically stable, Wa.ndermg dynamics): Despite that the "gains” in (13) refer to the different space
The systemsS,, is forward-complete: equation (13) has familiar small-gain form. Small-gairelik
conditions (13) follow as a corollary (Corollary 1) from a
more general statement (Theorem 1). Detailed formulations

and there exists an "output” function: R™ — R, and two  Of these results are provided in the next section.
"bounding” functionsyy € K, v € K, such that the IV. MAIN RESULTS

following integral inequality holds: ] ) )

Before we formulate the main results of this section let us
first comment briefly on the machinery of our analysis. First
of all we introduce three sequences

Uy (t) EUy = 2z(t) € Z, YVt > tg, to € Ry

Sui [ mluwn(r)dr < hlalt) ~ hia(t) <
¥ 9)
/ VQ(Uw(T))dﬂ Vit>tg, to € R+ S = {Ui}z@iO? E= {gl ;.205 T= {Ti}?io

t . . .
In case systens,, is specified in terms of vector-fields The first sequences, partitions the interval[0, h(z)],

h(z¢) > 0 into the union of shrinking subintervalg;:
7 =f.(z,uy,), £.(-,-) €C, (20)
[0, h(zo)] = UZoHi, H; = [0i41h(20),0:h(z0)]  (14)

Assumption 2 can be viewed, for example, as postulati
the existence of a function : R™ — R, of which the
evolution in time is a mere integration of the inpuf (¢).
In general, foru,, : u,(t) > 0 V¢ € Ry, inequality (9)
implies monotonicity of function (z(t)) in ¢. Regarding the {0,}5%: lim 0, =0, oo =1 (15)
functiono(-) in (9), we assume that for any/ € R, there  gequences and 7 will specify the desired rateg € = of
exists a functiomyp, : Ry — R, and anon-decreasing  the contracting dynamics (8) in terms of functiét, -) and
functionyo,2 : R+ — Ry such that 7; € T. Let us, therefore, impose the following constraint
on the choice of, 7.

Property 2 (Rate of contraction, Part 1): For the given

Requirement (11) is a technical assumption which will béeduencess, 7 and function5(-,-) € KL in (8) the
used in the formulation and proof of the main results of théllowing inequality holds:

paper. Yet, it is not too restrictive; it holds, for instanfer BTy < EB(,0), ¥ T; > 7 (16)
a wide class of locally Lipschitz functions(-) : yo(a-b) < Property 2 states that for the given, yet arbitrary, fagtor

Lo(M) - (a- l?)' Lo(M) € R,. Another example _for Whic_h and time instant,, the amount of time; is needed for the
the assumption holds is the class of polynomial functlon§tatex in order to reach the domain:

Y(-) = v(a-b) = (a-b)P = a?-b", p > 0. No further
restrictions will be imposed a-priori 08,, S,,. lIx]| 4 < &B(||x(to)| 4,0)

"We define this property in the form of Property 1
Property 1 (Partition of zy): The sequences is strictly
monotone and converging

vol(a-b) <50,1(a)-v0,2(b),V a,b € [0, M]. (11)



a
(1) x(1)
— s
h(z(1)) <0
Sw

Fig. 1. a. The class of interconnected systeig and S,,. SystemS,, the “contracting system”, has an attracting invariant .4ein its state space,
systemS,, does not necessarily have an attracting set. It represeatsMandering” dynamics. A typical example of such behaisothe dynamics of the
flow in a neighborhood of a saddle point in three-dimensiaplce (diagranb).

In order to specify the desired convergence ratest will The main differences between the standard and the
be necessary to define another measure in addition to (1@yesently proposed approaches for the analysis of asyimptot
This is a measure of the propagation of initial conditisgs behavior of dynamical systems are illustrated with figure 2.
and inputh(zo) to the statex(t) of the contracting dynamics  In order to prove the emergence of the trapping region
(8) when the system travels in(z(t)) € [0, h(zo)]. For this we consider the following collection of volumes induced by
reason we introduce two systems of functiorsand Y the sequence; and the corresponding partition (14) of the

C bi(s) = dj10ppi(&ioj-B(s,0)), j=1,...,0 interval [0, 2 (zo)]:
P gols) = B(s,0)
0 ’ (17) O = {x € X,z € Z| hz(t)) € H;} (22)

Uj(s) :d)jflopv.,j(s)v J=1... (18) . oo .
vo(s) = fB(s,0) For the given initial conditionsxy € X, zg € Z two
) ) ) alternative possibilities exist. First, there exists @asuch
where the functiongy,j, p.,; € K satisfy the following  that the trajectoryx(t, xo) @ z(t,z0) entersQ; and stays
inequality there forever. Hence far — oo the state will converge into

¢j-1(a+b) < dj10pg5(a) +dj-10py;(0)  (19) Q, =[x € X, 7€ 2|

Notice thatin cas@(-,0) € K the functiongy ;(-), pv;(-) x| 4 < ¢ h(zo), z: h(z) €[0,h(zo)]}
will always exist [2]. The properties of sequeng&ewhich
ensure the desired propagation rate of the influence o&initiThe second alternative is that for eack 0, 1, ... the trajec-
conditionx, and inputh(zo) to the statex(t) are specified tory x(t,xo) @ z(t,zo) enters2; and leaves sometimes later.
in Property 3. Let ¢; be the time instances when it hits the hyper-surfaces
Property 3 (Rate of contraction, Part 2): The sequences h(z(t)) = h(zo)o;. Then the state of the coupled system
n stays inU2, ; only if the sequence(t;}5°, diverges.
ol én(|I%0]_1); ool (Z Ui(c|h(zo)|0n—i)> : Theorem 1 provides sufficient conditions specifying theelat
=0

(23)

case in terms of the properties of sequenSes, 7 and
. function,(-) in (12). For a large class of interconnections
"= .O’ .-+,00, are bounded from above, e.g. there e)('Sflz) it is possible to formulate these conditions in terms of
functions By ([[xol), B2(|(z0)|, ¢) such that the input-output properties of systeris andS,, explicitly,
o7t n(lIxo0ll 1) < Bi(llxoll4) (20) i.e._ ir! terms of functi(_)ns{)’(-, -_), ~(+), and the values o¢.
This is presented an immediate corollary of Theorem 1.
. n Theorem 1 (Non-uniform Small-gain Theorem 1): Let
Tn - Zvi(cm(zoﬂanﬁ) < Ba(|h(zo)l:¢)  (21)  gystemsS,, S, be given and satisfy Assumptions 1, 2.
=0 Consider their interconnection (12) and suppose therd exis
foralln=0,1,...,00 sequences, =, and7 satisfying Properties 1-3. In addition,
For a large class of function$(s, 0), for instance those that suppose that the following conditions hold:
are Lipschitz ins, these conditions reduce to more trans- 1) There exists a positive numbgy, > 0 such that
parent ones which can always be satisfied by an appropriate
choice of sequences and S. This case is considered in 1 (0s — 0iy1)

. : — > = ..
detail as a corollary of the main theorem. T yoai(o) BoVi=0,1,...,00 (24)



Standard Proposed

1) Domain of attraction is a set of positive measure (hot

1) Domain of attraction is a neighborhood necessarily a neighborhood)

2) Allows to analyze convergence in Lyapunov-unstable

2) Implies Lyapunov stability systems

ch(to)®z(to)H =4 QQO
e aen) = ay "N eegesito) €
[ (t)@ 2(t2)] = Az |

Tx ()@ z(t) € Qo

t; ti)l =A;
Hx( )& 2( )H Tex (t)@z(ti) € Q;

Given: a sequence of sefy whose distance\; to A is

Given: a sequence of diverging time instane¢gs converging to zero

Prove: convergence of nornij(t;) ®z(t;)|| = A; to zero| Prove: divergence oft; }, wheret; : x(t;) ® z(t;) € Q;

Fig. 2. Key differences between the conventional conceptooizergence (left panel) and the concept of weak, non-tmif@onvergence (right panel).
In the uniform case, trajectories which start in a neighbothof A remain in a neighborhood oft (solid and dashed lines). In the non-uniform case,
only a fraction of the initial conditions in a neighborhoofl .4 will produce trajectories which remain in a neighborhoodf{(solid black line). In the
most general case a necessary condition for this to happteatishe sequencgl; } diverges. In our current problem statement divergencétof implies
boundedness dfx(t)|| 4. To show state boundedness and convergence(t)fto .A an additional information on the system dynamics will beuresgl.

2) The setQ, of all pointsx, zo satisfying the inequality whereg,(-) € K and3,(-) € C° is strictly decreasingwith

Yo,2(B1([[xoll 4) + B2(|h(20)l, ¢)+clh(zo)|) o5 Jim G,(t) =0 (28)
< h(zo)Ao (25) It is shown in [19] (Lemma 8) that factorization (27) is
always achievable for anfZ £ function. In case the function
iS not empty. B (+) in the factorization (27) is Lipschitz the conditions of
3) Partial sums of elements frofh diverge: Theorem 1 reduce to a single and easily verifiable inequality
o Without loss of generality, we assume that the steie
Z T = 00 (26) of systemS, satisfies the following equation
=0 (@) 4 < [1x(t0)ll 4 - Be(t — to)+ (29)
Then for allxq, zo € 2, the statex(t,zo) ® z(t,zo) of - ||h(z(7,20))ll 00, [t0.4]

system (12) converges into the set specified by (23). where 3,(0) is greater or equal to one. Given that(t) is

(See [16] for detai!g of the proof). _ strictly decreasing and continuous, there is a (continuous
Remark 1: Conditions 1), 3) of the theorem can be eas'lymappingﬂgl 210, 3,(0)] — Ry

checked for the given sequenc8s7. Verifying condition )
2), however, might be a nontrivial operation. Therefore, a By oB(t)=t, Vt>0 (30)

simpler statement that does not involve explicit verifioati The small-gain criterion for interconnection (12) in which

of condition 2) of Theorem lis desirable._ the dynamics ofS, is governed by (29) is provided below:

In what follows we will show that this goal can be Corollary 1 (Non-Uniform Small-gain Theorem 2):
achieved in case additional information about the functiogynsider ~ interconnection (12) where the systefa
f(-,-) is available. This information is the knowledge Ofgyisfies inequality (29) and the function(-) is Lipschitz:
functions,(-), B:(-) in the following factorization:

1if B¢(-) is not strictly monotone, it can always be majorized by ayri
BIx] 4 t) < Ba(lIx]] 4) - Be(t), (27)  decreasing function



[70(s)] < D~ - |s|. Then there exists a s, of initial An interesting question however remains: whether a sim-

conditions corresponding to the trajectories convergimg tilar technique can in principle be derived to deal with

Q, if the following condition is satisfied interconnections of systems with finite escape time, such as
i1 = —x1 +23, A = —yz?. Finding answer to this and other

Dyo-c-G <1, (31)
where

d k K
e O
6= 5 (2) 25 (00 (1+125) +1)
for somed € (0,1), x € (1,00). In particular,(2, contains
the following domain
h(z(ty)) | 1 < ) (d))l k—1
x(? < —= = - -
|| ( O)HA — ﬁt(o) D’Y,O Bt K k
K
—e (0 (1455 ) +1) |
In case the functiork(z) in (12) is continuous, the volume

of the set(), is nonzero inR™ @ R™.
Proof of the corollary is provided in [16].

(1]

(2]

(3]
(4]

(5]

(6]
(7]
V. DISCUSSION AND CONCLUSION

(8]

Let us now briefly outline domains of potential appli-
cations of the presented analysis framework (non-uniform
small-gain theorems). First of all, it is worth mentioning (9
that the results, as well as other technical statements from
[16], apply to problems covered in Examples 1, and 2 ifi0]
Section I. In addition, the novel framework has recently
been shown successful faolving problems of state and  [11]
parameter reconstruction for systemsin non-canonical adap-
tive observer form. In [20], [21] we showed that trading [12]
Lyapunov stability for convergence enables solving protse
of state and parameter reconstruction for these importaidgl
classes of systems. Dynamics of such observers satisfy

& =At)z +b(t,x, ) —b(t,x,\), N €R
A= VHCTiUHa v €Rsp, c€R"

[14]
(32)
[15]

with z A(t)x being uniformly asymptotically stable (16
and b(t,z,\) being globally Lipschitz in\ respectively.
Equations (32) can be directly translated into (12) to which
Theorem 1 and Corollary 1 apply. Examples of how thesg-,
results can be used to tackle the problem of adaptive reg-
ulation for systems with general yet Lipschitz nonlinear
parameterization are discussed in [16]. [

More recent developments demonstrate that the nopg)
uniform small-gain approaches can serve as the machinerg
for solving long-standing ill-posed problems such as pr0\;-2 ]
ing adaptive capabilities of recurrent neural networkshwit
fixed weights in the problems of adaptive classification of
uncertain temporal signals [22]. 21)

Presented framework of analysis is not limited to systems
in Examples 1, and 2. It can be extended to more general
settings, as in Example 3, where interconnection of an inp
to-state stable system with a system of which the dynamics is
critically stable or in a vicinity of the critical regime. Bals
of such generalization are available in [17].

related questions is the topic for future studies.
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