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Abstract

The unsteady transport of large-scale coherent vortices can induce a redistribution
in the stagnation temperature and pressure relative to the free stream flow. The
time averaged result of this redistribution is the Eckert-Weise effect, by which a
cooled region is defined along the wake centre. The time accurate characteristics of
this mechanism for bluff body near wake flows are, however, sparsely documented
at low transonic Mach numbers. For example, no available published research has,
to date, studied the time resolved energy separation characteristics in the transonic
near wake flow of a circular cylinder using a time accurate numerical model.

A novel time accurate computational analysis is developed of the near wake energy
separation characteristics downstream of a circular cylinder in a low transonic cross-
flow at high Reynolds number. This circular cylinder analysis is extended to a novel
time accurate computational study of energy separation in an asymmetric turbine
cascade wake at a low transonic exit Mach number. Energy separation is reported
to primarily be a convective flow effect. A structured inviscid and turbulent test
program examines the extent to which an inviscid model is able to predict energy
separation.

Results from this study indicate a good correlation of the time accurate and time
mean flow statistics with published work. These results demonstrate that an in-
viscid model is able to capture the basic energy separation mechanism. However,
inviscid models are shown to over-predict the stagnation temperature and pressure
redistribution. The inviscid prediction suggests that air compressibility modifies
the incompressible energy separation mechanism. Turbulence diffusion reduces the
stagnation temperature and pressure extrema to demonstrate a better comparison
with experimental data. A relationship between the energy separation and vor-
tex strength is highlighted. This is shown in the turbine cascade prediction to be
dependent on the boundary layer separation characteristics.
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A Conservative variable Jacobian matrix for the Euler equations
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Chapter 1: Introduction 1

Chapter 1

Introduction

The unsteady wake downstream of a bluff body can have a significant impact on the

structural, financial and environmental performance of many practical engineering

applications. Unsteady wakes can lead to stagnation pressure losses, fatigue induc-

ing vibrations and noise pollution. A fundamental analysis of the underlying flow

physics for a specific wake flow can lead to significant beneficial increases in com-

ponent performance, suppression of destructive vibration modes, and a decreased

environmental impact.

One engineering discipline in which significant practical benefits have resulted

from the analysis of wake flows is that of turbomachinery aerodynamics. Strategic

developments in the design of turbomachinery blading have lead to increases in

aerodynamic efficiency, significant reductions in fuel consumption, reduced blade

numbers, increased reliability and lower emitted levels of acoustic radiation.

The flow downstream of a turbine blade may comprise of a wide range of loss

producing flow features. These include, for example, unsteady shock waves, shock

wave-boundary layer interactions and high frequency vortex shedding characteris-

tics. Each of these flow features constitutes a significant source of entropy produc-

tion, leading to an overall decrease in turbine stage efficiency.

This study is concerned with one unsteady loss producing phenomenon that has

received relatively minor attention in published research. Energy separation de-

scribes the time accurate redistribution of stagnation enthalpy in a wake flow due to

the action of downstream moving coherent vortices. The result, for a von Kármán

street of convecting vortex cores, is a redistribution of the stagnation temperature
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Chapter 1: Introduction 2

and pressure to increase locally above the free stream condition along the edges

of the wake and decrease below the free stream condition along the centre of the

wake. On a time resolved basis, these stagnation temperature and pressure extrema

are defined locally at each convecting vortex. The time averaged result, however,

is a decrease in stagnation temperature and pressure along the centre of a wake.

This time averaged effect was first discovered at the base of a thermally insulated

cylinder in a uniform cross-flow by Eckert & Weise (1943). The time resolved stag-

nation temperature and pressure redistribution was initially predicted downstream

of a circular cylinder by Kurosaka et al. (1987) in incompressible flow.

A renewed interest in this phenomenon has emerged with regard to the flow down-

stream of turbine blade rows. The requirement for internal cooling of high-pressure

stage turbine blades, due to high stage loading and high operating temperature re-

quirements, has lead to a number of turbine blade designs with thick trailing edges.

Increases in trailing edge thickness can lead to the presence of vortex shedding

downstream of each turbine blade row. A number of vortex shedding effects are

documented for one such turbine nozzle guide vane in transonic flow by Carscallen

& Gostelow (1994) at Me = 1.16. High speed stagnation temperature and pressure

measurements on this blade have identified significant time dependent energy sepa-

ration effects associated with vortex shedding at an exit Mach number of Me = 0.95,

as reported by Carscallen et al. (1998, 1999) and Hogg et al. (1997).

From these transonic turbine cascade wake measurements and the subsonic circu-

lar cylinder analysis of Kurosaka et al. (1987), a new study is undertaken on factors

influencing the energy separation mechanism in the near wake region. Such factors

may include the boundary layer development and separation characteristics, asym-

metric pressure distribution effects and compressibility. For example, established

circular cylinder research at low transonic Mach numbers and high Reynolds num-

bers report that the boundary layer development and vortex shedding characteristics

are highly influenced by transient radial shock waves, which oscillate circumferen-

tially over the cylinder surface. To the authors knowledge, no significant time ac-

curate computational fluid dynamics research on the energy separation mechanism
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Section 1.1: Aims & Objectives 3

in the circular cylinder near wake flow has been undertaken within this intermittent

shock wave regime. Similarly, little time accurate research is documented on the

energy separation mechanism in a turbine blade near wake flow at low transonic

Mach numbers below, for example, Me = 0.8.

1.1 Aims & Objectives

A fundamental analysis of the near wake energy separation effects in the low tran-

sonic, high Reynolds number wake of a circular cylinder and a thick trailing edge

turbine cascade is undertaken in this study. This represents a novel and origi-

nal extension to the time averaged transonic circular cylinder analysis of Eckert &

Weise (1943), Ryan (1951) and Thomann (1959), and the time accurate subsonic

circular cylinder analysis of Kurosaka et al. (1987). The turbine blade of choice for

this study is the highly loaded turbine nozzle guide vane of Carscallen et al. (1996,

1998, 1999). This study also represents a novel extension to the energy separation

research documented for this turbine cascade at high transonic Mach numbers.

A computational analysis of the near wake flow field is adopted in this study.

The use of a numerical approach in studying the near wake flow is justified as non-

intrusive measurements in this region, at the range of sampling frequencies required,

would prove difficult to perform and expensive to fund. Also, the proposed energy

separation mechanism put forward by Kurosaka et al. (1987) is primarily a convective

flow effect. A structured inviscid and turbulent computational analysis is chosen to

examine the ability for an inviscid numerical method to accurately predict energy

separation in a high Reynolds number wake flow. This study should highlight any

small-scale turbulence effects or secondary effects due to compressibility.

The free stream conditions imposed in the circular cylinder and turbine blade

models are chosen to match a concurrent experimental research program by J.R.

Ackerman at the University of Leicester. This concurrent experimental research

program, documented in Ackerman (2005), supplies crucial validation data for the

current numerical method and provides supporting evidence for the energy separa-

tion characteristics further downstream of the circular cylinder. The current study
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should, in turn, supply a more complete overview of the flow field development lead-

ing up to the measurements of Ackerman (2005). The circular cylinder is modelled

at uniform free stream conditions of M∞ = 0.6 and ReD = 6.87× 105, based on the

circular cylinder diameter D. The turbine cascade is modelled at exit conditions of

Me = 0.6 and ReDt = 7.48× 104, based on a turbine blade trailing edge diameter of

Dt = 6.35× 10−3m.

1.2 Thesis Overview

This thesis is divided into the following chapters:

Chapter 2: This chapter provides a concise overview of the available published

literature, to date, on the unsteady compressible flow past a circular cylinder and

turbine cascade at high Reynolds numbers. This chapter introduces the reader

to the underlying motivation for this study and provides a wider context for the

current research.

Chapter 3: The numerical solution procedure used to model the circular cylinder

and turbine cascade is described in this chapter. This chapter places the numerical

method into context with the modelled flow and highlights improvements made to

the existing numerical method over the course of this study.

Chapter 4 : An Adaptive Mesh Refinement (AMR) method is implemented into

the existing numerical method to increase the computational efficiency. The AMR

method is described in Chapter 3. This chapter presents and discusses selected

results from a structured AMR validation test case procedure.

Chapter 5: The compressible, high Reynolds number circular cylinder model flow is

introduced in this chapter and results are presented and discussed. The chapter is

divided into two main sections. The first half of this chapter presents and discusses

results from the inviscid circular cylinder prediction. This analysis is extended in
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Section 1.2: Thesis Overview 5

the second half to a turbulent circular cylinder prediction.

Chapter 6: This chapter introduces the compressible flow past the model turbine

cascade. The first half of this chapter presents and discusses results from the

inviscid turbine cascade prediction, placing these results into context with published

work. The second half of this chapter introduces the development of a turbulent

cascade prediction, discussing the results in light of published research and the

turbulent circular cylinder model.

Chapter 7: This chapter discusses the current study and draws conclusions based

on the research presented in this thesis. From these conclusions, suggested further

developments to this research are then discussed.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides a concise overview of published literature, available to the

author, on the high Reynolds number, compressible flow past circular cylinders

and turbine blades. This review is intended to place the current study into context

and to provide a source of reference for further research. The literature review is

divided into the following sections:

1. The development of boundary layers on turbine blades;

2. Cascade boundary layer/vortex shedding interaction;

3. Compressibility in turbine cascade flows;

4. The flow around circular cylinders;

5. Energy separation in vortex dominated wake flows.

Sections 2.2 to 2.5 present a physical review concerning flow features that can influ-

ence the performance of turbine blades and circular cylinders. Published research on

energy separation in vortex dominated wakes is then reviewed in Section 2.6. This

review is supplemented by an overview of numerical modelling issues affecting the

prediction of these flow features, based on the numerical method described in Chap-

ter 3. Particular attention is given to the performance of the two-equation k − ω

turbulence model of Wilcox (1988) and the requirement for an enhanced turbulence

closure method to tackle this class of flows. Turbulence closure modifications are
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Section 2.2: Boundary Layer Development in Turbine Cascades 7

described in Section 3.4.3.

Throughout this review, sources of ‘loss’ are highlighted. Denton (1993), defines

a ‘loss’ as any flow feature that reduces the efficiency of a turbomachine, from

which a similar definition can be made for circular cylinder flows. Broadly stated,

turbine cascade losses are categorised according to three groups, profile losses, sec-

ondary/endwall losses and tip leakage losses. Endwall losses and tip leakage losses,

which have analogues for a circular cylinder sited in a wind tunnel, are not present

in a two-dimensional model and are therefore not addressed in this work. The inter-

ested reader is referred to Denton (1993) or Dunham (1995). Profile loss, as defined

in this study, comprises all two-dimensional losses associated with the boundary

layer development, separation and wake induced or shock induced losses. Losses

are quantified by Denton (1993) in terms of entropy production, as entropy is inde-

pendent of the relative frame of reference, unlike stagnation pressure or stagnation

enthalpy losses, which are calculated along streamlines. Entropy production as a

measure of loss creation is convenient for the present work and is used in the work

of Carscallen et al. (1998, 1999) for measurements on the same cascade flow.

2.2 Boundary Layer Development in Turbine Cascades

Turbine blade passages are subjected to a periodic ingestion of trailing edge wakes,

caused by the relative rotation of the rotors and stators in a turbine stage. Rotor

blades pass downstream of the stators during each rotation of the turbine. Turbulent

wakes therefore convect from the upstream row of stator blades causing a periodic

turbulent inflow to the downstream rotor row. Convected turbulent wakes are inter-

leaved by regions of more uniform flow, emanating from between the adjacent blade

wakes. The situation is reversed as the rotor blades from the upstream stage pass

upstream of the stator blades, resulting in cyclic inflow conditions to each stator

blade. The investigation of rotor-stator wake interactions is particularly active at

the present time, producing a rapidly increasing body of published literature drawn

from experiments and computational predictions.

Past research indicates that an increase in the upstream turbulence intensity cor-
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responds to an upstream movement of transition onset in turbine blade boundary

layers, as correlated by Abu-Ghannam & Shaw (1980), Mayle (1991) and Mayle &

Schulz (1997). An increased upstream turbulence intensity also corresponds to a

decrease in the transition length as correlated, for instance, by Narasimha (1985).

High turbulence intensity shortens the length of any separation bubbles, eventually

resulting in by-pass transition of the boundary layer ahead of the laminar separa-

tion. This is reported by Mayle (1991), Roberts & Denton (1996) and Stieger (2002).

Experimental research into the mechanism by which transition occurs under cyclic

inflow conditions and an adverse pressure gradient indicates the presence of a calmed

region, which, follows the transit of a turbulent wake in time. This locally reduces

viscous dissipation to a level representative of laminar conditions and is resistant

to laminar separation. These observations are reported in Gostelow et al. (1997),

Stieger (2002) and other references cited therein. As reported in Stieger (2002),

cyclic, long duration calmed regions, together with short duration turbulent strips

and short duration separation bubble formation, can significantly reduce the time

averaged viscous dissipation with respect to steady upstream conditions. A detailed

review of the literature concerning the influence of periodic wakes past turbine blades

is beyond the scope of the present study. The interested reader is referred to re-

views by Stieger (2002) and Gostelow (2003). Accurate numerical predictions of the

flow around a turbine blade under cyclic upstream conditions would ideally require

solving the Navier-Stokes equations over all turbulence length scales by the appli-

cation of a Direct Numerical Simulation (DNS) approach. Alternatively, the use of

an experimental correlation combined with a conventional turbulence model can be

used, as in Vicedo et al. (2004). A fundamental analysis of the flow physics around a

turbine blade is however possible using the simplified case of a steady upstream flow

condition. In the present study, the flow around a highly loaded turbine blade is

modelled in order to analyse the physics underlying energy separation at transonic

flow conditions in a vortex dominated wake flow. For the purposes of the present

study, therefore, the assumption of a steady upstream flow condition is considered

a justifiable simplification of a practical turbine cascade flow.
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With a steady upstream flow, the fluid impinges on the turbine blade leading edge.

The location of the upstream stagnation point depends on the geometry and loading

of the turbine blade, as well as on the exit flow angle of the upstream blade row.

Roberts & Denton (1996) investigate the precession of the upstream stagnation point

with turbine blade loading at a low subsonic exit condition of Me < 0.05. Roberts

& Denton (1996) simulate a turbine blade using a flat plate in a wind tunnel with

a contoured floor and ceiling. Increasing the loading on the plate, by contouring of

the pitch-wise exit boundaries, increases the mass flow over the simulated suction

surface. The upstream stagnation point is shown to move around the leading edge

to assume a position further along the simulated pressure surface. The standard

two-equation k − ω turbulence model of Wilcox (1988) is reported to over-predict

the turbulence kinetic energy level approaching the leading edge stagnation point.

This is due to the invalidity of the Boussinesq hypothesis in regions with high strain

rates. The failure of the Boussinesq hypothesis under such conditions is documented

by Kato & Launder (1993), Larsson (1998), Medic & Durbin (2002), Wilcox (2002)

and other references therein. A number of modifications to standard two-equation

turbulence models are proposed in the cited literature. The present implementa-

tion locally limits the production of turbulence kinetic energy, based on the local

dissipation of turbulence kinetic energy.

The initial development of the boundary layer over the leading edge of the turbine

blade significantly influences its downstream state. In turn, the level of turbulence

in the boundary layer at separation from the trailing edge has a significant influence

on the downstream wake flow, as discussed in Section 2.3. The difficulty associated

with accurately measuring the boundary layer around the leading edge of a tur-

bine blade is addressed by Hodson (1985). The thin boundary layer in this region

prevents the use of Pitot probes to measure the local dynamic pressure profile, as

such measurements can cause significant blockage effects and may lack adequate

spatial resolution, normal to the surface. The fundamental physics of separation

and transition in the leading edge region are therefore often aided by research using

a flat plate or curved surface with an imposed stream-wise pressure gradient. Such
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an approach is documented, for example, in Gostelow & Blunden (1989), D’Ovidio

et al. (2001a, 2001b), Schobeiri et al. (2002), Talan (2002) and in further refer-

ences therein. As reported in Stieger (2002), extending flat plate or curved plate

results to turbine blade flows requires an adequate account of loading, circulation

and curvature effects.

As the laminar boundary layer develops over the leading edge surface, an adverse

pressure gradient of sufficient strength may reduce the wall shear stress to zero,

resulting in a separated flow region. Transition of the separated shear layer and its

subsequent reattachment to the surface defines the length of the laminar separation

bubble. The influence of the upstream turbulence intensity on the length of a

separation bubble follows from the introduction to cyclic upstream conditions at

the start of this section. Laminar separation bubbles are categorised by Owen

& Klanfer (1953) according to their stream-wise extent. The separation length

is normalised by δ1s, the displacement thickness of the laminar boundary layer at

separation. This choice for the normalising parameter is based on the understanding

that the separation length is related to the location of transition in the separated

shear layer, which, is determined by the stability of the laminar boundary layer at

separation. Short laminar separation bubbles are defined as having a normalised

stream-wise length, ls, of order ls/δ1s ≈ O (102). Long separation bubbles are

defined as having a normalised stream-wise length in the range O (103) ≤ ls/δ1s ≤
O (105). Owen & Klanfer (1953) also categorise the influence of the Reynolds number

on the length of the laminar separation bubble. The general trend is confirmed in a

number of experiments, including Hodson (1985) and Smolny & Blaszczak (1995).

Owen & Klanfer (1953) define a reference Reynolds number, (Rδ1)s, as

(Rδ1)s =
ρsusδ1s

µs

, (2.1)

where, ρs, us and µs are the boundary layer edge density, velocity and molecular

viscosity respectively at separation. A critical Reynolds number range is defined by

Owen & Klanfer (1953) as 400 ≤ (Rδ1)s ≤ 500. For (Rδ1)s < 400, a long laminar

separation bubble is expected. Short separation bubbles are therefore expected for
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(Rδ1)s > 500. Smolny & Blaszczak (1995) indicate that the stream-wise starting

location for a laminar separation bubble demonstrates an independence on the free

stream Reynolds number. Positioning of a small diameter trip wire close to the lead-

ing edge decreases the length of the separation bubble, as reported by Smolny &

Blaszczak (1995). This locally increases the turbulence intensity, which, when con-

vected downstream to the separation bubble, acts in a similar manner to increasing

the turbulence intensity upstream of the leading edge. Placing the trip wire fur-

ther downstream is reported to cause by-pass transition of the boundary layer and

the complete suppression of the separation bubble. Owen & Klanfer (1953) report

that long separation bubbles are associated with an upstream velocity peak closer

to the leading edge, corresponding to a small radius of leading edge curvature and

to a small thickness to chord ratio. Placing this brief review of laminar separation

bubbles into context with the present study, Brooksbank (2001) reports the possi-

bility of a laminar separation bubble along the suction surface leading edge from

wind tunnel measurements of the turbine blade modelled in the present study at

Me = 1.16. From this brief physical review, the location of separation of a laminar

boundary layer, along a turbine blade profile appears to be primarily a function of

the stream-wise pressure gradient. The length of separation is, however, related to

the onset of transition and the amplification of disturbances in the separated shear

layer. The k − ω turbulence model used in the present study may therefore be able

to reasonably approximate the location of the pressure induced boundary layer sep-

aration. The transition in the separated shear layer is, however, a highly complex,

three-dimensional phenomenon, which depends on the upstream flow history. As

documented in Wilcox (1994, 2002), the k − ω turbulence model is only capable of

modelling the turbulence intensity of any convecting boundary layer disturbances

and its average frequency. It is not surprising, therefore, that many flow predictions

report erroneous values for the location of reattachment, or the onset of a turbulent

boundary layer ahead of the measured laminar separation point. This inaccuracy is

compounded by an over production of k approaching stagnation points, as well as

a sensitivity of the standard k − ω model to the free stream ω value, as reported in
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Menter (1992, 1993, 1994), Larsson (1997), Kok (2000) and Wilcox (2002). Under-

predicting a short laminar separation bubble, close to a turbine blade leading edge,

may not significantly affect the downstream flow providing a turbulent boundary

layer with equivalent integral parameters is predicted downstream of the reattach-

ment point. To this end, the location of the turbulent boundary layer onset is often

‘fixed’ to ensure the correct boundary layer integral parameters are predicted, as

documented in Wilcox (1993, 1994, 2002).

Under the influence of a sufficiently mild adverse pressure gradient, the laminar

boundary layer may remain attached to the surface of a turbine blade. Transition of

the attached boundary layer occurs as the laminar boundary layer reaches a critical

Reynolds number. Two main categories of transition are identified. Natural transi-

tion is defined by Van Hest (1996) as the amplification and subsequent breakdown

to turbulence of boundary layer instabilities. By-pass transition occurs in boundary

layers with a high turbulence intensity or strong adverse pressure gradient. Bypass

transition is defined by Van Hest (1996) as a direct nonlinear breakdown of the

boundary layer. The process of natural transition is documented in established lit-

erature on viscous fluid flows, including Schlichting (1979) and White (1991), only a

brief outline is therefore given here. Natural transition begins with the amplification

of small-scale disturbances in the laminar boundary layer at the critical Reynolds

number, to form Tollmein-Schlichting waves. Constructive interference of unstable

Tollmein-Schlichting waves form ‘wave-packets’ of disturbed flow, as detailed in Van

Hest (1996). The specific breakdown of the wave packets to a fully developed tur-

bulent flow remains the subject of ongoing research, but can occur via the presence

of localised turbulent spots. Coalescence of the turbulent spots occurs as they move

downstream until all wavenumber values of the turbulence kinetic energy spectrum

are continuously populated and a fully developed turbulent boundary layer is de-

fined. The precise route to turbulence depends on the upstream turbulence level.

As the upstream turbulence level increases, transition occurs via different mecha-

nisms. At higher upstream turbulence levels, the amplification of the upstream dis-

turbances results in the formation of two-dimensional Tollmein-Schlichting waves,
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which develop into hairpin vortices. The span-wise alignment of the hairpin vortices

changes as the upstream disturbance level increases. A number of breakdown mech-

anisms have been identified and categorised, as described in White (1991) and Van

Hest (1996). The coalescence of the turbulent spots form the fully developed tur-

bulent flow. At high upstream turbulence levels, or under the influence of a strong

stream-wise adverse pressure gradient, turbulent spots are triggered directly, leading

to a by-pass type transition. The physical mechanism by which transition occurs

is sensitive to a number of flow parameters. Stieger (2002) lists these as including

Reynolds number, Mach number, acoustic radiation, surface roughness, surface tem-

perature, surface curvature and flow history effects. A detailed description of recent

developments regarding transition research is documented by Van Hest (1996) and

Stieger (2002). The influence of the stream-wise pressure gradient on the physical

mechanism of transition is discussed in Van Hest (1996) and Gostelow (2003). The

k − ω model simulates the boundary layer transition process based on the relative

increase in the k and ω production and dissipation terms. Wilcox (1994, 2002) pro-

vides a description of the mechanism by which transition is modelled in the k − ω

model. In a turbine blade or circular cylinder flow, the flow curvature at the leading

edge stagnation point gives a localised increase in k just at the onset of the laminar

boundary layer. Further downstream, the reduced flow curvature and strain rate

leads to the dissipation being greater in the k and ω transport equations and the

boundary layer remains laminar. As fluid with a higher turbulence kinetic energy is

entrained into the boundary layer, a critical Reynolds number is reached, at which

the production of k exceeds the dissipation. The level of turbulence kinetic energy

in the boundary layer continues to increase with downstream distance until the pro-

duction term in the ω transport equation starts to exceed the dissipation term. This

increases the magnitude of the turbulence kinetic energy dissipation term. The start

of the turbulent boundary layer is then defined at the stream-wise location where

the production and dissipation of k become approximately equal in magnitude. The

stream-wise location for the onset of a fully turbulent boundary layer is therefore

sensitive to the free stream turbulence kinetic energy and the asymptotic value of ω
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approaching the surface. Wilcox (1994, 2002) advocates the use of this sensitivity

as a method to explicitly define the onset of the turbulent boundary layer to match

experimental measurements, as used by Chima (1996) and Larsson (1997).

Turbulent flow is characterised by an increase in diffusion and heat transfer. Stan-

dard texts on turbulent boundary layers document the presence of three main layers.

Briefly, these comprise of an inner layer of fluid close to the surface which is domi-

nated by molecular viscosity, an outer layer of fluid at the boundary layer edge which

is dominated by turbulence motion, and a region of overlap. In the overlap region,

both molecular viscosity and the turbulence motion are influential. Denton (1993),

provides a thorough overview of entropy production in turbulent boundary layers.

From this work, the following statements are drawn. Dawes (1990), reports that

approximately 90% of the entropy generated in a turbulent boundary layer is gen-

erated by the inner layer due to the large velocity gradient close to the surface. The

influence of boundary layer thickness on the production of entropy is approximated

by Truckenbrodt (1952) and Schlichting (1979) for laminar and turbulent boundary

layers respectively. The development of boundary layers under favourable pressure

gradients are shown by Denton (1993) to generally reduce boundary layer dissipation

losses. Conversely, an adverse pressure gradient is shown to increase dissipation loss.

The total entropy produced in the boundary layer from the leading edge to a specific

downstream location is defined by Denton (1993) through the definition of an en-

tropy thickness. Assuming the flow remains attached to separation from the trailing

edge, the entropy thickness can be used to estimate the total entropy production

along the entire surface of the turbine blade, as detailed in Denton (1993).

Quantifying the boundary layer separation characteristics at the trailing edge is

an important aspect in turbomachinery aerodynamics. The boundary layer separa-

tion characteristics can determine the exit flow angle, the thickness of the separat-

ing shear layers, the downstream wake characteristics and therefore the potential

for work output. Simpson (2002) expresses an opinion that the criterion for sep-

aration of a turbulent boundary layer is not adequately described by a zero wall

shear stress or by the presence of flow reversal alone. Simpson (1989, 2002) cate-
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gorises turbulent boundary layer separation into a number of levels of detachment.

These levels of detachment are based on the fraction of time the attached flow is

directed upstream. The categories are defined as incipient detachment, intermit-

tent transitory detachment and transitory detachment. The detachment point is

then defined where the time averaged surface shear stress τw is zero. Oscillatory

separation is also reported in, for example, Sieverding & Heinemann (1989, 1990),

Carscallen & Gostelow (1994), Cicatelli & Sieverding (1995, 1996, 1997) and Ubaldi

& Zunino (2000). Upstream of the incipient detachment point, Simpson (2002)

reports that the incompressible Ludwieg-Tillmann skin friction equation, for exam-

ple, and the log layer velocity profile approximations remain satisfactory. Relations

between incompressible and compressible skin friction, documented for example in

White (1991), should also remain satisfactory upstream of the incipient detach-

ment point. Turbulent boundary layer separation and the influence of the upstream

boundary layer on the vortex shedding characteristics from a thick trailing edge

turbine blade are discussed further in Section 2.3.

Other unsteady boundary layer features present in turbine cascades include

Görtler vortices and shock wave-boundary layer interaction. Görtler vortices appear

in boundary layers flowing over concave surfaces. Pairs of adjacent, contra-rotating

vortices are defined with a stream-wise axis of rotation. These are often observed

along the pressure surface of turbine blades and are considered to contribute signifi-

cantly to the transition of laminar boundary layers on concave surfaces. As Görtler

vortices are not reported in past literature concerning the turbine blade modelled

in the present study, this phenomenon is not detailed further in this review. Details

concerning the physics of Görtler vortices are available in White (1991), Schlicht-

ing (1979) and Gostelow (1984). At supersonic free stream conditions, shock waves

from adjacent blades, or from upstream blade rows, may interact with the develop-

ing boundary layer. This is observed for the turbine blade modelled in the present

study at supersonic exit conditions by Carscallen & Gostelow (1994), Carscallen et

al. (1999) and Gostelow (2003). A detailed discussion of literature concerning the

physics of shock wave-boundary layer interaction is given in Section 2.4.
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2.3 Cascade Boundary Layer/Vortex Shedding Interaction

Reviews detailing early research of vortex shedding in turbine cascades and the influ-

ence of the upstream boundary layer are provided by Sieverding & Heinemann (1989,

1990) and Cicatelli & Sieverding (1995). Experimental flow visualisations, cited in

these reviews, provide a qualitative insight into the near wake flow downstream of a

thick trailing edge. These include high-speed Schlieren visualisation by Bryanston-

Cross & Camus (1982), Lawaczeck & Heinemann (1976), Lawaczeck, Bütefisch &

Heinemann (1976) and Carscallen & Gostelow (1994); interferometry by Bryanston-

Cross et al. (1981) and Desse & Pegneaux (1991), as well as smoke visualisation

by Han & Cox (1982) and Sieverding et al. (2003). These flow visualisations con-

firm the presence of vortex shedding at subsonic, transonic and supersonic Mach

numbers. Periodic vortex shedding patterns of pitch-wise asymmetry are often ob-

served downstream of thick trailing edge turbine blades at subsonic and transonic

Mach numbers, with stronger vortices observed towards the pressure surface side

of the wake. This is observed, for example, by Lawaczeck et al. (1976) from a fre-

quency analysis of a photomultiplier signal and is evident by a tighter rolling of the

pressure side vortices in smoke visualisations by Han & Cox (1982) and Roberts &

Denton (1996). Arnone & Pacciani (1997) show that the difference in strength of

vortices shed from the suction and pressure surfaces is also associated to a greater

downstream duration of the pressure surface vortices. This is based on a comparison

of a turbulent prediction of the flow past a turbine blade with measurements by Ci-

catelli & Sieverding (1996). Schlieren visualisations by Cicatelli & Sieverding (1996,

1997) document the growth and convection of successive vortices from the suction

and pressure surfaces of a turbine blade at Me = 0.4 and Rec = 2 × 106, over the

period of one vortex shedding cycle.

At supersonic Mach numbers, the near wake flow is characterised by a conver-

gence of the separated shear layers from the pressure and suction surfaces, forming

a confluence region downstream of the trailing edge. The convergence of these

separated shear layers is indicative of the low static pressure on both sides of the

turbine blade in this region. Shock waves are generated at the confluence region
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and propagate into the flow either side of the wake, at smaller angles to the mean

flow direction with increasing Mach number. The supersonic near wake flow is de-

tailed further in Section 2.4 and is described by Sieverding et al. (1983), Denton

& Xu (1989) and Brooksbank (2002). A similar confluence region downstream of

an aerofoil is described by Benelmouffok & Beretta-Piccoli (1986), as cited by Ci-

catelli & Sieverding (1995). Schlieren visualisation by Carscallen & Gostelow (1994)

indicates a replacement of the periodic vortex shedding pattern observed in sub-

sonic and low transonic flows by a number of complex, transient vortex shedding

patterns originating from the confluence region. The results of a statistical analy-

sis by Carscallen & Gostelow (1994) on the average fraction of time dedicated to

each vortex pattern is reported in Section 2.4. The frequency of vortex shedding,

given by the non-dimensional Strouhal number Str = fDt/ue, varies significantly

with Reynolds number and Mach number. Lawaczeck et al. (1976) report Strouhal

numbers covering the range 0.25 ≤ Str ≤ 0.4 over the Mach and Reynolds number

ranges 0.2 < Me < 1.1 and 1.5 × 104 < ReDt < 5 × 104. Cicatelli & Sieverd-

ing (1995) collate measured Strouhal numbers from Heinemann & Bütefisch (1977),

Bryanston-Cross et al. (1981), Sieverding & Heinemann (1989) and Carscallen &

Gostelow (1994). These are compared as a function of cascade exit Mach number

by Cicatelli & Sieverding (1995) in Figure 2.1. As documented in Cicatelli & Sieverd-

ing (1995), the Reynolds number varies with Mach number for all measurements in

Fig. 2.1 except those of Bryanston-Cross et al. (1981). The variation of Strouhal

number in Figure 2.1 highlights the influence of the turbine blade geometry and

loading on the frequency of vortex shedding, indicating a relationship between the

boundary layer separation characteristics and the strength and frequency of the vor-

tex shedding. From the analysis of Sieverding & Heinemann (1989, 1990), using flat

plates and turbine blades with round and square trailing edges, it is suggested that

the turbulence level in the separated shear layers downstream of the trailing edge

largely determines the frequency of vortex shedding. This hypothesis is further sub-

stantiated by the experimental measurements of Roberts & Denton (1996). Cicatelli

& Sieverding (1995) use the hypothesis of Sieverding & Heinemann (1989, 1990) and
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Figure 2.1: Strouhal number variation with Mach number for various turbine
blade geometries, from Cicatelli & Sieverding (1995). A-1, A-2: Heinemann &
Bütefisch (1977), B-1, B-2: Bryanston-Cross et al. (1981), C: Sieverding & Heine-
mann (1989), D: Carscallen & Gostelow (1994).

the collated results in Figure 2.1 to categorise turbine blade Strouhal numbers at

exit Mach numbers up to sonic conditions according to the turbulent state of the

boundary layer at separation from the trailing edge. In general, Strouhal numbers

above Str ≈ 0.35 indicate laminar boundary layers on both surfaces at separation;

Strouhal numbers in the range 0.23 ≤ Str ≤ 0.35 indicate a transitional boundary

layer on one or both surfaces and Strouhal numbers below Str ≈ 0.2− 0.23 indicate

transitional or turbulent boundary layers at separation on both surfaces. This cat-

egorisation indicates that turbine blades with properties favouring boundary layer

transition upstream of the trailing edge, such as high blade loading close to the

leading edge or high surface friction, tend to shed vortices at a lower Strouhal num-

ber. Sieverding & Heinemann (1989, 1990) postulate that it is the turbulent state

and thickness of the separated shear layers rather than the turbulent state of the

boundary layer that is most influential in determining the Strouhal number. Square

trailing edges are observed to initiate transition of the separated shear layers for lam-
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inar boundary layers. This results in a narrower Strouhal number range between

wakes from a confluence of laminar boundary layers and wakes from a confluence

of transitional or turbulent boundary layers, in comparison with separation from

a rounded trailing edge. A physical explanation for the influence of the separated

shear layer thickness and turbulence level on the vortex shedding frequency is given

by Cicatelli & Sieverding (1995, 1996, 1997) for turbine blades, using an incompress-

ible circular cylinder near wake analysis by Gerrard (1966). Gerrard (1966) proposes

that the stream-wise length taken by a growing vortex, and the vortex shedding fre-

quency, are dependent on how quickly a growing vortex can entrain sufficient fluid

from the far side shear layer to cancel the near side shear layer vorticity. The ces-

sation in circulation supply from the near side shear layer sheds the growing vortex

and a new vortex with opposite vorticity forms on the other side of the wake. The

increased diffusion in turbulent shear layers increases the time required to entrain

sufficient fluid from the far side shear layer. As the Reynolds number increases,

Gerrard (1966) proposes a balance for circular cylinders between a shortening of

the formation region, defined from the cylinder to the location of entraining fluid,

and the increase in entrainment time. For circular cylinders, this balance leads to

a consistency of the Strouhal number for Reynolds numbers below ReD ≈ 2 × 105.

Further details on the variation of Strouhal number with Reynolds number around

circular cylinders are provided in Section 2.5. Cicatelli & Sieverding (1996, 1997)

propose that the increased loading and asymmetric geometry for turbine blades tend

towards an earlier transition and an increased thickness of the suction surface shear

layer. The difference in the turbulent state and thickness of the suction and pres-

sure surface shear layers may destabilise the vortex shedding balance proposed by

Gerrard (1966), resulting in the wide range of vortex shedding frequencies observed

in Figure 2.1. The difference in shear layer thickness may therefore be responsible

for the increase in strength and duration of the pressure surface vortices observed in

Arnone & Pacciani (1997), and the better resolved pressure side vortices observed

in Han & Cox (1982) and Roberts & Denton (1996). From an analysis of the wake,

Roberts & Denton (1996) report that over three quarters of the wake stagnation
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pressure loss is created in the first ten trailing edge diameters. After this point, the

rate of mixing in the wake is reported to be relatively low. The reliance of vortex

shedding on the separated shear layer thickness holds potential issues for the accu-

racy of numerical predictions. The standard k−ω turbulence model of Wilcox (1988)

is known to over-predict spreading rates in free shear layers. This is documented, for

example, in Menter (1992, 1994), Kok (2000) and Wilcox (2002). For this reason,

a cross-diffusion term has been incorporated into the k − ω turbulence model for

this study. This is described further in Section 3.4.3. Currie & Carscallen (1998)

report a grid resolution sensitivity of the vortex shedding frequency downstream of

the turbine blade modelled in the present study. Currie & Carscallen (1998) also

cite excessive numerical dissipation in this region as the most probable cause of an

inaccurate prediction of base pressure. Denton & Xu (1989), Denton (1993), Dun-

ham (1995) and Roberts & Denton (1996) state that, for subsonic exit trailing edge

conditions, approximately a third of the profile loss in a two-dimensional turbine

cascade is caused by wake induced mixing losses. However, results from Mee et

al. (1992), as cited in Denton (1993), indicate that this proportion increases signifi-

cantly as the trailing edge Mach number rises above unity. The reasons for this are

evident from the compressibility analysis in the following section.

2.4 Compressibility Effects

Compressibility is generally accepted as affecting air flows above a Mach number

of 0.3. This is the Mach number at which the isentropic static density is around

95% of the stagnation density, as described in Anderson (1985). For increasing

transonic Mach numbers, over the range 0.3 ≤ Me ≤ 1.2, turbine cascade flows

are increasingly influenced by compressible effects such as the presence of shock

waves around the trailing edge and near wake regions. Compressible flow features

are similarly observed on the downstream side of circular cylinders in transonic

cross-flows. Zdravkovich (1997) divides the free stream transonic Mach number

range 0.4 ≤ M∞ ≤ 1.2 into a number of separate regimes for circular cylinders,

based on the strength and location of shock wave behaviour. These are:
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1) An intermittent shock wave regime (0.4 ≤ M∞ ≤ 0.65);

2) A permanent shock wave regime (0.65 ≤ M∞ ≤ 0.8);

3) A wake shock wave regime (0.8 ≤ M∞ ≤ 1.0);

4) A detached bow shock wave regime (1.0 ≤ M∞ < 1.2).

A review of compressible effects in a circular cylinder flow is given, based on the

Mach number modelled in this study, in Section 2.5. Similar Mach number flow

regimes can be defined for turbine cascade flows from experimental and numerical

flow visualisations. These include Lawaczeck & Heinemann (1976), Carscallen &

Gostelow (1994), Cicatelli & Sieverding (1995), Moustapha et al. (1993), Carscallen

et al. (1996, 1999), Currie et al. (1998), Pieringer et al. (2001) and Gostelow (2002).

These flows exhibit compressible effects that are specific to the turbine cascade under

study and depend on the blade geometry and loading. General trends may, however,

be noted.

At low transonic discharge Mach numbers, local regions of supersonic flow are

defined, which form very weak shock waves as the flow undergoes recompression.

Outward propagating pressure waves, from vortex shedding and oscillatory boundary

layer separation at rounded trailing edges, propagate upstream through the subsonic

flow region. Cicatelli & Sieverding (1996, 1997) observe that pressure waves from an

oscillating boundary layer separation propagate a significant distance upstream of

the trailing edge at Me = 0.4. Schlieren visualisation of the turbine cascade modelled

in the present study, at Me = 0.71, is reproduced from Gostelow (2002) in Figure 2.2.

This shows a periodic vortex shedding pattern, typical of other thick trailing edge

turbine cascades at similar Mach number. Pressure waves are highlighted travelling

upstream, as described in Cicatelli & Sieverding (1996, 1997). These waves are

observed to impinge on the suction surface of the adjacent blade and are reflected

back towards the pressure surface. Shock waves are observed in the near wake

region as the Mach number increases. These shock waves are observed to fluctuate

in a series of Schlieren photographs in Cicatelli & Sieverding (1995), taken over the
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Figure 2.2: Schlieren visualisation of a turbine cascade at a discharge Mach number
of Me = 0.71, from Gostelow (2002).

period of half a complete vortex shedding cycle. In the time dependent visualisation

of Cicatelli & Sieverding (1995), shock waves oriented at shallow angles to the mean

flow normal direction stem from the centre of the growing vortices. These shock

waves are reported to travel downstream for a short distance with each convecting

vortex, until a new vortex of sufficient circulation is formed at the trailing edge.

The shock wave front is then observed to shift to the location of the new vortex

in the formation region. Unsteady, oscillatory shock wave movement is reported by

Denton (1993) to increase the entropy generation with respect to stationary shock

waves. The increase in entropy generated during the upstream movement of a shock

wave is considered to be greater than the corresponding decrease as the shock moves

downstream. Therefore, the overall entropy production increases.

Carscallen & Gostelow (1994) propose that, above a discharge Mach number of

Me = 0.96, the formation and shedding of vortices is no longer associated with the

trailing edge surface of the turbine blade but migrates downstream with the inter-

action of the trailing edge shock waves. Embedded shock waves are also observed in
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Figure 2.3: Representation of the instantaneous near wake flow under transonic
discharge conditions. − · − local flow direction, (A) flow accelerated to local su-
personic conditions in channel between vortices, (B) recompression of flow to local
subsonic conditions across the embedded shock wave.

the near wake region, as shown in the Schlieren visualisations of Cicatelli & Sieverd-

ing (1995). The origin of these shock waves can be explained using Figure 2.3.

Cicatelli & Sieverding (1995) define a channel of accelerated fluid travelling between

adjacent vortices. Close to the trailing edge, this channel flow can be accelerated to

local supersonic conditions. This is defined by the region labelled (A) in Figure 2.3.

As the local supersonic flow approaches the local saddle point, of irrotational flow

between successive vortices on the same side of the wake, the local flow undergoes a

compression back to subsonic conditions. The subsonic flow immediately following

this recompression is labelled (B) in Figure 2.3. An embedded shock wave forms at

the recompression location.

A Schlieren photograph of the turbine blade modelled in the present study, tested

at a discharge Mach number of Me = 0.97, is reproduced from Gostelow (2002) in
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Figure 2.4. Shock waves can be observed originating from the near wake region.

These shock waves propagate normal to the mean flow direction, across the tur-

bine blade throat, leading to choked conditions. In Figure 2.4, the pressure surface

shock wave impinges on the suction surface of the adjacent blade. At certain flow

regimes, shock wave impingement on a turbine blade suction surface can cause the

boundary layer to separate. As the separation point has a significant influence on

the base flow and near wake development, the flow conditions leading to a shock

induced boundary layer separation are investigated further. Inger & Mason (1976)

describe the impact of a normal shock wave on a developing laminar or turbulent

boundary layer. For impingement of a very weak shock, defined by Inger & Ma-

son (1976) as shock waves with a peak supersonic upstream Mach number below

Mpeak = 1.05, even a laminar boundary layer may not necessarily separate from the

surface. However, transition of the boundary layer is expected downstream of the

shock impingement. As the shock wave strength increases, laminar boundary layers

are more susceptible to separation than turbulent boundary layers, due to a greater

sensitivity to local changes in the adverse pressure gradient. Inger & Mason (1976)

define an approximate condition for separation of a turbulent boundary layer due

to impingement of a normal shock wave as requiring a peak upstream Mach number

in excess of Mpeak = 1.3. This threshold closely matches the value of Mpeak ≥ 1.4

reported in Atkin & Squire (1992), as cited by Denton (1993). The analytical re-

sults of Inger & Mason (1976) and the physical description of oblique shock waves in

Délery & Bur (2000) imply that a number of changes occur as a turbulent boundary

layer approaches an impinging shock wave. The increase in static pressure down-

stream of the shock wave is transmitted through the subsonic region of the boundary

layer, close to the surface. This causes a thickening of the boundary layer ahead of

the shock wave position, resulting in local curvature of the streamlines in this re-

gion. In addition to direct stagnation pressure losses across a shock wave, caused by

high viscous stresses and heat conduction, indirect losses also occur, as reported in

Denton (1993). These additional losses are created from a number of sources, such

as increased dissipation in shock-induced separation bubbles, or premature shock-
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Figure 2.4: Schlieren visualisation of a turbine cascade at a discharge Mach number
of Me = 0.97, from Gostelow (2002).

induced transition of laminar boundary layers. The physics of shock wave-boundary

layer interaction are described in a range of literature, including Shapiro (1953),

Inger & Mason (1976), Atkin & Squire (1992) and Délery & Bur (2000).

Above a sonic discharge Mach number, a change in the near wake flow structure

is observed. This change has a significant impact on the downstream vortex shed-

ding characteristics. Denton & Xu (1989) describe the flow for supersonic trailing

edge conditions. The turbine blade geometry dictates that a supersonic flow at

the trailing edge should initially appear on the suction surface. If both surfaces

are supersonic at the trailing edge, the separated shear layers on both sides turn

towards the opposite surface generating expansion waves. These are shown in Fig-

ure 2.5. A confluence region is defined at the convergence of these two shear layers.

Denton & Xu (1989) define the origin of the two wake shock waves in Figure 2.5,

as the point at which the two shear layers turn towards the common downstream

mean flow direction. Denton (1993) reports that the major source of entropy pro-

duction within a supersonic near wake region originates from viscous dissipation
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Figure 2.5: Representation of the confluence region downstream of a turbine blade
at supersonic exit Mach numbers, based on Denton & Xu (1989).
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Figure 2.6: Schlieren visualisation of a turbine cascade at a discharge Mach number
of Me = 1.09, from Gostelow (2002).

in the converging shear layers and the strong trailing edge shock waves. As the

Mach number increases further, the entropy produced by these trailing edge shock

waves decreases as the shock waves become increasingly oblique to the mean flow

direction. This is supported by Mee et al. (1992), who demonstrate an increasing

proportion of the profile loss in a turbine blade is caused by shock losses up to

Me = 1.0. At Me > 1.0, this proportion gradually decreases with further increases

in discharge Mach number. The wake at supersonic discharge Mach numbers is un-

steady and may be dominated by transient, multi-mode vortex shedding patterns

that originate from the confluence region. Schlieren visualisation of the flow down-

stream of the turbine blade modelled in the present study, at a discharge Mach

number of Me = 1.09, is shown in Figure 2.6, from Gostelow (2002). Carscallen &

Gostelow (1994) and Carscallen et al. (1996) have undertaken a statistical analysis

of the transient vortex shedding patterns, downstream of this turbine cascade, at

Me = 1.16. A number of vortex shedding patterns are identified and the average

percentage occurrence of each vortex pattern is reported. The patterns observed

in Carscallen & Gostelow (1994) and Carscallen et al. (1996) are represented dia-
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Figure 2.7: Vortex shedding patterns in a supersonic turbine blade wake, from
Carscallen et al. (1996). (a) Classic von Kármán vortex street, (b) leaning von
Kármán vortex street, (c) doublets, (d) couples, (e) hybrid.

grammatically in Figure 2.7. The percentage occurrence of each pattern is given in

Table 2.1. The influence of compressibility on the turbine blade base pressure at

increasing transonic Mach numbers is discussed in Cicatelli & Sieverding (1995) over

the range 0.7 ≤ Me ≤ 1.4 based on graphical data from Michel & Kost (1982). The

base pressure pb is reported to decrease as the Mach number increases, within the

transonic region, from pb ≈ 0.59ps∞ at Me = 0.8 to pb ≈ 0.38ps∞ at Me = 1.0, where

ps∞ is the upstream stagnation pressure. This decrease may be due to an increase

in the strength of the periodic vortex shedding in this region. Above Me = 1.0, the

base pressure remains constant and displays an insensitivity to further increases in

Mach number up to Me ≈ 1.1. This insensitivity may result from the migration of

vortex shedding from the trailing edge to the confluence region. Above Me ≈ 1.1,

the base pressure is shown to decrease once more due to an increasing expansion

around the trailing edge.

Measurements on the same blade profile modelled in the present study confirm a

decrease in base pressure with increasing Mach number, approaching sonic trailing
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Vortex shedding pattern Label in Figure 2.7 Occurrence in wake (%)

No definable pattern n/a 35.5
Classic von Kármán vortex street (a) 30.5
Leaning von Kármán vortex street (b) 16.0
No coherent structure n/a 9.0
Doublets (c) 4.0
Couples (d) 3.5
Hybrid (e) 1.5

Table 2.1: Percentage occurrence of transient wake flow patterns, from Carscallen
et al. (1996).

edge conditions. This is also attributed by Carscallen et al. (1996) to an increase

in vortex shedding strength. A partial recovery of the base pressure is however

noted between 0.95 ≤ Me ≤ 1.0 by Carscallen et al. (1996). This is attributed to

the migration of the vortex shedding origin downstream, resulting in an intermittent

vortex shedding pattern. In contrast to the insensitivity of base pressure to increases

in Mach number at Me > 1 reported in Cicatelli & Sieverding (1995), from Michel &

Kost (1982), Carscallen et al. (1996) report a gradual increase in the base pressure

with increasing Mach number. As well as the reported change in base pressure

approaching Me = 1.0, Carscallen et al. (1996) also observe changes caused by the

redistribution of stagnation temperature and pressure in the wake. This is further

addressed in Section 2.6.

Placing this physical review of compressibility effects into context with the turbu-

lence model used in this study, Wilcox (2002) reports that two-equation turbulence

models should be capable of reasonably predicting shock wave/turbulent boundary

layer interactions. Currie & Carscallen (1998) and Carscallen et al. (1998, 1999)

report results from a numerical prediction, using the k − ω model, on the turbine

blade used in the present study. From the numerical Schlieren provided, reflection of

an oblique shock wave is observed from the suction surface of the adjacent blade. No

adverse effects from the shock wave-boundary layer interaction are documented and

a good overall comparison with the experimental Schlieren visualisation is observed.
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Figure 2.8: Flow regions around a cylinder in cross-flow. (1) Stagnation region, (2)
boundary layer development, (3) disturbed and accelerated flow, (4) wake region.

2.5 The Flow Around Circular Cylinders

The combination of complex, unsteady flow physics and a simple geometry makes

the flow around a circular cylinder popular as a test case to validate numerical

prediction methods. Recent examples include Shang (1982), Salas (1983), Pandolfi &

Larrocca (1989), Song & Yuan (1990), Behr et al. (1991), Botta (1995), Breuer (1998,

2000), and de With et al. (2003).

Comprehensive reviews on the physics of the flow around a circular cylinder are

available in Morkovin (1964) and Zdravkovich (1997). From Zdravkovich (1997),

the flow around a circular cylinder, at typical engineering scale Reynolds numbers

(ReD > 200), can be divided into four separate regions, as shown in Figure 2.8.

These are:

(1) A narrow stagnation region of retarded flow approaching the cylinder;

(2) Boundary layer development on the surface of the cylinder;

(3) Disturbed and accelerated flow outside of the boundary layer;

(4) A separated wake region downstream of the circular cylinder.

The flow features around a circular cylinder in a cross-flow share similarities with

those around a turbine blade, as reviewed in Sections 2.2 to 2.4. In a very large

aspect ratio cylinder (span À diameter), the boundary layer development, sepa-

ration and wake characteristics display a similar dependency on the free stream
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Reynolds number, turbulence intensity, surface roughness and compressibility. Con-

sider a circular cylinder in cross-flow with low free stream turbulence intensity and

a hydraulically smooth surface. A series of Reynolds number regimes are defined,

based on the stream-wise location of transition downstream of the forward stagna-

tion point. The low Reynolds number regimes are described in detail in a number

of publications, including Morkovin (1964), Williamson (1996), Zdravkovich (1997)

and Fey et al. (1998).

The Reynolds number regimes of interest to the present study are the critical,

super-critical and post-critical regimes, which apply to Reynolds numbers above

ReD ≈ (3.8 ∼ 4.0)× 105:

(1) The two-bubble regime: (3.8 ∼ 4.0)× 105 ≤ ReD ≤ (0.5 ∼ 1.0)× 106,

(2) The super-critical regime: (0.5 ∼ 1.0)× 106 ≤ ReD ≤ (3.4 ∼ 6.0)× 106,

(3) The post-critical regime: ReD ≥ (3.4 ∼ 6.0)× 106.

These regimes give flow patterns that are equivalent to those observed in the

thick trailing edge turbine blade analysis of Carscallen et al. (1999). At the two-

bubble critical regime, laminar boundary layers develop from the cylinder up-

stream stagnation point over the windward surface. Outside of the boundary

layer, the flow accelerates around the cylinder to a maximum induced velocity at

∆θ ≈ 60◦ from the leading edge. Further along the cylinder, the adverse pres-

sure gradient induced by the outer flow causes a boundary layer separation. At

(3.8 ∼ 4.0) × 105 ≤ ReD ≤ (0.5 ∼ 1) × 106, the separated boundary layer under-

goes transition and reattaches as a turbulent boundary layer, terminating a laminar

separation bubble on both sides of the cylinder. Hence, the two-bubble regime.

Subsequent increases in the Reynolds number moves transition further upstream to

a location ahead of the laminar boundary layer separation. This is reported to occur

intermittently along the span of the cylinder at first (super-critical regime), even-

tually occurring uniformly along the cylinder span (post-critical regime) at higher

Reynolds numbers. Further increases in Reynolds number cause incrementally ear-
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lier transition of the laminar boundary layers. Published measurements, including

Weiselsberger (1922), Achenbach (1968), James et al. (1979) and numerical predic-

tions by Ishii et al. (1985) and Wang et al. (2001), in the critical, super-critical

and post-critical regimes, show a rapid decrease of the drag coefficient, followed

by a plateau with increasing Reynolds number. This is caused by a downstream

movement of the final separation point. The overall result is a pitch-wise narrowing

of the wake. The base pressure displays a plateau in this regime, as plotted by

Williamson (1996) from data by Flaschbart (1929), Bearman (1969) and Shih et

al. (1992).

The Reynolds number of the flow modelled in the present study, ReD = 6.87 ×
105, falls between the two-bubble and super-critical regimes. The two-dimensional

flow prediction is, however, unable to reproduce the three-dimensional span-wise

variation in transition associated to the super-critical regime. The current prediction

is therefore expected to predict either symmetric laminar separation bubbles, an

onset of turbulence ahead of the boundary layer separation points, or remain laminar

to separation. The specific flow details are, of course, dependent on the free stream

turbulence intensity and the compressible flow features at the present transonic Mach

number. A review of published data on the influence of the free stream turbulence

intensity at ReD ≈ 6×105 is available in Zdravkovich (1997). This includes proposals

for the replacement of the individual Reynolds number and turbulence intensity

variables by a common variable, combining both ReD and Tu∞. Data from Kiya et

al. (1982) indicates that Re1.34
D Tu∞ yields a reasonable data collapse for drag and

base pressure coefficients.

Compressible effects largely dominate in the boundary layer separation and vor-

tex shedding characteristics at transonic Mach numbers. Mach number regimes

exist for a circular cylinder in cross-flow that are analogous to those for a tur-

bine blade with a thick trailing edge. The latter is described in Section 2.4. At

M∞ > 0.4, the circular cylinder flow exhibits an intermittent shock wave regime

(0.4 ≤ M∞ ≤ 0.65), a permanent shock wave regime (0.65 ≤ M∞ ≤ 0.8), a wake

shock wave regime (0.8 ≤ M∞ ≤ 1.0) and a detached bow shock regime (M∞ ≥ 1.0).
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The circular cylinder modelled in the present study lies within the intermittent shock

wave regime. Zdravkovich (1997) reproduces a series of Schlieren photographs from

Dyment & Gryson (1979) at a transonic Mach number of M∞ = 0.64 and super-

critical Reynolds number of ReD = 1.35 × 106. These show a shock wave moving

along the surface of the cylinder in the upstream direction during the formation of

each vortex. The upstream moving shock wave is located on the same pitch-wise

side as the growing vortex. No corresponding shock wave is observed on the opposite

side until the vortex is shed and a new vortex, with opposite vorticity, begins to grow

from the other pitch-wise side of the cylinder. From Denton (1993), the upstream

movement of the shock wave should increase the entropy production with respect

to a stationary shock wave. At M∞ = 0.6, the surface pressure distribution, drag

coefficient and Strouhal number are reported to display a moderate independence to

the free stream Reynolds number. This is evident in surface pressure distributions

by Murthy & Rose (1978) at M∞ = 0.6, ReD = 1.66× 105 and ReD = 5× 105, drag

coefficients collated by Zdravkovich (1997), as well as Strouhal number variations

with Reynolds number and Mach number by Murthy & Rose (1978). These are

collectively reported by Zdravkovich (1997). This Reynolds number independence

initially appears at odds with the Reynolds number variation reported at the start

of this section. This Reynolds number independence, however, is attributed to the

presence of radial surface shock waves. The radial shock waves fix the boundary

layer separation location and induce the onset of transition in laminar separated

shear layers. This is similar to the influence of a square trailing edge on the shear

layer thickness and turbulence level, as documented in Section 2.3.

2.6 Energy Separation in Vortex Dominated Wake Flows

The earliest acknowledged measurements of energy separation behind a bluff body

are reported in Eckert & Weise (1943), after observing a drop in temperature of

approximately 20◦C at the base of a circular cylinder, with respect to the free stream

conditions. The time averaged static temperature records in Eckert & Weise (1943)

come from a surface embedded thermocouple, at the base of a hollow rubber cylinder.
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The measurements reported in Eckert & Weise (1943) are substantiated by the report

of Ryan (1951), in which an extension to this analysis incorporates other blunt

bodies. Ryan (1951) concludes that energy separation can occur behind any blunt

body subjected to a periodic vortex shedding. The link between energy separation

and vortex shedding is further substantiated in two analytical models of a vortex

street by Schultz-Grunow (1951) and Ackeret (1954). Thomann (1959) documents

the relationship between vortex shedding strength and the time averaged stagnation

temperature decrease downstream of a circular cylinder and a triangular wedge.

Using a splitter plate to suppress vortex shedding, Mach numbers in the range

0.5 ≤ M∞ ≤ 3.0 are considered. A recovery factor R can be defined as

R =
Tb − T∞
Ts − T∞

, (2.2)

where, Tb is the surface temperature measured at the base of the cylinder or wedge.

Ts is the free stream stagnation temperature. T∞ is the free stream static tempera-

ture, calculated using Ts and the free stream Mach number M∞. Thomann (1959)

records a decrease in the recovery factor at low transonic Mach numbers, which

falls to R ≈ −0.2 at M∞ ≈ 0.65. Above M∞ ≈ 0.65, an increase in the recovery

factor continues to 0.8 ≤ R ≤ 1.0 at 1.0 ≤ M∞ ≤ 3.0. The increase in the recov-

ery factor approaching M∞ = 1.0 is attributed by Thomann (1959) to a decrease

in the strength of the vortex shedding, due to increasing compressibility effects.

Above M∞ = 1.0, a similar trailing edge structure to Figure 2.5 defines the near

wake region for the cylinder and triangular wedge. The downstream movement of

the vortex formation region to the confluence region results in a decrease in the

recovery temperature deficit.

Deich et al. (1976) report condensation in the wake region of a steam cascade,

which is attributed to the periodic vortex shedding. Vortex shedding, as a mecha-

nism for the measured reduction in stagnation temperature at the centre of a wake,

is investigated further by Kurosaka et al. (1987). Kurosaka et al. (1987) document

the use of acoustic resonance to enhance the vortex shedding in a circular cylinder

flow. The objective is to establish whether a relationship exists between the vortex
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shedding intensity and the wake temperature recovery. Results from Kurosaka et

al. (1987) support the existence of such a relationship. Comparison of the span-

wise velocity, base pressure and temperature recovery distribution over the Mach

number range confirms the propositions of Schultz-Grunow (1951), Ackeret (1954),

Ryan (1951), Thomann (1959) and Deich (1976). A time accurate numerical study

using an explicit finite difference method shows local regions of flow with an instanta-

neous stagnation temperature higher than the free stream value, as well as localised

regions lower in stagnation temperature than the free stream condition. Further-

more, localised regions of higher and lower than free stream stagnation pressure

are predicted at stream-wise locations corresponding to those of the instantaneous

stagnation temperature extrema. Kurosaka et al. (1987) provide an explanation for

the energy separation mechanism using a hypothetical fluid particle flowing around

a vortex, which is convected in the downstream direction. Depending on the relative

velocity of the vortex and the particle, three particle paths are defined. A curtate

particle path is defined for a downstream fluid velocity, u1, greater than that of the

angular particle velocity, uθ. A cycloidal particle path is defined for u1 = uθ, and a

prolate path is defined for u1 < uθ.

A graphical representation of a fluid particle travelling along a curtate pathline, at

a fixed radius from the centre of a downstream moving vortex, is given in Figure 2.9.

The fluid particle is represented at constant time intervals along the pathline by

solid red circles in this figure. The downstream moving vortex is represented at

five equi-spaced locations by dotted black circles. The vortex at intermediate times

is represented by solid grey circles. The vortex moves downstream at a constant

velocity in Figure 2.9. The fluid particle proceeds around the vortex at a constant

rotational speed. The direction of rotation is highlighted by arrows within the

vortex.

Figure 2.9 shows a deceleration of the fluid particle over the first half of the cycle,

as the particle passes downstream of the vortex centre. The particle deceleration

over the course of this movement is highlighted by the particle spacing at (i) and

(ii) in this figure. The deceleration between (i) and (ii) in Figure 2.9 is due to the
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Figure 2.9: Representation of a fluid particle travelling a curtate pathline around
a downstream moving vortex. The vortex is moving at a constant downstream
velocity. The solid circles represent the progress of the fluid particle, at a constant
angular velocity, travelling around the vortex. The vortex is represented, at five equi-
spaced intervals, by dotted circles. Arrows within each of these vortices highlight the
direction of rotation. At intermediate times, the vortex progress is shown by solid
grey lines. (i)-(iii) Distance between successive particle positions. These lengths,
(i)-(iii), illustrate the change in particle velocity along the pathline with respect to
the constant vortex velocity.

centripetal force, which acts on the particle in the direction of the vortex centre. A

component of the centripetal force can be resolved along the particle pathline. This

component of the centripetal force opposes the downstream motion of the particle.

The stagnation temperature of the fluid particle can be represented as:

Ts = T +
(u2

1 + u2
2)

2cp

, (2.3)

where Ts is the particle stagnation temperature. T is the particle static temperature.

u1 and u2 are Cartesian components of the particle velocity. From Eqn. 2.3, the

deceleration of the fluid particle between (i) and (ii) in Figure 2.9 is shown to result

in a local decrease of the particle stagnation temperature. A decrease in the local

stagnation pressure also occurs between (i) and (ii).

As the particle travels from the bottom of the vortex to the top, upstream of the

vortex centre, a local acceleration of the particle occurs. This acceleration is evident

in Figure 2.9 by comparing the particle spacing at (ii) and (iii). The fluid particle

acceleration between (ii) and (iii) results from a component of the centripetal force,

which acts in the downstream direction along the particle pathline. From Eqn. 2.3, a

local increase in the stagnation temperature occurs between (ii) and (iii). A similar

increase in the local stagnation pressure occurs over this interval.
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Figure 2.10: Diagrammatical representation of two fluid particles travelling cur-
tate pathlines in a von Kármán vortex street. The von Kármán vortex street is
approximated as two isolated vortex rows. Each vortex is moving at a constant
downstream velocity. Each fluid particle is rotating around a vortex at a constant
angular velocity. The solid red circles represent the fluid particles travelling around
the downstream moving vortices.

The overall result of the relative movement of the vortex and the fluid particle

is a redistribution of Ts and ps, to increase on one side of the vortex and decrease

on the opposite side. For example, the instantaneous velocity of a particle directly

above the centre of the vortex, at (i) or (iii) in Figure 2.9, is a combination of the

vortex velocity and the local tangential velocity. As both components of velocity are

directed downstream, the local velocity and stagnation properties of the particle are

able to rise above the free stream condition. Conversely, for a particle directly below

the centre of the vortex, at (ii) in Figure 2.9, the instantaneous velocity of the par-

ticle is a combination of the downstream directed vortex velocity and the upstream

directed tangential velocity. The opposition of the two velocity components results

in a particle velocity, and stagnation properties, below the free stream condition.

In summary, the downstream movement of the vortex causes an effective ‘exchange

of work’, from fluid particles moving downstream of the vortex centre, to fluid

particles moving upstream of the vortex centre. Kurosaka et al. (1987) draw an

analogy between this process and that of a ‘compressor-turbine’ cycle.

Figure 2.10 highlights this energy separation mechanism in the context of an

idealised von Kármán vortex street. The von Kármán vortex street in Figure 2.10 is

approximated as two isolated vortices, of opposing rotation, moving downstream at

a constant velocity in the downstream direction. Figure 2.10 highlights the overall

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 2.6: Energy Separation in Vortex Dominated Wake Flows 38

reduction in velocity, Ts and ps that occurs at the centre of the wake, along with the

increase in velocity, Ts and ps that occurs locally along the outer edges of the wake.

The idealised situation in Figure 2.10 is, however, complicated in physical flows by

the presence of additional ‘cross-over’ particle pathlines, as reported by Kurosaka

et al. (1987). Cross-over pathlines occur as a fluid particle enters on one side of the

vortex street and exits on the opposite side of the vortex street. These pathlines

are highlighted by Kurosaka et al. (1987) through the injection of a dye into water,

downstream of a circular cylinder in a uniform cross-flow.

The stagnation temperature and pressure distribution of Kurosaka et al. (1987) is

supported by Ng et al. (1990) through temperature and pressure measurements on

a cylinder at M∞ = 0.4 and ReD = 2.3×105. Ng et al. (1990) report a maximum in

the stagnation temperature and pressure fluctuations at a distance of two cylinder

diameters downstream of the cylinder base. This indicates that 2D downstream of

the cylinder is close to the point of maximum circulation of the growing vortices in

this case. The hypothesis of Kurosaka et al. (1987) is also applied to a shear layer

in a channel by O’Callaghan & Kurosaka (1993). O’Callaghan & Kurosaka (1993)

conclude that the magnitude of the total temperature separation is approximately

proportional to the square of the difference in Mach number between the fast and

slow moving fluid streams. This may possibly be extended to the difference between

the free stream flow and the mean wake flow downstream of a circular cylinder or

turbine blade.

Carscallen & Oosthuizen (1989) extend this research to include thick trailing edge

turbine blades, at Mach numbers of 0.7 ≤ Me ≤ 1.16. A Mach number dependency

in the energy separation characteristics is measured, and peaks at Me = 0.95. En-

ergy separation is then reported to decrease for Me ≥ 1.0. These results lead to the

statistical analysis and high speed Schlieren visualisation reported in Section 2.4.

Carscallen et al. (1998, 1999) and Hogg et al. (1997) have subsequently extended this

research to a time accurate analysis using a specifically designed fast response stag-

nation temperature probe. The pitch-wise asymmetric vortex shedding discussed in

Section 2.3 is reported to cause a pitch-wise asymmetry in stagnation temperature
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and pressure. This difference in stagnation temperature, between the suction and

pressure surface sides of the wake, is quantified by Carscallen et al. (1998, 1999) and

Hogg et al. (1997). The instantaneous hot spots on the pressure side are approxi-

mately 8◦K above the free stream stagnation temperature. In contrast, the suction

side hot spots are approximately 6◦K above the free stream stagnation tempera-

ture. The wake centre is approximately 16◦K lower than the free stream stagnation

temperature. Instantaneous entropy contours show the maximum entropy value is

around 28% lower on the suction side of the wake, although this is spread over a

larger area of flow. The change in the turbine blade wake, from a continuous vortex

street at subsonic exit Mach numbers to a transient wake pattern at supersonic exit

Mach numbers, results in a decrease of the stagnation temperature and pressure

redistribution at Me > 1.

Time accurate numerical predictions of the energy separation behind this turbine

cascade are reported by Currie & Carscallen (1998) and Carscallen et al. (1998,

1999). These predictions are computed using an implicit, unstructured numerical

method, which solves the Navier-Stokes equations using a second order MUSCL im-

plementation of Roe’s flux difference splitting scheme. Turbulence is modelled using

the zonal k − ω/k − ε Shear Stress Transport (SST) formulation of Menter (1993).

Results from this modelling compare favourably with the turbine blade predictions

of Arnone & Pacciani (1997). Recent work includes a detailed time accurate inviscid

prediction of a simulated turbine blade at Me = 1.16 by Brooksbank (2001). This

work, summarised in Gostelow (2002), proposes that Kelvin-Helmholtz instabilities

in the separated shear layers may provide a secondary source of energy separation.

The Kelvin-Helmholtz instabilities are also thought to contribute to the generation

of the transient vortex shedding at the confluence region at this Mach number.

Sieverding et al. (2003) document the near wake development and energy sepa-

ration characteristics downstream of a similar thick trailing edge turbine blade at

Me = 0.79 and ReDt = 1.487 × 105. Measurements include boundary layer pro-

files on the suction and pressure surfaces at the trailing edge, smoke visualisation

and holographic/white light interferometry of the near wake development. These
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results indicate turbulent boundary layer separation from both sides of the trailing

edge and an asymmetric vortex shedding pattern downstream of the turbine blade.

The shed vortices are reported to travel downstream at non equi-spaced intervals.

Time mean and time accurate stagnation temperature and pressure measurements

are also reported at 2.5Dt downstream of the trailing edge. A complete traverse

of the wake is not reported for the stagnation temperature due to the probe head

proving too fragile. The stagnation temperature field over half of the wake, and the

complete stagnation pressure wake traverse, indicate a redistribution in these prop-

erties on a time accurate and time mean basis. These results further substantiate

the time accurate stagnation temperature and pressure measurements of Carscallen

et al. (1998, 1999).

Ackerman (2005) extends the time accurate circular cylinder research of Kurosaka

et al. (1987) to the transonic Mach number regime. Surface pressure, drag

and Strouhal number measurements are documented at 0.5 ≤ M∞ ≤ 0.95 and

6.75 × 105 ≤ ReD ≤ 8.95 × 105. In addition, Ackerman (2005) reports phase-lock

averaged stagnation temperature and pressure measurements downstream of the

circular cylinder at M∞ = 0.6 and ReD = 6.86 × 105. These results are detailed

further in this thesis as predictions from the current study are compared with those

of Ackerman (2005).
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Chapter 3

The Numerical Solution Procedure

3.1 Implementation Overview

3.1.1 Introduction

This chapter details the numerical method used in the present study to model the

compressible, turbulent flow of air past a circular cylinder and a turbine cascade.

This section provides an overview of the structure and rationale underlying the

implementation of the numerical method. This is intended to be a self contained

overview, providing a level of insight that is adequate to allow the CFD conver-

sant reader to proceed to the subsequent chapters. The remainder of this chapter

provides further details on each constituent component of the numerical method, in-

cluding specification of the boundary conditions used in the inviscid and turbulent

predictions.

By examining the physics of the flow under consideration, the numerical solution

procedure may be tailored through the application of reasonable simplifying assump-

tions, to satisfy the research objectives while minimising the computational expense.

This section therefore begins with a brief review of the dominant characteristics in

the transonic flow past circular cylinders and turbine blades, from which simplifying

arguments for the numerical procedure are developed.

3.1.2 Dominant Flow Physics Overview

Compressible and incompressible circular cylinder flows are reviewed in Chapter 2,

on the basis of the available literature. The high transonic regime considered in
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this study, M∞ ≥ 0.6, is characterised by the appearance of compressible flow fea-

tures as the local Mach number approaches unity over the cylindrical surface. The

boundary layer development and separation is influenced by the presence of weak

shock waves close to the surface of the cylinder. These manifest as intermittent,

unsteady shock waves over the free stream Mach number range 0.4 ≥ M∞ ≥ 0.7. As

the free stream Mach number approaches unity, 0.7 ≥ M∞ ≥ 1.0, the shock waves

increase in strength. They are present close to the cylinder surface and in the near

wake region throughout the vortex shedding cycle. At supersonic free stream Mach

numbers, a bow shock forms upstream of the circular cylinder and ‘fishtail’ shocks

appear in the near wake region. Strong adverse pressure gradients induced by shock

waves close to the cylinder surface can cause boundary layer separation, irrespec-

tive of whether the boundary layer is laminar or turbulent. This is different with

respect to the incompressible regime, in which the development of turbulence in the

boundary layer influences the location of separation, the subsequent development of

the separated shear layers and the wake characteristics further downstream. At the

free stream conditions considered in this study, previous experimental and numerical

research indicates that the flow downstream of the cylinder is dominated by large

scale vorticity. Vortices periodically appear, increase in size and circulation and

are shed from the leeward surface of the cylinder, forming the distinct downstream

pattern of the von Kármán vortex street.

This brief summary highlights the dominance of compressibility and convection

effects over viscous diffusion in the transonic, turbulent flow past a circular cylinder

at high Reynolds numbers. Past research on highly loaded turbine blades, including

published experimental results by Carscallen et al. (1996, 1998), suggest that similar

flow features dominate the discharge from a thick trailing edge cascade. With re-

spect to the present study, this implies that an inviscid circular cylinder or turbine

cascade model should adequately capture many of the main wake characteristics,

such as energy separation. Inviscid models are therefore developed in this study as

a first approximation to the compressible, turbulent flow field. These models use

approximate solutions to the short-time averaged Euler equations. The fully de-
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veloped quasi-stationary inviscid flow solution is subsequently used as the starting

conditions for a turbulent computation, using the short-time averaged Navier-Stokes

equations. The short-time averaged Euler and Navier-Stokes equations are defined

in Sections 3.3.1 and 3.4.1 respectively. Subsection 3.1.3 provides a brief overview of

the solution procedure employed for the inviscid and turbulent predictions. Further

details of the solution procedure are provided in Sections 3.3 to 3.9.

3.1.3 Numerical Method Overview

A finite volume method is used to integrate the two-dimensional form of the short-

time averaged Euler and Navier-Stokes equations over the computational domain.

Finite volume methods, finite difference methods and finite element methods are re-

viewed in Hoffman & Chiang (1995), and in Versteeg & Malalasekera (1995). In the

finite volume method, the governing equations are integrated over a series of control

volumes. Applying Gauss’ divergence theorem to the integral form of the governing

equations allows the convective and diffusive terms to be solved through a summa-

tion of the convective and diffusive fluxes across each cell interface, as detailed in

Sections 3.3 and 3.4. The solution of the governing equations is thereby decoupled

into separate spatial and temporal integration stages. The convective fluxes are

calculated using the asymmetric stencil, Flux Difference Splitting (FDS) approxi-

mate Riemann solver of Roe (1981). Asymmetric stencil methods provide greater

accuracy and stability than central difference methods in regions of discontinuity by

accounting for the direction of wave propagation in the approximate Riemann solver.

The approximate Riemann solver of Roe (1981) uses the difference in the flow vari-

ables across each cell interface as the initial conditions to a Riemann problem. The

convective flux at each cell interface is then calculated by solving a linear approx-

imation to the Riemann problem. The approximate Riemann problem is defined

by replacing the Jacobian matrix in the quasi-linear form of the governing equa-

tions by a local linear approximation. Roe (1981) used the approximate Riemann

problem to reduce the computational effort required to estimate the intercell fluxes

with respect to solving the exact Riemann problem, as discussed in Section 3.5.3.
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The stability of Roe’s approximate Riemann solver at flow discontinuities and the

accuracy with which shock waves can be resolved are desirable properties for the

current compressible flow study. In the present study, the entropy modification of

Harten & Hyman (1983) is added to eliminate the presence of expansion shocks

in the numerical prediction. The original one-dimensional scheme of Roe (1981) is

extended to two dimensions by considering wave propagation normal to each cell

interface. Using simple trigonometric transformations, the Cartesian velocity com-

ponents are transformed to normal and tangential velocities at each cell interface,

and an interface-normal Riemann problem is solved in this reference system.

The approximate Riemann solver of Roe (1981) is monotone and conservative,

but only first order accurate. Second order spatial accuracy is achieved by replacing

the piece-wise constant conservative variable distribution in each cell by a linear

piece-wise approximation, after Van Leer (1979). This involves extrapolation of the

volume averaged flow variables to the cell interfaces. The MUSCL approach (Mono-

tone Upstream-centred Schemes for Conservation Laws) is used in this study. This is

based on a Taylor series expansion of the volume averaged variables in each cell and

provides a conservative method that is up to second order accurate in space. The

MUSCL approach alone does not however retain the monotonicity of the first order

method of Roe. Indeed, Godunov’s theorem establishes that all linear, monotone

methods can be at most first order accurate in space, as discussed in Roe (1986).

An appropriate level of monotonicity is reinstated in the scheme by rendering it

Total Variation Diminishing. The Total Variation Diminishing (TVD) condition

provides a less stringent condition to that of monotonicity. The TVD condition

ensures that no new extrema are created in a flow solution and that the magnitude

of local maxima and minima are non-increasing. This ensures the preservation of

monotonicity for an initially monotone flow field. A TVD scheme is therefore ‘mono-

tonicity preserving’, as discussed in Section 3.5.7. The TVD condition is satisfied in

the MUSCL approach through the addition of non-linear limiting functions. Lim-

iters allow higher order spatial accuracy in regions of smooth flow, while ensuring

the TVD condition is satisfied in regions with shock waves and shear flows. The
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minmod limiter, defined in Section 3.5.8, is used in the present study. Therefore,

for an initially monotone flow field, the application of the TVD satisfying MUSCL

scheme with the minmod limiter should ensure that a monotone solution of higher

than first order accuracy is obtained throughout the computation.

The flow field is integrated in time using the explicit, low storage Runge-Kutta

method detailed in Hu et al. (1995). The standard Runge-Kutta coefficients, 0.5

and 1.0, are used to achieve a second order formal accuracy in time. Further details

on the time integration method are provided in Section 3.8.

Short time averaging of the compressible Navier-Stokes equations introduces addi-

tional second and third order flow statistics in the momentum and energy equations.

These higher-order terms are modelled using the standard two-equation k − ω tur-

bulence model of Wilcox (1988), as given in Wilcox (1993), with the subsequent

improvements detailed in this chapter. This model defines two additional transport

equations. These are the specific turbulence kinetic energy, k, and the specific turbu-

lence dissipation rate, ω. Time accurate values of k and ω are combined in an ‘eddy

viscosity’, which is used to close the short-time averaged Navier-Stokes equations

through the Boussinesq approximation. The k−ω turbulence model of Wilcox (1993)

has been validated in published literature over a significant range of flows, as dis-

cussed in Wilcox (2002). Wilcox (1993, 1994) demonstrates that non-trivial solutions

can be obtained by using the k−ω model for laminar boundary layers. Through the

specification of appropriate free stream or surface conditions, the k − ω model may

also be used to model transition in certain boundary layers. This is a particularly de-

sirable property for the present study, as past research indicates that boundary layers

remain laminar for a significant portion of the model circular cylinder surface and

over the pressure side of the modelled turbine blade. The original k− ω turbulence

model is shown by Wilcox (2002) to be prone to over-production of the turbulence

kinetic energy, k, in free shear flows. This leads to predicted mixing rates that are

significantly greater than those measured experimentally, Wilcox (2002). To remedy

this problem, the present k − ω model implementation includes the cross-diffusion

modification of Wilcox (2002). A dimensionless parameter is introduced into the
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dissipation term of the turbulence kinetic energy transport equation. For free shear

flows, the dimensionless parameter becomes significantly large. This increases dissi-

pation in the specific turbulence kinetic energy transport equation, thereby reducing

the specific turbulence kinetic energy in free shear flows. The result is a reduction

of the free shear flow spreading rate to physically acceptable values. Conversely,

for boundary layers, the dimensionless parameter decreases to extremely small val-

ues thereby having negligible influence on the turbulence kinetic energy. This is an

important property, as the original k − ω model of Wilcox provides a good corre-

lation between numerical predictions and experimental measurements for boundary

layers. Finally, the compressibility modification of Wilcox (2002) is implemented

into the k − ω model. This modification accounts for the turbulence Mach num-

ber, improving the predicted spreading rates in compressible free shear flows. These

modifications are intended to improve the turbulent circular cylinder and turbine

cascade predictions along the separated shear layers and in the downstream wake

region.

Using the numerical method described in this section, the convective and viscous

fluxes of the short-time averaged Navier-Stokes equations, including the k−ω model

transport equations, are computed. In each computational cell, the resultant fluxes

are combined with a volume integral of the turbulent source terms. These turbulent

source terms are detailed further in Section 3.7. The resulting solution in each cell

is then integrated in time using the Runge-Kutta method described in Section 3.8.

The efficiency of this numerical method is improved in the current study

through the implementation of the Adaptive Mesh Refinement (AMR) algorithm

of Quirk (1991). The flow model is predicted on a hierarchy of nested levels, of

increasing spatial and temporal refinement. Local regions of rapidly developing flow

or large density differences are computed on a fine resolution mesh, defined locally

around the flow feature. Slow developing or uniform flow regions are then computed

on a relatively coarse grid using a larger time step. At each level, the flow field is

developed using the numerical method described in Sections 3.2 to 3.8. The current

implementation of the AMR algorithm of Quirk (1991) is detailed in Section 3.10.
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3.2 Governing Equations

The governing equations for mass, momentum and energy conservation are

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

∂

∂t
(ρu) +∇ · (ρu⊗ u + pI − τ ) = 0, (3.2)

∂

∂t
(ρes) +∇ · (ρuhs + q − τ · u) = 0. (3.3)

The variables es, hs, τ and q are the specific stagnation energy, the specific stagna-

tion enthalpy, the viscous stress tensor and the heat flux vector respectively. These

are given by the following auxiliary relationships:

es =
p

ρ (γ − 1)
+

u · u
2

, (3.4)

hs = es +
p

ρ
, (3.5)

τ = µl

(
∇u + u∇− 2

3
I∇ · u

)
, (3.6)

q = −µlcp

Pr

∇T, (3.7)

where cp is the specific heat coefficient at constant pressure and Pr is the Prandtl

number, which, for the present study takes the value 0.726. The molecular viscosity,

µl, is estimated using Sutherlands law:

µl = 1.458× 10−6 T 3/2

(T + 110.4)
. (3.8)

The perfect gas equation of state, per unit mass, completes the governing equations:

p = ρRT, (3.9)

where R = cp − cv and cv is the specific heat coefficient at constant volume. The

equations given in this section assume air to be an ideal gas. The viscous stress

tensor, Eqn. 3.6, assumes a Newtonian fluid. At the transonic Mach numbers and

Reynolds numbers considered in this study these assumptions are justified.
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3.3 The Euler Equations

3.3.1 Introduction

The Euler equations are a simplification of the Navier-Stokes equations. Assuming

the flow under consideration is inviscid and adiabatic, the compressible form of the

governing equations, Eqns. 3.1-3.3, reduce to

∂ρ

∂t
+∇ · (ρu) = 0, (3.10)

∂

∂t
(ρu) +∇ · (ρu⊗ u + pI) = 0, (3.11)

∂

∂t
(ρes) +∇ · (ρuhs) = 0, (3.12)

where the stagnation energy, es, and the stagnation enthalpy, hs, are given by

Eqns. 3.4 and 3.5 respectively. The equation of state, Eqn. 3.9, completes the

Euler equations. The Euler equations, Eqns. 3.10-3.12, are written in conservative

form using the density, the specific momentum vector and the specific stagnation

energy as the state variables. A number of alternative forms for the Euler equations

are possible as detailed, for instance, in Manna (1992). These include the prim-

itive form of the Euler equations, written in terms of the density, velocity vector

and static pressure, and the characteristic form, in which the flow state is evaluated

along characteristic lines, surfaces or hyper-surfaces. The primitive form of the Euler

equations is non-differentiable across flow discontinuities, such as shock waves and

thin mixing layers. For the transonic circular cylinder and turbine blade flows, the

conservative form of the Euler equations therefore represents a more suitable choice

as the governing equations are differentiable in the presence of these flow features.

Eqns. 3.10-3.12 make use of instantaneous flow variables. This implies that through-

out the flow domain, all disturbance wavelengths are resolved by the numerical

scheme. In practical computations, the shortest resolvable wavelength is limited by

the spacing of the computational mesh. To acknowledge this, the governing equa-

tions are short-time averaged, as described in Appendix A.1. Short-time averaging

separates an instantaneous flow scalar variable, ζ, into a short-time averaged com-
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ponent, ζ̄, and a turbulent fluctuating component, ζ ′′. The short-time averaged

component includes both the time mean component and all large scale fluctuations

resolved by the computational time step. Therefore, after short-time averaging

Eqns. 3.10-3.12 and neglecting the unresolved small scale fluctuations, the Euler

equations become

∂ρ̄

∂t
+∇ · (ρ̄ū) = 0, (3.13)

∂

∂t
(ρ̄ū) +∇ · (ρ̄ū⊗ ū + p̄I) = 0, (3.14)

∂

∂t
(ρ̄ēs) +∇ · (ρ̄ūh̄s

)
= 0. (3.15)

The short-time averaged stagnation energy, ēs, and stagnation enthalpy, h̄s, are

given by

ēs =
p̄

ρ̄ (γ − 1)
+

ū · ū
2

, (3.16)

h̄s = ēs +
p̄

ρ̄
. (3.17)

The conservative form of the compressible Euler equations can be written in the

alternative compact form of the transport equations, which is a vector formulation.

This is

∂U

∂t
+∇ · F (U) = 0, (3.18)

where U is the vector of conserved variables and F (U) is the conservative flux

vector. These are given by

U =




ρ̄

ρ̄ū

ρ̄ēs


 , F (U) =




ρ̄ū

ρ̄ū⊗ ū + p̄I

ρ̄ūh̄s


 . (3.19)

The coupled system of Equations 3.18 is non-linear and differential. To obtain

numerical solutions to Equation 3.18, it is convenient to rewrite it in integral form.

The integral form of the Euler equations is obtained by integrating Eqn. 3.18 over
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an arbitrary control volume, V , giving

∂

∂t

∫

V

U dV +

∫

V

∇ · F (U) dV = 0. (3.20)

The volume integral of the inviscid fluxes in Eqn. 3.20 can be transformed by the

application of the Gauss divergence theorem, from which

∫

V

∇ · F (U) dV ≡
∮

S
F (U) · n dS, (3.21)

where n is the outward unit vector normal to the surface S that bounds V . Equa-

tion 3.21 states that the net mass, momentum and energy flow out of the control

volume is equivalent to the sum of the respective normal fluxes across the closed

boundary S. Upon application of the Gauss divergence theorem to Eqn. 3.20, the

integral form of the Euler equations becomes

∂

∂t

∫

V

U dV +

∮

S
F (U) · n dS = 0. (3.22)

To solve the integral form of the Euler equations numerically, Eqn. 3.22 is discretised

using volume averaged variables, defined for a cell of index, i, as

U iVi ≡
∫

Vi

U dV, (3.23)

where U i is the volume averaged state variables vector and Vi is the volume of the

ith computational cell. The finite volume formulation defined in this work is based

on a polyhedron, which is bound by a finite number of surfaces, Si,k. The surface

integral of the inviscid fluxes in Equation 3.22 is therefore replaced by a summation

of the surface averaged normal fluxes, over the faces of the cell.

∮

S
F (U) · n dS ≡

Nf∑

k=1

(
F (U)i,k · ni,k

)
Si,k, (3.24)

where Nf is the total number of faces in the computational cell. Si,k is the surface

area of face k. ni,k is the vector normal to the surface Si,k. The resulting semi-

discrete form of the Euler equations, found by dividing Eqn. 3.22 throughout by Vi,
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is

∂

∂t
U i = − 1

Vi

Nf∑

k=1

(
F (U)i,k · ni,k

)
Si,k. (3.25)

This form of the Euler equations divides the numerical solution procedure into sep-

arate spatial and temporal integration stages. These stages are described in Sec-

tions 3.5 and 3.8 respectively.

3.3.2 Quasi-Linear Form

The quasi-linear form of the Euler equations allows numerical prediction methods

based on the propagation of characteristic waves to be developed. This form of the

Euler equations can be derived from Eqn. 3.18 through the introduction of a Jacobian

matrix, A, to relate the inviscid fluxes to the conservative variables. Considering

the flow in the direction normal to each cell interface, the Jacobian matrix is defined

as

A =
∂F (Un) · n

∂Un
, (3.26)

where Un = (ρ̄, ρ̄ūn, ρ̄ūt, ρ̄ēs)
T , with ūn = ū1n1 + ū2n2 and ūt = ū2n1 − ū1n2.

Substituting Eqn. 3.26 in Eqn. 3.18, the quasi-linear form of the Euler equations is

∂U

∂t
+ M (An · ∇Un) = 0, (3.27)

where M is a |n| = 1 transformation matrix used to recover the Cartesian conser-

vation variables:

M =




1 0 0 0

0 n1 −n2 0

0 n2 n1 0

0 0 0 1




. (3.28)

This form of the Euler equations is used in Section 3.5 to compute the inviscid fluxes.
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3.4 The Short-Time Averaged Navier-Stokes Equations

3.4.1 Introduction

The Navier-Stokes equations, Eqns. 3.1-3.3, provide a time accurate description of

the flow for a viscous, Newtonian fluid. The high Reynolds numbers considered

in this study are associated with turbulent flows. Turbulence is three dimensional,

unsteady and is spread over a wide range of time and length scales (Wilcox, 2002).

The Direct Numerical Simulation (DNS) of a high Reynolds number, turbulent flow

therefore requires modelling of the fluid motion over all relevant time and length

scales. The length scales of turbulence present in the test cases predicted in this

study range from the largest, energy containing vortices of order ∆x ∼ O (10−1m),

to the smallest, Kolmogorov length scales of order ∆x ∼ O (10−6m), associated with

viscous dissipation of turbulence kinetic energy into heat. For a turbulent circular

cylinder and turbine blade flow, an accurate prediction of the turbulence kinetic

energy cascade over such a wide range of length scales represents an unfeasible

task with the available computational resources. In this study, therefore, short-

time averaging of the Navier-Stokes equations is employed to reduce this range.

Appendix A.1 describes the derivation of the short-time averaged Navier-Stokes

equations from 3.1-3.3. This gives

∂ρ̄

∂t
+∇ · (ρ̄ū) = 0, (3.29)

∂

∂t
(ρ̄ū) +∇ · (ρ̄ū⊗ ū + p̄I) = ∇ · (τ̄ − ρ̄u′′ ⊗ u′′

)
, (3.30)

∂

∂t
ρ̄

(
ēs + k̄

)
+∇ · ρ̄ū

(
h̄s + k̄

)
= ∇ · (−q̄ − ρ̄u′′h′′ + τ̄ · ū+

τ ′′ · u′′ − ρ̄u′′ ⊗ u′′ · ū−
ρ̄u′′ ⊗ u′′ · u′′/2

)
. (3.31)

In the short-time averaging procedure, the contributions to the short-time aver-

aged mass, momentum and energy balance from the turbulent density fluctuations,

ρ′′, and the turbulent static temperature fluctuations, T ′′, are omitted in the heat

conduction term on the basis that they are negligibly small in comparison to the
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short-time averaged contributions. Short-time averaging introduces the Reynolds

stress tensor ρ̄u′′ ⊗ u′′ into the momentum conservation equation, Eqn. 3.30. In the

energy equation, Eqn. 3.31, a number of additional terms are created. From the

analysis of Wilcox (2002), these terms are:

ρ̄u′′h′′ : Turbulent heat flux;

τ ′′ · u′′ : Molecular diffusion;

ρ̄u′′ ⊗ u′′ · ū : Work done by the Reynolds stresses;

ρ̄u′′ ⊗ u′′ · u′′/2 : Turbulent transport of the turbulence kinetic energy.

These additional terms are grouped together with the molecular heat flux on the

right hand side of the energy equation. The short-time averaged specific turbulence

kinetic energy, k̄, adds to the short time averaged stagnation energy, es, and stagna-

tion enthalpy, hs, in the total energy balance. The short-time averaged turbulence

kinetic energy is defined as:

k̄ =
u′′ · u′′

2
. (3.32)

The additional terms defined in the short-time averaged momentum and energy

conservation equations are not explicitly defined using the resolved flow state vari-

ables (ρ, ρu, ρes). Deriving an explicit model for these terms solves this ‘turbulence

closure problem’. In this study, turbulence closure is provided by the two-equation

k−ω turbulence model outlined in Wilcox (1993), with the subsequent developments

outlined in Wilcox (2002).

3.4.2 The Two Equation k − ω Turbulence Model of Wilcox

A number of turbulence models have been developed to solve the turbulence closure

problem. These models include algebraic models, 1/2-equation models, one-equation

models, two-equation models and Large Eddy Simulations (LES). A detailed intro-

duction and critical review of turbulence modelling is given in Wilcox (2002). In

common with all two-equation turbulence models, the k−ω model of Wilcox (1993)
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is based on the Boussinesq eddy-viscosity approximation. This approximation cen-

tres around estimating the Reynolds stresses using an analogy between turbulent

motion and the viscous stresses. This analogy allows the Reynolds stresses to be

computed through multiplication of an ‘eddy viscosity’, µt, with the mean flow strain

rate tensor. This gives

τ̄r = −ρ̄u′′ ⊗ u′′ = µ̄t

(
∇ū + ū∇− 2

3
I∇ · ū

)
− 2

3
I ρ̄k̄. (3.33)

Two-equation turbulence models compute the eddy viscosity by combining the tur-

bulence kinetic energy with a characteristic turbulence length scale. Flow history

effects are included in the eddy viscosity by defining two transport equations for

the specific turbulence kinetic energy, k, and an additional variable. The Wilcox

k−ω turbulence model uses the specific turbulence dissipation rate, ω, as the depen-

dent variable in the second transport equation. Alternative choices for the second

turbulent closure variable include the turbulence dissipation, ε, and the turbulence

dissipation time, τt. These alternatives are discussed in Wilcox (2002). The com-

pressible k and ω transport equations of Wilcox (1993) are Favre-averaged, following

the compressible Favre-averaged conservation equations for mass, momentum and

energy balance. An adapted form of the k and ω transport equations of Wilcox

are therefore defined to close the short-time averaged Navier-Stokes equations. The

transport equation for k̄ is derived using the instantaneous momentum conservation

equation, Eqn. 3.2. The instantaneous momentum conservation equation is multi-

plied by u′′ and the resulting equation is short-time averaged. A similar approach is

described in detail in Wilcox (2002) for the Favre-averaged turbulent kinetic energy

transport equation. Recalling that u′′ · u′′ = 2k, the short-time averaged specific

turbulence kinetic energy transport equation is thus obtained as

∂

∂t

(
ρ̄k̄

)
+∇ · (ρ̄ūk̄

)
= τ̄r : ∇ū− τ ′′ : ∇u′′ + p′′∇ · u′′ +

∇ ·
(
τ ′′ · u′′ − ρ̄u′′ ⊗ u′′ · u′′/2− p′′ u′′

)
. (3.34)
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This form of the short-time averaged turbulent kinetic energy transport equation

differs from the Favre averaged turbulent kinetic energy transport equation by the

omission of the pressure work term. The omission of the pressure work term re-

sults from the definition ū′′ = 0. Conversely, the Favre averaging procedure defines

that, for compressible flows, the time average of the turbulent velocity fluctuation

is non-zero when the density fluctuation is appreciable. However, the pressure work

term is taken as zero in the Favre averaged turbulent kinetic energy transport equa-

tion by Wilcox (1993), due to the scarcity of established physical relations for this

term. The corresponding transport equation for the short-time averaged specific

turbulence dissipation rate, ω̄, originates from a differential equation postulated

for ω by Kolmogorov (1942). In formulating the transport equations for k and ω,

Wilcox (1988) has added a production term using the Reynolds stress tensor defined

in Eqn. 3.33. Wilcox (1988) also added a molecular diffusion term for application

to laminar flow regions, such as within the viscous sublayer of turbulent boundary

layers. The short-time averaged specific dissipation rate transport equation used in

the present study is given in Eqn. 3.43.

3.4.3 Closure Approximations

Numerical models for the second and third order flow statistics are sought in the

short-time averaged Navier-Stokes equations, based on the short-time averaged

conservation variables. The closure approximation for the Reynolds stress tensor is

defined in Eqn. 3.33. The work done against the Reynolds stresses in the energy

conservation equation ρ̄u′′ ⊗ u′′ · ū is simply defined as the product of the Reynolds

stresses, τ̄r, and the short-time averaged velocity, ū. The remaining closure

approximations are defined, following the closure approximations of Wilcox (1993),

by the following relations.

The turbulent heat flux
(
ρ̄u′′h′′

)
represents the transport of heat by the action of the

turbulent motion. Using the analogy of Reynolds (1874), between heat and momen-

tum transfer, Wilcox (1993) defines the turbulent heat flux as being proportional
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to the temperature gradient. For the short-time averaged Navier-Stokes equations,

this leads to

ρ̄u′′h′′ = qt = −µtcp

Prt

∇T, (3.35)

where the turbulent Prandtl number Prt = µtcp/Kt and Kt is the thermal eddy

conductivity. In this study, Prt = 0.9, as suggested by Wilcox (2002).

The turbulent transport of specific turbulence kinetic energy
(
ρ̄u′′ ⊗ u′′ · u′′/2

)

represents the transport of the specific turbulence kinetic energy by the turbulent

velocity fluctuations. Turbulent flows are characterised by a greater transport of

momentum and kinetic energy by the motion of turbulence than by molecular diffu-

sion, as discussed by Tennekes & Lumley (1972). A closure approximation is derived

by Wilcox (1993) through analogy with the modelling of molecular transport effects.

This yields an expression for the turbulent transport of specific turbulence kinetic

energy in terms of the eddy viscosity, µt, the k − ω model closure coefficient σ?

and the spatial gradient of the turbulence kinetic energy, which, for the short-time

averaged Navier-Stokes equations, is ∇k̄. Therefore:

ρ̄u′′ ⊗ u′′ · u′′/2 = σ?µt∇k̄. (3.36)

The molecular diffusion
(
τ ′′ · u′′

)
accounts for the mixing and transport of the

turbulence kinetic energy by the molecular motion of the fluid. This term is modelled

using the spatial gradient of the short-time averaged turbulence kinetic energy as in

Wilcox (1993). For the short-time averaged equations, this gives

τ ′′ · u′′ = µl∇k̄. (3.37)

The short-time averaged dissipation rate
(
τ ′′ : ∇u′′

)
in the k̄ transport equation,

Eqn. 3.34, accounts for the viscous dissipation of turbulence through the action of

the viscous shear stresses. Dissipation is responsible for the conversion of turbulent

kinetic energy into heat, resulting in a local increase in temperature. Wilcox (1993)
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defines dissipation as ‘equal to the mean rate at which work is done by the fluctuating

part of the strain rate against the fluctuating viscous stresses’. Following the analysis

of Wilcox (1993), τ ′′ : ∇u′′ can be re-written in terms of the dissipation term ρε. The

specific dissipation ε is approximately proportional to the square of the fluctuating

strain-rate tensor. Following Kolmogorov (1942), the specific dissipation ε is related

by Wilcox (1993) to the specific dissipation rate ω, by ε = β?kω. The short-time

averaged dissipation rate is therefore written as

τ ′′ : ∇u′′ = ρ̄β?k̄ω̄. (3.38)

The pressure dilatation
(
p′′∇ · u′′

)
, and the pressure diffusion

(
p′′ u′′

)
terms are

omitted in the present k − ω model formulation as widely accepted models for

these equations are not currently available. Further details on the characteristics

of the pressure dilatation and pressure diffusion terms, as well as the contribution

of recent Direct Numerical Simulation (DNS) in the further development of closure

approximations for these terms, are available in Wilcox (2002).

Using these closure approximations, the short-time averaged Navier Stokes equa-

tions, along with the transport equations for k̄ and ω̄, become

∂ρ̄

∂t
+∇ · (ρ̄ū) = 0, (3.39)

∂

∂t
(ρ̄ū) +∇ · (ρ̄ū⊗ ū + p̄I) = ∇ · (τ̄ + τ̄r) , (3.40)

∂

∂t
ρ̄

(
ēs + k̄

)
+∇ · ρ̄ū

(
h̄s + k̄

)
= ∇ · [− (q̄ + q̄t) + (τ̄ + τ̄r) · ū+

(µl + σ?µt)∇k̄
]
, (3.41)

∂

∂t

(
ρ̄k̄

)
+∇ · (ρ̄ūk̄

)
= τ̄r : ∇ū− β?ρ̄k̄ω̄ +

∇ · [(µl + σ?µt)∇k̄
]
, (3.42)

∂

∂t
(ρ̄ω̄) +∇ · (ρ̄ūω̄) =

ϕω̄

k̄
τ̄r : ∇ū− βρ̄ω̄2 +

∇ · [(µl + σµt)∇ω̄] . (3.43)

The Reynolds stress tensor τr is given by Eqn. 3.33. The following auxiliary equa-
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tions and closure coefficients are defined for the present k−ω model implementation:

ϕ =
13

25
, σ =

1

2
, σ? =

1

2
, (3.44)

µt =
ρ̄k̄

ω̄
. (3.45)

The cross-diffusion modification of Wilcox (2002) is applied to the k − ω model to

improve the prediction of spreading rates for free shear flows over the original k−ω

model of Wilcox (1988). The cross-diffusion modification increases the level of dissi-

pation in the k̄ transport equation through modification of the β? closure coefficient.

By comparing the ω̄ transport equation with the k̄− ε̄ model transport equation for

ε̄, which has better shear flow spreading rate characteristics, Wilcox (2002) intro-

duces two dimensionless parameters, χk and fβ? . The closure coefficient β? is made

to be dependent on χk and fβ? , which are defined as

χk =
1

ω̄3
∇k̄∇ω̄, (3.46)

fβ? =





1 ∀χk ≤ 0

(1 + 680χ2
k) / (1 + 400χ2

k) ∀χk > 0
, (3.47)

To allow for the weakly compressible turbulence in the modelled flows, the com-

pressibility correction of Wilcox (1992) is added to the current k − ω model imple-

mentation. This correction scales β? and β as

β? = β?
ofβ? [1 + ξ?F (Mt)] , (3.48)

β = βo − β?
ofβ?ξ?F (Mt) , (3.49)

where

β?
o =

9

100
, βo =

9

125
, ξ? =

3

2
, (3.50)

Mto =
1

4
, (3.51)

F (Mt) =
[
M2

t −M2
to

]H (Mt −Mto) . (3.52)

In Eqn. 3.52, H is the heaviside step function. The variable Mt is defined as the
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turbulence Mach number. This is a function of k̄ and of the local speed of sound:

M2
t =

2k̄

a2
. (3.53)

The short-time averaged governing equations with the k − ω turbulence closure

model, Eqns. 3.39-3.43, can be expressed in the compact vector form

∂U

∂t
+∇ · (Fc (U) + Ft (U)) + S = 0. (3.54)

In Eqn. 3.54, the conservative vector, U , and the convective flux vector, Fc (U),

are

U =




ρ̄

ρ̄ū

ρ̄
(
ēs + k̄

)

ρ̄k̄

ρ̄ω̄




, Fc (U) =




ρ̄ū

ρ̄ū⊗ ū + p̄I

ρ̄ū
(
h̄s + k̄

)

ρ̄ūk̄

ρ̄ūω̄




. (3.55)

The turbulent flux vector, Ft (U), is

Ft (U) =




0

− (τ̄ + τ̄r)

q̄ + q̄t − (τ̄ + τ̄r) · ū− (µl + σ?µt)∇k̄

− (µl + σ?µt)∇k̄

− (µl + σµt)∇ω̄




. (3.56)

Finally, the turbulent source terms vector, S, is

S =




0

0

0

β?ρ̄k̄ω̄ − τ̄r : ∇ū

βρ̄ω̄2 − ϕω̄

k
τ̄r : ∇ū




. (3.57)
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The compact differential form of the short-time averaged Navier-Stokes equations,

Eqn. 3.54, is integrated in space over an arbitrary control volume V . Applying

Gauss’ divergence theorem to the combined convective and viscous fluxes normal to

the closed surface S that bounds V , the integral form of the short-time averaged

Navier-Stokes equations are obtained as

∂

∂t

∫

V

U dV +

∮

S
(Fc (U) + Ft (U)) · n dS +

∫

V

S dV = 0, (3.58)

where n is the unit vector normal to the surface S. The semi-discrete form of the

short-time averaged Navier-Stokes equations are obtained from the integral form by

substituting into Eqn. 3.58 the volume averaged variables, U i, defined in Eqn. 3.23.

The surface integral of the convective and turbulent fluxes are then replaced with a

summation over Nf discrete surfaces, bounding the computational volume Vi of the

ith computational cell:

Nf∑

k=1

[(Fc (U i) + Ft (U i)) · n]k Si,k ≡
∮

S
(Fc (U) + Ft (U)) · n dS. (3.59)

Dividing Eqn. 3.58 throughout by Vi, the semi-discrete form of the short-time aver-

aged Navier-Stokes equations are therefore obtained as

∂

∂t
U i = − 1

Vi

Nf∑

k=1

[(Fc (U) + Ft (U)) · n]i,k Si,k − Si. (3.60)

3.4.4 Quasi-Linear Form

The quasi-linear form of the short-time averaged Navier-Stokes equations with ap-

plication of the k − ω turbulence model is defined by differentiating the convective

flux with respect to the conservative variables vector. This defines the Jacobian

matrix for the short-time averaged Navier-Stokes equations, which is

At =
∂Fc (Un) · n

∂Un
, (3.61)
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where Un =
(
ρ̄, ρ̄ūn, ρ̄ūt, ρ̄

(
ēs + k̄

)
, ρ̄k̄, ρ̄ω̄

)T
, with ūn = ū1n1 + ū2n2 and ūt =

ū2n1−ū1n2. Substituting Eqn. 3.61 into Eqn. 3.54, the quasi-linear form of Eqn. 3.54

is

∂U

∂t
+ M t (Atn · ∇Un) +∇ · Ft (U) + S = 0. (3.62)

where M t is a |n| = 1 transformation matrix used to recover the Cartesian conser-

vation variables:

M t =




1 0 0 0 0 0

0 n1 −n2 0 0 0

0 n2 n1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (3.63)

The quasi-linear form of the short-time averaged Euler equations (Eqn. 3.27) and

the k− ω equations (Eqn. 3.62) are used in the next section to define characteristic

based methods for estimating the convective fluxes.
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3.5 Estimation of the Convective Fluxes

3.5.1 Introduction

In this study, the approximate Riemann solver of Roe (1981) is used to estimate the

convective fluxes. Second order formal accuracy is achieved through the MUSCL

(Monotone Upstream-centred Schemes for Conservation Laws) variable extrapola-

tion method. Generally, two main types of numerical scheme are available for calcu-

lating convective fluxes, namely central difference schemes and asymmetric stencil

schemes, that can be either upstream or downstream biased. Central difference

schemes estimate the cell interface flux based on a symmetric stencil of cells either

side of the interface. For non-smooth flow regions with large, near-discontinuous

flow gradients, central difference schemes can develop numerical instabilities. The

deficiency of central difference schemes in such regions is caused by a lack of sensi-

tivity to the physical direction of propagation of the flow. The oscillatory behaviour

of central difference schemes around discontinuities is improved by the addition of

damping functions (artificial viscosity) or by the introduction of high order, low-pass

filters.

Asymmetric stencil schemes comprise of two main types, Flux Vector Splitting

(FVS) and Flux Difference Splitting (FDS) methods. Flux vector splitting schemes

divide the flux Jacobian, Eqn. 3.26, into positive and negative contributions by

determining the sign of the corresponding eigenvalues. The positive and negative

contributions are then evaluated through forward or backward differences depend-

ing on the direction of the local characteristic. The sum of the two contributions

is then used to compute the interface flux. Further details regarding central dif-

ference schemes and flux vector splitting techniques are provided in, for example,

Hirsch (1990). A flux difference splitting method is used in this study. Flux dif-

ference splitting methods are introduced in section 3.5.2 by consideration of one

specific group of methods, Godunov-type Riemann solvers.
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3.5.2 Godunov-Type Riemann solvers

In finite volume Godunov-type methods, a continuous flow is discretised into a

number of finite volumes, in which the flow state is constant in each elementary

volume and is discontinuous between neighbouring volumes. This gives a piece-

wise-constant approximation to the physical flow field. Godunov-type Riemann

solvers use the discontinuity in flow variables across each cell interface as the initial

conditions to a Riemann problem. The flux across each cell interface is then evalu-

ated by computing the solution to the Riemann problem. A general introduction to

the application of characteristic based methods to the Riemann problem is available

in Toro (1999) and Hirsch (1990). Godunov-type Riemann solvers comprise of two

main types, exact Riemann solvers and approximate Riemann solvers. Godunov’s

original, (1959), and revised, (1976), upwind schemes are examples of exact

Riemann solvers. Considering the one-dimensional case, Godunov’s (1976) method

evaluates the interface flux by initially sampling the Riemann problem at each cell

interface to determine the characteristic wave pattern. Once the identity of the

left and right propagating waves have been established, the flux at the interface is

computed using appropriate physical relations. To determine the pressure at the

cell interface, an iterative procedure is required, such as a Newton-Raphson scheme.

After computing the interface fluxes for each cell in the one dimensional scheme,

the flux difference is integrated in time using a time step small enough to ensure

that waves propagating from the two interfaces do not interact. This method is

applied to multi-dimensional problems by dimensionally splitting the problem into

a summation of one-dimensional problems. Computing the exact solution to the

Riemann problem using the method of Godunov (1959, 1976) in this manner is

computationally expensive. The computational cost is incurred in determining

the wave pattern and in the iterative solution procedure required to calculate the

pressure. The high cost of calculating the exact solution to the Riemann problem

has prompted the development of approximate Riemann solvers; this includes the

method used in the present study, the approximate Riemann solver of Roe (1981).
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3.5.3 The Approximate Riemann Solver of Roe

Roe (1981) argues that the computational effort required to compute the exact

solution to the Riemann problem is only justified if the accuracy of the solution is

maintained in the remainder of the computational procedure. Roe (1981) proposes

that an approximate solution to the Riemann problem may be sufficient, providing

the solution still satisfactorily describes the non-linear behaviour of the Riemann

problem. This section describes the approximate Riemann solver of Roe applied

to the Euler equations. The k − ω formulation of the Roe approximate Riemann

solver is described in Section 3.5.4. In the approximate Riemann solver of Roe,

the Jacobian matrix, A in Eqn. 3.26, is replaced by a constant matrix Â. This

constant matrix is a function of the flow states either side of the finite volume

interface and linearises the Euler equations. In order for the constant matrix to

satisfactorily approximate the Jacobian matrix, the constant matrix must satisfy

three properties, collectively termed ‘property U’. These are:

1) The hyperbolic nature of the non-linear system of Euler equations should

be maintained. The approximation must therefore possess a set of m

real eigenvalues, (λ1, . . . , λm), and a complete set of linearly independent

eigenvectors, (e1, . . . , em).

2) The constant matrix Â should be consistent with the Jacobian A.

In the limit as UL → UR → U , then, Â
(
UL, UR

) → A (U).

3) The constant matrix Â should be conservative.

Â
(
UL − UR

)
= F

(
UR

)
- F

(
UL

)
.

In stating ‘property U’, L and R denote the variable state respectively to the left

and to the right of a cell interface. Later in this section, Eqn. 3.73 presents an

appropriate averaging technique for Â, which satisfies property U.
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A number of characteristic waves propagate away from the cell interface. Consider

one such interface, located at i+ 1
2
, separating two cells, i and i+1, to the left (L) and

right (R) of the interface respectively. The flux is determined through a summation

of the negative and positive travelling characteristic waves, either extrapolating from

the left or from the right state:

Fi+1
2

(
UL, UR

) · n = F
(
UL

) · n +
−∑

k

α̂k λ̂k êk, (3.64)

Fi+1
2

(
UL, UR

) · n = F
(
UR

) · n−
+∑

k

α̂k λ̂k êk, (3.65)

or by interpolating from both states. Specifically, the arithmetic mean of Eqns. 3.64

and 3.65 gives

Fi+1
2

(
UL, UR

) · n =
1

2

[
(
F

(
UL

)
+ F

(
UR

)) · n−
m∑

k=1

α̂k|λ̂k|êk
]

, (3.66)

where m is the number of propagating characteristic waves. In a two-dimensional

flow field there are four characteristic waves. These comprise of two acoustic waves,

a shear wave and an entropy wave. The eigenvalues of the approximate Jacobian

matrix quantify the speeds of the characteristic waves. These are computed by

solving the characteristic equation, which is obtained from the determinant

|Â − λ̂I| = 0. (3.67)

The resulting eigenvalues for a two-dimensional inviscid flow are (Quirk, 1991):

λ̂1 = ûn − â,

λ̂2 = ûn,

λ̂3 = ûn,

λ̂4 = ûn + â, (3.68)

where ûn = (û1n1 + û2n2) is the velocity normal to the cell interface. The

corresponding eigenvectors can be found by substituting these eigenvalues into
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(
Â− λ̂kI

)
êk = 0, and solving for êk. Finally, the characteristic variables can

be determined by considering the initial flow state discontinuity across the cell in-

terface as the summation of wave strengths:

UR −UL =
m∑

k=1

α̂k êk, (3.69)

and solving for α̂k. Similarly, the flux difference through the cell interface can be

expressed as

F
(
UR

)− F
(
UL

)
=

m∑

k=1

α̂k |λ̂k|êk. (3.70)

The conservative variable eigenvectors are therefore defined as

ê1 =
[
1, ûn − â, ût, ĥs − ûnâ

]T

,

ê2 =

[
1, ûn, ût,

(û2
n + û2

t )

2

]T

,

ê3 = [0, 0, 1, ût]
T ,

ê4 =
[
1, ûn + â, ût, ĥs + ûnâ

]T

, (3.71)

where ûn = (û1n1 + û2n2) is the cell interface normal velocity and

ût = (û2n1 − û1n2) is the cell interface tangential velocity. The corresponding

wave strengths are

α̂1 =
∆p− ρ̂â∆un

2â2
,

α̂2 = ∆ρ− ∆p

â2
,

α̂3 = ρ̂∆ut,

α̂4 =
∆p + ρ̂â∆un

2â2
. (3.72)

In Eqn. 3.72, the symbol ∆ represents the difference in the flow variables across the

cell interface, for instance ∆p = pR − pL. The form of the eigenvalues, eigenvectors

and wave speeds defined in this section are derived using the exact quasi-linear form

of the Euler equations. These are made to satisfy property U by the use of ‘Roe
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averaged variables’, (Roe & Pike, 1984). The Roe averaged variables are denoted in

Eqns. 3.68, 3.71 and 3.72 by the ‘hat’ (̂ ) symbol. These are

χ =

√
ρR

ρL
,

ρ̂ = χρL,

ûn =
χuR

n + uL
n

1 + χ
,

ût =
χuR

t + uL
t

1 + χ
,

ĥs =
χhR

s + hL
s

1 + χ
,

p̂ =
χpR + pL

1 + χ
,

â =

√
γp̂

ρ̂
. (3.73)

In summary, the flux at each cell interface is calculated by initially computing the

Roe averaged variables to the left and right of the cell interface, Eqn. 3.73. The

Roe averaged variables are then substituted into the equations for the eigenvalues,

Eqn. 3.68, the eigenvectors, Eqn. 3.71, and the wave strengths, Eqn. 3.72. The

interface flux is finally computed through a summation of the fluxes across each

characteristic wave, Eqn. 3.66.

3.5.4 k − ω Formulation of the Approximate Riemann Solver of Roe

The approximate Riemann solver of Roe is used to estimate the convective fluxes in

the short-time averaged Navier-Stokes equations. Introducing the k − ω turbulence

closure of Wilcox (1993) in the short-time averaged Navier-Stokes equations modifies

Eqn. 3.68 and Eqns. 3.71-3.73 by the addition of the specific turbulence kinetic

energy (k) and of the specific dissipation rate (ω). The Roe averaged variables used
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in the turbulent prediction are redefined as

χ =

√
ρR

ρL
,

ρ̂ = χρL,

ûn =
χuR

n + uL
n

1 + χ
,

ût =
χuR

t + uL
t

1 + χ
,

ĥs =
χhR

s + hL
s

1 + χ
,

p̂ =
χpR + pL

1 + χ
,

k̂ =
χkR + kL

1 + χ
,

ω̂ =
χωR + ωL

1 + χ
,

ât =

√(
γp̂

ρ̂
+

2

3
γk̂

)
. (3.74)

In Eqn. 3.74, un = (u1n1 + u2n2) and ut = (u2n1 − u1n2) are the normal and tan-

gential components of velocity with respect to the computational cell boundary. ât

is the numerical speed of sound, which, with the k − ω turbulence closure becomes

greater than the conventional isentropic relationship for a perfect gas, a =
√

γp/ρ.

The eigenvalues for the turbulent prediction are

λ̂1 = ûn − ât,

λ̂2 = ûn,

λ̂3 = ûn,

λ̂4 = ûn + ât,

λ̂5 = ûn,

λ̂6 = ûn. (3.75)
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In Eqn. 3.75, λ̂5 and λ̂6 are the eigenvalues associated to the k̂ and ω̂ transport

equations. The corresponding eigenvectors are

ê1 =

[
1, ûn − ât, ût,

(
ĥs +

2

3
k̂

)
− ûnât, k̂, ω̂

]T

,

ê2 =

[
1, ûn, ût,

(
ĥs +

2

3
k̂

)
− â2

t

(γ − 1)
, k̂, ω̂

]T

,

ê3 = [0, 0, 1, ût, 0, 0]T ,

ê4 =

[
1, ûn + ât, ût,

(
ĥs +

2

3
k̂

)
+ ûnât, k̂, ω̂

]T

,

ê5 =

[
0, 0, 0,

3γ − 5

3 (γ − 1)
, 1, 0

]T

,

ê6 = [0, 0, 0, 0, 0, 1]T . (3.76)

The characteristic wave strengths are defined as

α̂1 =
1

2â2
t

[
∆p +

2

3

(
ρ̂∆k + k̂∆ρ

)
− ρ̂ât∆un

]
,

α̂2 = ∆ρ− 1

â2
t

[
∆p +

2

3

(
ρ̂∆k + k̂∆ρ

)]
,

α̂3 = ρ̂∆ût,

α̂4 =
1

2â2
t

[
∆p +

2

3

(
ρ̂∆k + k̂∆ρ

)
+ ρ̂ât∆un

]
,

α̂5 = ρ̂∆k,

α̂6 = ρ̂∆ω. (3.77)

The interface flux is estimated from the procedure outlined in Section 3.5.3, using

Eqns. 3.74-3.77.

3.5.5 Entropy Preservation

A well-documented problem with the approximate Riemann solver of Roe is that

non-physical discontinuities are permitted in regions of expansion. Although expan-

sion shocks are one possible mathematical solution to the Riemann problem, these

are associated with negative increases in entropy. This contravenes the second law of

thermodynamics and does not represent a physical solution to the governing equa-
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tions. Expansion shocks occur as the local velocity in the expansion wave achieves

the sonic velocity. At the sonic velocity, one of the acoustic eigenvalues takes a value

of zero and a discontinuity is propagated as an expansion shock. A detailed intro-

duction to the characteristic properties of expansion shocks, contact surfaces and

compression shocks is provided by Toro (1999). Expansion shocks are eliminated in

this study using the entropy modification of Harten & Hyman (1983). This modifies

the eigenvalues around the sonic point to include localised differentiable gradients.

The Harten & Hyman (1983) modification used in this study defines

∣∣∣λ̂m

∣∣∣ =





∣∣∣λ̂m

∣∣∣ ∀
∣∣∣λ̂m

∣∣∣ ≥ ε?
m

ε?
m ∀

∣∣∣λ̂m

∣∣∣ < ε?
m

, (3.78)

where, ε?
m is defined as

ε?
m = max

[
0,

(
λ̂m − λL

m

)
,
(
λR

m − λ̂m

) ]
. (3.79)

The eigenvalue to be modified is defined by λ̂m. λL
m and λR

m are the corresponding

eigenvalues computed using the variables stored in the contiguous cells to the left

and right of the interface. The positive direction is taken as being from left to right.

This formulation distinguishes expansion waves from compression waves by a zero

in the ε?
m equation. By definition, the speed of characteristics behind a compression

shock are greater in magnitude than those leading the shock. Conversely, in a

region of expansion, λL
m < λm < λR

m. Therefore, ε?
m > 0. Equation 3.78 ensures

that λL
m < ε?

m < λR
m, inhibiting the formation of expansion shocks. As ε?

m = 0

for compression shock waves, where λL
m > λm > λR

m, these remain unmodified by

Eqn. 3.78 while expansion shocks are eliminated. The current implementation of the

Harten & Hyman modification is validated by predicting a one dimensional Riemann

problem test case with a transonic expansion fan. A detailed description of this test

case, which is a modified form of the shock-tube problem of Sod (1978), is available

in Toro (1999). A rectangular computational domain of length l defines the length

of the tube along x1. The initial flow field is divided into two contiguous regions,

extending over the range 0 ≤ x1 ≤ l/3 and l/3 ≤ x1 ≤ l respectively. These two flow
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regions are initially separated by a diaphragm at x1 = l/3. The initial conditions to

the left and right of this diaphragm are defined in Table 3.1.

Variable Left Right
ρ/ρr 8.0 1.0
u1/a∞ 0.75 0.0
p/pr 10 1.0

Table 3.1: Riemann problem initial conditions.

The computational domain extends 0 ≤ x2 ≤ l/8 in the flow normal direction.

Periodic boundary conditions, of the type described in Section 3.9.6, are imposed

at x2 = 0 and x2 = l/8. Extrapolation outlet boundary conditions, as described

in Section 3.9.4, are imposed at the flow normal boundaries x1 = 0 and x1 = l.

The computational domain is discretised by a uniform mesh of 250× 32 cells. The

numerical solution is time marched from the initial conditions in Table 3.1 to a final

time of t = 0.25l/a∞ seconds, in constant time steps of ∆t = 1.0×10−4l/a∞ seconds.

The resulting density profile after t = 0.25l/a∞ seconds, computed using the first

order approximate Riemann solver of Roe without the Harten & Hyman (1983)

entropy modification, is given in Figure 3.1. The stream-wise distance is normalised

using the computational domain length l. The density in Figure 3.1 is normalised

by the density to the right of the diaphragm, at time t = 0, given in Table 3.1.

A benchmark analytical solution for this problem is obtained from the shock-tube

analysis in Hirsch (1990) and is overlaid on the numerical prediction in Figure 3.1.

An expansion fan extends over the region, 0.23l ≤ x1 ≤ 0.41l; a contact discontinuity

is located at x1 = 0.67l and a compression shock wave is evident at x1 = 0.87l. The

location and magnitude of these flow features are correctly predicted by the first

order scheme, in comparison to the analytical solution. A significant expansion

shock is however evident in Figure 3.1, at x1 = l/3.

A comparative prediction of the Riemann problem, with application of the entropy

modification of Harten & Hyman (1983), is shown in Figure 3.2. This density profile

is computed from identical initial conditions, and uses the same first order approxi-

mate Riemann solver of Roe, as for Figure 3.1. Figure 3.2 shows the density profile
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Figure 3.1: Riemann problem density profile at t = 0.25l/a∞ seconds.
First order Roe approximate Riemann solver without entropy modification.
2 numerical prediction, — analytical solution.
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Figure 3.2: Riemann problem density profile at t = 0.25l/a∞ seconds. First or-
der Roe approximate Riemann solver with the Harten & Hyman (1983) entropy
modification. 2 numerical prediction, — analytical solution.
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after t = 0.25l/a∞ seconds. The entropy modification of Harten & Hyman (1983)

significantly reduces the influence of the expansion shock in Figure 3.2. Only a small

region, of differentiable gradient, remains at x1 = l/3. The significant reduction of

the expansion shock justifies the use of the Harten & Hyman (1983) entropy modi-

fication in this study. Further justification of the Harten & Hyman (1983) entropy

modification to higher order accurate solutions, through a MUSCL extrapolation

with the approximate Riemann solver of Roe (1981), is presented in Section 3.5.8.

3.5.6 Higher Order Spatial Accuracy - MUSCL Extrapolation

The approximate Riemann solver of Roe (1981) is monotone and conservative but

only first order accurate in space. Numerical predictions based on this first order

method contain excessive diffusion. In the present study, a higher order extension to

the numerical method is considered using the MUSCL (Monotone Upstream-centred

Schemes for Conservation Laws) approach. The MUSCL approach, introduced by

Van Leer (1979), achieves high order spatial accuracy by replacing the piece-wise

constant data in each cell by linear or quadratic approximations, as diagrammatically

shown in Figure 3.3. The redistributed volume averaged flow states at the cell

interfaces are then used as the initial conditions to the Riemann problem. The

approximate Riemann solver of Roe is then used in the present study to solve the

Riemann problem at each cell interface. The variable extrapolation at each cell

interface can be derived based on a Taylor series expansion in each cell, as described

in Hirsch (1990). Following the transformation of the Taylor series expansion to

volume average variables, and introducing the parameter η for convenience, the

extrapolated variables to the left and right of an interface located at i + 1
2

are

defined by

UL
i+ 1

2
= U i +

ε

4

[
(1− η) ∆U i− 1

2
+ (1 + η) ∆U i+ 1

2

]
, (3.80)

UR
i+ 1

2
= U i+1 − ε

4

[
(1− η) ∆U i+ 3

2
+ (1 + η) ∆U i+ 1

2

]
. (3.81)
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Figure 3.3: Discrete variable approximation. (—) Piece-wise constant approxima-
tion, (- - -) piece-wise linear approximation.

In Eqns. 3.80 and 3.81, the volume averaged flow state differences, ∆U , are:

∆U i− 1
2

= U i −U i−1, (3.82)

∆U i+ 1
2

= U i+1 −U i, (3.83)

∆U i+ 3
2

= U i+2 −U i+1. (3.84)

The parameter η is introduced to allow the spatial accuracy of the MUSCL scheme

to be defined explicitly. In the present study, η = 1
3
. Alternative values for η are

given in Table 3.2. For the present study, ε = 1. For ε = 0, the first order piece-wise

η Description

−1 Asymmetric biased stencil method.
0 Fromm scheme.

1/2 ‘QUICK’ method of Leonard.
1/3 Second order asymmetric biased method.

1 Three point central difference method.

Table 3.2: Selection of MUSCL ‘η’ parameter values, from Manna (1992).
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constant distribution is recovered.

3.5.7 Total Variation Diminishing (TVD) Schemes

The high order MUSCL approach introduced in section 3.5.6 provides a conserva-

tive method for increasing the spatial accuracy of the numerical scheme through

variable extrapolation. High order accurate methods are susceptible to numerical

instabilities across discontinuities, leading to non-monotone flow predictions. To

prevent oscillatory behaviour at discontinuities, the variable gradients estimated by

the MUSCL scheme are limited. By definition, Hirsch (1990), a numerical method

is monotone if it results in a non-oscillatory solution that satisfies the entropy con-

dition, which is defined in Hirsch (1990). Godunov’s theorem states that all linear

monotone schemes are at most first order accurate. The proof underlying Godunov’s

theorem is reported in Roe (1986). The concept of the Total Variation Diminishing

(TVD) scheme provides a less stringent condition to that of a monotone scheme

and preserves monotonicity in an initially monotone flow field. The TVD condition

ensures that no new extrema are created in the flow field and that the absolute

magnitude of local maxima and minima are decreasing as the solution progresses.

The Total Variation (TV ) of the conservative variable vector U is defined as

TV (Un) =

Ni∑
i=1

|Un
i+1 −Un

i |, (3.85)

where Ni is the total number of cells in the computational domain. n represents the

solution time stage. The condition for a TVD scheme therefore requires that the

total variation decreases as the flow field develops over time:

TV
(
Un+1

) ≤ TV (Un) . (3.86)

3.5.8 The Minmod Flux Limiter

To ensure the higher order extension to the flux estimation satisfies the TVD crite-

rion of Eqn. 3.86, limiting functions are added to the MUSCL extrapolation. These
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additional terms prevent new local extrema from appearing in the flow prediction.

Since Godunov’s theorem applies to TVD schemes, these limiting functions must be

non-linear. The limited MUSCL extrapolation for the cell interface, i+ 1
2
, is defined

as

UL
i+ 1

2
= U i +

ε

4

[
(1− η)ΦR

i− 1
2
∆U i− 1

2
+ (1 + η)ΦL

i+ 1
2
∆U i+ 1

2

]
, (3.87)

UR
i+ 1

2
= U i+1 − ε

4

[
(1− η)ΦL

i+ 3
2
∆U i+ 3

2
+ (1 + η)ΦR

i+ 1
2
∆U i+ 1

2

]
. (3.88)

Each limiting term Φ is a function of r. The variable r is defined as the ratio of the

local to the upwind wave strength, where the upwind direction may be denoted by

the superscript in Φ, for instance, ΦR
i− 1

2
represents a limiter for a right going wave.

Therefore:

ΦR
i− 1

2
= Φ

(
U i+1 −U i

U i −U i−1

)
= Φ

(
rL

)
,

ΦL
i+ 1

2
= Φ

(
U i −U i−1

U i+1 −U i

)
= Φ

(
1

rL

)
,

ΦL
i+ 3

2
= Φ

(
U i+1 −U i

U i+2 −U i+1

)
= Φ

(
rR

)
,

ΦR
i+ 1

2
= Φ

(
U i+2 −U i+1

U i+1 −U i

)
= Φ

(
1

rR

)
, (3.89)

where:

Φ (r) = minmod (1, r) = max [0, min (1, r)] . (3.90)

The minmod limiter satisfies the symmetry property

Φ (r) = rΦ

(
1

r

)
. (3.91)

This ensures that forward and backward differences are treated in the same manner.

The non-linear limiting function Φ is constrained to lie within defined parameters,

to satisfy the TVD condition. The constraints introduced by Sweby (1984) for
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Figure 3.4: TVD limiter region, after Sweby (1984).

second-order, explicit schemes using limiters that satisfy Eqn. 3.91 are

Φ (r) = 0 ∀ r ≤ 0,

r ≤ Φ (r) ≤ min(1, 2r) ∀ 0 < r ≤ 1,

1 ≤ Φ (r) ≤ min(2, r) ∀ r > 1. (3.92)

The limiting region provided by Eqn. 3.92 is shown graphically in Figure 3.4. The

minmod limiter follows the lower bounds of the TVD region in Figure 3.4 and is

shown graphically in Figure 3.5. For two adjacent flow state gradients (∆U ), of the

same sign (r > 0), the minmod limiter imposes the minimum of the two gradients.

For adjacent gradients of opposite sign (r < 0), the limiter assumes a value of zero.

The minmod limited gradients for the MUSCL extrapolation are given by

∆U i− 1
2

= ΦR
i− 1

2
∆U i− 1

2
,

∆U i+ 1
2

= ΦL
i+ 1

2
∆U i+ 1

2
,

∆U i+ 3
2

= ΦL
i+ 3

2
∆U i+ 3

2
,

∆U
′
i+ 1

2
= ΦR

i+ 1
2
∆U i+ 1

2
. (3.93)
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Figure 3.5: Minmod limiter, Eqn. 3.90, (—) TVD region boundary, (- - -) minmod
limiter function.

In regions of near uniform flow, ∆U → 0. To prevent numerical underflow when

evaluating r, Eqn. 3.93 is recast as

∆U i− 1
2

= sign
(
∆U i− 1

2

)
·max

[
0, min

(
|∆U i− 1

2
|, ∆U i+ 1

2
· sign

(
∆U i− 1

2

))]
,

∆U i+ 1
2

= sign
(
∆U i+ 1

2

)
·max

[
0, min

(
|∆U i+ 1

2
|, ∆U i− 1

2
· sign

(
∆U i+ 1

2

))]
,

∆U i+ 3
2

= sign
(
∆U i+ 3

2

)
·max

[
0, min

(
|∆U i+ 3

2
|, ∆U i+ 1

2
· sign

(
∆U i+ 3

2

))]
,

∆U
′
i+ 1

2
= sign

(
∆U i+ 1

2

)
·max

[
0, min

(
|∆U i+ 1

2
|, ∆U i+ 3

2
· sign

(
∆U i+ 1

2

))]
.

(3.94)

The final form of the minmod limited MUSCL extrapolation is

UL
i+ 1

2
= U i +

ε

4

[
(1− η) ∆U i− 1

2
+ (1 + η) ∆U i+ 1

2

]
, (3.95)

UR
i+ 1

2
= U i+1 − ε

4

[
(1− η) ∆U i+ 3

2
+ (1 + η) ∆U

′
i+ 1

2

]
. (3.96)

Equations 3.95 and 3.96 are mathematically identical to Equations 3.87 and 3.88,

but eliminate the requirement to evaluate r = lim∆U→0

(
∆U
∆U

)
for uniform flows, in

their numerical implementation.

The Harten & Hyman (1983) entropy modification, validated for the first order ap-

proximate Riemann solver of Roe (1981) in Section 3.5.5, is further validated for the
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Figure 3.6: Riemann problem normalised density profile at t = 0.25l/a∞ sec-
onds. Second order MUSCL scheme using the Roe approximate Riemann solver
with the minmod flux limiter. No entropy modification. 2 numerical prediction,
(—) analytical solution.

second order MUSCL scheme with application of the minmod flux limiter. Increasing

the formal accuracy of the spatial integration method to second order and applying

the minmod flux limiter further reduces the influence of the expansion shock, even

without entropy modification. The Riemann problem, predicted using the second

order MUSCL scheme with the minmod flux limiter, is shown in Figure 3.6 with-

out application of the Harten & Hyman entropy modification. The location of the

expansion shock is unaltered and is sited at x1 = l/3. The entropy modification

of Harten & Hyman (1983) further reduces the expansion shock, as shown in Fig-

ure 3.7. The resulting prediction follows the analytical profile closely across the

expansion fan, thereby justifying the application of the Harten & Hyman (1983)

entropy modification to the second order extension of Roe’s approximate Riemann

solver.
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Figure 3.7: Riemann problem normalised density profile at t = 0.25l/a∞ sec-
onds. Second order MUSCL scheme using the Roe approximate Riemann solver
with the minmod flux limiter. Entropy modification of Harten & Hyman (1983).
2 numerical prediction, (—) analytical solution.
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3.6 Estimation of the Turbulent Fluxes

The turbulent flux vector Ft (U) in the short-time averaged Navier-Stokes equations

is defined by Eqn. 3.56. The addition of the turbulent flux to the convective flux

Fc (U) defines the ‘total flux’ crossing each unit cell interface. Consider the interface
(
i + 1

2
, j

)
connecting the cells (i, j) and (i + 1, j) in the section of grid outlined in

Figure 3.8. The turbulent flux vector is estimated using a symmetric stencil of cells

across the interface. The short-time averaged velocity vector, ū, at
(
i + 1

2
, j

)
is

interpolated as

ūi+ 1
2
,j =

1

2
(ūi+1,j + ūi,j) , (3.97)

Similar expressions define q, qt, µl and µt in Eqn. 3.56. The spatial gradients of ū,

T̄ , k̄ and ω̄ at
(
i + 1

2
, j

)
are determined from Gauss’ divergence theorem. First, a

trapezoidal frame is described across
(
i + 1

2
, j

)
. The perimeter of this trapezoidal

frame is defined using dashed red lines in Figure 3.8. The four corners of the

quadrilateral ABCD are located at the midpoints of the surrounding cell interfaces.

In the present numerical implementation, the spatial coordinates of the lower left-

hand vertex are stored for each cell. For example, the coordinate vector xi,j is

defined as the cell vertex joining cells (i, j), (i, j − 1), (i− 1, j − 1) and (i− 1, j),

where x = (x1, x2)
T . The spatial coordinate vector, xA

i,j in Figure 3.8 is therefore

defined as

xA =
1

2
(xi+1,j+1 + xi,j+1) . (3.98)

Similar expressions define the remaining three corners. Next, the flow state along

each side of the trapezoidal frame is estimated. The velocity vectors ūN , ūE, ūS

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 3.6: Estimation of the Turbulent Fluxes 83

uN

uS
uW

uE

(i+1, j-1)

(i, j-1)

(i, j)

(i+1, j)

(i+1, j+1)

(i, j+1)

(i+2, j)

(i+2, j+1)

(i+2, j-1)

(i-1, j+1)

(i-1, j)

(i-1, j-1)

x1

x2

B(x , x )1 2

B B

C(x , x )1 2

C C

D(x , x )1 2

D D

A(x , x )1 2

A A

Figure 3.8: Turbulent flux central difference stencil for i + 1
2
. (—) Computational

cell boundary, (- - -) turbulent flux boundary for
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)
.
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and ūW in Figure 3.8 are defined by

ūN =
1

4
(ūi,j + ūi+1,j + ūi+1,j+1 + ūi,j+1) ,

ūE = ūi+1,j

ūS =
1

4
(ūi,j + ūi+1,j + ūi+1,j−1 + ūi,j−1) ,

ūW = ūi,j. (3.99)

Similar equations are defined for T̄ , k̄ and ω̄. Applying Gauss divergence theorem,

the gradients for ū1 with respect to x1 and x2 are

∂ū1

∂x1

=
1

V

[
ūS

1

(
xC

2 − xD
2

)
+ ūE

1

(
xB

2 − xC
2

)
+ ūN

1

(
xA

2 − xB
2

)
+ ūW

1

(
xD

2 − xA
2

)]
,

∂ū1

∂x2

= − 1

V

[
ūS

1

(
xC

1 − xD
1

)
+ ūE

1

(
xB

1 − xC
1

)
+ ūN

1

(
xA

1 − xB
1

)
+ ūW

1

(
xD

1 − xA
1

)]
,

(3.100)

where V is the area of ABCD, defined as

V =
1

2

[
xA

1

(
xD

2 − xB
2

)
+ xB

1

(
xA

2 − xC
2

)
+ xC

1

(
xB

2 − xD
2

)
+ xD

1

(
xC

2 − xA
2

)]
.

(3.101)

Similar derivatives define the gradients of the ū2 velocity component, the static

temperature, specific turbulence kinetic energy and the specific dissipation rate.

Using this approach, the turbulent flux vector of Eqn. 3.56 is estimated at each cell

interface. Similar expressions define the turbulent fluxes in the j-direction.

3.7 Estimation of the Turbulent Source Terms

The source terms vector S in the short-time averaged Navier-Stokes equations is

defined by Eqn. 3.57. This vector contains the production and destruction terms

for the k̄ and ω̄ equations. Volume averaged variables in each cell are used to

construct Eqn. 3.57. The compressibility correction of Wilcox (1992) is applied

through the modification of β? and β by Eqns. 3.48 to 3.53. The divergence of ū
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in Eqn. 3.57, as well as the divergence of k̄ and ω̄ in Eqn. 3.56, are computed from

Gauss’ divergence theorem applied to individual cell boundaries. An upper limit

to the turbulence kinetic energy production, τ̄r : ∇ū, is applied to prevent over-

production of k̄ around stagnation regions. The local production of k̄ is therefore

limited to a maximum value of twenty times the k̄ dissipation, which is estimated as

β?ρ̄k̄ω̄ from Eqn. 3.57. This upper limit to the production of k̄ remains inactive for

fully developed turbulent boundary layers and free shear layers. The source terms

vector S is added to the discrete integration, according to Eqn. 3.60, to estimate

the right-hand side of the quasi-linear Navier-Stokes equations, Eqn. 3.62. From

the resulting value for ∂U/∂t, the flow state vector U is obtained by integrating in

time.

3.8 Time Integration Method

This section introduces the temporal integration stage for the short-time averaged

Euler and Navier-Stokes equations. In this study, the two-step, explicit Runge-Kutta

method of Hu et al. (1995) is used. To simplify the notation in the Runge-Kutta

expression, the inviscid fluxes in the semi-discrete Euler equations, Eqn. 3.25, are

replaced by the symbol, Ri (U ), giving

Ri (U ) = − 1

Vi

Nf∑

k=1

(
F (U)i,k · ni,k

)
Si,k. (3.102)

Similarly, the combined total flux and source terms in the semi-discrete form of the

short-time averaged Navier-Stokes equations, Eqn. 3.60, are replaced by Rt (U ),

defined as

Rt (U ) = − 1

Vi

Nf∑

k=1

[(Fc (U) + Ft (U)) · n]i,k Si,k − Si. (3.103)

The Runge-Kutta time integration method used in this study is common to the

inviscid and turbulent flow computations. The symbols Ri (U ) and Rt (U ) can

therefore be generalised using the symbol R (U ). Runge-Kutta methods obtain
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high order accuracy by dividing the temporal integration over m steps. Consider

the integration of R (U ) from an initial time n to a time of n+1. The Runge-Kutta

method is defined at each step as

U 0 ≡ Un,

U z = U 0 − ψz∆tR
(
U (z−1)

)
, 1 ≤ z ≤ m

Un+1 ≡ Um. (3.104)

The Runge-Kutta coefficients ψz and the time step ∆t in Eqn. 3.104 are chosen to

obtain a numerically stable solution. A detailed analysis of the constraints underly-

ing the choice of ψz is given in Hu et al. (1995) and Manna (1992). The coefficients

used in this study, for the two step Runge-Kutta method, are ψ1 = 0.5 and ψ2 = 1.0.

These coefficients give a second order formal accuracy for the temporal integration

procedure, as detailed in Hu et al. (1995).

The time step is chosen to satisfy the Courant-Freidrich-Lewy (CFL) condition.

For the inviscid prediction, the maximum permitted time step is estimated from the

volume averaged variables as:

(∆t)c =
CFL[∑Nf

k=1 (u1n2 + u2n1 + a)Sk

]
max

, (3.105)

where []max represents the maximum value over the computational domain.

The maximum permitted time step for a turbulent computation is estimated as:

(∆t)t = min

(
(∆t)c ,

CFL

[2 (ν + νt) Vi/S2
min]max

)
, (3.106)

where Smin is the minimum control volume surface area for the subject cell. ν is the

kinematic viscosity, defined as ν = µ/ρ. νt is the kinematic eddy viscosity, defined

as νt = µt/ρ. []max represents the maximum value over the computational domain.
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3.9 Boundary Conditions

The computational domain used to model the flow past a circular cylinder and

a turbine blade is decomposed into a number of topologically orthogonal blocks.

External and inter-block boundary conditions are defined using a perimetrical frame

of unit cell depth around each block.

The conservative variables at these boundaries are updated by upwinding along

characteristic lines. Characteristic waves travel into and out from the interior of

each block. Each wave direction is identified by the sign of the associated eigen-

value. Characteristics travelling into a block require the definition of external phys-

ical boundary conditions. Outward travelling characteristics carry the influence of

the interior flow towards the boundary. In this case numerical boundary conditions,

based on extrapolation or characteristic procedures, are imposed. The formulation

of inlet and outlet boundaries exploits the hyperbolicity of the Euler equations. For

the short-time averaged Navier-Stokes equations, this characteristic based method is

considered an acceptable approximation for high Reynolds number flows, in which

the hyperbolic convection terms dominate. Numerical errors introduced through

other ill-posed boundary conditions, particularly for unsteady aeroacoustic applica-

tions, are described in a number of publications, including Giles (1990) and Poinsot

& Lele (1992).

Boundary conditions used in this study include subsonic and supersonic inlet and

outlet boundaries, periodic boundaries, inviscid surface boundaries and an adiabatic

no-slip surface condition. These are detailed in Subsections 3.9.1 to 3.9.8. The

following symbology is defined to distinguish between internal, external (imposed)

and computed boundary flow states. [ ]Interior denotes the flow state on the unit cell

adjacent to the boundary cell, inside the computational domain. [ ]Exterior denotes

an exterior flow variable imposed on a boundary cell. The resultant flow state

assigned to the boundary cell is defined by [ ]Boundary. This is a function of [ ]Interior

and [ ]Exterior, the final form depending on the boundary condition imposed.
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3.9.1 Subsonic Inlet

In a two-dimensional inviscid flow prediction, four characteristics waves are de-

fined. For a local subsonic inlet flow, the sign of the eigenvalues indicate that three

characteristic waves are directed into the computational domain. The remaining

characteristic, an outgoing acoustic wave, is directed away from the interior of the

domain. Accordingly, one extrapolated and three imposed flow properties are used

to define the flow state along a subsonic inlet boundary. For turbulent predictions,

the complement of characteristic waves increases by the number of additional tur-

bulent transport equations. For the k − ω turbulence model, two additional state

variables are imposed at a subsonic inlet. The three imposed state variables for an

inviscid flow are chosen as the short-time averaged stagnation temperature T̄s, the

stagnation pressure p̄s and the inlet flow angle, defined as φ = tan (u2/u1), where

u1 and u2 are the imposed inlet velocity components. This choice for the imposed

state variables is convenient for matching with experimental measurements and is

reputed by Manna (1992) to possess improved convergence properties over alterna-

tive choices. The additional imposed state variables for a turbulent prediction are

the upstream values of the short-time averaged turbulence kinetic energy k̄ and the

specific dissipation rate ω̄. The extrapolated state variable is calculated by equating

the interior cell Mach number to the required inlet Mach number. This is achieved

through consideration of the Van Leer flux splitting method, to yield

[ ρ̄ā

4

(
1 + M̄n

)2
]

Interior
=

[ ρ̄ā

4

(
1 + M̄n

)2
]

Boundary
, (3.107)

where M̄n is the short-time averaged Mach number component normal to the inlet

boundary, defined as

M̄n =
ūn√
γRT̄

. (3.108)

The velocity component normal to the inlet boundary in Eqn. 3.108 is given by

ūn = (ū1n1 + ū2n2). Equation 3.107 therefore relates the known properties in the

interior domain to the required properties at the boundary. To simplify the number
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of unknowns on the right hand side of Eqn. 3.107, isentropic equations relating the

density ρ̄ and sound speed ā to the imposed state variables T̄s and p̄s, and the

boundary Mach number Mn are defined as

ρ̄ =
p̄s

RT̄s

(
1 +

γ − 1

2
M̄2

n

)− 1
γ−1

, (3.109)

ā =
√

γRT̄s

(
1 +

γ − 1

2
M̄2

n

)− 1
2

. (3.110)

Substituting Eqns. 3.109 and 3.110 into the right hand side of Eqn. 3.107 and rear-

ranging to bring the unknown variable M̄n to the left-hand side gives the following

expression for M̄n at the boundary:

[
(
1 + M̄n

)2
(

1 +
γ − 1

2
M̄n

2

)−(γ+1)
2(γ−1)

]

Boundary

=

[
ρ̄ā

(
1 + M̄n

)2
]

Interior[
p̄s

√
γ

RT̄s

]
Exterior

.

(3.111)

The unknown boundary Mach number on the left of Eqn. 3.111 is computed using an

iterative Newton-Raphson method. An initial estimate for
[
Mn

]
Boundary

is required

for the Newton-Raphson algorithm. This is provided by the local interior Mach

number. Once the Mach number at the boundary is known, the boundary values

of static density, temperature, pressure and the normal velocity are computed from

Eqn. 3.109 and 3.110, along with

T̄ = T̄s

(
1 +

γ − 1

2
M̄2

n

)−1

, (3.112)

p̄ = p̄s

(
T̄s

T̄

)− γ
γ−1

, (3.113)

ūn = ā
√

γRT̄ . (3.114)

Using the flow variables at the boundary, the conservative variables vector

[U ]Boundary is then obtained. For the Euler equations, this is given by Eqn. 3.19.

The boundary values of k̄ and ω̄ required for the turbulent conservative variables

vector, Eqn. 3.55, are defined as the imposed values of k̄ and ω̄.
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3.9.2 Supersonic Inlet

At supersonic velocities, all characteristic eigenvalues are of the same sign. Specif-

ically, only characteristics travelling into the computational domain are present

at a supersonic inlet. Therefore, the interior flow variables have no influence on

[U ]Boundary. Four imposed flow properties are required at a supersonic inlet bound-

ary for an inviscid computation. In this study, the stagnation temperature T̄s, the

stagnation pressure p̄s and the two Cartesian components of the inlet Mach number,

M̄1 and M̄2, are imposed. The conservative variables vector [U ]Boundary for the Euler

equations, Eqn. 3.19, is therefore estimated from

M̄ =
√(

M̄2
1 + M̄2

2

)
,

T̄ = T̄s

(
1 +

γ − 1

2
M̄2

)−1

,

p̄ = p̄s

(
T̄s

T̄

)− γ
γ−1

,

ρ̄ =
p̄

RT̄
,

ū1 = M1

√
γRT̄ ,

ū2 = M2

√
γRT̄ ,

ēs =
p̄

ρ̄ (γ − 1)
+

ū · ū
2

. (3.115)

Additional boundary conditions are required in the turbulent prediction. This is

satisfied by imposing boundary values for k̄ and ω̄. The stagnation energy ēs for the

turbulent prediction is re-defined as

ēs =
p̄

ρ̄ (γ − 1)
+

ū · ū
2

+ k̄. (3.116)

The conservative variables vector for the short-time averaged Navier-Stokes equa-

tions, Eqn. 3.55, is defined at the supersonic inlet boundary from Eqns. 3.115

and 3.116.
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3.9.3 Subsonic Outlet

As with the subsonic inlet boundary of subsection 3.9.1, the characteristics associ-

ated with the subsonic outlet boundary have both positive and negative eigenvalues.

For the two-dimensional Euler prediction, three characteristics are directed out of

the computational domain and require the extrapolation of three flow state variables

based on the interior flow field. The remaining state variable is defined by impos-

ing the external static pressure p̄. The density, ρ̄, and the velocity components,

ū1 and ū2, are obtained by a zeroth order extrapolation from the interior domain.

The Mach number normal to the outlet boundary Mn, defined by Eqn. 3.108, is

computed using an iterative Newton-Raphson algorithm. As with the subsonic inlet

boundary, the expression for the outlet boundary Mach number is obtained from a

flux vector splitting analysis, leading to

c1M̄
3
n + c2M̄

2
n + c3M̄n + c4 = 0, (3.117)

where the coefficients c1 to c4 are given by

c1 = γ − 1,

c2 = 2γ,

c3 = γ + 3,

c4 = 2− 1

γp̄

[
ρ̄ā

(
1 + M̄n

)2
(2ā + (γ − 1) ūn)

]
Interior

. (3.118)

The velocity normal to the boundary is ūn = (ū1n1 + ū2n2). The initial estimate

of M̄n for the Newton-Raphson algorithm is taken as the interior Mach number.

Once the Mach number at the boundary has been determined, the speed of sound

at the boundary is calculated using a rearranged form of Eqn. 3.107, along with the

imposed static pressure p̄, leading to

ā =

[
γp̄

(
1 + M̄n

)2
]

Boundary[
ρ̄ā

(
1 + M̄n

)2
]

Interior

, (3.119)
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The primitive variables at the boundary are therefore calculated as

ρ̄ =
γp̄

ā2
,

ūn = M̄nā,

ū1 = [ū1]Interior ,

ū2 = [ū2]Interior ,

p̄ = [p̄]Exterior , (3.120)

where ā is the local speed of sound at the boundary, estimated from Eqn. 3.119. M̄n

is the local Mach number normal to the outlet boundary, estimated from Eqn. 3.117.

The conservative variables vector for the Euler equations, Eqn. 3.19, is therefore

constructed using the flow variables given in Eqn. 3.120 with the stagnation energy ēs

estimated by Eqn. 3.115. Two additional numerical boundary conditions are defined

for the turbulent prediction, these are
[
k̄
]
Interior

and [ω̄]Interior. The stagnation

energy ēs for the turbulent case is estimated from Eqn. 3.116.

3.9.4 Supersonic Outlet

As for the supersonic inlet condition, all flow characteristics have the same eigenvalue

sign at a supersonic outlet. All characteristics travel out of the computational

domain. Therefore, only extrapolated boundary conditions, based on the interior

flow states, are required. In the present study, the boundary flow state is determined

by a zeroth order extrapolation of the interior conservative variables.

3.9.5 Inter-Domain Boundary

A seamless transition of the flow field variables across neighbouring topologically

orthogonal blocks is achieved by overlapping the interior and exterior cells (ghost

cells) of adjacent blocks along the common interface, as shown in Figure 3.9. The

perimetrical ghost cells are updated by copying the conservative variables from the

underlying interior cells.
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Figure 3.9: Schematic showing the location of the inter-domain boundary between
two adjacent blocks.

3.9.6 Periodic Boundary

The periodic boundary condition is an extension of the inter-domain boundary condi-

tion. Periodic boundaries are used in the present study to reduce the computational

domain required to model a pitch-wise periodic turbine cascade geometry to a region

surrounding a single turbine blade. Figure 3.10 shows the basis of this boundary

condition applied to the boundaries of a single block. Arrows indicate the direction

of information exchange between the periodic cells and the associated interior cells.

The periodic cells are updated by copying across the flow state from the associated

interior cells.

3.9.7 Inviscid Wall Boundary

A number of boundary conditions are used in the present study to describe solid

surfaces. The inviscid wall (or ‘slip’ wall) condition defines a solid surface in which no

mass flux crosses the boundary. This is also known as a ‘no-penetration’ boundary

condition. The velocity component normal to the boundary, ūn, is defined as zero
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Figure 3.10: Schematic showing the information exchange between ghost cells and
the associated interior cells at a periodic boundary.

at the surface. The surface value for the tangential velocity component ūt remains

unchanged from the interior value. Therefore

[ūn]Boundary = 0,

[ūt]Boundary = [ūt]Interior , (3.121)

where, ūn = ū1n1 + ū2n2, and ūt = ū2n1 − ū1n2. The Cartesian components of

velocity at the external cells are therefore defined as

ū1 = −ūtn2,

ū2 = ūtn1. (3.122)

The cell normal components n1 and n2 are defined as (n1, n2)
T = n, where n is

the surface unit normal to the boundary S. The boundary values of density ρ̄ and

static pressure p̄ are set equal to the interior cell values. The stagnation energy ēs,

defined in Eqn. 3.115 for the Euler equations, is subsequently re-calculated with the

updated velocities. For turbulent predictions, the values of k̄ and ω̄ are determined

from a zeroth order extrapolation of the interior cell values. The stagnation energy
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ēs for the turbulent computation is then updated using Eqn. 3.116.

3.9.8 Adiabatic No-slip Surface Boundary

The ‘no-slip’ surface condition represents an improved approximation to surfaces

bounding viscous flows, permitting the development of surface boundary layers. For

turbulent computations, five imposed boundary conditions and one extrapolated

boundary condition are required. The imposed no-slip velocity provides two physical

boundary conditions for the surface. The zero velocity condition at the surface

implies an imposed zero value for k̄. Menter (1993) provides a limiting value for ω̄

close to a hydraulically smooth surface. These conditions are

ū1 = 0,

ū2 = 0,

k̄ = 0,

ω̄ =
60µ̄lw

βo (∆x2)1

, (3.123)

where (∆x2)1 is the surface normal height between the physical surface and the

centre of the first interior cell. µ̄lw is the laminar viscosity at the wall, estimated by

a zeroth-order extrapolated from the first interior cell. βo is defined in Eqn. 3.50.

The final imposed boundary condition is defined from the adiabatic condition:

q̄w = 0. (3.124)

This condition indicates a boundary value for the static temperature equal to

that of the adjacent interior cell. The static temperature is therefore estimated

by a zeroth-order extrapolation from the interior cells. The extrapolated condi-

tion is found by assuming a zero pressure gradient normal to the wall, therefore,

[p]Boundary = [p]Interior and
[
T

]
Boundary

=
[
T

]
Interior

. This condition provides a

satisfactory approximation for attached boundary layer flows with adequate grid

resolution in the laminar flow region. As noted in Manna (1992), the assumption of

a zero pressure gradient normal to the wall is strictly limited to attached boundary
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layer flows at high Reynolds numbers.

A summary of the numerical solution procedure documented in this chapter is

outlined in Figure 3.11.

3.10 The Adaptive Mesh Refinement (AMR) Method

3.10.1 Introduction

The high Reynolds number flows predicted in this study require the satisfactory

resolution of turbulent boundary layers to the laminar sublayer region. Resolving

this region requires a high resolution grid, with a high degree of grid stretching in

the surface normal direction. The current explicit method imposes an upper limit on

the time step for numerical stability, based on the minimum cell size. Any decrease

in the length of the smallest cell, in order to resolve the laminar sublayer, causes

an associated decrease in the maximum permitted time step ∆t. Integrating over

a highly stretched grid with a uniform time step can lead to slow developing flow

features, which could be more efficiently computed with a lower spatial and temporal

resolution.

The Adaptive Mesh Refinement (AMR) method represents one strategy for over-

coming this inefficiency. A hierarchy of nested mesh levels, with increasing spatial

and temporal resolution, are defined at the start of the computation. Regions of

slow developing flow, or regions with shallow flow gradients, are computed using a

relatively coarse spatial and temporal resolution on a low-level grid. Other regions,

which require a better level of resolution, are computed at higher mesh levels with

an increased spatial and temporal resolution.

The AMR method used in the present study is based on the method of Quirk

and a detailed description of the AMR method is provided in Quirk (1991). A

brief outline, highlighting modifications introduced in the current implementation,

is given in this Chapter. A diagrammatical overview of the current AMR procedure,

showing the flow of information through one time step at the lowest mesh level, is

shown in Figure 3.12. The lowest level mesh, which covers the entire computational
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Figure 3.11: Numerical solution procedure flowchart. (i,j) is a general cell index.
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Figure 3.12: Flowchart showing the creation and integration of levels 1 to Lmax for
one level 0 time step. L is the current AMR level (1 ≤ L ≤ Lmax), tL is the current
time at level L. t0 is the time at level 0, at the start of the flowchart. ∆t0 is the
time step at level 0, R is the user-defined spatial and temporal resolution between
AMR levels. ML is a variable representing the number of level L grid adaptions for
each level 0 time step (i.e., for levels 0 to 2, M1 and M2 are defined).
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domain, is designated as level 0. An incremental increase in the level index is used

for subsequent levels. A three level AMR prediction, for example, is defined with

levels 0, 1 and 2. Each separate stage in the AMR algorithm of Figure 3.12 is

described in the remainder of this Chapter.

3.10.2 The AMR Flagging and Grouping Procedure

The computation starts with a coarse discretisation at level 0. Regions of level 0 are

then flagged for refinement based on the density difference. This choice of flagging

parameter refines, for example, shock waves and thin compressible shear layers in

inviscid predictions. In a turbulent compressible prediction, the density variation

through the boundary layer triggers a mesh refinement close to the surface.

The refinement procedure begins with an initial survey of level 0, to establish the

maximum density difference |∆ρmax|, between contiguous cells, at level 0. A user

defined ‘AMR scaling parameter’ b is multiplied by |∆ρmax| and contiguous cells

with density difference |∆ρi,j| > b|∆ρmax| are flagged for refinement. In this study

0.02 ≤ b ≤ 0.10. The influence of the AMR scaling parameter b is discussed, through

a series of test cases, in Chapter 4. As discussed in Quirk (1991), discontinuities

that cross the boundary between different levels of refinement can lead to numerical

vorticity. The current explicit scheme ensures that discontinuities cannot travel

further than the length of any one cell over a single time step. To prevent flow

discontinuities from travelling out of the refined region, a perimetrical layer one

cell deep is flagged for refinement around each cell with |∆ρi,j| > b|∆ρmax|. This

additional flagging ensures that all refined discontinuities remain within the bounds

of the refined region for each time step of the underlying level. After developing

over a length of time equal to one time step of the underlying level, each level L > 0

is recreated from the updated flow field of the underlying level, thereby tracking

moving discontinuities.

Once a level has been flagged for refinement, the refined cells are grouped into a

series of contiguous rectangular blocks. A user-defined ‘packing criterion’, defined

between 0 and 1.0, determines the permitted ratio of flagged to unflagged cells for
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each refined block. For example, a user-defined packing criterion of 0.75 dictates

that the proportion of flagged cells in each newly refined block is at least 75%. The

procedure used in the current AMR grouping stage is identical to the procedure

outlined by Quirk (1991). Initially, a single rectangular block is defined, which

covers the entire refined region. This block is then recursively divided into two

separate regions, along the longest side, until a series of contiguous blocks are defined

which satisfy the packing criterion. A perimetrical frame, two refined cells deep, is

defined around each refined block for implementation of boundary conditions. The

initialisation of these cells, along with the interior cells of each refined block, is

discussed in Section 3.10.3. The subsequent updating of these boundaries, between

integrations, is discussed in Section 3.10.5.

A user-defined refinement ratio determines the increment in spatial and temporal

resolution between successive levels. In this study, a common refinement ratio is

used for the i and j directions, termed rIf and rJf respectively. Each coarse level L

cell is therefore divided into (rIf )
2 cells at level L+1 and (rIf )

4 cells at level L+2.

Numerical stability is satisfied at all levels through division of the time step at the

underlying level by the user-defined refinement ratio. The choice of refinement ratio

for practical applications is discussed in Chapter 4.

3.10.3 A Two-Dimensional Coarse-Fine Interpolation Procedure

At the start of the AMR computation, or in newly refined regions at successive

adaptions, an initial estimate of the state variables for each refined cell is obtained

through a two-dimensional interpolation of the piece-wise constant state variables

in the underlying coarse level. This interpolation must locally conserve the mass,

momentum and energy of the coarse level L flow field. In addition, the monotonicity

of the coarse level L flow field must be preserved at higher levels, in the presence of

rapidly changing flow gradients such as shock waves and thin shear layers, to satisfy

the TVD condition at all refined levels. The minmod-limited MUSCL procedure,

described in Sections 3.5.6 to 3.5.8, defines a one-dimensional variation in state

variables across each cell that is conservative and which preserves the monotonicity
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(i-2, j+1)

(i-2, j-1)

(i-1, j-2)(i-2, j-2)
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B1B2

C2

C1

D1 D2

Figure 3.13: Representation of the coarse level L grid used to initialise the fine
level L + 1 flow field. A1-D2: Difference in the state variables vector, between the
piece-wise linear variation at the corner of the neighbouring cells and the piece-wise
constant state in cell (i, j), Eqns 3.133-3.140.

of the piece-wise constant flow distribution. Directly applying this one-dimensional

MUSCL extrapolation procedure to two-dimensions, through simple linear addition

of the one-dimensional gradients, does not guarantee a monotone variation of the

interpolated flow field. Additional limiting of the state variables gradients is required

to ensure a conservative two-dimensional interpolation procedure, which preserves

monotonicity between AMR levels.

The two-dimensional AMR interpolation procedure used in this study defines

a flow field gradient across an arbitrary cell of index (i, j), by considering the

variation of the conservative variables across the four neighbouring cells: (i + 1, j),

(i − 1, j), (i, j + 1) and (i, j − 1). A diagrammatical representation of a section

of the coarse level L mesh, around the cell (i, j), is shown in Figure 3.13. The

two-dimensional interpolation procedure used in this study comprises of five main

stages. These stages are described, for an arbitrary level L cell of index (i, j), in
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the remainder of this section.

Stage 1: A one-dimensional linear distribution of the conservative variables across

each cell is initially estimated in the i and j directions using a form of the minmod-

limited MUSCL procedure described in Section 3.5.6. Consider a coarse level L cell

at (i, j). To ensure a monotone variation in the conservative variables across this

cell, a form of the MUSCL procedure is applied to cells (i, j), (i − 1, j), (i + 1, j),

(i, j − 1) and (i, j + 1). As a common method is used to calculate the change in

the state variables across these cells, a generalised cell index (n,m) can be defined

to condense the notation. The state variables variation in cell (n, m) is initially

computed as

∆U i
n,m =

αn,m

2

[
(1− η)∆Un− 1

2
,m + (1 + η)∆Un+ 1

2
,m

]
, (3.125)

∆U j
n,m =

αn,m

2

[
(1− η)∆Un,m− 1

2
+ (1 + η)∆Un,m+ 1

2

]
, (3.126)

where

∆Un− 1
2
,m = sign

(
∆Un− 1

2

)
·max

[
0, min

(
|∆Un− 1

2
|, ∆Un+ 1

2
· sign

(
∆Un− 1

2

))]
,

∆Un+ 1
2
,m = sign

(
∆Un+ 1

2

)
·max

[
0, min

(
|∆Un+ 1

2
|, ∆Un− 1

2
· sign

(
∆Un+ 1

2

))]
,

∆Un,m− 1
2

= sign
(
∆Um− 1

2

)
·max

[
0, min

(
|∆Um− 1

2
|, ∆Um+ 1

2
· sign

(
∆Um− 1

2

))]
,

∆Un,m+ 1
2

= sign
(
∆Um+ 1

2

)
·max

[
0, min

(
|∆Um+ 1

2
|, ∆Um− 1

2
· sign

(
∆Um+ 1

2

))]
.

(3.127)

The constant η is defined in Table 3.2. In this study, η = 1/3. The superscripts i and

j in Eqns. 3.125 and 3.126 denote variations in the i and j directions respectively.

The differences ∆Un− 1
2
, ∆Un+ 1

2
, ∆Um− 1

2
and ∆Um+ 1

2
are given by

∆Un− 1
2

= Un,m −Un−1,m, (3.128)

∆Un+ 1
2

= Un+1,m −Un,m, (3.129)
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∆Um− 1
2

= Un,m −Un,m−1, (3.130)

∆Um+ 1
2

= Un,m+1 −Un,m. (3.131)

The coefficient αn,m in Eqns. 3.125 and 3.126 ensures that the variation in Un,m

remains within the bounds of the piece-wise constant neighbouring cell states. The

coefficient αn,m is defined as

αn,m =
min

[
|∆U i

n,m|+ |∆U j
n,m|, 2|∆Un− 1

2
|, 2|∆Un+ 1

2
|, 2|∆Um− 1

2
|, 2|∆Um+ 1

2
|
]

(|∆U i
n,m|+ |∆U j

n,m|
) ,

(3.132)

where the differences ∆Un− 1
2
, ∆Un+ 1

2
, ∆Um− 1

2
and ∆Um+ 1

2
are defined in

Eqns. 3.128 - 3.131. ∆U i
n,m and ∆U j

n,m are given by Eqns. 3.125 and 3.126 from

an initial estimate of αn,m = 1.

∆U i
n,m and ∆U j

n,m are then updated before stage 2 using the value of αn,m

computed from Eqn. 3.132. αn,m is defined in the range 0 ≤ αn,m ≤ 1.

Stage 2: The variation of U in cell (i, j) is further restricted by the change in state

variables across each neighbouring cell. Given that a piece-wise linear variation is

imposed in each cell, the greatest departure from the volume averaged value occurs

at the vertices of each cell. Common vertices, between the subject cell (i, j) and

the neighbouring cells, are highlighted in Figure 3.13 by the labelled differences

A1 to D2. The variables A1 to D2 are formally defined as the difference in the

conservative state variables, between the piece-wise linear gradient at the vertex of

each neighbouring cell and the piece-wise constant state variables in cell (i, j). A1

to D2 are thus defined as

A1 = max

[
0,

(
U i+sign(∆U i

i,j),j −
1

2
sign

(
∆U i

i,j

)
∆U i

i+sign(∆U i
i,j),j

+

1

2
sign

(
∆U j

i,j

)
∆U j

i+sign(∆U i
i,j),j

−U i,j

)]
, (3.133)
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A2 = max

[
0,

(
U i+sign(∆U i

i,j),j −
1

2
sign

(
∆U i

i,j

)
∆U i

i+sign(∆U i
i,j),j

−
1

2
sign

(
∆U j

i,j

)
∆U j

i+sign(∆U i
i,j),j

−U i,j

)]
, (3.134)

B1 = max

[
0,

(
U i,j+sign(∆Uj

i,j)
+

1

2
sign

(
∆U i

i,j

)
∆U i

i,j+sign(∆Uj
i,j)
−

1

2
sign

(
∆U j

i,j

)
∆U j

i,j+sign(∆Uj
i,j)
−U i,j

)]
, (3.135)

B2 = max

[
0,

(
U i,j+sign(∆Uj

i,j)
− 1

2
sign

(
∆U i

i,j

)
∆U i

i,j+sign(∆Uj
i,j)
−

1

2
sign

(
∆U j

i,j

)
∆U j

i,j+sign(∆Uj
i,j)
−U i,j

)]
, (3.136)

C1 = min

[
0,

(
U i−sign(∆U i

i,j),j +
1

2
sign

(
∆U i

i,j

)
∆U i

i−sign(∆U i
i,j),j

−
1

2
sign

(
∆U j

i,j

)
∆U j

i−sign(∆U i
i,j),j

−U i,j

)]
, (3.137)

C2 = min

[
0,

(
U i−sign(∆U i

i,j),j +
1

2
sign

(
∆U i

i,j

)
∆U i

i−sign(∆U i
i,j),j

+

1

2
sign

(
∆U j

i,j

)
∆U j

i−sign(∆U i
i,j),j

−U i,j

)]
, (3.138)

D1 = min

[
0,

(
U i,j−sign(∆Uj

i,j)
− 1

2
sign

(
∆U i

i,j

)
∆U i

i,j−sign(∆Uj
i,j)

+

1

2
sign

(
∆U j

i,j

)
∆U j

i,j−sign(∆Uj
i,j)
−U i,j

)]
, (3.139)

D2 = min

[
0,

(
U i,j−sign(∆Uj

i,j)
+

1

2
sign

(
∆U i

i,j

)
∆U i

i,j−sign(∆Uj
i,j)

+

1

2
sign

(
∆U j

i,j

)
∆U j

i,j−sign(∆Uj
i,j)
−U i,j

)]
. (3.140)

U i,j is the volume averaged state variables vector in cell (i, j). U i−sign(∆U i
i,j),j,
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U i+sign(∆U i
i,j),j, U i,j−sign(∆Uj

i,j)
and U i,j+sign(∆Uj

i,j)
are the volume averaged state vari-

ables vectors in the neighbouring cells. The variation in the state variables in each

neighbouring cell is calculated from Eqns. 3.125 and 3.126.

Equations 3.133 to 3.140 define the difference between each interpolated neigh-

bouring cell vertex value and cell (i, j), independent of the rotational orientation

of the flow field gradient. A1, A2, B1 and B2 always have positive or zero values

and C1, C2, D1 and D2 are always negative or zero. The orientation of A1 to D2

in Figure 3.13 assumes positive gradients for the positive i and j directions. The

current two-dimensional interpolation scheme assumes that ‘sign(0)’ is positive.

This condition is satisfied in the Fortran 90 programming language used for the

current implementation.

Stage 3: Monotonicity is preserved by further limiting 1
2

(|∆U i
i,j|+ |∆U j

i,j|
)

using

the values of A1 to D2. This is achieved by introducing three new variables, O, P

and Q, defined as

O = min

[
A1, B1, −C1, −D1,

1

2

(|∆U i
i,j|+ |∆U j

i,j|
)]

, (3.141)

P = max [D2, −B2, min (sign (Ω) D2, Ω) ,−2O] , (3.142)

Q = min [A2, −C2, max (−sign (Ω) A2, Ω) , 2O] , (3.143)

where

Ω =
1

2

(|∆U i
i,j| − |∆U j

i,j|
)
. (3.144)

These values of ∆U i
i,j and ∆U j

i,j are computed from stage 1.

Stage 4: The values of O, P and Q are used to determine the final i and j variation

across cell (i, j), defined as ∆Ǔ
i

i,j and ∆Ǔ
j

i,j. These are given by

∆Ǔ
i

i,j = sign
(
∆U i

i,j

)
(O + W ) , (3.145)

∆Ǔ
j

i,j = sign
(
∆U j

i,j

)
(O −W ) , (3.146)
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where W is defined as

W =
(P + Q)

2
. (3.147)

Stage 5: The interpolated fine level state variables vector in each fine cell, overlying

the coarse cell (i, j), is finally calculated as

U if ,jf
= U ic,jc + ∆Ǔ

i

ic,jc

[(
if − 1

2

)
/rIf − 1

2

]
+ ∆Ǔ

j

ic,jc

[(
jf − 1

2

)
/rJf − 1

2

]
.

(3.148)

rIf and rJf are the increment in resolution between successive AMR levels in the

i and j directions respectively. In this study rIf = rJf . if and jf are indices for

the fine level L+1 cells that lie within each coarse level L cell. For each coarse level

L cell, 1 ≤ if ≤ rIf and 1 ≤ jf ≤ rJf . ic and jc are indices for the coarse level L

cell. ∆Ǔ
i

ic,jc
and ∆Ǔ

j

ic,jc
are the i and j directed variation in state variables across

the coarse cell (ic, jc), calculated from Eqns. 3.145 and 3.146. U ic,jc is the volume

averaged level L state variables vector for the coarse cell (ic, jc). Given that the

variation in the state variables across each cell is piece-wise linear, conservation is

maintained between levels in Eqn. 3.148.

To ensure monotonicity in cell (ic, jc) at level L is preserved, neighbouring

level L cells with ‘imposed’ level L+1 flow states (those carried over between

adaptions, Section 3.10.4) are taken into consideration. Consider the coarse grid

at level L in Figure 3.13. Values for A1 to D2 surrounding the cell (ic, jc) are

computed from stage 2. Now assume cell (ic + 1, jc) underlies a portion of the

level L+1 grid that is common between level L+1 adaptions. To maintain the

accuracy of the level L+1 flow field, the level L+1 flow states in these common

cells are simply copied between adaptions. To account for these ‘imposed’ states,

an additional stage is defined, between stages 2 and 3. In this sub-stage, the

value of A1 to D2 from stage 2 is replaced by the difference between the level L+1

cells overlying A1 to D2 and the volume averaged level L state variables in cell (ic, jc).
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The i and j gradients are further limited for neighbouring cells that have an odd

increase in resolution between AMR levels, and have ‘imposed’ level L + 1 states.

As a linear gradient is imposed in cell (ic, jc) at level L, the variation of the imposed

level L+1 flow states are accommodated by redefining ∆Ǔ
i

i,j and ∆Ǔ
j

i,j, from stage

4, as

∆Ǔ
i

i,j = sign
(
∆U i

i,j

) ·min (O + W, 2A3,−2C3) , (3.149)

∆Ǔ
j

i,j = sign
(
∆U j

i,j

) ·min (O −W, 2B3,−2D3) . (3.150)

A3, B3, C3 or D3 is the difference in state, between the imposed level L+1

cell at
[
ic + 1

2
sign

(
∆U i

ic,jc

)
, jc

]
,
[
ic, jc + 1

2
sign

(
∆U j

ic,jc

)]
,
[
ic − 1

2
sign

(
∆U i

ic,jc

)
, jc

]
,

[
ic, jc − 1

2
sign

(
∆U j

ic,jc

)]
respectively, and the volume averaged state variables in cell

(ic, jc). A3, B3, -C3 and -D3 are assumed positive for a monotonically varying flow

distribution. The location of the fine level L + 1 cells used to compute A3 to D3

are shown in Figure 3.14, for an increase in resolution of three between levels L and

L + 1. The orientation of A3 to D3 in Figure 3.14 assumes positive state variable

gradients in the positive i and j directions respectively.

In summary, the interpolation procedure described in this section ensures a mono-

tonic two-dimensional variation of the flow field. This is achieved by firstly ensuring

that the final gradient in the coarse grid cell (ic, jc), i.e., 1
2

[
|∆Ǔ

i

ic,jc
|+ |∆Ǔ

j

ic,jc
|
]
, is

less than or equal to the combined minmod limited i and j variation in each of the

neighbouring cells, along each common interface. This can be written mathemati-

cally as

1

2

[
|∆Ǔ

i

ic,jc
|+ |∆Ǔ

j

ic,jc
|
]
≤ max (Γ1, Γ2, Γ3, Γ4) ,

(3.151)

where

Γ1 = |U ic+1,jc −U ic,jc | −
1

2

(|∆U i
ic+1,jc

|+ |∆U j
ic+1,jc

|) , (3.152)

Γ2 = |U ic−1,jc −U ic,jc | −
1

2

(|∆U i
ic−1,jc

|+ |∆U j
ic−1,jc

|) , (3.153)
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Figure 3.14: Representation of the coarse level L grid used to initialise the fine
level L + 1 flow field. A3-D3: Difference in the piece-wise constant state variables,
between the imposed level L + 1 cells and cell (ic, jc) at level L. (—) Level L cell
boundary. (· · · ) Level L + 1 cell boundaries within one level L cell.
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Γ3 = |U ic,jc+1 −U ic,jc | −
1

2

(|∆U i
ic,jc+1|+ |∆U j

ic,jc+1|
)
, (3.154)

Γ4 = |U ic,jc−1 −U ic,jc | −
1

2

(|∆U i
ic,jc−1|+ |∆U j

ic,jc−1|
)
. (3.155)

Monotonicity is then guaranteed by ensuring that these combined minmod limited i

and j gradients are not exceeded after applying stages 1-5 at each of the neighbouring

coarse grid cells, (ic ± 1, jc) and (ic, jc ± 1). This can be written mathematically, for

an arbitrary cell (n,m) = (ic + 1, jc), (ic − 1, jc), (ic, jc + 1), (ic, jc − 1), as

1

2

[
|∆Ǔ

i

n,m|+ |∆Ǔ
j

n,m|
]
≤ 1

2

[|∆U i
n,m|+ |∆U j

n,m|
]
. (3.156)

Equations 3.151-3.156 ensure the preservation of a monotonically varying flow field

between successive levels.

3.10.4 Integrating the Flow Field

Following the initial creation of all AMR levels and the priming of each level with

an initial flow distribution, through the procedures described in Sections 3.10.2

and 3.10.3, the flow field at each level is advanced in time. Each level is time

marched using the baseline numerical method described in Sections 3.2 to 3.9.

The time step at each level is estimated by recursively dividing the level 0 time

step by the inter-level increment in resolution:

∆tL =
∆t0

(rtf )
L
. (3.157)

Where ∆t0 is the time step at level 0, ∆tL is the calculated time step at a general

level L and rtf is the increment in resolution between levels. rtf is defined constant

on all levels in the current implementation. To advance the flow field at a general

level L by one time step of the underlying level, rtf successive integrations are

performed. (rtf )
L successive integrations of level L are therefore required to satisfy

one time step of the baseline level 0 flow field.

Starting with level 0, one ∆tL time step at each level is initially performed. After

each integration, the ghost cells around the perimeter of each block are updated.
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This boundary update stage is important, as these external cells are used for inter-

polating state variables for the perimetrical ghost cells at higher levels. Strategies

for updating perimetrical ghost cells at each AMR level (L > 0) are detailed in Sec-

tion 3.10.5. After each level has progressed one ∆tL time step and the boundaries

have been updated, the most refined level (Lmax) is integrated in time a further

rtf − 1 times for temporal synchronisation with the underlying level. After this

synchronisation with level L, levels L + 1 to Lmax are adapted to ensure that flow

discontinuities remain within the refined meshes. The adaption process begins by

an area weighted projection of the state variables of each level onto the level below.

A conservation updating algorithm is then applied around the perimeter of the pro-

jected region. The back-projection and conservative updating procedure, which is

carried out in descending level of refinement starting with level Lmax, is detailed in

Section 3.10.6. Following the back-projection and conservation update, down to the

general level L, levels L+1 to Lmax are then redefined by the flagging and grouping

procedure outlined in Section 3.10.2. To ensure each level remains properly nested

within the bounds of its underlying level at t > 0, each level is flagged in descend-

ing order of refinement, starting with level Lmax−1. Following the flagging of levels

Lmax − 1 to L, the flagged cells are grouped into a series of contiguous blocks and

each newly created block is primed with an initial flow field distribution.

The priming of adapted regions at t > 0 is carried out by two main methods.

Those adapted regions at a common spatial location between adaptions are primed

by directly copying the volume averaged state variables from the coincident cells

stored before the adaption stage. Carrying over the state variables between adap-

tions maintains the solution accuracy in those commonly refined regions. Newly

refined regions are primed through interpolation from the underlying level, using

the conservative two-dimensional interpolation procedure outlined in Section 3.10.3.

Each refined level L > 0 is re-created and primed (rtf )
L−1 times for each level 0

time step.
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3.10.5 AMR Boundary Conditions

At tL > 0, three main types of AMR boundaries are defined, fine-fine boundaries,

fine-coarse boundaries and external boundaries.

Fine-fine boundaries are defined as those ghost cells that overlie interior cells of a

different block, at the same hierarchical level L. Boundaries of this type are treated

in the same manner as for the inter-domain boundary condition in Section 3.9.5. The

ghost cells are updated by directly copying the state variables from the coincident

interior cells.

Fine-coarse boundaries are defined as those ghost cells that only overlie interior

cells of the level below. To update ghost cells of this type, an interpolation of the

time synchronous volume averaged state variables in the interior cells of the level

below is required. After each temporal integration, however, two successive levels

may not be time synchronous. For example, after the first integration of all levels,

the flow field at a general level L + 1 is developed to a time of t0 + ∆t0

(rtf)
L+1 . The

underlying level (level L) is, however, at a time of t0 + ∆t0

(rtf)
L ≡ t0 +

rtf∆t0

(rtf)
L+1 . To

update the fine-coarse boundaries of level L+1, a linear interpolation in time of the

interior cell state variables of level L is performed. From this linear interpolation,

an estimation of the level L interior state variables at t0 + ∆t0

(rtf)
L+1 is obtained. The

fine-coarse ghost cells are then interpolated using the two-dimensional interpolation

method of Section 3.10.3. In addition, the ghost cells are updated after each Runge-

Kutta stage. The Runge-Kutta algorithm is described in Section 3.8. For the

current study, of second order temporal accuracy, the conservation equations are

integrated twice for each increment in time step. A linear interpolation in time

of the intermediate state variables, after each Runge-Kutta stage of level L, are

therefore used to interpolate values for the level L+1 ghost cells, between each level

L + 1 Runge-Kutta stage.

External boundaries are defined as those ghost cells that overlie ghost cells at

level 0. At the start of the computation, and at each successive adaption, any

external boundaries are primed by interpolating from the updated ghost cells of

the level below. Between adaptions, these external boundaries are updated after
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each integration using the appropriate boundary conditions defined in Section 3.9.

The interior variables required for these boundary conditions are provided by the

updated internal cells, on the same AMR level, adjacent to the external boundary.

3.10.6 The Conservative Fine-Coarse Solution Projection

After synchronising two or more levels to a common time, the updated fine level

solution is imposed onto the underlying coarse level through an area weighted back-

projection. The numerical procedure outlined in Sections 3.2 to 3.9 ensures the

flow field is conservative within each level. After the back-projection stage, con-

tiguous coarse cells with back-projected state variables should therefore remain con-

servative within the area defined by each fine block. Conservation is not however

maintained between successive levels. The back-projected region will therefore not

be conservative with the surrounding coarse grid, across the fine-coarse interface.

The flux imbalance that exists across the fine-coarse interface is remedied after the

back-projection stage by applying a conservation update to the coarse level cells,

which underlie the fine level ghost cells. Figure 3.15 shows a representation of a

fine-coarse boundary interface, between two successive levels. The area weighted

back-projection for cell (ic + 1, jc) in Figure 3.15 is defined as

U t
L,ic+1,jc

=
1

V t
L,ic+1,jc

rJf−1∑
m=0

rIf−1∑
n=0

U t
L+1,if+n,jf+mV t

L+1,if+n,jf+m, (3.158)

where V t
L+1,if+n,jf+m and U t

L+1,if+n,jf+m are the area and state variables matrix for

each fine level L + 1 cell at time t. V t
L,ic+1,jc

and U t
L,ic+1,jc

are the area and state

variables matrix for the cell (ic + 1, jc) at level L. (if , jf ) is the index of the level

L + 1 fine cell sharing the bottom left hand vertex with the level L cell (ic, jc).

The conservative update uses the flux crossing the fine-coarse interface at level

L and level L + 1 to evaluate the total mass, momentum and energy crossing the

interface over one coarse level time step ∆tL. The difference in total mass, mo-

mentum and energy crossing the fine-coarse interface at levels L and L + 1 is then

used to compensate each level L cell lying along the fine-coarse boundary interface.
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Fine grid (level L+1)Coarse grid (level L)
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(i , j )c c-1

(i , j )c c+1

(i , j )f f

(i , j )f f+1

(i , j )f f+1

(i , j )f f-1

Fine-coarse boundary interface

Figure 3.15: Diagrammatical representation of a fine-coarse boundary interface be-
tween level L and level L+1. (ic, jc) is the coarse level cell index. (if , jf ) is the fine
level cell index. (· · · ) Outline of the fine level ghost cells.
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The total mass, momentum and energy crossing the fine-coarse interface at level L,

between cells (ic, jc) and (ic + 1, jc), is:

(
U t

vol

)
L

= ∆tLF (U)t
L,ic+

1
2
,jc

At
L,ic+

1
2
,jc

. (3.159)

Where F (U)t
L,ic+

1
2
,jc

is the flux crossing the fine-coarse interface at level L.

At
L,ic+

1
2
,jc

is the length of the fine-coarse interface, between cells (ic, jc) and

(ic + 1, jc). The total mass, momentum and energy crossing an equivalent inter-

face length at level L + 1 is given by

(
U t

vol

)
L+1

=
∆tL
rtL+1

rtf∑
m=1

rJf−1∑
n=0

F (U)
(t−1)+m∆tL+1

L+1,if− 1
2
,jf+n

At
L+1,if− 1

2
,jf+n

. (3.160)

Therefore, the conservative update applied to cell (ic, jc) in Figure 3.15 is:

(
U t

)
L,ic,jc

=
(
U t

)
L,ic,jc

+

(
U t

vol

)
L
− (

U t
vol

)
L+1

V t
L,ic,jc

. (3.161)

Due to sign convention, the conservative update in Eqn. 3.161 is valid for western

facing fine-coarse interfaces only, as in Figure 3.15. For an eastern facing fine-coarse

interface, with the coarse cell (ic, jc) underlying the fine level ghost cells, Eqns. 3.159-

3.161 are redefined as:

(
U t

vol

)
L

= ∆tLF (U)t
L,ic− 1

2
,jc

At
L,ic− 1

2
,jc

, (3.162)

(
U t

vol

)
L+1

=
∆tL
rtL+1

rtf∑
m=1

rJf−1∑
n=0

F (U)
(t−1)+m∆tL+1

L+1,if+ 1
2
,jf+n

At
L+1,if+ 1

2
,jf+n

, (3.163)

(
U t

)
L,ic,jc

=
(
U t

)
L,ic,jc

−
(
U t

vol

)
L
− (

U t
vol

)
L+1

V t
L,ic,jc

. (3.164)

Similarly, for a southern facing fine-coarse interface, Eqns. 3.159-3.161 are redefined

as:

(
U t

vol

)
L

= ∆tLF (U)t
L,ic,jc+

1
2
At

L,ic,jc+
1
2
, (3.165)

(
U t

vol

)
L+1

=
∆tL
rtL+1

rtf∑
m=1

rIf−1∑
n=0

F (U)
(t−1)+m∆tL+1

L+1,if+n,jf− 1
2

At
L+1,if+n,jf− 1

2
, (3.166)

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 3.10: The Adaptive Mesh Refinement (AMR) Method 115

(
U t

)
L,ic,jc

=
(
U t

)
L,ic,jc

+

(
U t

vol

)
L
− (

U t
vol

)
L+1

V t
L,ic,jc

. (3.167)

Finally, for a northern facing fine-coarse interface, Eqns. 3.159-3.161 are redefined

as:

(
U t

vol

)
L

= ∆tLF (U)t
L,ic,jc− 1

2
At

L,ic,jc− 1
2
, (3.168)

(
U t

vol

)
L+1

=
∆tL
rtL+1

rtf∑
m=1

rIf−1∑
n=0

F (U)
(t−1)+m∆tL+1

L+1,if+n,jf+ 1
2

At
L+1,if+n,jf+ 1

2
, (3.169)

(
U t

)
L,ic,jc

=
(
U t

)
L,ic,jc

−
(
U t

vol

)
L
− (

U t
vol

)
L+1

V t
L,ic,jc

. (3.170)

With the AMR numerical procedure described in Sections 3.10.1 to 3.10.6, the pre-

dicted flow field at each level should be as accurate as a single level non-AMR pre-

diction, of equivalent spatial and temporal resolution. The accuracy of the current

AMR implementation is analysed through a series of test cases in Chapter 4.
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Chapter 4

AMR Method Validation

4.1 Introduction

Selected results from a structured validation program for the Adaptive Mesh Refine-

ment (AMR) numerical method are presented in this chapter. The AMR scheme

provides a computationally efficient method for locally increasing the resolution of

the numerical mesh in areas of large density gradient. In the current study, these re-

gions constitute flow features of direct interest. Predictions using the AMR method

should provide a close approximation to predictions that use a uniformly refined

single mesh, of equivalent spatial and temporal resolution. The results presented

in this chapter are therefore validated against available analytical or experimental

correlations, as well as predictions using a non-adapted uniformly refined mesh. The

latter is obtained from the baseline numerical procedure described in Sections 3.2

to 3.9.

4.2 One-Dimensional Shock Tube Problem

4.2.1 Test Case Description

The first AMR test case is an inviscid prediction of the one-dimensional flow in a

shock tube. The flow problem is diagrammatically represented in Figure 4.1. A

diaphragm initially separates air of different densities and pressures at rest in a

rigid walled tube, Figure 4.1(a). The initial fluid properties, to the left and right

of this diaphragm, are given in Table 4.1. These properties are denoted l and

r in Figure 4.1(a). After removing the diaphragm, a shock wave and a contact
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Rarefaction ShockContact

surface

p <pr l
rl

u =0r

pl
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rr<rl

x1

x2

wavewave

(a)

(b)

54321

Figure 4.1: Shock tube flow geometry. (a) Initial flow condition before removal of
the diaphragm. (b) Flow field at time t seconds after the diaphragm removal.

Variable Left Right
ρ/ρr 2.881 1.0
u1/ushock 0.0 0.0
p/pr 4.4 1.0

Table 4.1: Shock tube initial flow conditions

discontinuity travel from x1 = 0, through the low pressure fluid pr. A rarefaction

wave travels from x1 = 0, through the high pressure fluid pl. The instantaneous flow

field at t > 0 is divided into 5 separate regions. These are defined in Figure 4.1(b).

Regions 1 and 5 are undisturbed by the compression and rarefaction waves and

maintain the initial flow states to the left and right of the diaphragm, given in

Table 4.1. The flow properties in regions 1-5 at time t > 0 are given in Hixon (1999),

following the analytical solution development in Hirsch (1990). These flow properties

are listed in Table 4.2. The shock wave has a constant velocity of ushock = 1.486a∞.

The rarefaction wave leading and trailing edge velocities are ule = −1.297a∞ and

ute = −0.551a∞ respectively. These velocities highlight the increase in stream-wise

length of the rarefaction wave with time. The shock tube computational domain
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Variable Region 1 Region 2 Region 3 Region 4 Region 5
ρ/ρr 2.881 ρ∞γp2

ρr(u2−x1
t )

2 1.741 1.718 1.0

u1/ushock 0.0 2a∞
(γ+1)ushock

(
x1

t
+

√
γp1

ρ1

)
0.418 0.418 0.0

p/pr 4.4 ρ∞a2∞p1

pr

(
u2−x1

tq
γp1
ρ1

)( 2γ
γ−1)

2.174 2.174 1.0

Table 4.2: Analytical shock tube flow properties at t > 0.

extends −l/2 ≤ x1 ≤ l/2 in the stream-wise direction and 0 ≤ x2 ≤ l/8 in the cross-

stream direction, where l is the computational domain stream-wise length. The

diaphragm separating the initial left and right flow states is located at x1 = 0. The

periodic boundary condition described in Section 3.9.6 is imposed at x2 = 0 and

x2 = l/8. The extrapolated outlet condition described in Section 3.9.4 is imposed

at the flow normal boundaries, x1 = −l/2 and x1 = l/2.

Three separate shock tube predictions are presented in this section. The first

models the shock tube using one level of AMR refinement (level 1), in addition to

the uniform baseline grid (level 0). The second prediction models the shock tube

using two levels of AMR refinement (levels 1 and 2), in addition to the baseline

grid (level 0). These two predictions use an AMR scaling parameter of b = 0.02.

The third prediction highlights the importance of a suitable choice for this scaling

parameter. As in the first prediction, a baseline (level 0) grid is defined with one

additional level of AMR refinement (level 1). A scaling parameter of b = 0.05 is

defined for this prediction. A common level 0 grid of 125× 16 cells in the x1 and x2

directions is defined in all three predictions. Level 1 constitutes an increase in the

spatial resolution by a factor of two from the level 0 grid. A further increase in the

spatial resolution by a factor of two from level 1 defines level 2.

4.2.2 Results & Discussion

The flow field develops from the initial conditions listed in Table 4.1, at time t = 0, to

a time of t = 0.1906l/a∞ seconds. A constant time step of ∆t = 1.906 × 10−3l/a∞

seconds is used at level 0. This time step is reduced by a factor of two for each
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successive AMR level. Additional benchmarking of the level 1 and level 2 predictions

is achieved using non-refined predictions with 250 × 32 cells and 500 × 64 cells

respectively. These benchmark predictions use equivalent time steps to levels 1 and

2, i.e. ∆t = 9.53×10−4l/a∞ seconds and ∆t = 4.765×10−4l/a∞ seconds respectively.

The adapted AMR computational grids from the three cases at a time of t =

0.1906l/a∞ seconds are shown in Figure 4.2(a-c). The AMR scheme locally refines

the level 0 grid around the shock wave, the contact surface and the rarefaction wave.

Changing the scaling parameter from b = 0.02 to b = 0.05 results in an absence of

AMR refinement across the contact surface, Figure 4.2(c).

A cross-section of the flow field along x2 = l/16 from the first prediction, with

b = 0.02, is given in Figure 4.3(a-c). This figure shows the static density profile

(a), the static pressure profile (b) and the velocity profile (c). Two isolated frames

within this figure detail the shock wave (i) and the contact surface (ii) from the

density profile. The analytical solution is defined in this figure by a blue line;

the benchmark prediction is defined by a black line. The most refined level AMR

prediction is defined using square symbols.

A good correlation in the alignment of the shock wave, the contact discontinuity

and the rarefaction wave is evident between the AMR prediction, the benchmark

prediction and the analytical solution. Some numerical dissipation is evident in the

prediction of these features, identified by a finite spatial spread of the discontinuous

shock wave and contact surface over a number of cells, and by a rounding of the

rarefaction wave leading and trailing edges. No discernable differences are evident

between the AMR prediction and the non-refined benchmark prediction. The same

level of dissipation is evident at the shock wave, the contact surface and the rarefac-

tion wave in the two predictions, indicating the AMR scheme retains the dissipative

and dispersive properties of the original numerical scheme.

The effect of an additional level of mesh refinement is shown in Figure 4.4. Three

AMR levels (levels 0, 1 and 2) are specified, with a baseline (level 0) grid of 125×16

cells. The non-refined benchmark prediction is computed using a uniform compu-

tational grid of 500 × 64 cells. A decrease in the dissipation error is evident in
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Figure 4.3: Shock tube cross-section at t = 0.1906l/a∞ seconds, along x2 = l/16.
Two levels of multigrid refinement (levels 0 and 1). (a) Static density distribution,
ρr = 1.272ρ∞, (i) detail in the shock wave region, (ii) detail across the contact
surface. (b) Static pressure distribution, pr = 1.0ρ∞a2

∞. (c) Velocity distribution,
ushock = 1.486a∞. (—) Analytical solution. (—) Non refined benchmark prediction.
¤ AMR level 1 prediction, b = 0.02.
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Figure 4.4: Shock tube cross-section at t = 0.1906l/a∞ seconds, along x2 = l/16 with
three levels of multigrid refinement (levels 0, 1 and 2). (a) Static density distribution,
ρr = 1.272ρ∞, (i) detail in the shock wave region, (ii) detail across the contact
surface. (b) Static pressure distribution, pr = 1.0ρ∞a2

∞. (c) Velocity distribution,
ushock = 1.486a∞. (—) Analytical solution. (—) Non refined benchmark prediction.
¤ AMR level 2 prediction, b = 0.02.
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Figure 4.4, with respect to Figure 4.3. Accompanying the increase in the resolution

of the flow features is an associated decrease in the width of refined grid required

to cover each feature. This is evident in Figure 4.2 as a reduction in the number of

cells required at level 1 in Figure 4.2(b). The predicted flow features are again well

placed, and the magnitude of the shock wave, contact surface and rarefaction wave

show a close agreement with the analytical solution. The agreement between the

AMR prediction and the benchmark prediction is good, indicating no discernable

deterioration of the prediction occurs from using the AMR method in this case.

The AMR method demonstrates a significant increase in computational speed

over the non-refined benchmark prediction. The difference in computational time

required to advance the flow field from the starting conditions (t=0) to the flow field

in Figure 4.3, between the two levels AMR prediction and the non-AMR benchmark

prediction, is 51.9%. This decrease in computational time from the use of the AMR

method is further indicated in the second prediction. The decrease in computa-

tional time required to compute the three levels AMR prediction, with respect to

the non-AMR benchmark prediction, is 88.3%. These predictions demonstrate the

advantages that can be gained through localised grid refinement using the AMR

method.

The influence of the AMR scaling parameter b on the prediction accuracy and

efficiency is shown in Figure 4.5. A baseline grid of 125 × 16 cells with two AMR

levels of refinement (levels 0 and 1) is compared against the non-refined benchmark

prediction of 250× 32 cells, and against the analytical solution. For this prediction,

the AMR scaling parameter is changed from b = 0.02 to b = 0.05. Increasing

this parameter asserts that a greater density gradient between two adjacent cells

is required before the region is refined. The result of this change is evident by

comparing Figure 4.2(a) with Figure 4.2(c), and by comparing Figure 4.3(a) with

Figure 4.5. In addition to the absence of any grid refinement around the contact

surface, fewer level 1 cells are defined around the shock wave and the rarefaction

wave in the b = 0.05 prediction. This results in less of the shock wave and rarefaction

wave being covered by the refined grid in Figure 4.5. Further significant increases
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Figure 4.5: Shock tube cross-section at t = 0.1906l/a∞ seconds, along x2 = l/16,
with two levels of AMR refinement. Static density, ρr = 1.272ρ∞. (—) Analytical
solution. (—) Non-refined benchmark prediction. ¤ AMR level 1 prediction, b =
0.05.

in b may result in problems of preserving monotonicity across the fine-coarse level

boundaries, due to the higher variable gradients in this region.

Increasing b from b = 0.02 to b = 0.05 gives a further reduction of 13% in the time

required to compute the shock tube prediction in Figure 4.5. This case highlights

the inherent conflict in choosing the AMR scaling parameter b, between ensuring

an accurate, well resolved flow field prediction and the efficient utilisation of the

available computational resources.

Overall, an engineering accurate prediction is achieved in the one-dimensional

shock tube problem from the application of the AMR method. No significant dete-

rioration of the prediction is evident with respect to the non-refined benchmark pre-

diction, indicating that the numerical characteristics of the original baseline scheme

are preserved.
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4.3 Two-Dimensional Acoustic Pulse Problem

4.3.1 Test Case Description

The second AMR test case is a two-dimensional acoustic pulse, which propagates

outwards from the centre of the domain. This test case is chosen to highlight some

inherent limitations in the monotonicity preserving interpolation method used to

initialise the flow field at each AMR level. The computational domain, with an

initial Gaussian distribution, is represented diagrammatically in Figure 4.6(a-b).

The computational domain is of square topology with length l. The origin, as

indicated in Figure 4.6(a), is located at the centre of the computational domain.

The computational domain is therefore defined over the region −l/2 ≤ x1 ≤ l/2

and −l/2 ≤ x2 ≤ l/2. An extrapolated pressure boundary condition, described in

Section 3.9.4, is defined at the boundaries b1− b4. Ambient conditions are defined

at time t = 0. Imposed onto these ambient conditions is a two dimensional Gaussian

distribution, centred at x1 = x2 = 0. The initial static pressure and density fields

are defined by

p/ρ∞a2
∞ = 1.0 + 0.01 exp

(
− (ln 2)

(
(200x1/l)

2 + (200x2/l)
2

9

))
(4.1)

ρ/ρ∞ = 1.0 +
0.01

γ
exp

(
− (ln 2)

(
(200x1/l)

2 + (200x2/l)
2

9

))
(4.2)

where γ = 1.4 is the specific heat ratio. A cross-section of the initial Gaussian

density distribution is shown diagrammatically in Figure 4.6(b). The computational

domain is truncated in this figure to −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ l/2, to show half

of the Gaussian pulse. From the initial conditions, the flow field is time marched

to t = 30l/118a∞ seconds. The acoustic pulse at time t > 0 seconds is shown

diagrammatically in Figure 4.7(a-b). The computational domain is again truncated

in Figure 4.7(b) to −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ l/2 to show a cross-section of the

propagating acoustic pulse, along x2 = 0. An analytical solution to the acoustic

pulse flow field at t > 0 is available, based on the linear form of the Euler equations,
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Figure 4.6: Acoustic pulse geometry. (a) Plan view of the computational domain.
(b) Representation of initial Gaussian distribution in cross-section along x2 = 0.
The extent of the flow domain shown in (b) is −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ l/2.
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Figure 4.7: Acoustic pulse geometry. (a) Plan view of the computational domain.
(b) Representation of propagating acoustic pulse in cross-section along x2 = 0. The
extent of the flow domain shown in (b) is −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ l/2.
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in Tam & Webb (1993). The analytical solution used in the present study is

p/ρ∞a2
∞ = 1.0 +

0.01

2α1

∞∫

0

e
− ξ2

4α1 cos (ξt) J0 (ξη) ξdξ (4.3)

ρ/ρ∞ = 1.0 +
0.01

2α1γ

∞∫

0

e
− ξ2

4α1 cos (ξt) J0 (ξη) ξdξ (4.4)

u1/a∞ =
2x1/l

2α1η

∞∫

0

e
− ξ2

4α1 sin (ξt) J1 (ξη) ξdξ (4.5)

u2/a∞ =
2x2/l

2α1η

∞∫

0

e
− ξ2

4α1 sin (ξt) J1 (ξη) ξdξ (4.6)

where η =
√[

(200x1/l)
2 + (200x2/l)

2]. J0 and J1 are Bessel functions of zeroth

order and first order respectively. α1 is related to the half-width of the Gaussian

pulse b1 by the relationship, α1 = ln (2/b2
1). A Gaussian pressure pulse half-width

of b1 = 3.0 is used in Tam & Webb (1993) and in the present study. γ = 1.4 is the

specific heat ratio.

The present test case is based on, but differs from, problem 1 (Category 3) in

the first CAA Workshop on benchmark problems by Tam & Webb (1993) in three

main respects. Firstly, only the acoustic pulse is considered, specified at the centre

of the computational domain. The entropy and vorticity pulses, present in Tam &

Webb (1993), are therefore eliminated in the current test case. Secondly, no free

stream velocity is specified. The initial Gaussian pulse is therefore specified in a

quiescent fluid. Thirdly, no interaction of the acoustic pulse with the computational

domain boundaries occurs. This prevents numerical wave reflections from compli-

cating the prediction. The analytical solution given by Eqns. 4.3-4.6 is accordingly

altered from the analytical solution given in Tam & Webb (1993).

A rectangular baseline (level 0) grid of 101×101 cells discretises the computational

domain. A constant time step of ∆t = 3l/708a∞ seconds is used to advance the flow

prediction on the baseline grid. Two separate AMR models of the acoustic pulse

test case are discussed in this section. Starting from the baseline (level 0) grid of
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101 × 101 cells, one additional AMR level (level 1) is defined in the first model.

This is compared in the second model with three AMR levels (levels 0, 1 and 2),

from a 101× 101 cells level 0 mesh. A refinement ratio of three is defined between

successive AMR levels. Each level 0 cell is therefore divided into nine cells at level 1

and eighty-one cells at level 2. An odd number is chosen for the refinement ratio in

order to resolve the Gaussian distribution peak at the computational domain centre

on all refined levels.

In addition to the analytical solution, the prediction from each AMR model is

compared against a benchmark non-refined prediction from a model of equivalent

resolution to the most refined AMR level. The level 1 prediction is compared against

a single mesh benchmark prediction with 303 × 303 cells. The time step used to

develop this benchmark prediction is ∆t = 3l/2124a∞ seconds. The second model

level 2 prediction is compared against a non-refined benchmark prediction of 909×
909 cells, developed in constant time steps of ∆t = 3l/6372a∞ seconds.

4.3.2 Results & Discussion

A preliminary assessment of grid dependency in the benchmark numerical scheme

is given in Figure 4.8. This shows a cross-section of the acoustic pulse density field,

along x2 = 0. The symmetry of the acoustic pulse about x1 = 0 allows half of

the acoustic pulse, between x1 = −l/2 and x1 = 0, to be omitted from these figures

without loss of information. For reference, the analytical solution given by Eqns. 4.3-

4.6 is also shown. A significant level of dissipation error is evident from the lower

amplitude of the 101 × 101 prediction, with respect to the analytical solution. A

significant level of dispersion error is also noted in the spatial location of the density

field extrema. As the resolution of the grid is increased, the level of dissipation

and dispersion decreases. Even with a 909 × 909 grid, however, amplitude and

phase differences between the prediction and the analytical solution are still evident.

Differences, between the analytical solution and the prediction, may always remain

due to the use of the non-linear form of the Euler equations, Eqns. 3.10-3.12, in the

current predictions. The dependency of the developing prediction on the local flow
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Figure 4.8: Acoustic pulse grid sensitivity comparison for the non-AMR baseline
scheme. Cross-section of the acoustic pulse along x2 = 0. (—) Analytical solution
based on the linearised Euler equations. Predictions using (- - -) 101× 101 cells,
(− · −) 303× 303 cells, (· · −) 505× 505 cells, (· · ·) 707× 707 cells, (—) 909× 909
cells.
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Figure 4.9: Root Mean Square (RMS) error profiles. (—) RMS error between
an AMR level 1 prediction (b = 0.05) and a non-refined benchmark prediction.
(−2−) RMS error between a non-adaptive (b = 0) AMR level 1 prediction and the
benchmark prediction (identical alignment with 4 symbols). (−4−) RMS error
between the benchmark prediction and a non-AMR prediction with the initial b = 0
AMR flow field imposed at t = 0. (—) Representation of the density profile along
x2 = 0, used for RMS error placement.

velocity is not reflected in the analytical solution, which is based on the linearised

Euler equations. These differences are, however, considered to be less than those

indicated between the 909×909 case and the analytical solution, indicating a level of

grid sensitivity remains. The AMR predictions in this section are therefore primarily

compared against the non-refined benchmark predictions. As the refined AMR levels

should maintain the accuracy of an equivalently resolved single level prediction, this

remains a satisfactory term of comparison.

An AMR prediction of the acoustic pulse with 2 levels of refinement (levels 0 and

1), from a level 0 mesh of 101×101 cells, is compared with a non-refined prediction of

303× 303 cells in Figure 4.9. The Root Mean Square (RMS) difference between the
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adapted AMR level 1 prediction and the non-refined benchmark prediction, at t =

30l/118a∞, is represented by a solid black line. This extends over the range −0.19l ≤
x1 ≤ 0.19l as the AMR scheme refines only regions of significant density gradient.

The remaining flow field is developed on the coarse level 0 grid. A diagrammatical

representation of the density distribution along x2 = 0 is shown as a solid gray line.

This is defined for placement of the RMS error profiles along the acoustic pulse

cross-section. RMS error maxima occur at the centre of the computational domain

(−0.01l ≤ x1 ≤ 0.01l) and at the density perturbation peak, x1 = ±0.163l. As the

peak RMS error in Figure 4.9 is several orders of magnitude greater than the current

level of machine zero (10−16), two further predictions are defined to source the origin

of this error. The first, a two level AMR prediction (levels 0 and 1) with a global

b = 0 refinement of level 1, is represented in Figure 4.9 by a dashed line with solid

square symbols. The second, a non-AMR single level benchmark prediction with

303× 303 cells, has the initial interpolated level 1 flow distribution imposed at the

start of the computation. This is represented in Figure 4.9 by a dashed line with

hollow triangular symbols. An exact overlap of these RMS error profiles occurs,

indicating the source of the error as the initial interpolation of the level 1 flow field

at t = 0.

The close match among all RMS errors in Figure 4.9 indicates that, although slight

differences occur due to the refined grid adaption, these errors represent relatively

minor sources of error. This secondary error is caused by the flow field interpolation

from level 0 to level 1 in the newly refined regions around the outer edges of the

acoustic pulse.

The primary source of error in the AMR prediction, the initial flow field interpo-

lation at level 1, is analysed using the initial Gaussian distribution along x2 = 0 at

t = 0. This is given in Figure 4.10. The initial Gaussian distribution is interpolated

at level 1 from the baseline (level 0) grid using a two-dimensional interpolation algo-

rithm, with a second order formal accuracy. The level 1 density distribution along

x2 = 0 is defined in Figure 4.10 by a solid line with square symbols. A non-refined

reference distribution with 303×303 cells, initialised by the analytical Gaussian dis-
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Figure 4.10: Comparison between the AMR and the non-AMR initial Gaussian
distribution. Density field cross-section at x2 = 0 (t = 0). (−2−) Initial AMR
density distribution at level 1, interpolated from the level 0 (101× 101) density
field. (− ¦ −) Non-refined 303× 303 density field cross-section.
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tribution of Eqns. 4.1-4.2, is represented by a dashed line with hollow diamond shape

symbols. Each symbol along the density distributions in Figure 4.10 represents the

density in one computational cell. The symbols on level 1 of the interpolated AMR

prediction form groups of three across the Gaussian pulse. Each group of three

symbols represents the refinement of a coarse level 0 cell. The centre symbol in each

group of three is observed to precisely overlap a symbol on the non-refined bench-

mark prediction, for example at (i), (ii) and (iii) in Figure 4.10. This overlap occurs

as a result of the interpolation procedure. The interpolation procedure defines a

flow field gradient across each coarse cell. Fine cells that overlie the centre of the

coarse cell are initialised with a direct copy of the coarse cell conservative variables

vector. These cells are therefore indirectly initialised using the analytical Gaussian

distribution of Eqns. 4.1 and 4.2. The variable state gradient in each coarse cell is

limited using the minmod flux limiter described in Section 3.5.8. This flux limiting

stage is an essential stage in the interpolation procedure, in order to maintain the

monotonicity of the level 0 flow field at all refined levels. The application of the

minmod flux limiter, however, results in a departure of the interpolated level 1 flow

field from the initial reference flow field, as observed in Figure 4.10. The influence of

the minmod limiter is further evident at x1 = 0, where it results in a zero gradient

interpolation at (ii). This zero density gradient replaces the density gradients, with

opposing sign, defined between (i) and (ii) and between (iii) and (ii) in the level 0

profile.

The shape of the error waveform, defined by subtracting one density profile in

Figure 4.10 from the other, is a wave centred at zero with alternate positive and

negative peaks. A Fourier analysis of this short wavelength ‘sawtooth’ type waveform

yields the wavenumber distribution in Figure 4.11. The short wavelength ‘sawtooth’

waveform has a wavenumber distribution dominated by high wavenumber contri-

butions. Two dominant peaks are evident in Figure 4.11, at k∗∆x1 = 0.597π and

k∗∆x1 = 0.748π. A small, low wavenumber peak is also located at k∗∆x1 = 0.203π.

The amplitude of this peak is however less than 1% of the amplitude of the two

high wavenumber peaks. Relating this wavenumber distribution to the dispersion
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Figure 4.11: Wavenumber distribution of the difference in the initial density profile,
along x2 = 0, between an AMR level 1 prediction and an equivalent non-AMR
benchmark prediction with 303× 303 cells.
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characteristics of the second order asymmetric stencil method used in this study

highlights the transport characteristics of the numerical error. The group velocity

for dispersive waves in the current numerical method will be zero at some wavenum-

ber close to k∗∆x1 = π/2. This provides a possible explanation for the RMS error

peak observed in Figure 4.9 at −0.01l ≤ x1 ≤ 0.01l. The high proportion of high

wavenumber error indicates that the majority of the initial interpolation error may

travel with a range of negative velocities, i.e. in a direction opposing the acoustic

pulse propagation direction. The broad-band spread observed at high wavenumbers

explains the large spatial spread in the RMS error profile of Figure 4.9.

To confirm the initial interpolation error as the primary cause of the RMS error

in Figure 4.9 and to assess the error transport characteristics, the interpolation er-

ror is time marched in isolation to the acoustic pulse on a non-refined 303 × 303

grid. The resulting error at t = 30l/118a∞ seconds is shown in cross-section along

x2 = 0 in Figure 4.12. This is represented in Figure 4.12 using a solid black line

with square shaped symbols. The RMS error profile for the non-adapted level 1

prediction, previously shown in Figure 4.9, is repeated for reference. The similarity

of the two profiles is strong. The RMS peak at the centre, caused by the stationary

wave component, and the peak around x1 = ±0.163l are common to both RMS error

profiles. These results confirm the initial interpolation error as the major source of

additional error in the AMR prediction, and substantiate the dispersion characteris-

tics previously described. Differences between the two predictions in Figure 4.12 are

expected as the interpolation error travels as a superposition of the acoustic pulse

in the former prediction.

The application of the minmod flux limiter in the interpolation procedure as

a source of error in the AMR method has not, to the authors knowledge, been

previously documented in the available published literature. The analysis in this

section therefore represents an original contribution to the future development of

AMR methods of the present type. Potential remedies to the problems high-

lighted in this section, through low-pass filtering of the interpolated initial solu-

tion, are complicated by the presence of additional low wavenumber components
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Figure 4.12: Comparison of the RMS error at t = 30l/118a∞ seconds, between
the isolated initial error distribution and a globally refined level 1 AMR prediction,
along x2 = 0. (—) Representation of the density profile along x2 = 0, used for RMS
error placement. (−2−) RMS error of the time evolved AMR level 1 interpolation
error distribution, developed in isolation to the acoustic pulse. (−4−) RMS error
in the non-adaptive, globally refined AMR level 1 prediction (b = 0).
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Figure 4.13: Wavenumber distribution of the difference in the initial density profile,
along constant lines of x2 in the range −0.05l ≤ x2 ≤ 0.05l, between an AMR
level 1 prediction and an equivalent non-AMR prediction with 303 × 303 cells.
(—) Wavenumber distribution along x2 = 0, highlighted for reference with Fig-
ure. 4.11

in the two-dimensional Gaussian pulse error distribution. These low wavenumber

components are evident by collectively plotting the wavenumber distributions of the

initial interpolation error, along cell rows of constant x2, over the initial distribu-

tion. This is given in Figure 4.13, which is a plot of the Power spectral Density

(PSD) against wavenumber along each cell row in the range −0.05l ≤ x2 ≤ 0.05l.

For reference with Figure 4.11, the wavenumber distribution of the interpolation

error at x2 = 0 is highlighted by a red line. The red line shows the two high

wavenumber peaks, at k∗∆x1 = 0.597π and k∗∆x1 = 0.748π, identified in Fig-

ure 4.11. These high wavenumber peaks extend in the x2 direction, covering the

range −2.67 × 10−2l ≤ x2 ≤ 2.67 × 10−2l. Each line parallel to the wavenumber

axis represents a row of cells with constant x2. Additional low wavenumber peaks
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are defined at x2 = ±6.67 × 10−3l, x2 = ±1.67 × 10−2l, x2 = ±2.33 × 10−2l and

x2 = ±3.33 × 10−2l. No significant low wavenumber contribution is evident at

x2 = 0, x2 = ±1.0× 10−2l, x2 = ±2.0× 10−2l and x2 = ±3.0× 10−2l.

The low wavenumber distribution may be explained by analysing the difference

in density between the interpolated level 1 distribution and the equivalent non-

refined distribution, over the interval 6.67 × 10−3l ≤ x2 ≤ 1.33 × 10−2l. This is

given in Figure 4.14. The three density profiles refer to three adjacent rows of

computational cells, whose combined x2 extent cover one level 0 row of cells. The

centre of this level 0 cell row lies at x2 = 1.0× 10−2l. The fine level 1 density profile

at this x2 location is shown in Figure 4.14(b). Figures 4.14(a,c) therefore represent

level 1 cells which lie off-centre in the x2 direction, with respect to the underlying

level 0 cell centreline. The density profile in Figure 4.14(b), which crosses the

underlying cell centres, has a similar profile to Figure 4.10. The square symbols,

which each represent one level 1 cell in the x1 direction, are grouped into three.

The centre symbol overlies the non-refined benchmark prediction. The two outer

symbols in each group of three symbols have a density magnitude respectively greater

than, and less than the non-refined benchmark profile. The difference in density

between the two profiles in Figure 4.14(b) produces the familiar short wavelength

‘sawtooth’ type error waveform. This waveform leads to a similar wavenumber

spectrum as Figure 4.11, which is dominated by high wavenumber contributions.

The interpolated density profiles in Figures 4.14(a,c), however, lack the same overlap

in density with the non-refined profile evident in Figure 4.14(b) at the centre of

each group of three symbols. The resulting difference in density, between the level

1 prediction and the non-refined benchmark prediction, produces a waveform with

larger amplitude peaks and a greater proportion of low wavenumber components.

This explains the repeating pattern in Figure 4.13, of a negligible low wavenumber

contribution in every third row of cells (with constant x2) interleaved by two rows

with significant low wavenumber contributions.

The interpolation error is compounded as the number of refined levels increase. In

a further test case, an additional level of refinement is added. Three levels of AMR
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Figure 4.14: Comparison between the AMR and non-AMR initial Gaussian distri-
bution (t = 0). (−2−) Initial AMR density distribution at level 1, interpolated
from the level 0 (101× 101) density field. (− ¦ −) Non-AMR 303× 303 benchmark
prediction. (a) Density field cross-section at x2 = 6.67 × 10−3l. (b) Density field
cross-section at x2 = 1.0×10−2l. (c) Density field cross section at x2 = 1.33×10−2l.
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Figure 4.15: Comparison between the AMR and the non-AMR initial Gaussian
distribution. Density field cross-section at x2 = 0 (t = 0). (−2−) Initial AMR
density distribution at level 2, interpolated from the level 1 (303× 303) density
field. (− ¦ −) Non-refined 909× 909 benchmark prediction.

refinement (levels 0, 1 and 2) are defined from a level 0 grid of 101× 101 cells. The

most refined level (level 2) has an equivalent spatial resolution to a non-refined grid

of 909×909 cells. A comparison of the initial density cross-section at x2 = 0, between

the AMR level 2 prediction and the non-refined benchmark prediction, is given in

Figure 4.15. The level 2 flow field is initialised through interpolation of the level 1

flow field, given in Figure 4.10. Each symbol represents the density in a single cell

along x2 = 0. The interpolated level 2 profile is similar in form to the level 1 profile

of Figure 4.10. The minmod limiting stage is responsible for producing the lines of

constant gradient in the level 1 interpolation. Interpolation from the level 1 flow

field to level 2 simply follows the lines of constant gradient at level 1. An associated

increase occurs in the number of level 2 cells that lie between points of overlap with

the non-refined predictions. In the level 1 prediction, two cells lie between points of

overlap. At level 2, this is increased to eight cells. A Fourier analysis on the difference

in density between the two profiles demonstrates an associated increase in the low
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Figure 4.16: Wavenumber distribution of the difference in the initial density profile,
along x2 = 0, between an AMR level 2 prediction and an equivalent non-AMR
prediction with 909× 909 cells.

wavenumber contributions, as shown in Figure 4.16. A repeating pattern of double

peaks, spread over a large range of wavenumbers, characterises this wavenumber

distribution. The largest amplitude peaks in Figure 4.16 are now associated with

wavenumbers below k∗∆x1 = 0.3π. Specifically, k∗∆x1 = 0.2π and k∗∆x1 = 0.25π.

The maximum wavenumber contribution between k∗∆x1 = 0.5π and k∗∆x1 = 0.9π,

which represents the region of dominant contribution in Figure 4.11, is less than

15.6% of the Power Spectral Density at k∗∆x1 = 0.2π in Figure 4.16. This further

complicates any potential remedies through low-pass filtering. The trend towards

a greater spread in wavenumber, and an increased amplitude, of the interpolation

error as further levels of refinement are added is expected to continue for additional

levels of refinement, i.e. for four and five levels of AMR refinement.

The inclusion of the minmod limiting stage in the interpolation procedure reduces

the AMR prediction accuracy to below machine accuracy (10−16), with respect to
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Figure 4.17: Root Mean Square (RMS) difference between three AMR predictions
and a non-AMR, single level prediction of equivalent spatial and temporal resolution
to level 1. Comparison of the AMR scaling parameter, b. (—) Representation of
density profile along x2 = 0, used for RMS error placement. (−4−) RMS error in
a non-adaptive AMR level 1 prediction, along x2 = 0, b = 0. (−2−) RMS error in
an AMR level 1 prediction along x2 = 0, b = 0.02. (− ¦ −) RMS error in an AMR
level 1 prediction along x2 = 0, b = 0.05. (− ◦ −) RMS error in an AMR level 1
prediction along x2 = 0, b = 0.10.

an equivalent single level prediction. The current interpolation procedure does,

however, preserve the conservation and monotonicity of the baseline level 0 flow

field at all refined levels.

The influence of the AMR scaling parameter, b, on the transported interpolation

error is quantified in Figure 4.17. The level 1 density field from four separate AMR

predictions are compared with a non-AMR benchmark prediction with 303 × 303

cells. The AMR scaling parameter is incrementally increased between the first three

predictions, from b = 0.02 to b = 0.10. In addition, the non-adapted AMR predic-

tion (b = 0) shown in Figure 4.9 is repeated for reference. Also given is a spatial

representation of the acoustic pulse density perturbation, to discuss the RMS error

in the context of the time accurate acoustic pulse. Recall that the flow is symmetric
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about x1 = 0. All predictions show a common level of RMS error, within a spread

of 1%, over the range −0.137l ≤ x1 ≤ 0.137l. Between x1 = ±0.137l and the edge of

the refined region, a deviation of the adaptively refined AMR predictions from the

non-adaptively refined AMR prediction is observed, which increases with the AMR

scaling parameter b. The RMS error in the adaptively refined AMR predictions, with

b = 0.02 and b = 0.05, continue to follow the general alignment of the non-adaptive

(b = 0) AMR prediction. The adaptively refined prediction, with b = 0.02 remains

within 12% of the non-adaptive reference prediction, over the extent of level 1. As

the AMR scaling parameter is increased to b = 0.05, a larger deviation is noted.

Specifically, the adaptively refined AMR prediction remains within 25% of the non-

adaptive AMR prediction throughout the extent of level 1. The deterioration in

the adaptive AMR prediction increases significantly between b = 0.05 and b = 0.10,

as the outer edge of level 1 falls into regions of higher density gradient. Further

increases in the AMR scaling parameter results in a level 1 grid defined as a ‘ring’

covering only the large gradient density perturbation. As with the shock tube test

case, a comprise is therefore sought in the choice of the AMR scaling parameter,

between maintaining a satisfactory level of accuracy and reducing the computational

effort.

4.4 Turbulent Boundary Layer - Zero Pressure Gradient

4.4.1 Test Case Description

The third AMR test case documented in this chapter is the development of a turbu-

lent compressible boundary layer under a zero stream-wise pressure gradient. This

test case is used to verify the AMR method, applied to the short-time averaged

Navier-Stokes equations with the k − ω turbulence model. This test case models

the turbulent M∞ = 2.5 boundary layer development under a zero pressure gradient

in Mabey & Sawyer (1976). Boundary layer profile measurements are tabulated in

Mabey & Sawyer (1976) at a number of stream-wise locations, downstream of the

leading edge. For the purposes of the present test case, two stream-wise locations
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Figure 4.18: Turbulent boundary layer computational domain.

are considered. These locations are x1 = 0.368m (profile 43) and x1 = 0.623m

(profile 58) from the leading edge. An estimation of the boundary layer profile at

x1 = 0.368m is imposed at the computational domain inlet boundary. The boundary

layer develops from this profile over a distance of ∆x1 = 0.255m in the stream-wise

direction. The predicted boundary layer profile at x1 = 0.623m is then compared

against the measured profile, of corresponding stream-wise location, in Mabey &

Sawyer (1976).

A diagrammatical representation of the computational domain is shown in Fig-

ure 4.18. The computational domain extends 0.3m in the stream-wise direction and

0.02m in the cross-stream direction. The inlet profile imposed at b1 is estimated

in a separate computation, in which a turbulent boundary layer is developed from

a laminar Blasius profile using the ‘numerical roughness strip’ method described in

Wilcox (2002). This method involves locally specifying a surface value for ω in or-

der to simulate a rough wall condition over a predefined stream-wise surface length.

In the current prediction, the roughness height specified is based on the height of

the ‘ballotini’ used by Mabey & Sawyer (1976) to fix the boundary layer transition

location in the experiment. A detailed introduction to using the numerical rough-

ness strip method to develop a numerical turbulent boundary layer profile is given

in Wilcox (2002). The resulting boundary layer profile at x1 = 0.368m from the
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Figure 4.19: Comparison of the predicted boundary layer profile at 0.368m, against
profile 43 from Mabey & Sawyer (1976). (—) Numerical prediction. 2 Measure-
ments of Mabey & Sawyer (1976).

leading edge is compared against the measurements of Mabey & Sawyer (1976) in

Figure 4.19. A good overall estimation of the boundary layer is observed. The

integral parameters from the measured and predicted boundary layer profiles, at a

stream-wise location of x1 = 0.368m from the leading edge, are compared in Ta-

ble 4.3. A satisfactory overall agreement of the integral parameters from the current

prediction and the measurements of Mabey & Sawyer (1976) is observed. Specifi-

cally, the predicted parameters fall within 2.6% of the measured values.

For reference, the dimensionless specific turbulence kinetic energy k profile at

x1 = 0.368m is given in Figure 4.20. k, in Figure 4.20, is normalised using the

square of the free stream velocity u1∞. The predicted specific turbulence kinetic

energy dissipation rate ω profile at x1 = 0.368m is given in Figure 4.21. ω, in

Figure 4.21, is normalised using the flat plate total length L = 1.6m and the free
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Figure 4.20: Dimensionless specific turbulence kinetic energy k prediction at x1 =
0.368m (profile 43 in Mabey & Sawyer (1976)). k is normalised using the free stream
velocity u1∞.

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 4.4: Turbulent Boundary Layer - Zero Pressure Gradient 148

10-1

100

101

102

103

104

y+

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ωL/u     (10 )1

6

Figure 4.21: Specific turbulence kinetic energy dissipation rate ω prediction at x1 =
0.368m (profile 43 in Mabey & Sawyer (1976)). ω is normalised using the flat plate
length L = 1.6m, and the free stream velocity u1∞.
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Result δ1 (m) δ2 (m) Reδ2

Mabey & Sawyer (1976) 1.96× 10−3 5.0× 10−4 5.97× 103

Prediction 2.01× 10−3 4.97× 10−4 5.92× 103

Table 4.3: Integral parameters comparing the measurements of Mabey &
Sawyer (1976) against the current prediction at 0.368m from the leading edge (pro-
file 43 in Mabey & Sawyer (1976)). δ1 Boundary layer displacement thickness, δ2

momentum thickness, Reδ2 Reynolds number based on the momentum thickness.

stream velocity u1∞. The flat plate length L is given by Mabey & Sawyer (1976).

An extrapolated boundary condition is applied at the upper boundary b2, as shown

in Figure 4.18. This boundary is defined within a region of uniform cross-stream flow,

above the boundary layer edge. A composite subsonic/supersonic outlet is defined

at the downstream boundary b3. The local Mach number of the flow is estimated

from each internal cell neighbouring the outlet boundary b3. External cells along

b3 that are on a stream-wise alignment with internal cells of supersonic flow are

updated based on the supersonic outlet boundary condition, detailed in Section 3.9.4.

External cells that are on a stream-wise alignment with internal subsonic flow cells

are updated using the subsonic outlet boundary procedure detailed in Section 3.9.3.

The no-slip wall condition detailed in Section 3.9.8 is defined at b4.

The computational domain is discretised using a benchmark grid of 36× 198 cells

in the x1 and x2 directions respectively. A further row of ghost cells is defined around

the perimeter of the computational domain to impose the boundary conditions. This

grid resolution is used to compare the most refined level of each subsequent AMR

prediction. Linear grid stretching is applied normal to the surface to achieve a y+

value of y+ = 0.25 at the first cell. The first AMR prediction is a two levels AMR

prediction (levels 0 and 1). This prediction uses a level 0 grid of 12 × 66 cells in

the x1 and x2 directions respectively. An increase in spatial and temporal resolution

of three is defined between each successive AMR level. The level 1 grid therefore

comprises of 36× 198 internal cells and is compared directly against the non-AMR

prediction with an equivalent resolution. The second AMR prediction is defined

over three AMR levels (levels 0, 1 and 2). The level 0 computational domain is
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discretised by 4× 22 internal cells. Level 1 comprises an equivalent resolution to a

single mesh of 12 × 66 cells. Level 2 therefore comprises an equivalent resolution

to a single mesh of 36 × 198 internal cells. A constant time step of ∆t = 6 × 10−8

seconds is defined at the most refined level in each AMR prediction, as well as in

the single level benchmark prediction. The time step is decreased by a factor three

for the 12 × 66 cell grid and by a factor of nine at the 4 × 22 cell grid. The flow

field is time marched to a final time of t = 0.12 seconds. This time is based on a

convergence of the prediction to an L2 norm value of L2 = 6.3× 10−5. The L2 norm

value is defined as:

L2 =

√√√√
∑(i)max

i=1

∑(j)max
j=1

[
R (ρ)2

i,j

]

(i)max (j)max

, (4.7)

where, (i)max and (j)max are the maximum number of cells in the i and j directions

respectively. R (ρ)i,j is the mass flux residual for cell (i, j).

4.4.2 Results & Discussion

The predicted boundary layer benchmark profile at x1 = 0.623m from the flat plate

leading edge is compared against the measurements of Mabey & Sawyer (1976) in

Figure 4.22. A reasonable overlap with the measured profile is shown in Figure 4.22.

A slight divergence of the two profiles is shown in the range 100 ≤ y+ ≤ 1000. The

stream-wise velocity and the static density profiles at x1 = 0.623m, from the single

level benchmark prediction, are shown in Figures 4.23 and 4.24 respectively. A

reasonable approximation to the measured profile of Mabey & Sawyer (1976) is

again observed throughout the boundary layer. The integral parameters from the

prediction and measurements are compared in Table 4.4. These integral parameters

from the prediction demonstrate a reasonable agreement with the measured values,

remaining within 6% of the measurements of Mabey & Sawyer (1976).

For reference with Figure 4.20, the dimensionless specific turbulence kinetic en-

ergy k profile at x1 = 0.623m, profile 58 in Mabey & Sawyer (1976), is given in

Figure 4.25. k, in Figure 4.25, is normalised using the square of the free stream
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Figure 4.22: Comparison of the predicted boundary layer profile at 0.623m, against
profile 58 from Mabey & Sawyer (1976). (—) Numerical prediction. 2 Measure-
ments from Mabey & Sawyer (1976).
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Figure 4.23: Stream-wise velocity profile normalised by the free stream velocity u1∞.
x2, surface normal distance. δ99 surface normal distance to 99% of the free stream
velocity. 2 Measurements from Mabey & Sawyer (1976), profile 58.
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Figure 4.24: Static density profile normalised by the free stream density ρ∞. x2

Surface normal distance, δ99 surface normal distance to 99% of the free stream
velocity. 2 Measurements from Mabey & Sawyer (1976), profile 58.
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Figure 4.25: Dimensionless specific turbulence kinetic energy k prediction at x1 =
0.623m (profile 58 in Mabey & Sawyer (1976)). k is normalised using the free stream
velocity u1∞.
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Result δ1 (m) δ2 (m) Reδ2

Mabey & Sawyer (1976) 2.98× 10−3 7.50× 10−4 9.0× 103

Prediction 3.0× 10−3 7.94× 10−4 9.53× 103

Table 4.4: Integral parameters comparing the measurements of Mabey &
Sawyer (1976) against the single level benchmark prediction at 0.623m from the
leading edge (profile 58 in Mabey & Sawyer (1976)). δ1 Boundary layer displacement
thickness, δ2 momentum thickness, Reδ2 Reynolds number based on the momentum
thickness.

velocity u1∞. The predicted specific turbulence kinetic energy dissipation rate ω

profile at x1 = 0.623m is given in Figure 4.26. ω, in Figure 4.26, is normalised using

the flat plate total length L = 1.6m and the free stream velocity u1∞.

The single level boundary layer profile at x1 = 0.623m from the leading edge

shows little significant variation against the AMR predictions, of two and three levels

refinement respectively. The three predictions are overlaid in Figure 4.27. The two

AMR predictions follow the profile of the single level benchmark prediction closely.

Minor differences are, however, observed. In particular, differences are evident in the

outer region of the boundary layer, at y+ ≥ 100. These differences are more clearly

defined in Figure 4.28, which is a detailed view of the boundary layer profile at y+ ≥
50. A number of different values for the AMR scaling parameter b have been tested.

At all scaling parameters tested below b = 0.15 the boundary layer is completely

covered by the refined AMR levels. The observed differences in the boundary layer

profile may therefore be primarily due to the initial interpolation of the boundary

layer, at the start of the computation. This proposition is further substantiated by

the increased magnitude in this error as further AMR levels are added, i.e. between

the two levels AMR prediction and the three levels AMR prediction. This test case

demonstrates an extension of the interpolation error documented for the inviscid

acoustic pulse test case in Section 4.3 to turbulent flow. This source of error is

expected to exist in any AMR prediction in which a finite gradient flow feature is

interpolated between successive levels. Providing the number of AMR levels specified

in a prediction is limited, this source of error appears to remain at a reasonably low

level.
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Figure 4.26: Specific turbulence kinetic energy dissipation rate ω prediction at x1 =
0.623m (profile 58 in Mabey & Sawyer (1976)). ω is normalised using the flat plate
length L = 1.6m, and the free stream velocity u1∞.
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Figure 4.27: Comparison of the single level benchmark prediction against the AMR
predictions of respectively two and three levels of multigrid refinement. (—) non-
AMR single level prediction. (· · · ) Two levels AMR prediction (level 1 profile).
(−−−) Three levels AMR prediction (level 2 profile). 2 Measurements from Mabey
& Sawyer (1976), profile 58.
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Figure 4.28: Detail of the single level benchmark prediction and the two AMR pre-
dictions. (—) non-AMR single level prediction. (· · · ) Two levels AMR prediction
(level 1 profile). (−−−) Three levels AMR prediction (level 2 profile). 2 Measure-
ments from Mabey & Sawyer (1976), profile 58.
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Overall, a reasonable prediction of a compressible turbulent boundary layer devel-

opment under a zero stream-wise pressure gradient is documented in this section.

Discrepancies in the AMR prediction, in comparison with a single level benchmark

prediction, are observed and an explanation for these discrepancies is proposed.

Even with the interpolation error, the AMR boundary layer prediction is considered

satisfactory for the purposes of the current study.
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Chapter 5

Circular Cylinder Prediction

5.1 Introduction

The time accurate compressible flow around a circular cylinder in a uniform

M∞ = 0.6 free stream flow is modelled in this chapter. An inviscid model of the flow

is initially developed by locally solving the short-time averaged Euler equations. A

turbulent prediction at a free stream Reynolds number of ReD = 6.87× 105, based

on the cylinder diameter, is then developed by computing the short-time averaged

Navier-Stokes equations. These predictions are used to study the separation of stag-

nation temperature and pressure in a compressible, vortex dominated wake flow on

a time resolved basis. The time averaged result of this energy separation is the

Eckert-Weise effect described in Section 2.6. An overview of past research concern-

ing transonic turbulent cylinder flows and the Eckert-Weise effect is given, based on

the available literature, in Section 2.6. As suggested in Section 3.1.2, the presence

of a high Reynolds number flow, dominated by large scale vortical and compressible

wake features, should enable a reasonable flow field prediction from a time resolved

inviscid prediction. This approach is analysed in Section 5.2. The inviscid predic-

tion is then used to initialise the flow field for the turbulent prediction. The inviscid

and turbulent predictions are compared with published numerical and experimental

results, including wind tunnel measurements from a concurrent program of research

by Ackerman (2005). Section 5.3 discusses results from the turbulent prediction

using the numerical solution procedure described in Sections 3.4 to 3.9. Introducing

the k−ω turbulence model should improve the prediction by accounting for bound-
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ary layer development and separation, as well as introducing turbulence diffusion in

the separated shear layers and vortex shedding mechanism. This study extends the

time accurate energy separation predictions of Kurosaka et al. (1987) to transonic

circular cylinder flows and extends the time averaged transonic measurements of

Eckert & Weise (1943), Ryan (1951) and Thomann (1959) to a time accurate flow

analysis. These developments are novel and original contributions in the context of

the literature known to the author. The symmetrical flow development around a cir-

cular cylinder also provides comparative data for the asymmetric flow development

in the transonic turbine cascade predictions of Chapter 6.

5.2 Inviscid Circular Cylinder Flow Prediction

5.2.1 Numerical Model Specifications

A diagrammatical representation of the computational domain used for the invis-

cid and turbulent predictions is given in Figure 5.1. The stagnation pressure and

stagnation temperature at the inlet boundary b1 are chosen to model an unheated,

blow down wind tunnel. The free stream conditions modelled at the inlet boundary

are listed in Table 5.1. A rectangular computational domain extends 30.2D in the

Variable Value
M∞ 0.6
Ts∞ 300 K
T∞ 280 K
ps∞ 129.24 kN/m2

p∞ 101.325 kN/m2

ρ∞ 1.261 kg/m3

u1∞ 201.25 m/s

Table 5.1: Circular cylinder free stream flow conditions

stream-wise direction and 25.3D in the transverse direction. A cylinder of diameter

D = 40 × 10−3m is located 10.1D downstream of the inlet b1 and 12.65D from

the constant pressure boundaries b2 and b4. The cylinder diameter is changed to

D = 47.41 × 10−3m in the turbulent predictions of Section 5.3, to match the free

stream Reynolds number in the experimental measurements of Ackerman (2005).
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Figure 5.1: Circular cylinder computational domain.

The same 30.2D × 25.3D computational domain shown in Figure 5.1 is used for

the inviscid and turbulent predictions; all results in this chapter are presented using

dimensionless units, with lengths scaled by the cylinder diameter D. The distance of

the outer computational boundaries from the surface of the cylinder in Figure 5.1 is

approximately equal to that of the finest computational grid used by Shang (1982) to

model the viscous flow past a circular cylinder at M∞ = 0.6 and ReD = 1.67× 105.

As reported in Rona & Bennett (2001), no strong wave reflection is observed at

the inlet boundary b1 in the current prediction. The boundary therefore seems to

be sufficiently far upstream of the cylinder to allow for a satisfactory convective

decay of the upstream propagating pressure fluctuations. The subsonic boundary

condition of Section 3.9.1 is specified at boundary b1. At b2 and b4, the constant

pressure boundary condition described in Section 3.9.3 is specified. Downstream of

the cylinder, along the boundary b3, the flow is extrapolated in the downstream

direction as described in Section 3.9.4. An inviscid wall condition is imposed at the

cylinder surface. The computational domain is divided into four separate blocks.
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Each block is connected using the inter-domain boundary condition described in Sec-

tion 3.9.5. These inter-block boundaries are defined by dashed lines in Figure 5.1.

The interior of each block is discretised using a body-fitted grid of 100 × 200 cells.

The four contiguous blocks give a combined mesh of 400 × 200 cells, covering the

interior of the computational domain. The boundary conditions are imposed by

creating a further rim, of one cell depth, around the perimeter of each block as

described in Section 3.9. Linear grid stretching is defined normal to the circular

cylinder for increased resolution close to the cylinder surface. A Gauss-Seidel iter-

ative smoothing method, described in Hoffman & Chiang (1995), is applied to the

grid to reduce cell skewness. The computational grid comprises of cells with aspect

ratios in the range 1.60 ≤ A ≤ 6.81. Computational cell sizes (length, height) vary

from (3.54× 10−3D, 5.66× 10−3D) to (0.16D, 1.09D). The computational grid is

defined such that the largest area and largest aspect ratio cells are located away

from the region of interest, at the corners of the computational domain. The small-

est cells with almost square topology are located at the surface of the cylinder. The

grid resolution close to the surface and the surface normal grid stretching at the

base of the circular cylinder (θ = 0◦) is shown in Figure 5.2.

5.2.2 The Initial Transient Flow Field Development

The free stream flow conditions in Table 5.1 are defined uniformly throughout the

flow field at the start of the computation. The flow solution is time marched from

these initial conditions to a self-sustained, periodic vortex shedding pattern in time

steps of ∆t = 0.001D/u∞. This time step corresponds to a Courant number of

a∞∆t/∆x = 0.366. The initial transient flow development is represented in a series

of annotated diagrams in Figure 5.3. Initially, a bow shock wave develops along the

upstream surface of the circular cylinder. This is caused by the imposed uniform

flow conditions rebounding against the cylinder surface condition. Downstream, an

expansion wave is observed at the base of the cylinder. A representation of the flow

field at this time is shown in Figure 5.3(a).

As the flow field develops, the upstream bow pressure wave propagates radially
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Figure 5.2: Computational grid detail around the circular cylinder base region.

away from the cylinder in the upstream direction, it decays in strength with up-

stream distance and eventually exits the domain. Radial shock waves appear on

the upper and lower surfaces, close to the rear stagnation point (θ = 0◦). Two

contra-rotating vortices form immediately downstream of these shock waves, as rep-

resented in Figure 5.3(b). The two radial shock waves gradually increase in strength

and move upstream along the surface of the cylinder. This upstream movement

ceases at around θ ≈ ±60◦. The contra-rotating vortices gradually increase in size

and strength during this time. As the radial shock waves form a stationary presence

at θ ≈ ±60◦, the two contra-rotating vortices start to elongate in the stream-wise

direction. This is represented by Figure 5.3(c).

After a significant stream-wise elongation of the contra-rotating vortices, a break-

down of the cross-stream symmetry begins. Initially, this occurs as an asymmet-

ric elongation of one vortex, as shown in Figure 5.3(d). This imbalance causes a

cross-wake migration and subsequent rotation of the outer shear layers, close to the

downstream extent of the vortices. The cross-wake migration of the outer shear layer

divides the stream-wise length of the vortices, gradually leading to the dominance

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 5.2: Inviscid Circular Cylinder Flow Prediction 165

upstream moving
bow shock wave

downstream moving
expansion wave

circular cylinder

upstream moving
shock wave

contra-rotating vortices

circular cylinder

upstream moving
shock wave

dominant vortex

downstream moving
pressure wave

(a)

(b)

(d)

downstream moving
pressure wave

shed vortex

growing vortex

upstream moving
shock wave

(e)

shock wave
elongating vortices

circular cylinder

(c)

60
o

growing vortex

(f)

upstream moving
shock wave

downstream moving
pressure wave

Figure 5.3: Representation of the initial transient flow past a circular cylinder.
(a) A bow shock wave appears upstream of the cylinder and moves away from
the cylinder surface. An expansion wave appears on the downstream surface and
moves in the downstream direction. (b) Two short radial shock waves appear on
the downstream surface close to the rear stagnation point. Contra-rotating vortices
appear downstream of the radial shock waves. (c) The contra-rotating vortices
elongate in the downstream direction and the radial shock waves move upstream,
along the cylinder surface. (d) An asymmetry of the two contra-rotating vortices
occurs. The radial shock wave on the dominant vortex side continues to move
upstream. The other radial shock wave moves in the downstream direction. (e) The
dominant vortex eventually sheds from the cylinder. The radial shock wave on this
side then moves downstream along the cylinder surface. The vortex on the opposite
side grows and is eventually shed from the other side of the cylinder. (f) Onset of
the von Kármán vortex street.
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of one vortex over the other at the base of the cylinder. The dominant vortex grows

until sufficient strength is gained to entrain the far side shear layer. The vortex is

then shed from the cylinder. During this period, the radial shock wave on the domi-

nant vortex side of the wake increases in strength and slowly continues to propagate

upstream to around θ ≈ 90◦. The shock wave on the other side loses strength and

gradually moves downstream towards the rear stagnation point. This shock wave

movement is indicated in Figure 5.3(d).

After the dominant vortex is shed, the vortex with opposite rotation starts to

increase in size and strength on the other side of the wake, as represented in Fig-

ure 5.3(e). This vortex subsequently increases in size and strength until sufficient

fluid from the shear layer on the opposite side of the wake is entrained for the vortex

to shed from the cylinder. The vortex then convects downstream, marking the onset

of a von Kármán vortex street. This is represented in Figure 5.3(f).

As a numerical study of the circular cylinder flow development at very short times

is not a direct objective of this study, further details are not supplied in this work.

An in-depth analysis of this flow regime at transonic Mach numbers is reported in

Botta (1995).

5.2.3 The Self-Sustained Vortex Shedding Development

After the initial transient development described in Section 5.2.2, the circular cylin-

der flow settles into a self-excited regime in which vortices are alternately shed

from the downstream surface. As reported in Rona & Bennett (2001), the von

Kármán vortex street initially passes through a transient vortex shedding regime as

the phase-locking feedback in the vortex shedding develops. During this transient

regime, subtle differences in the near wake flow are observed between each vortex

formation and shedding event. This variation is most evident in the time accurate

pressure at the rear stagnation point, θ = 0◦. The time accurate base pressure his-

tory over a portion of the transient vortex shedding regime is shown in Figure 5.4.

The base pressure coefficient in Figure 5.4 is defined as
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Figure 5.4: Base pressure coefficient in the transient vortex shedding regime.

Cpb =
pb − p∞

ps∞ − p∞
, (5.1)

where, pb defines the static pressure at the rear stagnation point (θ = 0◦). p∞ and

ps∞ are the free stream static pressure and stagnation pressure respectively.

The surface pressure at θ = 0◦ is equally affected by the vortex shedding events on

the upper and lower surfaces of the cylinder. The time interval between successive

local maxima or minima in Figure 5.4 represents the time between the formation

or shedding of successive vortices from each side of the cylinder. This therefore

represents half of the vortex shedding cycle, or twice the vortex shedding frequency.

Consider, for example, the vortex shedding half cycle between tu1∞/D = 60 and

tu1∞/D ≈ 62.3 in Figure 5.4. A local minimum in the base pressure occurs as the

strength of the vortex in the formation region approaches its maximum value. This

occurs just before the vortex cuts off the circulation supply from the near side shear

layer. As the vortex is shed from the cylinder and begins to convect downstream,

the base pressure reaches a local maximum, at around tu1∞/D ≈ 60.6. As the

vortex on the opposite side of the wake then starts to increase in size and strength,
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the base pressure is observed to decrease again. This decrease is non-monotonic; a

short interval of increasing pressure is observed at approximately halfway along this

pressure decrease. For example, the decreasing base pressure between tu1∞/D ≈
60.6 and tu1∞/D ≈ 62.3 is interrupted by two additional local extrema, at tu1∞/D ≈
61.2 and tu1∞/D ≈ 61.5. The temporal location and magnitude of this feature

appears to vary on a cycle-to-cycle basis. A detailed study of the time accurate

Mach number and static pressure contours, not shown here, associates this feature

to an interaction between the cross-wake migration of the far side shear layer and

a newly formed radial shock wave. This radial shock wave extends between the

growing vortex and the cylinder surface. The shock wave is transient, appearing in

addition to the two primary radial shock waves during the formation of each vortex.

Further details on the vortex formation and shedding cycle, including the formation

and decay of the transient shock wave, is given in Section 5.2.5.

As reported in Rona & Bennett (2001), the cycle-to-cycle variation in amplitude

and shape of the base pressure trace decreases at later times as the vortex shedding

develops a phase-locked periodicity. The base pressure coefficient over the period

115 ≤ (tu1∞/D) ≤ 150 is shown in Figure 5.5. A significantly lower cycle-to-cycle

variation is observed in Figure 5.5, which is defined in Rona & Bennett (2001) as the

quasi-stationary vortex shedding regime. The amplitude and phase of this waveform

appears be more invariant on a cycle-to-cycle basis. In Figure 5.5, the pressure coef-

ficient fluctuations are made up from two identifiable waveforms. A dominant wave-

form is shown, with a peak-to-peak amplitude of approximately ∆Cpb = 1.5. This

wave displays rounded maxima at Cpb ≈ −0.75 and sharp minima at Cpb ≈ −1.9. A

second wave, of lower amplitude and lower frequency, is shown to modulate the base

pressure fluctuations in Figure 5.5. This second wave appears to phase-lead the dom-

inant waveform throughout Figure 5.5. Constructive interference of the waveforms

occur at certain times, increasing the cycle amplitude. At other times, the wave-

forms appear out of phase, leading to additional inflexion points in the normalised

pressure trace. An observation of the base pressure variation at later times reveals

little significant reduction of the cycle-to-cycle variation in amplitude and shape.
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Figure 5.5: Base pressure coefficient in the quasi-stationary vortex shedding regime.

Botta (1995) shows a similar cycle-to-cycle variation of the flow characteristics at

M∞ = 0.6, in an inviscid prediction of the lift and drag coefficients. As described

in Rona & Bennett (2001) and in Section 5.2.4, a similar cycle-to-cycle variation

occurs in the time accurate drag coefficient and, to a lesser degree, in the lift coef-

ficient. The lower cycle-to-cycle variation in the normalised pressure fluctuations of

Figure 5.5, compared to Figure 5.4, is further evident from a Fourier analysis of the

two waveforms. Digital Fourier transforms of Figure 5.5 and Figure 5.4 have been

computed over an integer number of fourteen cycles. The resulting non-dimensional

Power Spectral Density (PSD) distributions are given in Figure 5.6 and Figure 5.7

respectively. A significant reduction in the frequency content of the normalised base

pressure during the quasi-stationary regime is observed in Figure 5.7, compared to

Figure 5.6. Specifically, Figure 5.6 shows that the fluctuations in the normalised

base pressure occur essentially at twice the vortex shedding frequency. A 10% shift

in the dominant frequency is also observed between Figures 5.6 and 5.7. The re-

duction in Cpb as the flow becomes quasi-stationary is quantified by comparing the

Root Mean Square (RMS) values of the two waveforms over an integer number of
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Figure 5.6: Frequency analysis of the base pressure coefficient at θ = 0◦ in the
transient vortex shedding regime.
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Figure 5.7: Frequency analysis of the base pressure at θ = 0◦ in the quasi-stationary
vortex shedding regime.
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Figure 5.8: Drag coefficient history in the quasi-stationary vortex shedding regime.

cycles, as reported in Rona & Bennett (2001). The predicted RMS base pressure

coefficients are 0.38 and 0.34 for Figures 5.4 and 5.5 respectively. At tu1∞/D ≥ 150,

the base pressure coefficient dominant frequency settles to the same value reported

for Figure 5.7. This is twice the vortex shedding frequency reported in Table 5.4, as

discussed in the following section.

5.2.4 Inviscid Prediction Validation

Analysis of the current prediction against the inviscid predictions of Pandolfi &

Larocca (1989) and Botta (1995) at M∞ = 0.6 are reported in Rona & Ben-

nett (2001) and are detailed in this section. Tentative comparisons with the viscous

prediction of Shang (1982) and with the concurrent experimental research program

of Ackerman (2005) are also reported. A coarse quantitative agreement is found

with the experimental measurements. This is likely to be due to the neglect of the

boundary layer flow in the inviscid computation. An improved comparison is antic-

ipated through the introduction of the k − ω turbulence model and no-slip surface

condition. These results are presented in Section 5.3.

Figure 5.8 shows a time accurate trace of the pressure drag coefficient in the

quasi-stationary vortex shedding regime. The pressure drag coefficient is calculated
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by integrating the surface pressure coefficient Cp around the cylinder:

Cd = −1

2

∫ 2π

0

Cp d (sin θ) , (5.2)

A maximum in the drag coefficient occurs at each vortex shedding event. Drag

coefficient minima occur during the early formation of each vortex at the downstream

surface of the cylinder. This is clarified in Section 5.2.5, from a time accurate analysis

of the static density contours over one vortex shedding cycle. The dominant drag

coefficient frequency is therefore twice the vortex shedding frequency. The cycle-

to-cycle variations observed in the base pressure traces in Section 5.2.3 are also

present in the drag coefficient. Unsteady variations in the drag coefficient peak-

to-peak amplitude are also reported at M∞ = 0.6 in Pandolfi & Larocca (1989)

and Botta (1995). The drag coefficient maxima and minima from Figure 5.8, and

their variation, are compared against Pandolfi & Larocca (1989) and Botta (1995)

in Table 5.2. The average drag coefficient for the current prediction in Table 5.2 is

Source Max. Cd Average Cd Min. Cd

Current prediction 1.41± 0.06 1.284 1.18± 0.05
Botta (1995) 1.5± 0.05 1.3± 0.05 1.1± 0.05
Pandolfi & Larocca (1989) 1.5± 0.03 1.38± 0.03 1.25± 0.03

Table 5.2: Circular cylinder drag coefficient fluctuations.

calculated as the arithmetic mean of the time accurate drag coefficient history over

30 complete cycles. The average drag coefficients of Botta (1995) and Pandolfi &

Larocca (1989) in Table 5.2 are computed from the respective maxima and minima.

The current prediction is within 6% of the prediction of Botta (1995), and within

10% of Pandolfi & Larocca (1989). The peak-to-peak amplitude of the current

prediction is lower than both reference predictions, but compares more favourably

with that of Pandolfi & Larocca (1989). The level of fluctuation in the peak-to-

peak drag coefficient amplitude is greater in the current prediction than in either

Botta (1995) or Pandolfi & Larocca (1989). The differences observed between the

current prediction and the referenced predictions may result from the different radial
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and circumferential grid resolutions used in these studies, as proposed in Rona &

Bennett (2001). These differences may also be caused by the different numerical

solution procedures employed.

The average drag coefficients in Table 5.2 also compare favourably with the mea-

sured pressure drag coefficient of Ackerman (2005) at M∞ = 0.6 and ReD =

6.75 × 105. The measured mean value, Cd = 1.36, is approximately 6% from the

current prediction. This correlation indicates the dominance of compressibility and

the kinematic flow features over viscous effects at the modelled flow conditions.

The total drag for a practical cylinder of assumed infinite span also includes the

skin friction drag and the wave drag from the unsteady radial shock waves on the

surface of the cylinder. The presence of radial shock waves are detailed further in

Section 5.2.5. Skin friction drag for circular cylinders is discussed in Section 5.3.2.

The aerodynamic loading of the circular cylinder in the transverse direction, due

to the self-sustained vortex shedding, is quantified by the lift coefficient Cl. This is

computed for the current prediction as

Cl =
1

2

∫ 2π

0

Cp d (cos θ) , (5.3)

where Cp is the time accurate surface pressure coefficient. The time history of the

lift coefficient in the quasi-stationary regime is given in Figure 5.9. For a pitch-

wise symmetric body in a uniform free stream flow, the lift coefficient oscillates

about its zero mean value. As noted in Rona & Bennett (2001), a positive peak

in the lift coefficient corresponds to the shedding of a vortex from the lower half

of the cylinder. A negative peak in the lift coefficient similarly corresponds to the

shedding of a vortex from the upper surface of the cylinder. The fundamental

frequency of oscillation in the lift coefficient therefore corresponds to the vortex

shedding frequency and to half the drag coefficient fundamental frequency. The

time resolved lift coefficient maxima and minima are compared with corresponding

results by Botta (1995) and Pandolfi & Larocca (1989) in Table 5.3. As with the

drag coefficient, significant cycle-to-cycle variations are displayed by all three lift

coefficient predictions. The peak-to-peak amplitude of Cl in the current prediction
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Figure 5.9: Lift coefficient history in the quasi-stationary vortex shedding regime.

Source Max. Cl Min. Cl

Current prediction 1.3± 0.1 −1.3± 0.1
Botta (1995) 1.2± 0.15 −1.2± 0.15
Pandolfi & Larocca (1989) 1.5± 0.15 −1.5± 0.15

Table 5.3: Circular cylinder lift coefficient fluctuations.

lies between the predicted values of Botta (1995) and of Pandolfi & Larocca (1989).

Specifically, a difference of 8% is computed between the current prediction and that

of Botta (1995). A difference of 14.3% separates the current prediction from that

of Pandolfi & Larocca (1989). The difference between the two referenced predic-

tions is 22.2%. The magnitude of the cycle-to-cycle fluctuations, as a proportion of

the peak-to-peak lift amplitude, is smaller for the current prediction than for both

referenced predictions. The non-stationary fluctuation in the current Cl prediction

is approximately 7.7% of the average peak-to-peak lift coefficient amplitude. This

compares with 12.5% for Botta (1995) and 10% for Pandolfi & Larocca (1989). The

non-stationary fluctuation in the current lift coefficient, normalised by the peak-

to-peak Cl amplitude, is significantly lower than the corresponding value for the

drag coefficient. This indicates that a large proportion of the cyclic unsteadiness

generates close to the downstream stagnation point (θ = 0◦) in the present results.
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The vortex shedding frequency in the quasi-stationary flow regime is estimated

by a digital Fourier transform of the time accurate lift coefficient. The result ties in

with the vortex shedding period estimated from the average distance between suc-

cessive minima in the time accurate near wake pressure history. The vortex shedding

frequency f is tabulated as a non-dimensional Strouhal number (Str = fD/u1∞) in

Table 5.4, using the cylinder diameter D and the free stream velocity u1∞. The

current prediction is compared with the inviscid predictions of Botta (1995) and

Pandolfi & Larocca (1989) in Table 5.4. Also reported in this table are the vortex

shedding Strouhal numbers measured at M∞ = 0.6 by Ackerman (2005) and Murthy

& Rose (1978), as well as a viscous prediction by Shang (1982). The measurements

Source Strouhal no.
Current prediction 0.199
Botta (1995) 0.2
Pandolfi & Larocca (1989) 0.198
Ackerman (2005) (2000 series) 0.175
Ackerman (2005) (2002 series) 0.176
Murthy & Rose (1978) 0.181
Shang (1982) 0.21

Table 5.4: Strouhal number comparison. Measurements of Ackerman (2005): M∞ =
0.6, ReD = 6.86× 105 (2000 series) and M∞ = 0.6, ReD = 6.75× 105 (2002 series).
Measurements of Murthy & Rose (1978) at M∞ = 0.6, ReD = 0.83× 105 − 5× 105.
Prediction of Shang (1982) at M∞ = 0.6, ReD = 1.67× 105.

of Murthy & Rose (1978) demonstrate that at M∞ = 0.6, the fundamental vortex

shedding Strouhal number approximates a constant value of around Str = 0.181

over the Reynolds number range 0.83×105 ≤ ReD ≤ 5×105. This Strouhal number

is close to the measurements of Ackerman (2005) at ReD = 6.75× 105 − 6.86× 105.

These measurements show that the dominant vortex shedding Strouhal number is

relatively insensitive to the free stream Reynolds number at M∞ = 0.6. The current

prediction compares well with the inviscid predictions of Botta (1995) and Pan-

dolfi & Larocca (1989), falling between the two values, at 0.5% from each. The

measured Strouhal numbers, which correlate well (< 3.5%) with each other, are

≤ 12.1% from the current prediction and ≤ 16.7% lower than the viscous prediction

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 5.2: Inviscid Circular Cylinder Flow Prediction 176

of Shang (1982). The lower measured Strouhal numbers in Table 5.4 indicate that

these vortices take longer to shed from the cylinder, with respect to the current in-

viscid prediction. This is reconcilable with the physical vortex formation mechanism

proposed by Gerrard (1966), as described in Section 2.3. Briefly, Roshko (1954) and

Gerrard (1966) suggest that the vortex formation region length at the rear of a cir-

cular cylinder relates to the length of time taken for the vortex to entrain fluid from

the far side shear layer. In the tabulated measurements, the increased diffusion in

the turbulent shear layer increases the length of time taken for the growing vortex to

entrain sufficient opposing vorticity from the far side shear layer to cancel the vor-

ticity in the near side shear layer. After sufficient vorticity has been entrained, the

vortex is shed from the cylinder and convects downstream. Gerrard (1966) suggests

that an increase in shear layer thickness, or ‘diffusion length’, balances the decrease

in formation region length as the free stream Reynolds number increases, leading

to a consistency of the vortex shedding Strouhal number. The inviscid predictions,

which lack turbulence diffusion, represent the limiting case of a very high Reynolds

number flow and may be expected to yield a slightly higher Strouhal number. The

vortex shedding frequency in the inviscid predictions may therefore be determined

predominantly by the vorticity of the separated shear layers and by the numerical

diffusion in the vortex formation region, which is linked to the local grid resolution.

5.2.5 Compressibility and the Inviscid Vortex Shedding Cycle

The time accurate base pressure, lift and drag coefficients indicate a self sustained,

periodic vortex shedding pattern downstream of the circular cylinder at the mod-

elled free stream conditions. Unsteady radial shock waves are reported in Dyment

& Gryson (1979), Pandolfi & Larocca (1989), Botta (1995) and in Rona & Ben-

nett (2001). These shock waves oscillate circumferentially around the cylinder at

M∞ = 0.6, in phase with the vortex formation and shedding cycle. The relationship

between the precession of shock waves on the cylinder surface and the vortex shed-

ding cycle can be analysed further using the instantaneous density contour plot se-

quence from the current prediction shown in Figures 5.10 and 5.11. Figure 5.10 doc-
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uments the formation of an anti-clockwise rotating vortex at the lower downstream

side of the cylinder, over the time interval 160.39 ≤ tu1∞/D ≤ 162.27. Figure 5.11

documents the shedding of this vortex and the formation of a new clockwise rotat-

ing vortex on the upper surface over the time period 162.90 ≤ tu1∞/D ≤ 164.81.

Figures 5.10 and 5.11 therefore document the static density field development in the

circular cylinder near wake over one complete vortex shedding cycle. Figures 5.10

and 5.11 cover a small portion of the computational domain. Specifically, these fig-

ures detail an area close to the cylinder extending approximately ∆x1 = 7.8D in the

stream-wise direction and ∆x2 = 5.8D in the stream-wise normal direction. This

allows a greater resolution of the unsteady flow features close to the surface of the

cylinder. These figures represent approximately 25.8% of the stream-wise extent and

22.9% of the transverse extent for the actual computational domain. The density

contours clearly show radial shock waves on the upper and lower surfaces. These

shock waves, labelled (i) and (ii) respectively in Figures 5.10 and 5.11, fluctuate

about a time mean circumferential position over the vortex shedding period. The

two radial shock waves demonstrate a pitch-wise asymmetry in strength and circum-

ferential location. Figure 5.10(a) shows the radial shock wave on the upper surface

(i) at its furthest upstream position, at approximately θ = 90◦. The shock wave

on the lower surface (ii) is located further downstream. This location represents

the furthest downstream position either shock wave takes over the vortex shedding

cycle. The upper (i) and lower (ii) radial shock waves oscillate between these two cir-

cumferential locations over the course of each vortex shedding event. The clockwise

rotating vortex, labelled (iii) in Figure 5.10(a), is at the point of being shed from

the cylinder in this figure. Two further vortices, one with an anti-clockwise rotation

and the other with a clockwise rotation, are located downstream of this vortex in

Figure 5.10(a-d). These two vortices are the product of the previous vortex shedding

cycle. The vortex shedding aspect ratio is defined as the ratio of the stream-wise

length l, between successive vortices on the same row, to the cross-wake width be-

tween the two vortex rows w. The mean aspect ratio in the current prediction,

calculated over three separate shedding events in the region 1.2D ≤ x1 ≤ 7.4D, is
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w/l = 0.278. This value is within 1.1% of the analytical value of von Kármán, given

as w/l = 0.281 in Schlichting (1979) and Douglas (1995). However, as reported in

Rona & Bennett (2001), this value is observed to vary by up to 25% due to the

cycle-to-cycle flow variations highlighted in Section 5.2.3.

As the flow field progresses from Figure 5.10(a) a new vortex forms on the lower

surface of the cylinder. This anti-clockwise rotating vortex is labelled (v) in Fig-

ure 5.10(b-d). Over the course of Figure 5.10(b-d), the outer portion of the upper

surface shock wave (i) continues to move upstream as a finite gradient pressure fluc-

tuation through the subsonic flow region. This upstream moving pressure fluctuation

is labelled (iv) in Figure 5.10(b-d). The lower portion of this shock wave (i) defines

the downstream limit of a local supersonic acceleration along the cylinder surface.

This shock wave is constrained by the upstream limit of the adverse pressure gradi-

ent, remaining at approximately the same circumferential location over the period

160.39 ≤ tu1∞/D ≤ 161.01. The anti-clockwise rotating vortex (v) is fed by the

separated shear layer at the lower surface of the cylinder. This shear layer is labelled

(vi) in Figure 5.10(b) and is shown as a deviation in the iso-density contours along

a line almost tangential to the cylinder surface. As the strength of this vortex (v)

increases, a channel of fluid between the vortex core and the cylinder surface accel-

erates to supersonic velocities. This local supersonic region terminates with a radial

shock wave that extends between the cylinder surface and the vortex core. This

secondary shock wave, labelled (vii), first appears in Figure 5.10(b) and increases in

strength with the vortex growth in Figure 5.10(c). The increased peripheral pressure

from the formation of the vortex (v) increases the strength of the primary radial

shock wave (ii) on this side. This shock wave responds by moving circumferentially

upstream, slowing the incoming flow to lower supersonic velocities. The increase

in strength of the vortex (v) in Figure 5.10(c) is evident by the identification of

iso-density contours darker blue in colour, close to the centre of this vortex. The

weakened shock wave (i), on the opposite pitch-wise side of the cylinder, gradually

moves downstream circumferentially over the interval 161.01 ≤ tu1∞/D ≤ 162.90.

The fluid upstream of this shock wave gradually accelerates to higher supersonic
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velocities before recompressing. The period 160.39 ≤ tu1∞/D ≤ 162.90 corresponds

to a gradual increase in the lift coefficient, which crosses Cl = 0 at approximately

tu1∞/D = 161.64. The instantaneous density contour plot at tu1∞/D = 161.64 in

Figure 5.10(c) shows an approximate pitch-wise symmetry in the location of the two

primary radial shock waves (i) and (ii). The low pressure supersonic fluid travelling

around the vortex (v), ahead of the secondary shock wave (vii), is located close to

the base pressure location (x2/D = 0) in this figure. This secondary shock wave

(vii) moves anti-clockwise around the surface of the cylinder in Figure 5.10(d) as

the vortex approaches separation from the cylinder. The primary shock wave on

the upper surface (i) moves clockwise resulting in lower pressure fluid over a sig-

nificant proportion of the upper surface. Together with the clockwise movement of

the supersonic region ahead of the secondary shock wave (vii), and the shortening

of the supersonic region upstream of (ii), a resultant force in the positive x2 di-

rection and a positive lift coefficient is observed. The lift coefficient continues to

increase in magnitude, reaching a maximum positive value at tu1∞/D ≈ 162.90 in

Figure 5.11(a). A similar sequence of events to those described for Figure 5.10(a-d)

occurs over the course of Figure 5.11(a-d), for the formation of a clockwise rotating

vortex (viii). Figure 5.11(a-d) corresponds to a decreasing lift coefficient, which

reaches a minimum value at tu1∞/D ≈ 165.41.

A static pressure history of the primary radial shock wave movement over the

upper and lower surfaces of the cylinder is documented at three surface locations

in Figure 5.12. Specifically, the three surface locations are θ = 60◦ and θ = 80◦,

shown in Figure 5.12(a), and θ = −60◦, as shown in Figure 5.12(b). These surface

locations are taken with respect to the base pressure location, which is defined as

θ = 0◦ as shown in Figure 5.1. From the two pressure traces in Figure 5.12(a), four

primary regions can be defined over each cycle. In the range 138 ≤ tu1∞/D ≤ 143

these are:

1. An upstream movement of the radial shock wave circumferentially along the

upper surface to cross θ = 60◦ at tu1∞/D = 139.4. The passing of the shock wave
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Figure 5.12: Surface pressure history: (a) (—) θ = 60◦, (- - -) θ = 80◦,
(b) (—) θ = −60◦.
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over the θ = 60◦ location causes a sharp increase in the pressure coefficient at

tu1∞/D = 139.4.

2. An upstream movement of the shock wave on the upper surface of the cylinder

between θ = 60◦ and θ = 80◦, over the period 139.4 ≤ tu1∞/D ≤ 140.5. At

tu1∞/D = 140.5 the shock wave passes over the θ = 80◦ location causing a sudden

pressure rise at this monitoring point.

3. Movement of the shock wave along the upper surface of the cylinder at

80◦ ≤ θ ≤ 90◦, over the interval 140.5 ≤ tu1∞/D ≤ 142.4. During this time interval

both θ = 60◦ and θ = 80◦ remain above their time mean values.

4. A downstream movement of the weak shock wave along the upper sur-

face of the cylinder, between θ = 60 and θ = 80◦, over the time interval

142.4 ≤ tu1∞/D ≤ 142.9. This movement causes a sharp drop in the pressure

coefficient as the shock wave moves over the θ = 80◦ location, at tu1∞/D = 142.4.

The shock wave then passes over the θ = 60◦ location at tu1∞/D = 142.9.

The greater amplitude of the discontinuity at tu1∞/D = 139.4 in the θ = 60◦ pres-

sure trace, with respect to the discontinuity at tu1∞/D = 142.9, confirms the earlier

suggestion that the shock wave is stronger during the upstream movement. The time

difference between the shock wave passing over the 60◦ location at tu1∞/D = 139.4

and the θ = 80◦ location at tu1∞/D = 140.5 determines the average shock wave

propagation speed, relative to the cylinder, for an upstream travelling shock wave.

Specifically, from Figure 5.12(a), the shock wave is computed to travel over the dis-

tance, 60◦ ≤ θ ≤ 80◦, at an average angular velocity of uθ = 18.2◦u1∞/D in the

upstream direction. The corresponding angular velocity of the shock wave travel-

ling in the downstream direction, between θ = 80◦ and θ = 60◦, is uθ = 40◦u1∞/D.

The forward and backward shock wave speeds, relative to the cylinder, differ. This

gives a variable phase difference between the θ = 60◦ and θ = 80◦ waveforms, which
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Figure 5.13: Root mean square density field. (ρmax)rms = 0.34ρ∞, (ρmin)rms =
0.02ρ∞, ∆ρ = 0.02ρ∞.

changes the shape of the θ = 80◦ with respect to the θ = 60◦ wave during one vortex

shedding cycle.

Waveforms of similar shape define the surface pressure at θ = 60◦ in Figure 5.12(a)

and the surface pressure at θ = −60◦ in Figure 5.12(b). The waveform in Fig-

ure 5.12(b) is however shifted by approximately tu1∞/D = 2.51 with respect to

Figure 5.12(a). This is half the mean vortex shedding period. The Root Mean

Square (RMS) pressure coefficient at θ = 60◦ is 1.45. The RMS pressure coefficient

at θ = −60◦ is 1.42. The 2% difference in these two RMS values is due to the

transient cycle-to-cycle variations in the quasi-stationary vortex shedding regime.

The upstream extent of the radial shock wave fluctuations is highlighted in the root

mean square iso-density contours of Figure 5.13. A slight asymmetry is observed

across the wake due to the transient cycle-to-cycle fluctuations. Also highlighted in

Figure 5.13 are the paths taken by the vortices as they are shed and convect down-

stream. A gradual decrease in the magnitude of the rms density fluctuation occurs

with stream-wise distance along these paths. This is due to the decrease in vortex
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strength with increasing distance from the cylinder by numerical dissipation as the

computational grid cell size increases. The precessing primary radial shock waves

and the transient secondary radial shock waves described in this section are expected

to locally increase the entropy. As cited in Chapter 2, Denton (1993) reports that

a circumferential shock wave oscillation increases the time averaged entropy with

respect to fixed radial shock waves. The radial shock waves cause the presence of

‘wave drag’, in addition to the pressure drag documented in Section 5.2.4.

5.2.6 Energy Separation in the Inviscid Vortex Shedding Cycle

A further source of entropy production arises from the redistribution of stagnation

temperature and stagnation pressure in a vortex dominated wake flow, the time

averaged result of which is the Eckert-Weise effect. The numerical time accurate

analysis of this phenomenon at compressible Mach numbers is novel in the context

of circular cylinder flows, based on the body of literature available to the author.

Specifically, the current prediction extends the results of Kurosaka et al. (1987) at

M∞ = 0.35 to compressible circular cylinder flows. A further novel aspect of this

analysis is the use of time accurate predictions to give an enhanced insight into the

compressible Eckert-Weise effect, with respect to the time averaged experimental

investigations of Eckert & Weise (1943) and Thomann (1959). The development of

the stagnation temperature field in the near wake region is documented over one

typical vortex shedding period 160.39 ≤ tu1∞/D ≤ 164.81 in Figures 5.14 and 5.15.

The stagnation temperature Ts is normalised using the free stream stagnation tem-

perature Ts∞. The non-dimensional stagnation temperature field in Figures 5.14

and 5.15 is phase synchronous with the density field development in Figures 5.10

and 5.11. Specifically, Figure 5.14 documents the growth of the anti-clockwise ro-

tating vortex on the lower surface of the cylinder, over half of the vortex shedding

cycle. Figure 5.15 then documents the shedding of this vortex and the development

of a new vortex with clockwise rotation over the second half of the cycle. Localised

regions of fluid with stagnation temperatures higher than the free stream condition

are observed at the outer shear layer of each convecting vortex. One example region
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is labelled (i) in Figures 5.14 and 5.15. Localised regions of fluid with stagnation

temperatures lower than the free stream condition are observed towards the centre of

the wake with local minima located at each vortex, close to the wake centreline. An

example region is labelled (ii) in Figures 5.14 and 5.15. These maxima (i) and min-

ima (ii) are termed hot spots and cold spots respectively by Kurosaka et al. (1987)

and Rona & Bennett (2001). The hot and cold spots pair either side of each vortex,

along a stream-wise normal plane. These occur over both the vortex formation and

vortex shedding phases, convecting downstream with each vortex. The location of

the hot spots (i) and cold spots (ii) in Figure 5.14, relative to the convecting vortex

cores in Figure 5.10, are consistent with the energy separation mechanism proposed

by Kurosaka et al. (1987), as described in Section 2.6. The maximum stagnation

temperature reported in Figures 5.14 and 5.15 is Ts max = 1.15Ts∞. The Ts minimum

value is Ts min = 0.85Ts∞. The difference between the local Ts maximum and mini-

mum varies over the vortex shedding period. The maximum stagnation temperature

contour level in Figure 5.14(a) is, for example, Ts max = 1.105Ts∞. This hot spot,

labelled (i) in Figure 5.14(a), is located in the outer shear layer of the clockwise rotat-

ing vortex being shed from the cylinder. For reference, the instantaneous stagnation

temperatures reported in Kurosaka et al. (1987) vary between Ts max = 1.05Ts∞ and

Ts min = 0.85Ts∞. A further local region of fluid with Ts max = 1.105Ts∞ is observed

close to the surface of the cylinder in Figure 5.14(a). This region is labelled (iii).

The two separated hot spots, (i) and (iii), are caused by the separation of a single

hot spot at the entrainment of the far side shear layer (iv). The time resolved flow

physics leading up to this situation can be interpreted from the end of the vortex

shedding cycle in Figure 5.15(b-d), and is detailed later in this section.

A slight decay in the vortex induced heating and cooling occurs with stream-wise

distance. The hot spot labelled (v) in Figure 5.14(a) has a maximum stagnation

temperature of Ts = 1.075Ts∞, displaying a temperature drop of under 3% from

the hot spots labelled (i) and (iii) in this figure. The cold spot associated with this

vortex, labelled as (vi) in Figure 5.14(a), has a minimum stagnation temperature of

Ts = 0.925Ts∞. This value is around 8.8% higher than the value of Ts = 0.85Ts∞
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observed in the cold spot labelled (ii) in this figure. A shear layer of fluid stretches

between the clockwise rotating vortex, located between (i) and (ii), and the anti-

clockwise rotating vortex immediately downstream. This shear layer is labelled (iv)

in Figure 5.14(a). The shear layer is produced by a competing entrainment between

the successive clockwise and anti-clockwise rotating vortices and constitutes a region

of entropy production. The shear layer (iv) stretches as the two vortices continue

to rotate in opposite directions with downstream distance.

As the flow progresses in time from Figure 5.14(a), a new vortex of anti-clockwise

rotation grows at the cylinder surface. This anti-clockwise rotating vortex even-

tually starts to entrain fluid from the separated shear layer on the upper surface

of the cylinder, as documented in Figure 5.14(b). A significant separation of the

stagnation temperature is observed around the growing vortex, even in the early

stages of the vortex formation. The maximum stagnation temperature contour level

in Figure 5.14(b) is Ts max = 1.15Ts∞. This is located in the outer shear of the

growing vortex. The cold spot associated with this vortex has a stagnation tem-

perature of Ts = 0.865Ts∞. The lowest stagnation temperature in Figure 5.14(b)

(Ts min = 0.85Ts∞) is located at (ii). The stagnation temperature in Figure 5.14(b-c)

shows an increase close to the shock induced shear layer separation. This implies an

influence of the radial shock wave on the magnitude and location of heating around

the growing vortex. As documented in Rona & Bennett (2001), the supersonic

region upstream of the radial shock wave on the lower surface of the cylinder in

Figure 5.14(b) restricts the transport of heat from the outer shear layer of the grow-

ing vortex. It is stressed that this stagnation temperature rise is not caused by the

air compression across the shock wave but rather to a reduction in heat transport

due to the oncoming supersonic region. A large stagnation temperature gradient

therefore exists across this radial shock wave. This is evident in Figure 5.14(b) by

the close spacing of the stagnation temperature contours at this radial shock wave.

The partial insulation of the hot spot (vii) by the upstream shock wave is further

compounded by the appearance of the transient secondary radial shock wave that

forms between the growing vortex and the cylinder surface. This secondary shock
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wave, which is labelled (vii) in Figure 5.10(b-d), further insulates the hot spot from

the cross-wake transport of heat. This is evident at (vii) in Figure 5.14(c). Heating

in this region is also aided by the cross-wake convection of the hot spot labelled

(iii) in Figure 5.14(a-b). This region, which is transported across the wake with the

entrainment of the far side shear layer, cools slightly approaching the growing vortex

and is transported between the vortex and the cylinder into the region insulated by

the radial shock waves. As the far side shear layer is entrained by the vortex, the

region of raised stagnation temperature (vii) at the anti-clockwise rotating vortex is

stretched, as shown in Figure 5.14(d). The entrainment of the far side shear layer

divides this hot region into two separate hot spots. These two isolated hot spots

are labelled (vii) and (ix) in Figure 5.15(a-b). The first hot spot (vii) is convected

with the vortex in the outer shear layer. The second hot spot (ix) is cut off from

the vortex by the entrained shear layer and remains close to the surface of the cylin-

der. This mechanism, which occurs as each vortex is shed from the cylinder, is also

responsible for the two hot spots observed at (i) and (iii) in Figure 5.14(a).

This mechanism, which is studied for the first time in the compressible regime us-

ing a time accurate CFD approach, may be responsible for the double hot spot evi-

dent at around the same location in the subsonic prediction of Kurosaka et al. (1987).

The presence of shock waves in the current prediction appears to be responsible for

an enhancement in the magnitude of this hot spot, with respect to the subsonic pre-

diction of Kurosaka et al. (1987). The development of the new clockwise rotating

vortex in Figure 5.15(a-d) follows a similar pattern to the flow field development

described for Figure 5.14(a-d).

Time averaging the near wake stagnation temperature field over an integer num-

ber of vortex shedding cycles yields the time averaged stagnation temperature field

given in Figure 5.16. A region of reduced stagnation temperature is observed along

the centre of the wake. The minimum stagnation temperature in this region is

Ts min = 0.941Ts∞. This local minimum, labelled (i) in Figure 5.16, corresponds to a

stagnation temperature decrease of 17.7K with respect to the free stream condition.

This region is located a distance of x1 = 0.15D from the rear surface of the cylinder.
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Figure 5.16: Time averaged stagnation temperature contours. Ts max = 1.031Ts∞,
Ts min = 0.941Ts∞, ∆Ts = 0.005Ts∞.

Approaching the surface of the cylinder from this point, the stagnation temperature

increases from Ts min = 0.941Ts∞ to Ts = 0.981Ts∞. This increase is partly due to

the cross-wake movement of the isolated hot spots, labelled (iii) and (ix) in Fig-

ures 5.14 and 5.15, as the far side shear layer is entrained. The downstream increase

in stagnation temperature along the centre of the wake from (i) correlates well with

the time averaged measurements of Thomann (1959).

The maximum stagnation temperature in Figure 5.16 is Ts max = 1.031Ts∞. This

stagnation temperature maximum occurs close to the surface of the cylinder, at

(ii) and (iii) in Figure 5.16, and equates to an increase of 9.3K above the free

stream stagnation temperature. Extending around the base of the cylinder to θ =

±18◦, these regions are absent from the time averaged prediction of Kurosaka et

al. (1987) at M∞ = 0.35. These high stagnation temperature regions may therefore

be augmented by the thermal shielding of the shear layers by the primary and

transient shock waves. This effect is, however, thought to be enhanced by the

inviscid surface condition and the absence of turbulence diffusion in the separated
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Figure 5.17: Stream-wise normal cross-section of the stagnation temperature in the
wake of a circular cylinder at x1 = 6.5D.

shear layers. This issue is investigated further in Section 5.3, where time dependent

short-time averaged Navier-Stokes predictions are compared to these results.

Further downstream, regions of fluid with time averaged stagnation temperatures

Ts greater than Ts∞ remain at the outer edges of the wake. This is shown in the wake

cross-section at x1 = 6.5D in Figure 5.17. The time averaged stagnation temperature

rise along the edges of the wake remains significantly lower than the stagnation

temperature in the time resolved hot spots of Figures 5.14 and 5.15. This decrease

is due to the alternate convection of hot spots and cooler regions along the wake

edges. These hot spots and cooler regions are associated with the passing of each

near-side and far-side vortex respectively. The maximum stagnation temperature in

Figure 5.17 is Ts max = 1.004Ts∞. Located at x2 = ±0.962D, this corresponds to an

increase of 1.2K above the free stream stagnation temperature. Secondary peaks are

observed further away from the wake centreline at x2 = ±1.72D. These secondary

peaks result from the intense shearing of fluid between successive vortices. A time

averaged region of stagnation temperature below the free stream condition is also
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shown, falling to around Ts = 0.968Ts∞ at x2 = 0. This represents a local cooling

of around 9.6K from the free stream condition.

Kurosaka et al. (1987) suggest that the stagnation pressure field in the incom-

pressible wake downstream of a circular cylinder exhibits a pattern analogous to

the stagnation temperature field. This study extends the proposal of Kurosaka et

al. (1987) to the time accurate stagnation pressure field in a M∞ = 0.6 circular cylin-

der wake. These predictions are shown in Figures 5.18 and 5.19. Eight contour

plots document the development of the stagnation pressure field over one complete

vortex shedding cycle, in the range 160.39 ≤ tu1∞/D ≤ 164.81. The phases of

flow development reported in Figures 5.18 and 5.19 correspond to the stagnation

temperature and static density field development given in Figures 5.14-5.15 and

Figures 5.10-5.11. The predicted stagnation pressure field shows a similar pattern

to that of the stagnation temperature field. Regions of stagnation pressure higher

than the free stream condition occur in localised regions at the edges of the wake,

for example (i) and (iii). Localised regions of stagnation pressure lower than the

free stream condition are located close to the wake centreline, for example (ii) and

(iv). A close examination of the stagnation pressure field indicates that the stagna-

tion pressure minima occur close to the vortex cores. The low pressure vortex cores

augment the vortex-induced stagnation pressure redistribution. Shock waves also

act to locally decrease the stagnation pressure. The high ps regions at the edges

of the wake, where ps > ps∞, exhibit a maximum of ps = 1.2ps∞ at the regions

labelled (i) and (iii). The increase in stagnation pressure during the formation of

new vortices, close to the surface of the cylinder, is limited by a decrease in the

stagnation pressure as the fluid passes through the radial shock waves. This results

in a stagnation pressure gradient across the shock wave, which may locally increase

the vorticity of the shock-induced separated shear layers.

Time averaging the unsteady stagnation pressure field over an integer number of

cycles gives the low stagnation pressure wake in Figure 5.20. Stagnation pressure

minima occur either side of the wake centreline, close to the surface of the cylinder.

These stagnation pressure minima result from the formation and growth of vortices
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Figure 5.20: Time averaged stagnation pressure contours. ps max = 0.995ps∞,
ps min = 0.595ps∞, ∆ps = 0.025ps∞.

from each side of the cylinder over each vortex shedding cycle. The alignment of

the vortex centres during the formation and initial shedding phases are identified in

the stagnation pressure contours either side of the wake centreline in Figure 5.20.

Further downstream, numerical diffusion decreases the strength of the vortices and

a gradual recovery of the stagnation pressure is observed with downstream distance.

The time averaged stagnation pressure then falls to a local minimum at the wake

centreline, x1 = 0. The time averaged stagnation pressure deficit in the wake covers

a significantly wider transverse distance with respect to the time averaged stagnation

temperature field. The augmented stagnation temperature regions along the edges

of the wake are observed as regions of stagnation pressure deficit in Figure 5.20.

These time averaged results highlight the influence of the low stagnation pressure

regions along the edges of the time resolved wake, between the local stagnation

pressure maxima at each vortex.

A cross-section of the time averaged stagnation pressure wake distribution at a

stream-wise distance of x1 = 6.5D is shown in Figure 5.21. The low pressure wake
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Figure 5.21: Stream-wise normal cross-section of the time averaged stagnation pres-
sure across a circular cylinder wake at x1 = 6.5D.

centre falls to a time averaged minimum of around ps = 0.745ps∞ at x2 = 0. The

absence of a time averaged stagnation pressure rise above the free stream condition

is evident in this figure, as is the wide stagnation pressure deficit, which covers the

region −2D ≤ x2 ≤ 2D.

While the stagnation temperature field exhibits a central low Ts wake sided by two

higher temperature bands, the stagnation pressure field shows only a wide wake of

reduced ps with no augmented side bands. Local differences in the Ts and ps fields

constitute regions of entropy production. The specific entropy is estimated as

s = cp ln

(
Ts

Ts∞

)
−R ln

(
ps

ps∞

)
, (5.4)

where cp is the specific heat at constant pressure, cp = 1005J/kgK, R is the spe-

cific gas constant, R = 287J/kgK, and s∞ = 0. A time sequence of eight en-

tropy contour plots, equally spaced over the vortex shedding cycle, are given in

Figures 5.22 and 5.23. Specific entropy s is normalised using the specific gas con-

stant, R = 287J/kgK. Increases in entropy occur as the local supersonic fluid is
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recompressed by the unsteady radial shock waves. The recompressed fluid imme-

diately downstream of each shock wave is labelled (i) and (ii) respectively for the

upper and lower radial shock waves in Figures 5.22 and 5.23. This increase in en-

tropy determines the upstream extent of the specific entropy contours on the upper

(i) and lower (ii) surfaces in Figures 5.22 and 5.23. The strong upstream moving

radial shock waves and the weaker downstream moving radial shock waves are qual-

itatively evident from the relative radial extent of the specific entropy contours at

(i) and (ii) over the vortex shedding cycle. Downstream of the cylinder, the low

pressure vortex cores are highlighted as regions of entropy production. The low

stagnation pressure in these vortex cores is not similarly highlighted as a region of

stagnation temperature minimum. The entropy contours therefore clearly define the

distinct alternating pattern of the von Kármán vortex street. From an analysis of

these convecting vortex cores over the vortex shedding cycle, an approximate vor-

tex convection velocity of u1v = 0.69u1∞ is calculated. In Figure 5.22(a), a further

region of increased specific entropy is highlighted between the radial shock wave at

(i) and the clockwise rotating vortex (vi). This entropy producing region is defined

along the thin shearing layer of fluid between the cylinder surface and the outer edge

of the growing vortex. Two distinct regions of localised specific entropy maxima are

evident in this shear layer. These regions, labelled (iii) and (iv) in Figure 5.22(a),

correspond approximately to the two isolated stagnation temperature maxima la-

belled (i) and (iii) in Figure 5.14(a). Similar regions of shearing flow extend between

each downstream pair of successive vortices, for example (v) in Figure 5.22(a). The

iso-entropy lines in Figure 5.22(a-c) clearly document the cross-wake entrainment

of the separated shear layer, labelled (iii), to the opposite side of the wake by the

anti-clockwise rotating vortex (vii). Also evident in Figure 5.22(a-b) is the cross-

wake transport of the hot spot labelled (iii) in Figure 5.14(a-b) by the entrainment

of the shear layer. This is evident by following the local specific entropy maximum

(iv) over Figure 5.22(a-c). The transient radial shock wave, extending between the

surface of the cylinder and the anti-clockwise rotating vortex (vii), then appears as

a source of additional entropy in Figure 5.22(c). The recompressed fluid behind this
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transient shock wave is labelled (viii) in Figure 5.22(c-d). Figure 5.23(a-d) docu-

ments the shedding of this vortex (vii) and the roll up of the shear layer entrained

from the far side, creating a stretched shearing layer of fluid between the convecting

vortices labelled (vi) and (vii).

5.2.7 Summary

The results presented in this section document the development of an inviscid, com-

pressible model flow around a circular cylinder, from a uniform M∞ = 0.6 flow

field condition, to a self-sustained, periodic vortex shedding condition. The current

prediction shows a satisfactory correlation with published inviscid predictions at

the same free stream Mach number. Possible areas for improvement of the current

correlation with published measurements, through the subsequent introduction of

a turbulence model, are highlighted. Energy separation in the von Kármán vor-

tex street, evident as a redistribution of the stagnation enthalpy, temperature and

pressure, is predicted by the inviscid numerical model on a time accurate and time

averaged basis. This further substantiates the hypothesis that energy separation

is predominantly a convective phenomenon. The prediction highlights hot spots of

stagnation temperature greater than the free stream condition at the edges of the

wake. Localised cold spots, of lower stagnation temperature than the free stream

condition, are predicted at the wake centre. The stagnation temperature max-

ima and minima show a good overall correlation with the subsonic predictions of

Kurosaka et al. (1987). Additional compressible effects are highlighted in the cur-

rent prediction. A similar redistribution of the stagnation pressure is predicted in

the time resolved and time averaged wake. Localised regions of stagnation pressure

higher than the free stream condition are observed at the outer shear layer of each

downstream moving vortex. Localised regions of stagnation pressure lower than the

free stream condition are also predicted close to the wake centreline at each vortex.

The stagnation pressure rise at the outer edge of each convecting vortex in the time

accurate prediction is absent in the time mean prediction. This is attributed to the

stagnation pressure deficit between each convecting vortex, reducing the overall stag-
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nation pressure at the edges of the wake on a time averaged basis. Energy separation

in the near wake flow is highlighted as increasing the overall entropy downstream

of the circular cylinder. Additional regions of entropy production are highlighted

in the vortex cores, along the shear layers and downstream of the fluctuating radial

shock waves.

5.3 Turbulent Circular Cylinder Flow Prediction

5.3.1 Numerical Model Specifications

A turbulent circular cylinder prediction at a free stream Mach number of M∞ = 0.6

and a Reynolds number, based on the cylinder diameter D, of ReD = 6.87 × 105

is presented in this section. The initial flow field for the turbulent prediction is

primed using the self-sustained inviscid vortex shedding prediction documented

in Section 5.2. To match the Reynolds number regime in concurrent tests by

Ackerman (2005) at M∞ = 0.6, the cylinder model diameter is increased to

D = 47.41×10−3m. This increase in cylinder diameter is achieved by uniformly scal-

ing the computational domain defined in the inviscid prediction. By uniformly scal-

ing the computational domain, the relative dimensions in Figure 5.1 are preserved

and the relative computational cell sizes are maintained. The volume averaged state

variables vector (U in Equation 3.19) is a vector of intensive properties, independent

of cell volume. By preserving the relative computational cell dimensions, the volume

averaged state variables from the inviscid prediction can be directly imposed onto

the updated mesh. The inviscid prediction is then time marched for a short number

of vortex shedding cycles. This is carried out to identify any change in the inviscid

flow prediction, resulting from minor rounding errors in the scaling process. The

current inviscid prediction, however, demonstrates no appreciable flow change after

implementing the scaled grid.

In addition to priming the turbulent field with the inviscid prediction, initial esti-

mates for the specific turbulence kinetic energy k and the specific turbulence dissi-

pation rate ω are required. Free stream values of k∞ = 0.1m2/s2 and ω∞ = 5221Hz
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are imposed uniformly throughout the domain at the start of the turbulent compu-

tation. These free stream values give a turbulence intensity, Tu =
√

2k∞/3u2∞, of

Tu = 0.13%, which models a quiet wind tunnel. The value of ω∞ gives a ratio of free

stream laminar viscosity µ∞ to eddy viscosity, µt∞ = ρ∞k∞/ω∞, of µ∞/µt∞ = 0.725.

As a guideline, this value for µ∞/µt∞ is within the range of free stream values used

in the transonic RAE 2822 aerofoil prediction of Bardina et al. (1997) using the

k−ω turbulence model. This value for µ∞/µt∞ is also within the range used in the

transonic turbine cascade prediction of Currie & Carscallen (1998), for an estimated

turbulence intensity of Tu = 0.1%.

From the circular cylinder literature review in Section 2.5, the modelled free

stream Reynolds number ReD = 6.87 × 105 places the turbulent prediction in the

low super-critical Reynolds number regime. This regime extends over the range

(0.5 ∼ 1.0) × 106 ≤ ReD ≤ (3.4 ∼ 6.0) × 106. At low Mach numbers, the flow is

characterised by an upstream movement of the boundary layer transition location

with increasing Reynolds number and free stream turbulence intensity, as discussed

in Zdravkovich (1997).

A frequency analysis of the time resolved circular cylinder surface pressure mea-

surements by Ackerman (2005) at M∞ = 0.6 and ReD = 6.86 × 105, however,

indicates a shock induced separation of the boundary layer before the onset of tran-

sition. To accommodate laminar boundary layers in the current prediction, the

no-slip boundary condition of Section 3.9.8 is defined at the cylinder surface. All

other boundary conditions for the turbulent prediction are defined as in Figure 5.1.

In the absence of published boundary layer measurements at the current free

stream conditions, a compressible laminar boundary layer analysis has been under-

taken for the circular cylinder using the integral method of Gruschwitz (1950) to

estimate the boundary layer height. This integral method is described in a number

of standard texts, including Schlichting (1979) and White (1991). In the integral

method of Gruschwitz (1950), the distribution of density, velocity, viscosity and

static temperature are required at the boundary layer edge. These are satisfied in

the present circular cylinder analysis by sixth order polynomial approximations to
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the time averaged inviscid cylinder surface distribution, computed on the turbu-

lent cylinder scale grid. From the method of Gruschwitz (1950), estimates for the

boundary layer integral parameters, the skin friction coefficient and the surface nor-

mal velocity profiles are obtained along the upstream facing cylinder surface. This

preliminary boundary layer analysis, which is not documented here, indicates a pos-

sible under-resolution of the laminar boundary layer by the 400 × 200 grid used in

the inviscid prediction.

Based on this analysis, the Adaptive Mesh Refinement (AMR) method is used to

increase the grid resolution with two levels of AMR refinement (levels 0 and 1). The

level 0 grid, which covers the whole computational domain, is the grid of 400× 200

internal cells scaled up from the inviscid prediction. Level 1 locally increases the grid

resolution by a factor of three from this level 0 grid. Level 1 is adaptively defined

around flow features of significant density gradient and is of equivalent resolution to

a single grid of 1200 × 600 internal cells. To ensure the boundary layer is resolved

by level 1 at all points around the cylinder, the first 25 cell rows above the cylinder

surface at level 0 are explicitly flagged for refinement around the circumference

of the cylinder. This distance is considered sufficient to completely resolve the

attached boundary layer to separation, based on the preliminary laminar boundary

layer analysis. The remaining cells at level 0 are autonomously flagged by the

AMR scheme based on the density gradient between contiguous cells, as described

in Section 3.10.2. The AMR scheme adaptively refines the fluctuating shock waves,

the separated shear layers and the growing vortices in the near wake region.

5.3.2 Turbulent Circular Cylinder Validation

The turbulent flow field at level 0 is time marched from the initial conditions de-

scribed in this section in constant time steps of ∆t = 2.15×10−4D/u1∞. The level 1

flow field is therefore time marched in constant time steps of ∆t = 7.2×10−5D/u1∞.

An initial transient period of flow develops at the start of the computation as the

specific turbulence kinetic energy k and the specific turbulence dissipation rate ω

fields develop from the uniformly imposed free stream conditions.
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After the initial transient period, a self sustained vortex shedding is again defined

downstream of the cylinder. The boundary layer displacement thickness increases

the effective diameter of the cylinder. In addition to the pressure drag and wave

drag that are present in the inviscid prediction, the development of the boundary

layer momentum thickness leads to a further drag contribution, that of skin fric-

tion drag. The relative contribution of skin friction to the total drag represents a

small proportion at high Reynolds numbers. For example, measurements by Achen-

bach (1968) are used to document the proportion of skin friction drag to the total

drag for a circular cylinder in cross-flow at 6×104 ≤ ReD ≤ 5×106, Tu = 0.7% and

M∞ ≤ 0.1. Achenbach (1968) shows that the skin friction drag constitutes less than

2% of the total drag over this Reynolds number range. The wave drag contribution,

which is caused by the sudden increase in static pressure across each shock wave, is

considered at the current free stream conditions to be significantly lower than the

contribution of pressure drag. The contribution of wave drag increases significantly

at higher Mach numbers and constitutes the largest contribution at supersonic free

stream Mach numbers, as reported in Douglas et al. (1995).

The time resolved pressure drag coefficient, which represents the largest contri-

bution to total drag at the modelled free stream conditions, is documented for the

turbulent prediction in Figure 5.24. The drag coefficient is computed by integrat-

ing the surface pressure coefficient around the cylinder using Equation 5.2. Eleven

complete cycles of a coherent pressure drag fluctuation are documented over the

interval 275 ≤ tu1∞/D ≤ 305. As in the inviscid prediction of Figure 5.8, the drag

coefficient rises to a maximum value immediately preceding the shedding of vortices

from each side of the cylinder. The introduction of turbulence and the presence of

a no-slip surface condition alters the drag coefficient waveform in Figure 5.24 from

the inviscid prediction of Figure 5.8. The inviscid drag coefficient history is char-

acterised by a single maximum at each vortex shedding event. A further transient

contribution leads to the presence of additional localised extrema within each vortex

shedding cycle. The relative location and magnitude of these local extrema change

on a cycle-to-cycle basis. The single peak maxima in the inviscid drag coefficient
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Figure 5.24: Turbulent pressure drag coefficient history over the time interval 275 ≤
tu1∞/D ≤ 305.

are replaced in Figure 5.24 by double peaked maxima, synchronised to each vortex

shedding event. The relative magnitude and temporal spacing between these two

peaks also varies on a cycle-to-cycle basis. This variation follows a similar unsteady

fluctuation in the drag coefficient amplitude over the documented time interval. A

similar unsteady drift in the inviscid drag coefficient and base pressure traces is doc-

umented in Sections 5.2.3 and 5.2.4. A reduction in the drag coefficient amplitude

fluctuation is however observed in the turbulent drag coefficient with respect to the

inviscid prediction of Figure 5.8. This peak-to-peak fluctuation is quantified, along

with the maximum, minimum and time averaged drag coefficients in Table 5.5.

Comparing the average drag coefficient from the turbulent prediction with the

previous inviscid prediction shows that an increase of 2.57% accompanies the in-

troduction of turbulence modelling and the no-slip surface condition. A similar

increase is observed in the minimum Cd average value, which increases by 1.36%.

A decrease of 3.26% is observed in the turbulent Cd maximum. Table 5.5 also lists

time averaged experimental drag coefficients by Ackerman (2005) and Murthy &

Rose (1978), as well as the viscous prediction by Shang (1982). For comparison,

the inviscid predictions of Botta (1995) and Pandolfi & Larocca (1989) are also
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Source Max. Cd Average Cd Min. Cd

Current k − ω prediction 1.364± 0.012 1.317 1.196± 0.015
Ackerman (2005) (2000 case) − 1.67 −
Ackerman (2005) (2002 case) − 1.36 −
Murthy & Rose (1978) − 1.37− 1.56 −
Shang (1982) − 1.27 −
Current inviscid prediction 1.41± 0.06 1.284 1.18± 0.05
Botta (1995) 1.5± 0.05 1.3± 0.05 1.1± 0.05
Pandolfi & Larocca (1989) 1.5± 0.03 1.38± 0.03 1.25± 0.03

Table 5.5: Circular cylinder drag coefficient comparison. Measurements of Ack-
erman (2005): M∞ = 0.6, ReD = 6.86 × 105 (2000 case), M∞ = 0.6, ReD =
6.75 × 105 (2002 case). Measurements of Murthy & Rose (1978) at M∞ = 0.6,
ReD = 0.83× 105, 1.66× 105 and 5× 105. Prediction of Shang (1982) at M∞ = 0.6,
ReD = 1.67× 105.

tabulated.

The tabulated measurements of Ackerman (2005) and Murthy & Rose (1978) are

defined at a common free stream Mach number of M∞ = 0.6. The free stream

Reynolds number in these experiments, however, vary between ReD = 0.83 × 105

and ReD = 6.86× 105. At M∞ = 0.6, the drag coefficient is less sensitive to the free

stream Reynolds number and free stream turbulence intensity than at lower Mach

numbers. This insensitivity arises from the presence of intermittent radial shock

waves. As documented in Section 2.5, these shock waves fix the separation location

of laminar boundary layers, induce transition in separating laminar shear layers and

can significantly shorten the attached length of turbulent boundary layers, down-

stream of the shock wave. This shock induced boundary layer separation prevents

the ‘drag crisis’ that is documented in Zdravkovich (1997) at lower free stream Mach

numbers.

A substantial variation is still evident, however, in the measured drag coefficients

in Table 5.5. The time averaged Cd measurements of Ackerman (2005) change be-

tween two separate wind tunnel runs at similar free stream Reynolds numbers. Ack-

erman (2005) reports that these changes are caused by a change in the arrangement

of surface pressure transducers around the cylinder. A single pressure transducer

is used in the 2000 series measurements. This is replaced in the 2002 series mea-
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surements by four pressure transducers, of larger diameter, equi-spaced around the

circumference of the cylinder. Ackerman (2005) proposes that the increase in diam-

eter of the pressure transducer is responsible for inducing transition upstream of the

shock induced separation point. In short, Ackerman (2005) proposes that the 2000

series of experiments measure the development and shock induced separation of a

laminar boundary layer at M∞ = 0.6. The 2002 series therefore measure a transition

of the boundary layer upstream the separation point and the shock induced separa-

tion of a transitional or turbulent boundary layer. The time averaged drag coefficient

range reported in Murthy & Rose (1978) indicates a variation in Cd between three

free stream Reynolds numbers of ReD = 0.83×105, 1.66×105 and 5×105. The drag

coefficient/Reynolds number correlation is not discernable at M∞ = 0.6 from the

graph provided by Murthy & Rose (1978). However, the drag coefficient variation in

Murthy & Rose (1978) may also be attributable to a similar change in the boundary

layer turbulence level upstream of the separation point. As expected, the change in

drag coefficient with free stream Reynolds number in Murthy & Rose (1978) is signif-

icantly lower than is documented over the same Reynolds number range at subsonic

Mach numbers by, for example, Zdravkovich (1997). The mean drag coefficient in

the current turbulent prediction (Cd = 1.317) is below the tabulated measurements.

Specifically, the turbulent prediction is 3.16% lower than the 2002 series measure-

ments of Ackerman (2005) and 3.87% lower than the estimated minimum Cd value

of Murthy & Rose (1978). As the average drag coefficient (Cd = 1.317) from the

turbulent prediction is closer to the cited measurements (1.37 ≤ Cd ≤ 1.67) than

the inviscid drag coefficient (Cd = 1.284), the turbulent prediction represents an

improved approximation. In comparison with the laminar boundary layer measure-

ments of Ackerman (2005) and the possible laminar boundary layer in Murthy &

Rose (1978), the low predicted drag coefficient may indicate an under-resolution of

the laminar boundary layer on the upstream facing cylinder surface.

To determine whether the close proximity of the turbulent prediction to the tur-

bulent boundary layer drag coefficient of Ackerman (2005) and the lower bound of

Murthy & Rose (1978) may result from the prediction of a turbulent boundary layer,
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a posteriori turbulent boundary layer analysis is developed. As a minimum criterion,

the laminar sublayer of a turbulent boundary layer must be resolved by at least ten

computational cells in the surface normal direction. By calculating an approximate

height for the laminar sublayer at the modelled free stream conditions, a coarse es-

timation of whether the laminar sublayer may be resolved by the AMR level 1 grid

is possible. To the authors knowledge, no published compressible, turbulent bound-

ary layer measurements of the laminar sublayer height are currently available for a

circular cylinder at the modelled free stream conditions. In the absence of published

measurements, a coarse approximation is computed from the incompressible circu-

lar cylinder boundary layer measurements of Patel (1969) at ReD = 5.01× 105. In

the experiment of Patel (1969), turbulent boundary layers develop from two surface

mounted trip wires, of diameter Dw = 6.67× 10−3D, placed at ∆θ = ±45◦ from the

upstream stagnation point. Boundary layer integral parameters and surface normal

velocity profiles are documented at a number of circumferential stations between

∆θ = ±60◦ and ∆θ = ±100◦ from the upstream stagnation point. The skin friction

coefficient Cf is estimated in the current analysis based on the integral parame-

ters documented in Patel (1969), along with the incompressible momentum integral

equation. The skin friction is adjusted for compressibility through the general ‘van

Driest II’ relation, according to Spalding & Chi (1964), and is used to compute the

surface normal distance of y+ = 1 for the current prediction. For this estimate, the

state variable distribution along the cylinder surface from the inviscid prediction is

used to approximate the boundary layer edge distribution. An outline of this anal-

ysis is presented in Appendix A.2. It is recognised that this analysis is based on a

number of assumptions, including the application of the ‘van Driest II’ correlation

to the circular cylinder flow, and is therefore of limited accuracy. This analysis also

neglects the effects of pressure diffusion, which occurs upstream of each radial shock

wave through the subsonic boundary layer region. This pressure gradient is expected

to increase the actual laminar sublayer height with respect to the estimation. How-

ever, based on this analysis, at a circumferential distance of ∆θ = 60◦ from the

upstream stagnation point, the surface normal height of the laminar sublayer edge
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(assumed to be y+ = 10) is approximately xn = 2.8×10−4D. To resolve the laminar

sublayer below y+ = 10 with at least ten cells, assuming equi-spaced grid points

in the laminar sublayer, the height of the first cell above the surface is required to

be xn ≤ 2.8 × 10−5D. To resolve down to this level using the AMR scheme, six

levels of refinement are required (levels 0 to 5) with a resolution increment of three

between each level. Even with the AMR scheme efficiency, resolving down to this

level represents a computationally demanding task with the current explicit scheme

and is not possible within the time constraint of the current turbulent prediction.

The under-prediction of the mean drag coefficient to the turbulent boundary layer

(2002) case of Ackerman (2005) is therefore thought to be caused by an under-

resolution of a laminar boundary layer. An under-resolution of the laminar boundary

layer would imply fewer surface normal cells falling within the subsonic region of the

boundary layer. The pressure diffusion through the subsonic region of the laminar

boundary layer, upstream of each shock wave, is therefore under-predicted. The

result is a lower local static pressure and a higher predicted velocity, with respect

to the measured boundary layer, upstream of each shock wave. The higher velocity

predicted in the laminar boundary layer approaching the radial shock waves may

also result in the laminar boundary layer supporting a greater static pressure rise

across the shock wave before separating.

The lower static pressure approaching the shock wave and the delayed boundary

layer separation would result in a surface pressure distribution and mean drag coef-

ficient closer in form to the turbulent boundary layer measurements. For example,

the pressure diffusion through the subsonic region of a boundary layer, upstream of

an incident shock wave, is observed further upstream of the shock wave in a lami-

nar boundary layer than in a turbulent boundary layer. Schlichting (1979) reports

typical values for the length of boundary layer, upstream of an incident shock wave,

effected by the shock wave presence as 100δ99 for a laminar boundary layer and 10δ99

for a turbulent boundary layer, where δ99 is the boundary layer thickness. Turbulent

boundary layers can also support a greater pressure rise across an incident shock

wave before separating, due to the enhanced diffusivity in the turbulent boundary
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Figure 5.25: Lift coefficient history in the quasi-stationary vortex shedding regime.

layer. The result is a delay in the separation location of the turbulent boundary

layer, downstream of the shock wave, with respect to a laminar boundary layer. To

improve the boundary layer prediction, additional AMR levels are required. Due to

the limited computational resources available to the author, a further refinement of

the boundary layer with additional AMR levels is unfortunately not possible.

The primary objective of the turbulent circular cylinder prediction is an anal-

ysis of the redistribution of stagnation temperature and pressure in a turbulent

cylinder wake. At the current compressible free stream Mach number, the vortex

shedding mechanism in the near wake is relatively insensitive to the free stream

Reynolds number and the boundary layer characteristics before separation for a cir-

cular cylinder. A time accurate study on the influence of turbulence production,

turbulent heat transfer and small scale turbulence diffusion on the vortex shedding

and energy separation mechanism, downstream of this cylinder, remains a feasible

and valid objective.

The time accurate lift coefficient history from the turbulent prediction, over the

time interval 275 ≤ tu1∞/D ≤ 305, is shown in Figure 5.25. The lift coefficient is

less sensitive to the transient cycle-to-cycle fluctuation observed in the time accurate

drag coefficient over the same time interval. Approximately five and a half cycles of
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a sinusoidal oscillation are documented. Each cycle corresponds to the shedding of

a vortex from the upper and lower surfaces of the circular cylinder. The maximum

and minimum lift coefficients, along with the associated cycle-to-cycle fluctuation,

are quantified in Table 5.6. Maximum and minimum values for Cl are also tabu-

Source Max. Cl Min. Cl

Current k − ω prediction 1.46± 0.005 −1.46± 0.005
Current inviscid prediction 1.3± 0.1 −1.3± 0.1
Botta (1995) 1.2± 0.15 −1.2± 0.15
Pandolfi & Larocca (1989) 1.5± 0.15 −1.5± 0.15

Table 5.6: Circular cylinder lift coefficient comparison.

lated for the inviscid cylinder prediction of Section 5.2 and the inviscid predictions

of Botta (1995) and Pandolfi & Larocca (1989). The average peak-to-peak ampli-

tude in the turbulent prediction is 12.31% greater than the inviscid prediction of

Section 5.2 and 21.67% greater than the inviscid prediction of Botta (1995). The

peak-to-peak Cl amplitude in the turbulent prediction also remains 0.67% lower than

the inviscid prediction of Pandolfi & Larocca (1989). The peak-to-peak fluctuation

(±0.005) for the turbulent prediction is significantly lower than all three inviscid

predictions, mirroring the lower peak-to-peak drag coefficient fluctuation. Compar-

ing the fluctuations in peak-to-peak lift and drag amplitude yields a significantly

lower unsteady fluctuation for the lift coefficient. Specifically, the unsteady fluctua-

tion in the turbulent lift coefficient is approximately 0.34% of the peak-to-peak lift

coefficient amplitude. This compares with 16.07% for the drag coefficient waveform.

The lower relative fluctuation in the lift coefficient highlights the most likely source

of the unsteady cycle-to-cycle fluctuation as originating from the base of the circular

cylinder, confirming the source of the unsteady fluctuation as the vortex shedding

mechanism.

A Fourier analysis of the time accurate lift coefficient over an integer number

of cycles yields a value for the vortex shedding frequency. The resulting Strouhal

number for the turbulent prediction is compared with published measurements by

Ackerman (2005) and Murthy & Rose (1978) in Table 5.7. The turbulent prediction
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Source Strouhal no.
Current k − ω prediction 0.187
Ackerman (2005) (2000 series) 0.175
Ackerman (2005) (2002 series) 0.176
Murthy & Rose (1978) 0.181
Shang (1982) 0.21
Current inviscid prediction 0.199
Botta (1995) 0.2
Pandolfi & Larocca (1989) 0.198

Table 5.7: Strouhal number comparison. Measurements of Ackerman (2005): M∞ =
0.6, ReD = 6.86 × 105 (2000 series), M∞ = 0.6, ReD = 6.75 × 105 (2002 series).
Measurements of Murthy & Rose (1978) at M∞ = 0.6, ReD = 0.83× 105 − 5× 105.
Prediction of Shang (1982) at M∞ = 0.6, ReD = 1.67× 105.

is also compared against the viscous prediction of Shang (1982), inviscid predictions

by Botta (1995) and Pandolfi & Larocca (1989), and against the current inviscid

prediction of Section 5.2. The introduction of a turbulence model and no-slip bound-

ary condition in the numerical model improves the Strouhal number correlation with

the cited measurements. The decrease in Strouhal number from Str = 0.199 in the

inviscid prediction to Str = 0.187 in the turbulent prediction represents a reduc-

tion of 6.03%. This decrease accompanies an increase in the separated shear layer

thickness due to the additional contribution of molecular and turbulence diffusion.

As discussed in Sections 2.3 and 5.2.4, Gerrard (1966) proposes that a balance

exists between increases in shear layer thickness, or ‘diffusion length’, and the re-

duction in formation region length as the free stream Reynolds number or turbulence

intensity is increased. This balance is proposed to result in an insensitivity of the

Strouhal number to changes in these free stream parameters. This insensitivity is

observed in the measured Strouhal numbers of Murthy & Rose (1978), which remain

constant over the Reynolds number range 0.83×105 ≤ ReD ≤ 5×105. The decrease

in Strouhal number between the current inviscid and turbulent predictions may

therefore result from a relative imbalance between these two opposing mechanisms

as the turbulence model is introduced. The resulting turbulent prediction is closer

to the measured Strouhal numbers of Ackerman (2005) and Murthy & Rose (1978)
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than for the current inviscid prediction. Specifically, the turbulent prediction is

within 6.9% of the cited measurements, which vary by less than 3.5% with respect

to each other.

5.3.3 Compressibility and the Turbulent Vortex Shedding Cycle

The drag coefficient, lift coefficient and Strouhal number indicate that introducing

the k − ω turbulence model and imposing a no-slip surface condition provides a

better physical approximation to the measured flow field development, with respect

to the inviscid prediction. Time resolved static density iso-contours document the

turbulent cylinder near wake development over one typical vortex shedding cycle

in Figures 5.26(a-d) and 5.27(a-d). A series of eight instantaneous density iso-

contour plots document the static density field over the normalised time interval

294.09 ≤ tu1∞/D ≤ 298.76. Figure 5.26(a-d) documents the formation of an anti-

clockwise rotating vortex from the lower surface of the cylinder. Figure 5.27(a-d)

documents the shedding of this vortex and the formation of a new vortex, with

clockwise rotation, from the upper surface of the cylinder. The turbulent density

field development in these figures is approximately phase synchronous over the vor-

tex shedding cycle with the inviscid density field development in Figures 5.10(a-d)

and 5.11(a-d). The inviscid near wake density field development over a typical vortex

shedding cycle is discussed in Section 5.2.5. The current discussion highlights modi-

fications to this inviscid prediction through the introduction of the k−ω turbulence

model and no-slip surface condition.

Figure 5.26(a) documents a stage in the vortex shedding cycle at the initial for-

mation of an anti-clockwise rotating vortex, labelled (iii), from the lower side of the

cylinder. Two radial shock waves close to the surface of the cylinder are labelled

(i) and (ii) in this figure. These shock waves are similar in form to the radial shock

waves described in the inviscid prediction. However, the radial shock wave labelled

(i) on the upper surface of the cylinder is located upstream of θ = 90◦. In contrast,

the radial shock waves do not appear upstream of θ = ±90◦ along the surface of

the cylinder in the inviscid prediction. The precession of the radial shock waves
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to a surface location further upstream in the turbulent prediction is indicative of

the transverse widening of the wake, which results from the introduction of turbu-

lence diffusion. The outer region of the radial shock wave, located at (i), continues

upstream as a pressure wave at subsequent times after Figure 5.26(a). The short

radial shock wave that remains at the surface and terminates a local supersonic re-

gion, for example (i) in Figure 5.26(b), is defined over a significantly shorter radial

length in the turbulent prediction. The boundary layer does not appear to separate

following this radial shock wave, but indicates a subsequent re-acceleration shortly

downstream. This subsequent acceleration terminates without a radial shock wave,

indicating that only a local subsonic acceleration is defined. As an anti-clockwise

rotating vortex develops at the far side of the wake in Figure 5.26(b-d), the fluid

travelling along the upper surface is accelerated to higher supersonic velocities, re-

sulting in a gradual downstream movement and increase in radial extent of this

shock wave (i).

The radial shock wave labelled (ii) on the opposite side of the cylinder is located

close to its downstream limit in Figure 5.26(a). The initial formation of the anti-

clockwise rotating vortex (iii) is just visible close to the base of this shock wave.

As the anti-clockwise rotating vortex (iii) increases in size and circulation in Fig-

ure 5.26(b-d) an additional transient shock wave (v) appears between the growing

vortex and the cylinder surface. A similar transient radial shock wave is described

in the inviscid prediction as the far side shear layer is entrained by each vortex and

accelerates to supersonic velocities at the base of the cylinder. The definition of a

no-slip surface condition creates an additional shear stress on the fluid travelling

across this shock wave, which is expected to result in additional vorticity in the near

side shear layer and a local increase in the turbulence kinetic energy production.

Chen (1972) reports that, as the vortices grow downstream of the cylinder, a

reduction in the cross-stream distance from the vortex centre to the wake centreline

occurs up to the end of the formation region. Downstream of the end of the vortex

formation region, the shed vortices initially move further from the wake centreline.

A constant cross-stream distance between each vortex row is then maintained further
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downstream in the ‘stable region’. The initial narrowing of the wake, the subsequent

widening after each vortex is shed and the downstream convection of the vortex

cores are evident by tracking the anti-clockwise rotating vortex labelled (iii) over

the course of Figures 5.26(a-d) and 5.27(a-d). A similar development of a clockwise

rotating vortex (vi) is then observed over the course of Figure 5.27(a-d).

The production and convection of small-scale turbulence kinetic energy in the near

wake region is highlighted in Figures 5.28(a-d) and 5.29(a-d). The rate of dissipa-

tion of turbulence kinetic energy, to increase the internal energy of the near wake

region, is then documented in Figures 5.30(a-d) and 5.31(a-d). Figures 5.28(a-d)

and 5.29(a-d) document the development of the specific turbulence kinetic energy k

over the same time interval as the static density field in Figures 5.26(a-d) and 5.27(a-

d). The k field is normalised by the square of the free stream velocity u1∞. The

specific turbulence dissipation rate ω is documented in phase with the density and

k fields over the same time interval. ω is normalised using the free stream velocity

u1∞ and the cylinder diameter D.

The peak turbulence kinetic energy at the start of this sequence, in Figure 5.28(a),

is located downstream of the radial shock wave on the lower surface. This region,

labelled (i), is the initial location of the anti-clockwise rotating vortex. The vortex

formation locally represents a region of high strain rate of the fluid as the boundary

layer separates at the shock wave and the resulting shear layer is stretched around

the growing vortex. The centre of this vortex (ii) remains a region of high k, partly

through the entrainment of fluid from the shock wave region and partly due to the

shearing of fluid by the vortex motion. The onset of the secondary transient shock

wave, between the growing vortex and the cylinder surface (vii), then constitutes an

additional region of turbulence kinetic energy production. Upstream of the radial

shock waves, a thin layer of fluid with a high level of turbulence kinetic energy is

observed within the attached boundary layer at (iii). The turbulence kinetic energy

increases with downstream development of the laminar boundary layer as the k−ω

model simulates the selective amplification of the free stream disturbances in the

laminar boundary layer by increasing the production of k in this region of stream-
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wise velocity gradient. Approaching the wall, k decreases to an imposed value

of k = 0 at the no-slip cylinder surface. The boundary layer is also highlighted

as a region of high ω, as indicated by (iii) in Figure 5.30(a-d). As documented in

Wilcox (2002), it is the balance between the production and dissipation terms in the

k transport equation which models the overall effects of the onset and development

of boundary layer transition in the k − ω model.

On the opposite side of the wake, a region of high k is observed along the shear

layer (iv), which stretches between the clockwise rotating vortex (v) and the cylinder

surface in Figure 5.28(a). This shear layer remains a region of high k as it is

entrained across the wake and subsequently stretches between the contra-rotating

vortices labelled (ii) and (v). An increase of k is evident immediately downstream

of the upper radial shock wave at (vi) as this shock wave moves circumferentially

downstream over the course of Figure 5.28(a-d). A peak in k is then observed in

this shear layer at the initial formation of the clockwise rotating vortex (viii) in

Figure 5.29(a-b). The entire base region of the circular cylinder constitutes a region

of substantial turbulence kinetic energy over the vortex shedding cycle.

Downstream of the cylinder, the turbulence diffusion in the downstream moving

vortices increases the wake width with downstream distance. The effects of tur-

bulence diffusion are indicated by a local increase in the transverse width of flow

covered by the k contours, and by an increase in spacing between each k iso-contour

level at each vortex.

The development of ω over the vortex shedding cycle shows similar maxima at

the precessing radial shock waves. The maximum value of ω in Figure 5.30(a) is

located immediately downstream of the lower radial shock wave (i). A higher level

of ω than the surrounding fluid is maintained within the growing vortex core (ii) in

Figure 5.30(b-d). The transient radial shock wave that appears between the vortex

(ii) and the cylinder surface constitutes an additional source of ω increase. The ω

increase downstream of this shock wave is labelled (vi) in Figure 5.30(c). A higher

level of ω than the surrounding fluid is also maintained at the surface of the cylinder

in the base region (vii) by the no-slip condition throughout the vortex shedding
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cycle. The separated shear layer (iv), downstream of the radial shock wave on the

opposite side of the wake, is also indicated as a region of significant ω. The supply of

fluid with high ω from the separated shear layer (iv) to the clockwise rotating vortex

(v) ceases when this vortex is shed from the cylinder, as observed in Figure 5.30(a-b).

The value of ω in this vortex then gradually decreases with the downstream vortex

convection in Figures 5.30(b-d) and 5.31(a-d), before developing a quasi-steady level

further downstream.

5.3.4 Energy Separation in the Turbulent Vortex Shedding Cycle

The k−ω turbulence model, along with the imposition of a no-slip surface condition,

locally modifies the energy separation in the near wake region with respect to the in-

viscid prediction. The stagnation temperature field development in the near wake is

documented over a typical vortex shedding cycle in Figures 5.32(a-d) and 5.33(a-d).

Figure 5.32(a-d) is phase synchronous with the density, the k and the ω fields docu-

mented in Figure 5.26(a-d), Figure 5.28(a-d) and Figure 5.30(a-d) respectively. Sim-

ilarly, Figure 5.33(a-d) is phase synchronous with the density, the k and the ω field

predictions in Figure 5.27(a-d), Figure 5.29(a-d) and Figure 5.31(a-d) respectively.

Figures 5.32(a-d) and 5.33(a-d) are also approximately phase synchronous with the

inviscid stagnation temperature field predictions in Figures 5.14(a-d) and 5.15(a-d).

In the turbulent prediction, the stagnation temperature redistribution downstream

of the cylinder follows a similar pattern to the inviscid prediction. Hot spots of

higher stagnation temperature than the free stream condition are locally defined

along the edges of the wake. Cold spots, of lower stagnation temperature than the

free stream condition, are defined close to the centre of the wake. The similarity

of the turbulent and inviscid stagnation temperature fields confirm that, under the

current free stream conditions, the energy separation mechanism is dominated by

the convective terms in the governing equations. The addition of viscosity and of

the Reynolds stresses into the flow model locally modifies the magnitude and size

of the hot spots at the edges of wake and the cold spots along the wake centre.

Two hot spots, one located at the outer edge of the clockwise rotating vortex and
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the second located at the anti-clockwise rotating vortex, are labelled (i) and (ii)

in Figure 5.32(a). The two corresponding cold spots, each located on a common

stream-wise alignment with the hot spots and vortex cores, are labelled (iii) and

(iv) in this figure.

The turbulent prediction shows a consistent reduction in the stagnation temper-

ature at each hot spot, with respect to the inviscid prediction. For example, the

hot spot labelled (i) in Figure 5.32(a) rises to Ts = 1.095Ts∞. The corresponding

hot spot at approximately the same stage of vortex shedding in the inviscid pre-

diction, labelled (i) in Figure 5.14(a), has a maximum stagnation temperature of

Ts = 1.105Ts∞. Similarly, the hot spot located at the anti-clockwise rotating vortex,

labelled (ii) in Figure 5.32(a), rises to a local maximum of Ts = 1.080Ts∞, compared

with Ts = 1.090Ts∞ at this vortex in Figure 5.14(a).

A similar reduction in the stagnation temperature redistribution is also observed

at the cold spots labelled (iii) and (iv) in the near wake region. Specifically, the

stagnation temperature minimum at the cold spot labelled (iii) in Figure 5.32(a)

increases from Ts = 0.850Ts∞ in the inviscid prediction to Ts = 0.885Ts∞ in the

turbulent flow prediction. Similarly, the cold spot labelled (iv) in Figure 5.32(a) has

a minimum stagnation temperature 0.56% higher than in the inviscid prediction.

The introduction of turbulence diffusion decreases the thermal shielding of the

near side shear layer by the primary and transient radial shock waves at each vortex

formation event, as discussed in Section 5.2.6. For example, consider the increase in

stagnation temperature in the near side shear layer labelled (v) in Figure 5.32(b-d).

A significant increase in stagnation temperature is evident in the inviscid prediction

at this shear layer, which is labelled (vii) in Figure 5.14(b-d). This is thought to be

partially attributable to a bounding of the shear layer by the primary radial shock

wave located upstream of this shear layer, and by the transient shock wave which

appears in Figure 5.14(c-d) on the near side of the wake. These bounding supersonic

regions on either side of the shear layer inhibit the transport of heat away from this

shear layer. This effect is discussed further for the inviscid prediction in Section 5.2.6

and contributes to a local increase in stagnation temperature at the hot spots above
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those documented for subsonic flow by Kurosaka et al. (1987). The introduction of

turbulence diffusion into the model decreases the level of localised heating in this

shear layer. The turbulent shear layer is therefore lower in stagnation temperature

at the shedding of this vortex in Figure 5.33(a-d). As the near side vortex is shed,

Figure 5.33(a-d), the region of high stagnation temperature in the shear layer, (v)

of Figure 5.32(b-d), separates into two distinct hot spots with Ts > Ts∞. These

are labelled (vii) and (viii) in Figure 5.33(a). The hot spot (vii) remains close

to the cylinder surface and rapidly loses heat to the surrounding fluid before the

entrainment of this shear layer across the wake by the clockwise rotating vortex

formation in Figure 5.33(b-d).

The level of heating at the outer edges of the wake and the cooling at the cen-

tre of the wake is maintained over a longer stream-wise distance in the turbulent

flow prediction, even with the additional effects of turbulence diffusion and vortex

dissipation. For example, a comparison of the cold spots labelled (ii) and (vi) in

the inviscid prediction of Figure 5.14(a) yields a stagnation temperature increase

of ∆Ts = 0.075Ts∞ over this stream-wise distance. The equivalent distance in the

turbulent prediction, between (iii) and (vi) in Figure 5.32(a), yields an increase in

stagnation temperature of ∆Ts = 0.03Ts∞. The lower stagnation temperature in-

crease with downstream distance at the turbulent cold spots suggest an increase in

the vortex shedding strength to overcome the additional turbulence diffusion and

dissipation effects. Any increase in vortex strength should be accompanied by a

similar increase in the stagnation pressure redistribution, discussed later in this sec-

tion. This is, however, not observed. The longer duration of the cold spots in the

turbulent prediction may therefore result from the convection of turbulence kinetic

energy around each vortex as the vortex moves downstream.

Further downstream, the turbulent prediction is compared against the phase

locked averaged stagnation temperature measurements of Ackerman (2005) at sim-

ilar free stream conditions of M∞ = 0.6 and ReD = 6.86 × 105. A stagnation tem-

perature probe is used by Ackerman (2005) to measure the time resolved Ts/Ts∞

distribution along a plane normal to the free stream direction at x1 = 6.5D. This is
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compared against the flow prediction, monitored along a fixed stream-wise plane at

x1 = 6.5D, over the period of one vortex shedding cycle in Figure 5.34. The normal-

ising parameters of Ts∞, u1∞ and D are taken from the prediction in Figure 5.34(a)

and from the reported measurements of Ackerman (2005) in Figure 5.34(b). Dotted

white circles in Figure 5.34(a,b) indicate the location of the vortices. These are

estimated from the entropy field measurements and prediction, and are confirmed

in the prediction from the static density contours. White crosses within these circles

indicate the approximate location of the vortex centres. Figure 5.34(a,b) indicates

a reasonable qualitative similarity of the experiment and prediction at x1 = 6.5D.

Hot spots, of similar magnitude above the free stream condition, are defined along

the outer edges of the wake in both fields. Localised cold spots of stagnation tem-

perature Ts < Ts∞ are similarly located close to the centre of the wake (x2 = 0).

The stagnation temperature extrema (Ts max/Ts∞ and Ts min/Ts∞), and the average

cross-stream distance from the wake centreline to these maxima |∆x2/D|Ts max , are

quantified in Table 5.8. |∆x2/D|Ts max gives a relative measure of the cross-stream

Source Ts max/Ts∞ Ts min/Ts∞ |∆x2/D|Ts max

Current k − ω prediction 1.054 0.928 1.144
Ackerman (2005) 1.044 0.970 1.310

Table 5.8: Stagnation temperature distribution at x1 = 6.5D. Turbulent prediction
comparison with the ‘2000 series’ measurements of Ackerman (2005) at M∞ = 0.6
and ReD = 6.86× 105.

width of the stagnation temperature redistribution.

The measurements of Ackerman (2005) indicate a narrower stagnation temper-

ature range of 0.970 ≤ Ts/Ts∞ ≤ 1.044, compared with 0.928 ≤ Ts/Ts∞ ≤ 1.054

for the current turbulent prediction. The value of Ts max/Ts∞ in the current predic-

tion is, however, only 0.96% greater than the measurements of Ackerman (2005).

The predicted stagnation temperature minimum Ts min/Ts∞ in Table 5.8(a) is 4.33%

lower than the measured value. These results indicate that the computational fluid

dynamics model a marginally stronger energy separation mechanism, with respect

to the experiment. The cross-stream distance between the local stagnation tem-
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perature maxima on each side of the wake is also 12.67% lower in the turbulent

prediction. This implies a slightly narrower predicted wake, which may result from

tighter rolling of the vortices or from a slight under-prediction in the turbulence

diffusion and dissipation downstream of the cylinder. Overall, the correlation is

good.

Further differences between the current turbulent prediction and the measure-

ments of Ackerman (2005) are evident in the stream-wise alignment of the hot and

cold spots. In the measurements of Ackerman (2005), the hot spots at the outer

edge of the wake lie on a common temporal alignment with the vortex cores, as in

the turbulent prediction. However, the measured cold spots appear between the hot

spots of successive vortices. It is difficult to determine from Figure 5.34(b) whether

the cold spots phase lead or phase lag the associated hot spots, but they appear

out of phase with the hot spots by a quarter of a vortex shedding cycle. In con-

trast, the hot spot, cold spot and vortex core are approximately phase synchronous

in the turbulent prediction of Figure 5.34(a). A slight phase difference is noted in

the stream-wise position of each predicted maximum and minimum, with the vortex

centre lying approximately between these two extrema. This is however significantly

less than the one quarter phase shift in the measured distribution. A stream-wise

alignment of each hot spot, cold spot and vortex core in a vortex street is similarly

predicted in an analytical model of a vortex street by Kurosaka et al. (1987). A sim-

ilar cross-stream alignment is also present in the inviscid prediction of Section 5.2.6.

Possible sources for this discrepancy may include the different wake vorticity

distributions between the prediction and the experiment, an additional three-

dimensional turbulent effect not modelled in the current two-dimensional predic-

tion, or even a directional dependency in the stagnation temperature field mea-

surements. Three-dimensional flow in a predominantly uniform span-wise vortex

shedding is documented in a number of published measurements. Time accu-

rate measurements downstream of a circular cylinder are reported by, for example,

Cantwell & Coles (1983) and Fazle Hussain & Hayakawa (1987). Similar measure-

ments downstream of a flat plate held normal to the free stream flow are given by

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Section 5.3: Turbulent Circular Cylinder Flow Prediction 232

Kiya & Matsumura (1988). Three-dimensional vortex shedding is also reviewed by

Williamson (1996) and by Cicatelli & Sieverding (1995). The span-wise vortices,

which make up the von Kármán vortex street, are connected by ‘ribs’ of intensely

sheared fluid. Longitudinal vortices are reported along these ribs, which rotate

about an axis parallel to the direction of the shear layer. Vortex stretching along

the ribs leads to locally high levels of turbulence production. This mechanism is also

proposed to lead to a breakdown in the span-wise coherence of the contra-rotating

vortices that characterise the vortex street. Williamson (1996) cites measurements

by Szepessy & Bearman (1992), who report that the vortex shedding downstream of

large aspect ratio circular cylinders is not generally in-phase along the cylinder span

at high Reynolds numbers. Although the shear layers between successive vortices

are highlighted in the current two-dimensional model as being regions of turbulence

production, these three-dimensional effects may locally alter the stagnation tem-

perature distribution in this region. A local increase in heat through turbulence

dissipation at the saddle points between successive vortices could, for example, lead

to heating of the three-dimensional wake in the region of the predicted stagnation

temperature minima.

A physical explanation for the stagnation temperature discrepancy, between the

prediction and the experiment, remains an open challenge. This could eventually be

addressed through a three-dimensional extension to this study using a Large Eddy

Simulation (LES) or Detached Eddy Simulation (DES) approach. An extension to

the experimental investigation of Ackerman (2005) to include small scale turbulence

measurements through a hot wire anemometry or eduction technique could also be

considered, as in Cantwell & Coles (1983) and Fazle Hussain & Hayakawa (1987).

The application of LES or DES models to a circular cylinder in cross-flow, at the

current high Reynolds number, still represents a formidable computational challenge

and is an ongoing area of turbulence modelling research at the present time. The

development of LES and DES turbulence modelling for high Reynolds number cir-

cular cylinder flows is discussed, for example, in Travin et al. (1999), Breuer (2000)

and Wang et al. (2001).
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The importance of the pathline taken by fluid particles around each vortex to the

energy separation mechanism is analysed in Appendix A.3. Figure 5.34(a,b) uses a

fixed frame of reference to present the stagnation temperature of fluid flowing past

a fixed plane lying normal to the free stream direction. This frame of reference is

compared in Appendix A.3 with a frame of reference which moves downstream at the

mean vortex convection velocity. In this relative frame of reference, the cycloidal

pathline taken by fluid particles around each vortex is replaced by a tangential

velocity distribution around each vortex. The choice of reference frame is shown to

impact on the stagnation temperature and pressure redistribution observed in the

prediction.

The resulting time averaged stagnation temperature profile at x1 = 6.5D, in

Figure 5.35, shows the characteristic Ts deficit at the wake centreline. At this down-

stream distance, the stagnation temperature falls to Ts = 0.940Ts∞ at x2 = 0. This

minimum is 3% lower than the stagnation temperature at the corresponding loca-

tion in the inviscid prediction. An increase in the stagnation temperature above the

free stream condition is observed at the outer edges of the wake. This increase is

also present in the time averaged inviscid prediction and is evident in the stagnation

temperature measurements of Ackerman (2005) at x1 = 6.5D. The distinctive dou-

ble peaked feature at this location in the inviscid profile of Figure 5.17 is replaced in

Figure 5.35 by a broad single peak due to the introduction of turbulence diffusion.

The cross-stream distance covered by the stagnation temperature deficit is signifi-

cantly greater in the turbulent profile of Figure 5.35, highlighting the wider wake in

this prediction.

As in the inviscid prediction, the vortex induced stagnation temperature redistri-

bution is reflected in the time resolved turbulent stagnation pressure ps field. The

development of the stagnation pressure field is documented in eight instantaneous

snapshots over one typical vortex shedding cycle in Figures 5.36(a-d) and 5.37(a-

d). Figure 5.36(a-d) documents the formation of a clockwise rotating vortex over

the non-dimensional time interval 294.09 ≤ tu1∞/D ≤ 296.09. This figure is phase

synchronous with the stagnation temperature development in Figure 5.32(a-d) and
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Figure 5.35: Time averaged stagnation temperature across the wake at x1 = 6.5D.

the density, k and ω fields in Figures 5.26(a-d), 5.28(a-d) and 5.30(a-d) respec-

tively. Similarly, Figure 5.37(a-d) is phase synchronous with Figures 5.33(a-d),

5.27(a-d), 5.29(a-d) and 5.31(a-d).

The turbulent stagnation pressure field shows a similar wake pattern to the inviscid

prediction, with localised regions of ps > ps∞ at the outer edges of the wake and

localised regions of ps < ps∞ close to the centre of the wake. Two local regions of ps >

ps∞ are labelled (i) and (ii) in Figures 5.36(a-d) and 5.37(a-d). The corresponding

regions of ps < ps∞, which are defined close to the low pressure vortex centres, are

labelled (iii) and (iv) in these figures.

The turbulent prediction demonstrates a consistently higher stagnation pressure

throughout the wake. The stagnation pressure difference between neighbouring max-

ima and minima in the vortex shedding stage, for example (ii) and (iv), is similar in

both the inviscid and turbulent predictions. This stagnation pressure difference, be-

tween neighbouring maxima and minima, decays with downstream distance as noted

in the inviscid prediction. These similarities indicate that the stagnation pressure

redistribution is less influenced by turbulence production, convection and down-
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stream dissipation in the cylinder wake region than the corresponding stagnation

temperature distribution.

Downstream of the cylinder, the cross-stream distribution of stagnation pressure

can be compared with the measurements of Ackerman (2005) at x1 = 6.5D. This

comparison, along a fixed plane downstream of the circular cylinder, is given over the

period of one vortex shedding cycle in Figure 5.38. Phase lock averaged stagnation

pressure measurements are reported in Ackerman (2005) at the same stream-wise

location as the phase lock averaged stagnation temperature measurements in Fig-

ure 5.34(b).

The stagnation pressure field in the experiment and the prediction demonstrate a

good qualitative similarity. A periodic passage of localised regions with ps/ps∞ > 1 is

observed in the prediction and the measurements at the edges of the wake. Similarly,

localised regions of ps/ps∞ < 1 periodically occur close to the centre of the wake.

The local stagnation pressure extrema, which are analogous to the hot and cold

spots in the stagnation temperature distribution, lie approximately on a common

x1/D alignment in both the measured and the predicted flow fields. A phase shift in

the relative location of the localised stagnation temperature and stagnation pressure

extrema therefore occurs in the measurements of Ackerman (2005). This phase shift

is not reflected in the turbulent prediction, which shows a similar alignment of the

local stagnation temperature and stagnation pressure extrema.

The maximum ps max/ps∞ and minimum ps min/ps∞ stagnation pressures, as well

as the average cross-stream distance from the wake centreline to the stagnation pres-

sure maxima, |∆x2/D|ps max , are compared in Table 5.9. The measured stagnation

Source ps max/ps∞ ps min/ps∞ |∆x2/D|ps max

Current k − ω prediction 1.124 0.610 1.340
Ackerman (2005) 1.050 0.788 2.580

Table 5.9: Stagnation pressure distribution at x1 = 6.5D. Turbulent prediction
comparison with the ‘2000 series’ measurements of Ackerman (2005) at M∞ = 0.6
and ReD = 6.86× 105.

pressure rises to a maximum value of ps max = 1.05ps∞, which is 6.6% lower than the
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turbulent prediction at the same downstream location. The average measured cross-

stream distance between successive maxima is also approximately twice the distance

between the predicted maxima. Specifically, |∆x2/D|ps max = 2.580 in the measure-

ments of Ackerman (2005), compared with |∆x2/D|ps max = 1.340 in the turbulent

prediction. The stagnation pressure drop at each local minimum is, however, lower

in the turbulent prediction. This may partially result from the increased spatial

and temporal resolution across the vortex in the turbulent prediction. These min-

ima are located alternately above and below the wake centreline, at approximately

|∆x2/D|ps min
= 0.585. In contrast, the measured stagnation pressure minima are

located along the wake centreline.

In isolation, the location of the stagnation pressure maxima indicate a substan-

tial increase in the measured width of the wake at x1 = 6.5D. The cross-stream

distance between each successive stagnation pressure maxima in the measurements

of Ackerman (2005) are, however, just under twice the cross-stream distance be-

tween the measured stagnation temperature maxima |∆x2/D|Ts max in Table 5.8.

In comparison, the average cross-stream distance from the centre of the wake to

the predicted stagnation pressure maxima |∆x2/D|ps max is 17.13% greater than the

predicted cross-stream distance between the centre of the wake and the stagnation

temperature maxima |∆x2/D|Ts max . The measurements therefore indicate a modifi-

cation to the analogy between vortex induced stagnation temperature and pressure

redistribution proposed for incompressible flows by Kurosaka et al. (1987). The

turbulent stagnation pressure prediction at x1 = 6.5D does not reflect this modi-

fication to the same extent and remains closer in form to the predicted stagnation

temperature field.

The time averaged stagnation pressure profile at x1 = 6.5D is given in Figure 5.39.

The time averaged stagnation pressure in this turbulent prediction falls to ps =

0.75ps∞ at the centre of the wake. The stagnation pressure drop at the centre of

the wake is the same as in the inviscid prediction of Figure 5.21. The time averaged

turbulent stagnation pressure minimum is however spread over a wider cross-stream

distance. An increase of ps = 5 × 10−3ps∞ above the free stream condition is also
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Figure 5.39: Time averaged stagnation pressure across the wake at x1 = 6.5D.

predicted at x2 = ±1.6D in the turbulent prediction. This rise above the free stream

condition, which is not predicted in the inviscid stagnation pressure profile, reflects

the marginally higher stagnation pressure rise observed at each local maxima in the

time resolved contours.

Variations in Ts/Ts∞ that are not reflected in the ps/ps∞ field constitute re-

gions of entropy production. The time resolved specific entropy field is therefore

computed for the turbulent prediction from Equation 5.4. The specific entropy

field s, normalised by the gas constant R, is documented over the time interval

294.09 ≤ tu1∞/D ≤ 298.76 in Figure 5.40(a-d) and Figure 5.41(a-d). Figure 5.40(a-

d) captures the same phase of the vortex shedding cycle as the stagnation temper-

ature time sequence in Figure 5.32(a-d) and the stagnation pressure time sequence

in Figure 5.36(a-d). Similarly, Figure 5.41(a-d) is phase synchronous with Fig-

ure 5.33(a-d) and Figure 5.37(a-d). As in the inviscid prediction of Figures 5.22(a-d)

and 5.23(a-d), regions of entropy production are highlighted at the centre of each

vortex (i), in the shear layers extending between each successive pair of contra-

rotating vortices (ii) and between the growing vortex and the cylinder surface (iii).
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These downstream shear layers (ii) are reported in Fazle Hussain & Hayakawa (1987)

as the location of the longitudinal vortices in the three-dimensional vortex street.

It is the vortex stretching along these shear layers, along with the intense shearing

between vortices on the same row, which contributes to the turbulence production

in a three dimensional vortex street. In the turbulent prediction of Figure 5.40(a),

an additional region of entropy production is defined upstream of the primary radial

shock waves, close to the surface of the cylinder. This additional region of entropy

production (iv) is caused by the surface normal stagnation temperature and pressure

distribution through the developing boundary layer.

The time resolved specific entropy contours downstream of the cylinder are com-

pared with the measurements of Ackerman (2005) at x1 = 6.5D in Figure 5.42.

The turbulent prediction of Figure 5.42(a) corresponds directly to the stagnation

pressure contours of Figure 5.38(a) and the stagnation temperature contours in Fig-

ure 5.34(a). Similarly, the measured entropy contours in Figure 5.42(b) correspond

directly to the measured stagnation pressure contours in Figure 5.38(b) and to the

stagnation temperature contours in Figure 5.34(b). At this downstream location,

the main source of entropy production is highlighted as the centre of the vortices

and at the rolling of the shear layers into each convecting vortex.

A quantitative summary of the specific entropy field prediction and measure-

ments is given in Table 5.10. This table compares the specific entropy maximum

smax/R and the cross-stream distance of these maxima from the wake centreline,

|∆x2/D|smax . The average specific entropy maximum is significantly lower in the

Source smax/R |∆x2/D|smax

Current k − ω prediction 0.430 0.684
Ackerman (2005) 0.315 0.554

Table 5.10: Specific entropy distribution at x1 = 6.5D. Turbulent prediction com-
parison with the ‘2000 series’ of Ackerman (2005), (M∞ = 0.6, ReD = 6.86× 105).

measurements of Ackerman (2005). This follows from the observed differences in the

normalised stagnation pressure and temperature fields at this downstream location.

The cross-stream distance between these entropy maxima and the wake centreline
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is also 19% lower in the measurements of Ackerman (2005). Assuming the entropy

maxima are accurate indicators of the vortex centres in both experiment and pre-

diction, these results indicate a narrower cross-stream distance between vortex cores

in the measured wake. This narrower cross-stream distance would be consistent, for

a consistent vortex shedding aspect ratio, with an increase in stream-wise distance

between successive vortices.

5.3.5 Summary

This section presents a turbulent prediction of the uniform compressible free stream

flow past a circular cylinder at M∞ = 0.6 and ReD = 6.87 × 105. This prediction

extends the inviscid circular cylinder analysis at the same free stream Mach num-

ber in Section 5.2. A time accurate analysis of the pressure drag coefficient, lift

coefficient and near wake density field are documented. A comparison of the turbu-

lent prediction against published measurements at M∞ = 0.6, and comparable free

stream Reynolds numbers, demonstrates that introducing the k−ω model improves

the physical wake description over the inviscid prediction in Section 5.2. Comparing

the time averaged drag coefficient and Strouhal number with the published mea-

surements indicates that the turbulent prediction more closely approximates the

shock-induced separation of a turbulent boundary layer.

Energy separation leads to a localised redistribution of the stagnation temperature

and stagnation pressure fields downstream of the cylinder in the turbulent prediction.

The time averaged result is a stagnation temperature and pressure deficit along the

wake centre, in accordance with the Eckert-Weise effect.

A high degree of similarity is evident between the stagnation temperature and

pressure distributions from the inviscid and turbulent predictions, highlighting the

dominant role of the convecting large scale vortical structures over the small scale

turbulence effects in the energy separation mechanism. The introduction of tur-

bulence diffusion and small-scale turbulence kinetic energy dissipation modifies the

magnitude and spatial extent of the stagnation temperature and pressure redistribu-

tion in the cylinder near wake region. This is particularly evident in the stagnation
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temperature rise of the near side shear layer at each vortex formation and initial

shedding event.

A comparison of the predicted stagnation temperature, pressure and specific en-

tropy fields with the time resolved measurements of Ackerman (2005) at x1 = 6.5D

demonstrates a good qualitative similarity. Localised regions of higher stagnation

temperature and pressure than the free stream condition are present at the outer

edges of the wake in both prediction and experiment. Corresponding localised re-

gions of stagnation temperature and pressure lower than the free stream condition

occur towards the centre of the wake in both fields. Differences are however docu-

mented in the magnitude and transverse extent of the stagnation temperature and

pressure redistribution. The current prediction demonstrates a consistently greater

amplitude between the stagnation temperature and pressure maxima and minima.

The transverse distance across the wake between the local maxima at each side of

the wake is consistently lower in the turbulent prediction. The entropy field however

indicates a marginally narrower distance between the measured vortex cores.

Differences are also observed in the stream-wise alignment of the hot spots, cold

spots and vortex cores between the predicted and measured flow fields. The mea-

surements of Ackerman (2005) show a phase difference between the hot and cold

spots of a quarter of a vortex shedding cycle. In contrast, the predicted hot and cold

spots are approximately phase synchronous with the vortex cores. This offset of the

hot and cold spots is not reflected in the stagnation pressure distribution of either

the prediction or the experiment. A survey of the available literature, to explain

these differences, provides a possible cause from the three-dimensional vortex shed-

ding effects reported in Williamson (1996), Fazle Hussain & Hayakawa (1987), Kiya

& Matsumura (1988) and Cicatelli & Sieverding (1995). Possible improvements to

the current prediction through a three-dimensional LES or DES approach are high-

lighted. This extension is intended to better approximate the vortex stretching that

occurs along the longitudinal ribs between each vortex row, as well as the reported

breakdown in span-wise uniformity of the vortex street.
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Chapter 6

Turbine Cascade Prediction

6.1 Introduction

A two-dimensional time accurate numerical prediction of the flow through a turbine

nozzle cascade passage at an isentropic exit Mach number of Me = 0.6 is presented

in this chapter. First, an inviscid flow prediction is obtained using the numerical

solution procedure described in Sections 3.3, 3.5, 3.8 and 3.9. A turbulent predic-

tion of the turbine cascade, at an exit Reynolds number of ReDt = 7.48 × 104,

is then developed using the solution procedure described in Sections 3.4-3.9. The

turbulent prediction is initialised using the self-sustained inviscid vortex shedding

flow field. The turbine blade modelled in this study is a cross-section of the low

aspect ratio, highly loaded turbine nozzle guide vane studied by Carscallen & Oost-

huizen (1989), Carscallen & Gostelow (1994), Carscallen et al. (1996, 1998, 1999),

Hogg et al. (1997), Currie & Carscallen (1998) and Brooksbank (2001). This turbine

blade profile is also the mean cross-section of the turbine nozzle guide vane described

in Williamson et al. (1986). Surface coordinates for this mean cross-section are re-

ported in Brooksbank (2001). Experimental oil flow visualisation by Moustapha

et al. (1993) on a cascade of blades with this profile, at Me = 0.7 and Me = 1.2,

indicates no significant span-wise flow along the surface of the blade, away from the

wind tunnel side walls. These results indicate that a two-dimensional prediction

may provide a reasonable physical approximation to the flow past this turbine cas-

cade at the selected test conditions. Further details concerning past research for this

turbine cascade are provided, based on the available literature, in Sections 2.2-2.4.
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The present time accurate numerical study, at an isentropic exit Mach number of

Me = 0.6, represents a novel extension to the research concerning this turbine cas-

cade and provides comparative asymmetric body wake data for the circular cylinder

analysis of Chapter 5. Modelling details for this turbine cascade prediction, as well

as results from the inviscid prediction, are discussed in Section 6.2. Improvements

to the prediction, through additional physical modelling by the short-time averaged

Navier-Stokes equations and the k−ω turbulence model, are discussed in Section 6.3.

6.2 Inviscid Turbine Cascade Flow Prediction

6.2.1 Numerical Model Specifications

The turbine cascade characteristic dimensions are listed in Table 6.1. The computa-

Dimension Value
Trailing edge diameter (Dt) 6.35× 10−3 m
Throat width 30.9× 10−3 m
Chord (c) 0.204 m
Pitch to chord ratio 0.7246
Inlet metal angle −10◦

Exit metal angle 76◦

Stagger angle 65.5◦

Table 6.1: Turbine blade geometry.

tional domain used to model this turbine cascade is represented diagrammatically in

Figure 6.1. The computational domain extends 6.2Dt upstream of the turbine blade

leading edge. The inlet boundary b1 is also an axial distance of 19.54Dt upstream

of the turbine blade trailing edge, which represents the main source of unsteady

pressure wave production. The subsonic inlet boundary condition, detailed in Sec-

tion 3.9.1, is imposed at the upstream boundary (b1). The stagnation pressure and

temperature imposed at the inlet boundary b1, along with the other inlet and exit

conditions, are defined in Table 6.2. These inlet flow conditions are designed to ap-

proximate the wind tunnel working section in the experiments of Ackerman (2005).

The periodic boundary condition described in Section 3.9.6 is specified at the pitch-

wise boundaries, b2 and b4. Each external (perimetrical) cell along the boundary b2
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Figure 6.1: Turbine blade computational domain.
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Variable Value
Me 0.6
M∞ 0.1025

ps∞/pe 1.2755
ps∞ 102.072 kN/m2

p∞ 101.325 kN/m2

Ts∞ 293.616 K
T∞ 293 K
ρ∞ 1.205 kg/m3

ue 199.05 m/s
u∞ 35.17 m/s

Table 6.2: Turbine blade flow conditions.

is updated by a direct copy of the flow variables stored in the interior cell, lying at

the same axial location, juxtaposing the boundary b4. Conversely, the flow variables

stored in the interior cells juxtaposing b2 update the perimetrical cells along b4. The

periodic boundary condition allows a complete turbine cascade to be modelled from

a prediction of the flow past a single turbine blade. The inviscid wall condition,

described in Section 3.9.7, is defined along the turbine blade surface b5. This is

replaced in the turbulent prediction by the adiabatic, no-slip surface condition de-

scribed in Section 3.9.8. The constant pressure outlet boundary condition, described

in Section 3.9.3, is specified at the boundary b3.

In a series of preliminary inviscid and turbulent predictions on this turbine blade,

the definition of a constant static pressure outlet condition at b3 lead to significant

numerical wave reflections from this boundary. These numerical wave reflections

lead to the presence of a standing pressure wave, at a frequency significantly below

the vortex shedding frequency. The wavelength associated with this standing wave

was approximately twice the computational domain stream-wise length. These pre-

liminary predictions, which are not documented in this study, lead directly to the

implementation of a non-reflecting boundary condition at the outlet boundary b3.

A number of non-reflecting boundary conditions are documented in the available lit-

erature. These include characteristic based approaches, which utilise the hyperbolic

character of the governing equations convective terms to specify or control the in-
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coming and outgoing characteristic waves. Examples of this approach are found, for

example, in Thompson (1987), Giles (1990), Poinsot & Lele (1992), Colonius (1997),

Rowley & Colonius (1998), Kim & Lee (1998) and Hixon (2000). An alternative ap-

proach to prevent reflected waves at the outlet is to define an absorbing ‘sponge’

layer of cells adjacent to the outlet boundary. This method relies on the addition

of artificial viscosity to reduce the magnitude of the pressure fluctuations, upstream

of the outlet boundary. The addition of artificial viscosity can be achieved in a

number of ways, including the definition of additional terms in the governing equa-

tions, as described in Hu (1996), Freund (1997) and Nizampatnam et al. (1999).

Alternatively, numerical dissipation can be introduced through large gradient grid

stretching normal to the outlet boundary, as used in Visbal & Gaitonde (1999).

This final technique is the method of choice for the present study. A sponge re-

gion of cells, stretched in the stream-wise direction, is therefore defined immediately

upstream of the outlet boundary b3. The constant pressure outlet condition de-

scribed in Section 3.9.3 is then imposed at the boundary b3. An extrapolation type

boundary condition is defined at each pitch-wise boundary in the sponge region.

The resulting prediction, documented in this section, confirms that the sponge re-

gion defined immediately upstream of the outlet boundary eliminates the numerical

wave reflections from the outflow.

The computational domain is divided into five contiguous blocks. Each block is

connected using the inter-domain boundary condition described in Section 3.9.5.

These boundaries are shown as dashed lines in Figure 6.1. The stream-wise length

of block 5 is truncated in Figure 6.1 for convenience. Block 5 is sub-divided into two

regions. The first region is defined between the interface with block 3 and the long

dashed line shown upstream of the boundary b3 in Figure 6.1, aligned in the stream-

wise normal direction. This region has a constant grid spacing in the stream-wise

direction. The sponge region, defined between the long dashed line in block 5 and

the outlet boundary b3, has a significant level of stream-wise grid stretching. The

interface between the two regions is defined at a distance of 59.25Dt downstream

of the turbine blade trailing edge, as shown by the long dashed line in Figure 6.1.
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The grid resolution inside each block is listed in Table 6.3. The surface of the

Block Grid resolution (Σi× Σj)
1 24× 200 cells
2 307× 204 cells
3 120× 200 cells
4 115× 204 cells
5 128× 510 cells

Table 6.3: Grid resolution of the computational domain interior.

turbine blade is defined by 566 body-fitted cells, divided over blocks 1-4. Linear

grid stretching is defined normal to the turbine blade to increase the flow field

resolution close to the blade surface. Moderate linear grid stretching is also applied

normal to the boundary b2, in blocks 3 and 5, to increase the grid resolution close to

the wake centre. A Gauss-Seidel iterative smoothing method, described in Hoffman

& Chiang (1995), is applied to reduce cell skewness in blocks 1-4. The sponge layer

comprises of 128×20 cells. The remainder of block 5 therefore comprises of 128×490

cells. Outside of the sponge layer, the mesh in blocks 1-5 comprise of cells ranging in

size from (9.84× 10−4Dt, 5.1× 10−3Dt) to (0.41Dt, 0.85Dt). A further frame of cells

are defined around the perimeter of each block for imposing boundary conditions.

The computational grid in blocks 1-4 is shown in Figure 6.2. The resolution of the

grid shown in this figure is coarsened by a factor of four, normal to the surface of the

blade, for clarity. A detailed view of the non-coarsened grid is given in Figure 6.3.

This shows a section of the grid, close to the trailing edge, highlighting the surface

normal grid stretching.

6.2.2 Time Averaged Isentropic Mach Number Distribution

The turbine blade flow field is initialised by imposing the isentropic exit flow con-

ditions uniformly throughout the computational domain. The initial flow develop-

ment approximates the inviscid circular cylinder prediction at very short times, as

described in Section 5.2.2. A self-sustained vortex shedding pattern then develops

at later times. The numerical prediction, within this self-sustained vortex shed-
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Figure 6.2: Turbine blade computational grid. Grid coarsened by factor of four
normal to the blade surface.
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Figure 6.3: Detail of the grid resolution at the turbine blade trailing edge.

ding regime, can be verified against measurements from a concurrent experimental

research program for the same turbine cascade at Me = 0.6 by Ackerman (2005).

Time averaged measurements of the isentropic Mach number distribution along the

surface of the turbine blade are compared with the current prediction in Figure 6.4.

The isentropic Mach number distribution is calculated from the surface static pres-

sure distribution and the upstream stagnation pressure. The abscissa in Figure 6.4

is the ratio of the surface axial coordinate x1 to the blade axial chord length c1.

The origin, x1 = 0, is defined at the leading edge of the turbine blade, as shown in

Figure 6.1. The leading edge stagnation point is, in fact, located along the pressure

surface at x1/c1 = 0.03. The precise location of the upstream stagnation point is

dependent on the pitch-wise aerodynamic loading of the turbine blade. This depen-

dency is documented by Roberts & Denton (1996) for variable loading of a simulated

turbine blade (Section 2.2). The current location for the leading edge stagnation

point is consistent with the inviscid prediction of Brooksbank (2001) for the same

turbine blade profile at Me = 1.16.

A favourable pressure gradient is defined along the pressure surface, resulting in
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Figure 6.4: Turbine blade isentropic Mach number distribution. (—) Numerical
prediction. ¤ Measured pressure surface distribution, ∆ Measured suction surface
distribution. x1, surface axial coordinate relative to the leading edge. c1, axial
component of chord length.
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an almost continuous acceleration of the fluid from the upstream stagnation point to

the trailing edge. The predicted isentropic Mach number distribution demonstrates

a reasonable match with the measurements, remaining within ±15% throughout the

length of the pressure surface. The favourable pressure gradient around the suction

surface leading edge initially results in a rapid acceleration of the fluid in this re-

gion. The numerical prediction shows an over-acceleration, between x1/c1 = 0.06

and x1/c1 = 0.3, in comparison with the measured distribution. This results in a

local over-expansion of the fluid. A further over-expansion occurs along the suction

surface, between x1/c1 = 0.42 and x1/c1 = 0.6, in the prediction. The plateau in

the measured distribution around this region suggests the presence of a laminar sep-

aration bubble. The indication of a laminar separation bubble, which is absent in

the inviscid prediction, is substantiated by Moustapha et al. (1993). Using oil flow

visualisation, the presence of a laminar separation bubble is clearly visible around

x1/c1 = 0.5, on the same blade profile, at Me = 0.7. Furthermore, Moustapha

et al. (1993) indicate a movement in the location of the laminar separation bubble

further downstream at higher exit Mach numbers. In the absence of the laminar sep-

aration bubble, the prediction reaches a peak isentropic Mach number of M = 0.76

at x1/c1 = 0.52. The predicted isentropic Mach number distribution closely follows

the measured distribution along the suction surface, after closure of the laminar

separation bubble at x1/c1 ≈ 0.6. The close relationship continues along the suction

surface to the fluid expansion around the trailing edge at x1/c1 ≈ 1.02. Overall, a

satisfactory agreement is demonstrated with the measured isentropic Mach number

distribution.

6.2.3 Vortex Shedding Characteristics

The time dependent base pressure, after the onset of a self-sustained vortex shedding

pattern, is documented over the time interval 680 ≤ tue/Dt ≤ 880 in Figure 6.5. The

base pressure trace, which is normalised using the stagnation pressure imposed at

the inlet ps∞, is monitored at the intersection of the exit camber line and the trailing

edge surface. The approximate location of this base pressure tapping is indicated
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Figure 6.5: Base pressure history.

in Figure 6.1. The resulting base pressure trace has a mean value of p = 0.79ps∞

and a root mean square value of prms = 7.39× 10−2ps∞. A high frequency pressure

oscillation, of approximately 75 cycles duration, is observed in Figure 6.5. This

is associated with the formation and shedding of vortices from both sides of the

trailing edge. A continuous vortex shedding is therefore predicted downstream of

this turbine blade profile. The time accurate relationship, between the base pressure

variation and the formation and shedding of each vortex, is documented for the

circular cylinder prediction in Section 5.2.3. A similar variation is observed in the

turbine blade base pressure history. The base pressure falls to a local minimum as

each growing vortex at the trailing edge approaches its peak strength. This occurs

immediately preceding the cessation of the circulation supply from the near side

shear layer, by the cross stream entrainment of the far side shear layer. As the

vortex starts to convect downstream, the base pressure rises to a local maximum,

before the formation and growth of a new vortex with opposing rotation causes a

subsequent decrease of the base pressure.

A Fourier analysis of the base pressure history in Figure 6.5 yields the power
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Figure 6.6: Frequency analysis of the time accurate base pressure history.

spectrum in Figure 6.6. Three isolated regions of interest are identified in Figure 6.6.

These include a low magnitude tone located at f = 0.19ue/Dt, a narrow-band

contribution centred at f = 0.38ue/Dt, and a lower magnitude (wider bandwidth)

contribution, with a peak value at f = 0.76ue/Dt. The narrow-band contribution at

f = 0.38ue/Dt, has a peak power spectral density at approximately twice the vortex

shedding Strouhal number measured by Carscallen et al. (1996). This feature is

associated with the fall and subsequent rise in base pressure as each vortex grows in

strength and is shed from the trailing edge. The broad frequency content associated

with the higher harmonic at f = 0.76ue/Dt, as well as a survey of the base pressure

trace, indicates that, although a dominant mode of vortex shedding is established,

variations in the vortex shedding still occur on a cycle-to-cycle basis. As with the

circular cylinder analysis, this cycle-to-cycle variation indicates that a phase-locking

feedback of the vortex shedding remains under-developed. The low frequency peak

in Figure 6.6, at f = 0.19ue/Dt, is located around the vortex shedding Strouhal

number in Carscallen et al. (1996), in which a Strouhal number of around Str = 0.2
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is reported at Me = 0.6. The presence of this frequency in the base pressure trace

implies that the base pressure is mildly influenced by the vortex shedding events

on one side of the wake. This appears consistent with the pitch-wise asymmetric

vortex shedding pattern, anticipated for this turbine blade. No time resolved flow

statistics for this turbine blade profile at Me = 0.6 are documented in any literature

available to the author. The time accurate flow analysis presented in this section

therefore represents a novel contribution to the documented research on this turbine

blade profile.

Figures 6.7 and 6.8 document the development of the turbine cascade near wake

density field over one typical vortex shedding cycle, 853.44 ≤ tue/Dt ≤ 858.11.

The computational domain is truncated in these figures to highlight the near

wake region of one turbine blade and the suction surface of the adjacent turbine

blade. Solid black lines define the turbine blade surface in Figures 6.7 and 6.8.

Figure 6.7 documents the formation of an anti-clockwise rotating vortex at the

pressure surface side of the trailing edge. Figure 6.8 documents the shedding and

downstream convection of this vortex and the formation of a new, clockwise rotating

vortex at the suction surface side of the trailing edge. This iso-density contour time

sequence allows a comparison with the circular cylinder flow development over one

vortex shedding cycle, as given in Figures 5.10 and 5.11.

Figure 6.7(a) shows the flow field immediately following the separation of a clock-

wise rotating vortex (v) from the suction side of the trailing edge. A shear layer of

fluid (iv) extends between this vortex and the trailing edge surface. This is shown

by local deviations in the iso-density contours near (iv) in this figure. A local expan-

sion occurs around the curved profile of the trailing edge, along the pressure surface.

This expansion is indicated by a gradual shift in the colour of the iso-density con-

tours, immediately upstream of a short radial shock wave (i), towards the blue end

of the colour spectrum. This radial shock wave (i) terminates the local supersonic

region. Further regions of sharp local stream-wise compression are evident in Fig-

ure 6.7(a) along the suction surface of this blade (ii) and along the suction surface of

the adjacent blade (iii). As the flow field develops from Figure 6.7(a), a new vortex
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with anti-clockwise rotation forms at the base of the pressure surface shock wave

(i). The shock wave radial extent increases, and an upstream movement follows,

causing a termination of the low pressure region at lower supersonic velocities. The

subsequent upstream movement of this shock wave, Figure 6.7(b-d), eventually re-

sults in a termination of the accelerated fluid at subsonic velocities. The pressure

wave (i) then continues to propagate upstream, losing strength over the course of

Figure 6.8(a-d). This decrease in strength and increase in dispersion is evident in

Figure 6.8(a-d) as a gradual decrease in the number of iso-density contours and an

increase in the contour spacing across the pressure wave (i).

The initial upstream movement of the radial shock wave in Figure 6.7(a-c), along-

side the growth of a new vortex, is similar to the inviscid circular cylinder prediction

documented in Section 5.2.5. However, the favourable stream-wise pressure gradient

in the circular cylinder prediction, along the windward surface, forms an upstream

limit to the radial shock wave movement. The radial shock wave subsequently loses

strength and precesses downstream over the second half of the vortex shedding cy-

cle. The absence of this strong favourable pressure gradient in the turbine blade

prediction allows the radial pressure waves to propagate further upstream, through

the turbine cascade passage. The upstream precessing pressure wave (ii) in Fig-

ure 6.7(a-d) can therefore be identified as the pressure wave that is formed during

the initial growth of the clockwise rotating vortex (v). The outward propagation

of this pressure wave can cause a localised interaction with the vortices shed from

the adjacent blade. The location and alignment of these vortices, which are not

identifiable at the present contour resolution, are indicated in Figure 6.7 and Fig-

ure 6.8 by dashed lines. The outward propagating pressure wave from the pressure

surface side (i) impinges on the suction surface of the adjacent blade. This causes

a localised density gradient, in the stream-wise direction, along the suction sur-

face of this blade. This region is labelled (ix) in Figure 6.8(c-d). Similarly, the

upstream moving density gradient, labelled (iii) in Figures 6.7 and 6.8, is caused

by an impingement of the pressure wave formed at the conception of the previous

anti-clockwise rotating vortex. This anti-clockwise rotating vortex is located imme-
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diately downstream of the clockwise rotating vortex labelled (v) in Figure 6.7(a-d).

In the absence of the downstream precessing shock wave, observed in the circular

cylinder prediction, a region of highly expanded fluid (vi) is defined on the opposite

side to the shed vortex. This expansion stretches around the trailing edge suction

surface to the base pressure location in Figure 6.7(c-d). As the fluid in this region

increases to supersonic velocities, a radial shock wave forms, terminating the super-

sonic region close to the base pressure location. This shock wave is labelled (viii) in

Figure 6.8(a-d). The unperturbed upstream transport of the radial pressure waves,

and the absence of a downstream pressure wave movement, represents a divergence

of the vortex shedding mechanism from the inviscid circular cylinder prediction. A

further divergence is the absence of a local radial shock wave, located between the

growing vortex and the trailing edge surface. In the circular cylinder prediction this

radial shock wave is caused by a supersonically accelerated channel of fluid, that

passes between the vortex core and the cylinder surface.

As the anti-clockwise rotating vortex increases in strength over the course of Fig-

ure 6.7(b-c), fluid is increasingly entrained from the shear layer on the opposite side

of the wake (iv). After sufficient fluid has been entrained from this shear layer, the

circulation supply from the near side shear layer (vii) to the vortex ceases and the

vortex is shed. The far side shear layer (iv) subsequently rolls up with the shed

vortex, forming a region of shearing fluid between this vortex and the clockwise

rotating vortex (v). These shear layers are evident as localised deviations in the

iso-density contours of Figures 6.7 and 6.8, for example (iv).

A gradual decrease in the strength of each shed vortex occurs with increasing

downstream distance. This decrease in strength, observed as a decrease in the radial

density gradient at the centre of the vortex, is evident by following the clockwise

rotating vortex (v) in Figures 6.7(a-d) and 6.8(a-d). A gradual change in the colour

of the iso-density contours at the centre of each vortex, towards the red end of the

colour spectrum, accompanies a decrease in the number of contours defining each

vortex with downstream distance.

The unsteadiness in the static density field is further documented by the root mean
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Figure 6.9: Root mean square density contours. (ρmax)rms = 0.215ρ∞, (ρmin)rms =
0.035ρ∞, ∆ρ = 0.015ρ∞. (i) base pressure location.

square (rms) density field. This is given in Figure 6.9. Peak regions of rms density

are located at approximately ±60◦ around the trailing edge surface from the base

pressure location (i). These regions undergo a transient change from being regions of

local density minima, immediately preceding the formation of each new vortex on the

near side of the wake, to regions of local density maxima, following the upstream

movement of the near side shock wave. Further upstream, as the radial pressure

waves decrease in strength, the rms iso-density contours intersect the turbine blade

surface at increasing stream-wise intervals. These contours remain identifiable for

a significant distance upstream of the trailing edge. Regions of augmented rms

density are also evident in Figure 6.9, close to the suction surface of the adjacent

turbine blade. These are caused by the impingement and upstream movement, along

this surface, of the radial pressure waves identified in Figures 6.7(a-d) and 6.8(a-d).

A short section highlighting the downstream alignment of the convecting vortices

is also evident in Figure 6.9. The rms density fluctuation is shown to decrease

monotonically with downstream distance along these paths. In contrast, the inviscid
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circular cylinder rms iso-density contours of Figure 5.13 show an initial increase in

the rms density fluctuation with downstream distance from the leeward surface. This

increase is followed by a gradual decrease of the rms density fluctuation further

downstream. Minor asymmetries are observed in the magnitude and distribution

of the rms density fluctuation and in the location of the wake centreline, relative

to the base pressure location (i) in the inviscid turbine cascade prediction. This

slight asymmetry is however significantly less than the wake asymmetry reported

for this turbine blade profile at higher Mach numbers by Hogg et al. (1997) and

Carscallen et al. (1998, 1999). The differences highlighted in this section, between

the circular cylinder and turbine blade near wake flows, may lead to associated

differences in the magnitude and location of the wake stagnation temperature and

pressure redistribution, as discussed in Section 6.2.4.

6.2.4 Energy Separation in the Turbine Cascade Wake

The vortex induced redistribution of stagnation enthalpy, described in Section 2.6,

constitutes a significant source of entropy production downstream of each turbine

blade row. This phenomenon leads to localised heating and cooling of the fluid

around each vortex and results in a time averaged reduction in the stagnation pres-

sure between successive turbine blade rows.

Figure 6.10 and Figure 6.11 document the development of the stagnation temper-

ature in the wake of the turbine cascade over the time interval 853.44 ≤ tue/Dt ≤
858.11. Figure 6.10 is phase synchronous, over the vortex shedding cycle, with Fig-

ure 6.7 and is approximately phase synchronous with the inviscid circular cylinder

stagnation temperature development in Figure 5.14. Similarly, Figure 6.11 is phase

synchronous with Figure 6.8 and approximately phase synchronous with the inviscid

cylinder prediction of Figure 5.15. The stagnation temperature Ts in Figure 6.10

and Figure 6.11 is normalised by the stagnation temperature imposed at the com-

putational domain inlet boundary Ts∞. Localised regions of fluid with stagnation

temperatures greater than the inlet condition (Ts > Ts∞) are located at the outer

shear layer of each vortex, for example (i) in Figures 6.10 and 6.11. This ‘hot spot’
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(i) is paired with a localised cold spot, where Ts < Ts∞ close to the centre of the

wake (ii). Further hot spots and cold spots can be identified around each succes-

sive downstream vortex. A similar pattern of hot and cold spots are evident in the

circular cylinder prediction, Figures 5.14 and 5.15.

Figure 6.10(a) documents the shedding of a vortex with clockwise rotation from

the suction side of the turbine blade trailing edge. The hot (i) and cold (ii) spots

surrounding this vortex have localised peak temperatures of Ts = 1.09Ts∞ and

Ts = 0.93Ts∞ respectively. The hot spot is limited to a narrow region in the outer

shear layer, along a common cross-stream alignment with the vortex centre. The

phase synchronous circular cylinder prediction, in contrast, shows a larger hot spot

stretching along the shear layer, between the growing vortex and the downstream

surface. In addition, the local stagnation temperature about this vortex varies from

Ts = 1.105Ts∞ at the outer shear layer, to Ts = 0.85Ts∞ on the opposite pitch-wise

side of the vortex in the circular cylinder case. The decrease in magnitude and spatial

area covered by the hot spot in the turbine blade prediction may be explained by

analysing the initial growth of the anti-clockwise rotating vortex in Figure 6.10(b-

d). A separation of the stagnation temperature around the vortex, into hot and

cold regions, occurs immediately following the appearance of each vortex. This is

evident close to the trailing edge surface in Figure 6.10(b). As this vortex increases

in strength, Figure 6.10(c-d), an increase in the stagnation temperature occurs at

the hot spot (iii). This is accompanied by a decrease in temperature at the cold

spot (iv). An associated increase in the area covered by these extrema also occurs.

The development of (iii) and (iv) in Figure 6.10(c-d) is compared with the inviscid

cylinder development in Figure 5.14(c-d). A significantly greater area of the shear

layer, extending between the growing vortex and the downstream surface, is heated

above the free stream condition in the inviscid cylinder prediction. This may indicate

a greater circulation of the growing vortex, causing a greater acceleration of the fluid

passing in the pitch-wise direction, close to the cylinder. The resulting supersonic

region is terminated in the inviscid cylinder prediction by a short radial shock wave

that extends between the growing vortex and the cylinder surface. This supersonic
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region may increase the stagnation temperature close to the cylinder surface by

limiting the heat transport from the hot spot across the downstream surface of the

cylinder. The heat transport restriction in this region is evident in Figure 5.14(c) by

the large stagnation temperature gradient across the radial shock wave, extending

between the anti-clockwise rotating vortex and the cylinder surface. This effect is

absent from the inviscid turbine blade prediction.

The anti-clockwise rotating vortex increases to a peak strength immediately pre-

ceding the shedding of this vortex from the trailing edge, Figure 6.11(a). The

localised stagnation temperature extrema, which surround each vortex, decrease in

magnitude with the downstream convection of the shed vortex. This is evident by

comparing the hot and cold spots surrounding the two clockwise rotating vortices in

Figure 6.10(a). Specifically, a drop in temperature at the hot spot of ∆Ts = 0.06Ts∞

accompanies an increase of ∆Ts = 0.03Ts∞ at the cold spot, over this stream-wise

distance. The gradual decay in the stagnation temperature separation with down-

stream distance is evident by tracking (i) and (ii) over Figures 6.10(a-d) and 6.11(a-

d). The stagnation temperature separation further downstream is evident in the

adjacent blade wake (v). A significant decrease in the stagnation temperature sep-

aration effect is observed at these distances.

Time averaging Figures 6.10(a-d) and 6.11(a-d) yields the Eckert-Weise effect.

The time averaged stagnation temperature distribution, in the turbine blade near

wake, is given in Figure 6.12. A stream-wise band of fluid, with stagnation tem-

peratures lower than the inlet condition, is defined along the centre of the wake.

This region has a minimum stagnation temperature close to the base pressure mon-

itoring location (i). A gradual increase in the stagnation temperature occurs with

downstream distance along the centre of the wake. In addition, the adjacent blade

wake remains identifiable for a significant distance downstream of the turbine blade

trailing edge (ii). A normalised stagnation temperature of unity is defined along

the outer edges of the wake. This is the time averaged result of the alternate pass-

ing of hot spots and cool regions, along the wake edges. Two regions of fluid with

Ts/Ts∞ > 1 are located upstream of the wake. These regions are labelled (iii) and
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Figure 6.12: Time averaged stagnation temperature contours. Ts max = 1.02Ts∞,
Ts min = 0.95Ts∞, ∆Ts = 0.005Ts∞. (i)-(iv) labelled flow features.

(iv) in Figure 6.12, and correspond approximately to the peak rms density loca-

tions in Figure 6.9. These hot regions of fluid are caused by the transit of the high

temperature shear layers, formed as the radial shock waves move upstream at the

formation of each vortex. In comparison, the time averaged stagnation temperature

contours defined around the inviscid circular cylinder in Figure 5.16 show a greater

increase in stagnation temperature at this location. The time averaged stagnation

temperature deficit along the centre of the wake remains at a reduced tempera-

ture for a significantly greater downstream distance in the time averaged inviscid

circular cylinder prediction. Specifically, the circular cylinder wake remains below

Ts = 0.96Ts∞ for approximately 3.9D downstream, compared with approximately

0.25Dt (0.03D) for the turbine blade prediction.

The stagnation pressure field development over one typical vortex shedding cycle

is given in Figures 6.13(a-d) and 6.14(a-d). Figure 6.13(a-d) is phase synchronous

over the vortex shedding cycle with Figure 6.10(a-d) and Figure 6.7(a-d). Similarly,

Figure 6.14(a-d) is phase synchronous with Figure 6.11(a-d) and Figure 6.8(a-d).
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A redistribution of the normalised stagnation pressure ps/ps∞ is evident. Localised

regions of ps/ps∞ > 1 are located at the outer shear layer of each convecting vortex

(i). Localised regions of ps/ps∞ < 1 are located along the centre of the wake (ii).

The stagnation pressure field closely resembles the stagnation temperature field in

Figures 6.10(a-d) and 6.11(a-d). The stagnation pressure falls to a local minimum

close to the centre of each vortex. A similar distribution of stagnation pressure is

identified in the circular cylinder wake, in Figures 5.18(a-d) and 5.19(a-d). The min-

imum stagnation pressure contour level in the inviscid circular cylinder prediction,

located close to each growing vortex centre, is reduced by ∆ps/ps∞ = 0.26 with

respect to the turbine blade prediction. Interestingly, only a slightly higher peak

stagnation pressure is evident in the inviscid circular cylinder prediction.

A similar vortex induced stagnation pressure separation is evident in the adjacent

blade wake. One such region, with ps/ps∞ > 1 is labelled (v) in Figures 6.13(a-d)

and 6.14(a-d). The corresponding region of stagnation pressure deficit, ps/ps∞ < 1,

is labelled (vi). These extrema are significantly closer to unity than (i) and (ii), and

cover a greater flow area, highlighting the downstream wake diffusion.

A further localised region of fluid with ps/ps∞ > 1 is evident along the suc-

tion surface of the adjacent turbine blade (iii). This region, which is located im-

mediately downstream of the impinging pressure wave, decreases in strength and

moves upstream with the upstream movement of the impinging pressure wave, Fig-

ure 6.13(a-d). A similar region is subsequently identified along this surface with

the impingement of the next pressure wave, labelled (vii) in Figure 6.14(d). It is

stressed that the impinging pressure wave along this surface is not a shock wave,

terminating a supersonic flow region, across which a decrease in stagnation pressure

would be expected.

The time averaged stagnation pressure is given in Figure 6.15. The alternate shed-

ding of vortices from each side of the turbine blade trailing edge results in a time

averaged stagnation pressure deficit along the centre of the wake. ps is lowest close

to the trailing edge surface, at either side of the base pressure location. The time

averaged stagnation pressure minima in the inviscid circular cylinder prediction are
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Figure 6.15: Time averaged stagnation pressure contours. ps max = 0.975ps∞,
ps min = 0.775p∞, ∆ps = 0.02ps∞.

correspondingly located along the leeward surface, either side of the wake centreline.

The stagnation pressure minima are associated with the formation of vortices either

side of the trailing edge surface. A gradual recovery of the stagnation pressure occurs

along the centre of the wake with increasing downstream distance. A recovery of the

stagnation pressure also occurs with cross-stream distance from the wake centreline.

A cross-stream asymmetry of the stagnation pressure contours is noted in the near

wake region, at ≤ 2Dt downstream of the trailing edge. Further downstream, the

stagnation pressure contours are more symmetrical about the wake centreline. The

stagnation pressure gradient, along the wake centreline in Figure 6.15, can be com-

pared with the time averaged circular cylinder prediction in Figure 5.20. A similar

stream-wise distance is required in the two predictions for an arbitrary increase of

∆ps/ps∞ = 0.1 from the base pressure condition. A distance of 4.9D is required in

the circular cylinder prediction, compared with 5.5Dt in the turbine blade prediction

for this change in stagnation pressure. The stagnation pressure at the downstream

surface of the circular cylinder is, however, significantly lower than at the turbine
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blade trailing edge. Specifically, a minimum stagnation pressure of ps min = 0.595ps∞

is defined for the circular cylinder, compared with ps min = 0.775ps∞ in the turbine

blade case. The cross-stream stagnation pressure recovery, from the wake centre to

ps = ps∞ also covers a greater relative distance in the circular cylinder prediction.

No trace of a time averaged stagnation pressure rise above ps∞ is evident in either

the circular cylinder or the turbine blade prediction. The local time accurate regions

of ps/ps∞ > 1 along the edges of the wake, evident in Figures 6.13 and 6.14, are time

averaged with the intervening lower stagnation pressure regions to yield an overall

stagnation pressure deficit in this region.

In this section, a number of differences between the time accurate stagnation

temperature and pressure fields are reported. These differences constitute localised

sources of entropy production. The specific entropy s is given by Eqn. 5.4. The

development, over one typical vortex shedding cycle, of the specific entropy field is

given in Figures 6.16(a-d) and 6.17(a-d). Figure 6.16(a-d) is phase synchronous

with Figure 6.10(a-d) and 6.13(a-d). Figure 6.17(a-d) is phase synchronous with

Figure 6.11(a-d) and 6.14(a-d). The specific entropy s is normalised by the specific

gas constant, R = 287J/kgK. Local entropy maxima are located at each vortex

centre, for example at (i) and (ii) in Figures 6.16 and 6.17. These are caused

by the low stagnation pressure vortex cores, marked as regions of ps/ps∞ < 1 in

Figures 6.13 and 6.14. As in the circular cylinder prediction, the specific entropy

contours therefore highlight the formation and downstream convection of each vortex

core. The maximum specific entropy produced by these vortices is greater in the

circular cylinder prediction, rising to smax/R = 1.44, compared to smax/R = 0.85 in

the turbine blade prediction. The higher specific entropy follows from the greater

stagnation pressure deficit close to the centre of the wake in the circular cylinder

prediction. The downstream convection of the vortices shed from the adjacent blade

(iv) are also evident in Figures 6.16(a-d) and 6.17(a-d).

A further region of entropy increase is evident in the shear layer that extends

between the growing vortex and the turbine blade trailing edge. The shear layer

connecting the clockwise rotating vortex (i) with the surface is labelled (iii) in Fig-
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ure 6.16(a-b). As the clockwise rotating vortex convects downstream, a new anti-

clockwise rotating vortex forms at the blade trailing edge, Figure 6.16(a). The shear

layer attaches to this vortex. After the shedding of this anti-clockwise rotating vor-

tex, the shear layer continues to be stretched by the contra-rotating vortex pair. A

short length of this shear layer is labelled (v) in Figure 6.16(c-d) and Figure 6.17(a-

c). This short section of the shear layer is highlighted in the entropy contours due to

a splitting, across the shear layer, of the cold spot labelled (iv) in Figures 6.10(c-d)

and 6.11(a-d). A splitting of the corresponding minimum by the shear layer does

not occur in the stagnation pressure contours of Figures 6.13(a-d) and 6.14(a-d).

The overall result is a local increase in the specific entropy. A further shear layer,

labelled (vi), extends between this anti-clockwise rotating vortex and the trailing

edge surface in Figures 6.16(c-d) and 6.17(a-b). Differences are noted in the spe-

cific entropy produced by the shear layers labelled (iii) and (vi), against those in

the inviscid cylinder prediction, Figures 5.22 and 5.23. A large region of fluid with

Ts/Ts∞ > 1 develops close to the downstream surface of the cylinder during the

formation of each vortex. As the vortex is shed, this hot spot is stretched along the

near side shear layer and convects downstream with the vortex. This stretching of

the hot spot in the outer shear layer is not reflected in the stagnation pressure field

and an increase in the specific entropy along the shear layer results. The stretch-

ing of the hot spot along the near side shear layer is absent, to the same degree,

downstream of the turbine cascade. The result is the observed lower rise in specific

entropy along the shear layers labelled (iii) and (vi) in the turbine blade prediction.

6.2.5 Summary

This section documents an inviscid model of the flow past a low aspect ratio, highly

loaded turbine cascade at an isentropic exit Mach number of Me = 0.6. The tur-

bine cascade prediction demonstrates a satisfactory agreement of the time averaged

isentropic surface Mach number distribution with measurements from a concurrent

experimental research program.

The thick trailing edge of each turbine blade induces an alternate shedding of
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vortices from each side of the trailing edge, forming a vortex street. An essentially

symmetric vortex shedding pattern is predicted downstream of the turbine blade, in

contrast to published measurements for this turbine blade at higher Mach numbers.

Some differences are, however, noted between the inviscid turbine blade prediction

and the inviscid circular cylinder prediction. These include an absence of down-

stream precessing radial shock waves along the trailing edge surface. The upstream

moving radial pressure waves continue through the turbine nozzle passage and in-

teract with the suction surface and downstream wake of the neighbouring blades.

Minor cross-stream asymmetries are highlighted in the rms density field and in the

time averaged stagnation temperature and pressure near wake distributions. These

asymmetries are, however, significantly less pronounced than for previous published

measurements downstream of this turbine blade at exit Mach numbers approaching

unity.

A similar vortex induced energy separation is predicted downstream of each tur-

bine blade in the inviscid prediction. Hot spots are predicted along the edges of

the wake and cold spots are predicted close to the wake centreline at each vortex

in the time accurate near wake region. These hot and cold spots are paired on a

cross-stream alignment around each convecting vortex, similar in form to the circu-

lar cylinder wake in Chapter 5. Differences are observed, however, in the magnitude

and location of the hot region of fluid that stretches between the growing vortex

and the downstream surface. A greater increase in stagnation temperature, spread

over a greater area, is observed in the near side shear layer of the inviscid circular

cylinder prediction.

An analogous redistribution of the stagnation pressure is predicted, providing fur-

ther corroborative data for the proposed energy separation mechanism in Kurosaka

et al. (1987). Localised regions of stagnation pressure greater than the inlet condi-

tion are predicted along the outer edges of the wake. Regions of stagnation pressure,

lower than the inlet condition, are predicted at the wake centre, close to the centre

of each convecting vortex. The resulting specific entropy field highlights the vortex

centres, the shear layers between each vortex, and the radial shock waves as consti-
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tuting regions of entropy production. The lower increase in stagnation temperature,

above the free stream condition, in the hot spot that stretches along the near side

shear layer at each vortex formation event reduces the specific entropy production

in the turbine blade prediction along these shear layers.

6.3 Turbulent Turbine Cascade Flow Prediction

6.3.1 Numerical Model Specifications

This section describes the development of a turbulent turbine cascade model at exit

conditions of Me = 0.6 and ReDt = 7.48×104, based on a turbine blade trailing edge

diameter Dt = 6.35 × 10−3m. The turbulent cascade prediction is initialised using

the inviscid turbine cascade prediction documented in Section 6.2. The turbine blade

profile is a two-dimensional cross-section of the turbine blade reported in Carscallen

et al. (1999). This turbine blade geometry is detailed in Table 6.1. The free stream

inlet and exit conditions are listed in Table 6.2.

The computational domain is divided into five contiguous blocks. This is shown

in Figure 6.1. Each block is discretised using the grid resolution listed in Table 6.3.

A sponge layer region of highly stretched computational cells is defined downstream

of the turbine blade to reduce numerical wave reflection from the constant pressure

outlet boundary (b3 in Figure 6.1). The turbine blade surface condition is changed

from the slip condition specified in the inviscid prediction to a condition of no-

slip. The no-slip boundary condition is described in Section 3.9.8. The remaining

boundary conditions are identical to those documented for the inviscid prediction.

State variables from the inviscid prediction are used to initialise the specific mass,

momentum and energy state variables in the turbulent prediction. Initial estimates

for the specific turbulence kinetic energy k and the specific turbulence kinetic energy

dissipation rate ω are uniformly imposed throughout the computational domain at

the start of the turbulent prediction. The free stream values of k and ω are based on

those of Currie & Carscallen (1998) for a similar turbulent prediction of this turbine

cascade at Me = 1.16. Assuming a free stream turbulence intensity of Tu = 0.1%, a
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value of k∞ = 1.85×10−3m2/s2 is uniformly imposed throughout the computational

domain. Using a turbulence length scale lc of 1×10−3c, where c is the turbine blade

chord length, a free stream value for ω is estimated from ω =
√

k/ (β?lc). Currie &

Carscallen (1998) report that the turbine blade prediction remains insensitive to the

value of ω over the range 1× 10−3c ≤ lc ≤ 0.1c. The free stream turbulence kinetic

energy dissipation rate for the current prediction is estimated as ω∞ = 2346.06Hz.

These estimates for k∞ and ω∞ are imposed uniformly throughout the computational

domain at the start of the turbulent prediction.

6.3.2 Time Accurate Base Pressure Analysis

The turbulent prediction is time marched from these initial conditions to a self-

sustained vortex shedding solution in constant time steps of ∆t = 8.603×10−5Dt/ue.

A transient period of flow follows the onset of the turbulent prediction. As the k

and ω fields develop from the uniformly imposed free stream values, the turbulent

prediction eventually returns to a self-sustained vortex shedding pattern. The vor-

tex shedding pattern that returns is, however, significantly different to the inviscid

turbine cascade prediction.

The time accurate base pressure history for the turbulent cascade prediction is

documented in Figure 6.18. The base pressure is recorded at the same location as in

the inviscid prediction, the approximate location of which is labelled in Figure 6.1.

Thirteen cycles of a high frequency fluctuation are documented in Figure 6.18 over

the time interval 850 ≤ tue/Dt ≤ 910. Each local maximum in base pressure corre-

sponds to the shedding of a vortex from either the suction surface or the pressure

surface side of the trailing edge. From the time accurate density contour sequence

documented later in Section 6.3.5, the local maximum located at t = 886.5Dt/ue can

be related to the shedding of a clockwise rotating vortex from the suction surface

side of the trailing edge. The subsequent decrease in base pressure to a minimum at

t = 888Dt/ue, and the increase to a local maximum at t = 889.5Dt/ue, correspond

to the formation and initial shedding of an anti-clockwise rotating vortex from the

pressure surface side. The base pressure history over twenty six vortex shedding
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Figure 6.18: Turbulent cascade base pressure history.
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events is therefore documented in Figure 6.18.

The unequal peak-to-peak amplitude between the formation and shedding of vor-

tices from the suction and pressure sides of the trailing edge indicate an asymmetric

vortex shedding pattern downstream of the turbine blade. Furthermore, the lower

base pressure minima at the formation of each anti-clockwise rotating vortex from

the pressure surface indicates a greater circulation of the vortices on this side of the

wake. A transient drift in the base pressure amplitude is observed on a cycle-to-

cycle basis in Figure 6.18. This sinuous drift modifies the base pressure trace at

each vortex shedding event and is responsible for the presence of additional local

extrema between vortex shedding events at, for example, t = 901Dt/ue. A similar

cycle-to-cycle variation in base pressure is documented in the inviscid turbine blade

prediction. Transient cycle-to-cycle fluctuations are also reported in the time accu-

rate base pressure and drag coefficient traces for the circular cylinder predictions in

Chapter 5. The base pressure trace in Figure 6.18 has a mean value of p = 0.685ps∞,

which is lower than the mean base pressure of p = 0.79ps∞ computed for the inviscid

turbine blade. The root mean square fluctuation of prms = 4.76 × 10−2ps∞ for the

turbulent base pressure trace is also lower than the value of prms = 7.39× 10−2ps∞

reported for the inviscid turbine blade prediction.

A frequency analysis of the time resolved base pressure trace in Figure 6.18 yields

the power spectrum in Figure 6.19. This power spectrum highlights four dominant

peaks. These are a fundamental tone at f = 0.215ue/Dt, and three associated higher

harmonics at f = 0.430ue/Dt, f = 0.645ue/Dt and f = 0.860ue/Dt. The asymmet-

ric vortex shedding pattern from the turbine blade is associated with a decrease in

the dominant frequency component, from f = 0.380ue/Dt in the inviscid prediction

to f = 0.215ue/Dt in the turbulent prediction. This reduction is associated with

a change from the equal base pressure drop at the formation of vortices on both

sides of the trailing edge in the inviscid prediction, to a greater decrease in pres-

sure at the formation of pressure surface vortices in the turbulent prediction. The

power spectrum indicates a vortex shedding Strouhal number of f = 0.215ue/Dt,

which constitutes an increase of 13.16% from the inviscid turbine blade prediction
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Figure 6.19: Frequency analysis of the time accurate turbulent base pressure history.

of f = 0.190ue/Dt. As documented in Chapter 2, Cicatelli & Sieverding (1995)

propose that Strouhal numbers below 0.23 indicate turbulent boundary layer sepa-

ration from both sides of the trailing edge in turbine blade flows. This hypothesis

is analysed for the current turbine cascade prediction in the following section.

6.3.3 Turbine Blade Boundary Layer Analysis

The asymmetric vortex shedding pattern in the turbulent prediction is not reflected

in the inviscid prediction. This indicates an association of the asymmetry to a dif-

ference in the suction and pressure surface shear layers, downstream of the trailing

edge. This proposition is based on the cited work of Sieverding & Heinemann (1989,

1990) and Cicatelli & Sieverding (1995, 1996, 1997) in the literature review of Sec-

tion 2.3. From the hypothesis put forward by Gerrard (1966), that the frequency and

strength of vortex shedding downstream of a cylinder is dependent on the separated

shear layer thickness, Sieverding & Heinemann (1989, 1990) propose a similar influ-

ence for turbine blades with round and square trailing edges. Extending this work,
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Figure 6.20: Boundary layer velocity profile at 2Dt upstream of the trailing edge.
(—) Suction surface profile. (· · · ) Pressure surface profile. xn height normal to the
local turbine blade surface. δ99 boundary layer thickness. Boundary layer integral
parameters at this location are listed in Table 6.4.

Cicatelli & Sieverding (1995, 1996) propose that a greater shear layer thickness at

the suction surface may lead to a breakdown of the vortex formation length/diffusion

length balance proposed by Gerrard (1966) for circular cylinders. This breakdown

is reported to be the underlying cause for the wide range of cited Strouhal numbers

collated by Cicatelli & Sieverding (1995). The increase in Strouhal number between

the current inviscid and turbulent cascade predictions may therefore result from a

similar asymmetry of the suction and pressure surface shear layers.

The boundary layer velocity profile on the suction and pressure surfaces at a

distance of 2Dt upstream of the trailing edge is given in Figure 6.20. The surface

normal height is normalised by the boundary layer thickness δ99 at this location.

The velocity tangential to the turbine blade surface is similarly normalised by the

velocity at the edge of the boundary layer. A good overall resolution of the boundary

layer is achieved at this stream-wise location by the current computational grid.
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Both velocity profiles indicate that the majority of the velocity increase, from the

no-slip condition at the surface to the boundary layer edge velocity, occurs within

the lowest 10% of the boundary layer. The pressure surface velocity profile also

shows a higher relative velocity, at surface normal heights above xn = 0.1δ99. A

quantitative comparison of the two boundary layers at this location is given by the

integral parameters, which are listed in Table 6.4. The displacement thickness δ1

Parameter Suction Surface Pressure Surface
δ99/Dt 0.542 0.142
δ1/Dt 0.073 0.014
δ2/Dt 0.050 0.009
H12 1.46 1.55

Table 6.4: Turbine blade integral parameters at 2Dt upstream of the trailing edge.
The integral parameters correspond to the velocity profiles in Figure 6.20. δ99, δ1

and δ2 are normalised using the turbine blade trailing edge diameter Dt. The shape
Factor H12 = δ1/δ2.

and the momentum thickness δ2 are computed from:

δ1 =

∫ δ

0

(
1− ρu

ρδuδ

)
dxn, (6.1)

δ2 =

∫ δ

0

ρu

ρδuδ

(
1− u

uδ

)
dxn, (6.2)

where δ is used in Eqns. 6.1 and 6.2 to signify the boundary layer thickness δ99. ρδ

and uδ are therefore the static density and velocity at the boundary layer edge. xn

is the local surface normal distance.

The shape factor (H12 = δ1/δ2) in Table 6.4 indicates the presence of turbulent

boundary layers on the suction and pressure surfaces at this stream-wise location.

This correlates well with the boundary layer/Strouhal number relationship proposed

by Cicatelli & Sieverding (1995), as reported in the previous section. The displace-

ment thickness δ1, the momentum thickness δ2 and the boundary layer velocity

thickness δ99 collectively indicate a greater thickness of the boundary layer on the

suction surface. Specifically, the boundary layer thickness δ99 is 3.82 times greater
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on the suction surface at this stream-wise location. Therefore, assuming a simi-

lar relative thickness ratio of the separated shear layers, the vortex forming at the

pressure surface may take longer to entrain sufficient fluid from the suction surface

shear layer to cut off the circulation supply of the near side shear layer. These

results correlate with the proposed increase in circulation of the vortex from the

pressure surface, as indicated by the greater peak-to-peak base pressure amplitude

in Figure 6.18.

The boundary layer analysis documented in this section compares well with the

measurements of Sieverding et al. (2003) for a similar thick trailing edge turbine

cascade at exit conditions of Me = 0.79 and ReDt = 1.487×105. Turbulent boundary

layers are reported on both the pressure and suction surfaces at the trailing edge

in Sieverding et al. (2003). The suction surface boundary layer is reported to be

approximately 3.14 times greater than the pressure surface boundary layer at the

trailing edge in these measurements.

The grid resolution within the boundary layer in the current study is quantified

through an extension of this analysis to assess whether the laminar sublayer region

is adequately resolved. This analysis indicates that at least ten points discretise

the laminar sublayer on the suction side in the surface normal direction at 2Dt up-

stream of the trailing edge. Six points similarly discretise the laminar sublayer on

the pressure surface at this location. This boundary layer analysis is based on the

compressible momentum integral equation, as given in White (1991), and therefore

assumes that at this location the turbine blade locally approximates a flat plate un-

der a pressure gradient. The boundary layer discretisation is considered satisfactory

for the purposes of the current study. The current grid resolution results from a

series of preliminary turbine cascade predictions in which the surface normal grid

resolution was successively increased, through either increasing the overall number

of grid points or increasing the surface normal grid stretching. The final grid from

this preliminary analysis is used for both the inviscid and turbulent predictions

documented in this chapter.
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6.3.4 Time Averaged Isentropic Mach Number Distribution

The isentropic Mach number distribution from the turbulent prediction is com-

pared against the measurements of Ackerman (2005) in Figure 6.21. The isentropic

Mach number distribution in Ackerman (2005) is measured around the same tur-

bine blade profile modelled in this study at identical exit conditions of Me = 0.6 and

ReDt = 7.48 × 104. The turbulent prediction demonstrates a reasonable approxi-

mation along both surfaces of the turbine blade. The leading edge stagnation point

is located along the pressure surface at around 3% of the axial chord. A similar

location for the leading edge stagnation point is predicted in the current inviscid

prediction and in a similar inviscid prediction on the same turbine blade profile at

Me = 1.16 by Brooksbank (2001). The turbulent prediction shows a slight under-

prediction of the isentropic Mach number along the leading edge of the pressure

surface. This may be improved by increasing the stream-wise grid resolution close

to the stagnation point in order to better describe the initial onset of the boundary

layer along this surface. The comparison improves further along the pressure sur-

face and remains close to the measurements of Ackerman (2005) to separation at

the trailing edge. The turbulent prediction indicates a lower expansion around the

trailing edge, with respect to the inviscid prediction, on both pressure and suction

surfaces. This would indicate an associated reduction in radial shock wave activity

at the trailing edge and is expected to better approximate the physical situation in

this region. The isentropic Mach number remains higher in the turbulent predic-

tion at x1 = c1, compared with the inviscid prediction. This correlates with the

lower mean base pressure in Figure 6.18. The turbulent prediction also provides

a reasonable estimation of the isentropic Mach number distribution along the suc-

tion surface. The turbulent prediction shows an over expansion along this surface

compared with the measured point at x1 = 0.154c1. A similar over expansion is ob-

served in the inviscid prediction at this axial location. The turbulent prediction also

fails to predict the short laminar separation bubble indicated in the measurements

of Ackerman (2005), between x1 = 0.41c1 and x1 = 0.59c1. The current predic-

tion does, however, maintain a good correlation with the measured isentropic Mach
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Figure 6.21: Turbine blade isentropic Mach number distribution. Comparison
with the measurements of Ackerman (2005) at Me = 0.6 and ReDt = 7.48 × 104.
(—) Turbulent prediction. (· · · ) Inviscid prediction. ¤ Measured pressure surface
distribution. ∆ Measured suction surface distribution. x1, surface axial coordinate
relative to the leading edge. c1, axial component of chord length.
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number distribution after reattachment of the boundary layer at x1 ≥ 0.59c1. Fur-

ther along the suction surface, the turbulent prediction slightly under-predicts the

isentropic Mach number approaching the trailing edge at x1 > 0.7c1. The turbulent

prediction, however, remains within 4% of the measured isentropic Mach number

over this region. Overall, the isentropic Mach number approximation is considered

satisfactory for the purpose of the current study, which is an investigation into the

vortex shedding and associated energy separation characteristics downstream of the

turbine cascade.

6.3.5 Turbulent Vortex Shedding Characteristics

The asymmetric vortex shedding pattern indicated in the base pressure history of

Figure 6.18, and the higher circulation of vortices shed from the pressure surface

side of the wake, are confirmed in the time resolved static density contour sequence

of Figures 6.22(a-d) and 6.23(a-d). The near wake flow development is documented

in eight instantaneous snapshots over the time interval 886.68 ≤ tue/Dt ≤ 890.80,

which covers one typical vortex shedding cycle. Figure 6.22(a) corresponds to a

maximum in base pressure as the clockwise rotating vortex (i) is shed from the suc-

tion surface. This vortex (i) remains close to the trailing edge as the anti-clockwise

rotating vortex (ii) begins to form on the pressure surface side of the wake in this

figure. Two further clockwise rotating vortices are sited downstream of this posi-

tion. These are labelled (iii) and (v) respectively. Two corresponding anti-clockwise

rotating vortices are defined on the pressure surface side of the wake at (iv) and

(vi). These vortices (iii)-(vi) are associated with the previous two vortex shedding

cycles. In contrast to the inviscid turbine blade prediction and the circular cylinder

predictions, the downstream moving vortices are not equi-spaced in the stream-wise

direction. This unequal stream-wise spacing is indicative of the different vortex

formation characteristics. Compared with the clockwise rotating vortices (iii) and

(v), the anti-clockwise rotating vortices (iv) and (vi) are also defined by a greater

number of more densely packed iso-contours. The greater density gradient at the

centre of the anti-clockwise rotating vortices confirm the greater circulation of these
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pressure surface vortices, as indicated in the base pressure trace of Figure 6.18. The

anti-clockwise rotating vortices are also defined closer to the centre of the wake than

the clockwise rotating vortices on the suction surface side.

A similar asymmetry in the wake downstream of the current turbine blade is mea-

sured in time resolved entropy contours at 6Dt downstream of the turbine blade by

Carscallen et al. (1998, 1999) at Me = 0.95. Asymmetric vortex shedding is also

predicted downstream of a less highly loaded turbine blade at Me = 0.4 by Arnone &

Pacciani (1997) using an explicit method with an algebraic turbulence modelling ap-

proach. An asymmetric wake is further observed in smoke visualisation by Roberts

& Denton (1996) downstream of a flat plate under an asymmetric pitch-wise pres-

sure distribution. Carscallen et al. (1998, 1999) highlight two possible contributions

to the asymmetric vortex shedding pattern, downstream of the turbine cascade. As

well as the difference in boundary layer thickness between the suction and pressure

surfaces, Carscallen et al. (1998, 1999) propose a possible contribution from the

higher free stream velocity along the suction surface. This proposal is based on the

work of Boldman et al. (1976), who demonstrate that increasing the velocity on one

side of the wake from a symmetrical velocity distribution can significantly affect

the symmetry of vortex shedding. Comparing the inviscid and turbulent turbine

cascade predictions in this chapter, the symmetric vortex street predicted in the

inviscid prediction is replaced in the turbulent prediction by an asymmetric vortex

shedding pattern. These results imply that, for the current turbine cascade model,

the relative thickness of the suction and pressure surface shear layers remains the

dominant factor in the presence of the asymmetric wake. An asymmetric pitch-wise

vortex shedding pattern, with non equal stream-wise vortex spacing, is also reported

in Sieverding et al. (2003) from smoke visualisation and holographic/white light in-

terferometry measurements at Me = 0.79 and ReDt = 1.487×105. Stronger vortices

are reported on the pressure surface side of the wake, which correlate well with the

reported difference in boundary layer thickness at the trailing edge. These measure-

ments provide supporting evidence for the discussion put forward in this section.

The current study corroborates the measurements of Sieverding et al. (2003), pro-
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viding original time accurate numerical data of the asymmetric vortex formation

and shedding development over a typical vortex shedding cycle.

No radial shock waves are observed at the turbine blade trailing edge in the tur-

bulent prediction. Radial shock waves are, however, predicted at the trailing edge

in the inviscid cascade prediction. The absence of radial shock wave recompression

in the turbulent prediction follows the lower expansion around the trailing edge

region in the isentropic Mach number distribution. This is also highlighted by a

decrease in the static density range, from 0.25ρ∞ ≤ ρ ≤ ρ∞ in Figures 6.7 and 6.8

to 0.6ρ∞ ≤ ρ ≤ ρ∞ in Figures 6.22 and 6.23. The growing vortices still induce

an outward precession of pressure waves. The upstream movement of these pres-

sure waves onto the suction surface of the adjacent blade is evident by tracking

the labelled flow feature (vii) over the course of Figures 6.22(a-d) and 6.23(a-d).

The labelled flow feature (vii) is part of an upstream moving pressure wave formed

at the shedding of the vortex labelled (iv). As the pressure wave moves upstream

from the pressure side of the trailing edge a gradual increase in the density gradient

occurs on the suction surface of the adjacent blade, close to the location of peak

velocity. The increasing compression in this region is indicated by an increase in

the number of contour levels at (vii) and a decrease in the spacing between suc-

cessive contours at this location. The density gradient at (vii), however, remains

significantly lower than the corresponding flow feature labelled (iii) in the inviscid

prediction of Figures 6.7(a-d) and 6.8(a-d).

Downstream dissipation and dispersion of the vortices is documented in Fig-

ures 6.22(a-d) and 6.23(a-d) by a decrease in the number of contours at the vortex

centres and by an increase in the iso-density contour spacing in this region. This is

evident by tracking (iii) and (iv) over the course of Figures 6.22(a-d) and 6.23(a-d).

The asymmetric vortex shedding is expected to lead to a corresponding asymmetry

in the turbulence kinetic energy characteristics. The specific turbulence kinetic

energy k is documented over the same vortex shedding cycle in Figures 6.24(a-d)

and 6.25(a-d). Figures 6.24(a-d) and 6.25(a-d) are therefore phase synchronous

over the vortex shedding cycle with the density contour sequence in Figures 6.22(a-
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d) and 6.23(a-d) respectively.

The difference in boundary layer thickness between the suction side and pressure

side is indicated in the k contour distribution at (i) and (ii). In the near wake region

of Figure 6.24(a), localised k maxima occur in the shear layer between the clockwise

rotating vortex and the trailing edge surface (iii), at the trailing edge surface (iv) and

between the two contra-rotating vortices (v). Further downstream, local maxima are

evident at the outer shear layer of the anti-clockwise rotating vortex (vi) and at the

centre of the clockwise rotating vortex (vii). The shear layer that extends between

the clockwise rotating vortex and the trailing edge (iii) remains a significant source of

turbulence kinetic energy production over the course of Figure 6.24(b-d). A further

region of high k then emerges at the near side shear layer of the anti-clockwise

rotating vortex (viii), between this vortex and the trailing edge. Turbulence kinetic

energy in the near side shear layer (viii) is augmented by convection of k from the far

side shear layer (iii) as this shear layer is entrained across the wake by the growing

pressure side vortex.

These shear layers remain a significant source of turbulence kinetic energy pro-

duction after the shedding of each vortex. The entrainment of turbulence kinetic

energy from the shear layer around the downstream anti-clockwise rotating vortex

is highlighted by the contour shape bounding the local k maximum at (vi). The in-

crease in area bounded by each k contour in the vortices downstream of the turbine

blade highlight the downstream diffusion process. The wake further downstream is

indicated by the wake of the adjacent turbine blade, labelled (ix) in Figure 6.25(c-

d). A significant increase in the area bounded by each k contour is therefore noted

between the wake at (ix) and the wake downstream of the subject blade at, for

example, (vi) and (vii).

Regions of turbulence kinetic energy dissipation are highlighted over the vortex

shedding cycle in the specific turbulence kinetic energy dissipation rate ω distribu-

tion of Figure 6.26(a-d) and Figure 6.27(a-d). This contour sequence is defined

over the same phase of vortex shedding as the k contour sequence in Figures 6.24(a-

d) and 6.25(a-d) and the static density contour sequence in Figures 6.22(a-d)
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and 6.23(a-d). A maximum in ω occurs within the viscous sublayer as turbulence

kinetic energy is locally dissipated to heat. The increase in ω within the laminar

sublayer is indicated by a gradual colour shift in the ω contours towards the red

end of the colour spectrum at the blade surface. As in the k field, the ω contours

highlight the relative increase in boundary layer thickness between the suction and

pressure surfaces at (i) and (ii). The ω contours also highlight the rapid increase

in boundary layer thickness with stream-wise distance on the suction surface of the

adjacent turbine blade at (iii). After separation of the boundary layers, a significant

dissipation rate of k remains in the separated shear layers at (iv) and (v). The

region of high ω within the separated pressure surface shear layer at (v) increases

in stream-wise length as the anti-clockwise rotating vortex grows in circulation over

the course of Figure 6.26(a-d). The region of high ω in the opposite shear layer (iv)

decreases in stream-wise length over this period, as fluid from this shear layer is

entrained close to the trailing edge by the pressure surface vortex. The entrainment

of fluid from this shear layer increases the turbulence kinetic energy dissipation rate

in the anti-clockwise rotating vortex through convection of ω. This shear layer (iv)

subsequently moves further away from the trailing edge and increases in stream-wise

length as a new clockwise rotating vortex is formed on the suction surface side of

the wake in Figure 6.27(c-d). Further downstream, the vortex cores are highlighted

as regions of local ω maxima. Two such regions are labelled (vi) and (vii) for the

anti-clockwise and clockwise rotating vortices respectively. Dissipation in these vor-

tices decreases the strength of the vortices with downstream distance, decreasing

the associated energy separation mechanism at significant distances downstream of

each turbine blade.

6.3.6 Energy Separation in the Turbulent Cascade Wake

The influence of asymmetric vortex shedding on the redistribution of stagnation

temperature and pressure downstream of the turbine cascade is discussed in this

section. A time resolved sequence of eight contour plots document the stagnation

temperature field development over a typical vortex shedding cycle. Figure 6.28(a-
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d) is phase synchronous over the vortex shedding cycle with the static density,

k and ω development in Figures 6.22(a-d), 6.24(a-d) and 6.26(a-d) respectively.

Figure 6.29(a-d) is therefore phase synchronous with Figures 6.23(a-d), 6.25(a-d)

and 6.27(a-d) for the second half of the vortex shedding cycle. Localised regions

of stagnation temperature greater than the free stream condition, hot spots, ex-

ist in the outer shear layer on the suction and pressure sides of the wake at each

vortex. Localised regions of lower stagnation temperature than the free stream con-

dition, cold spots, also exist close to the centre of the wake at each vortex. The

precise form of the stagnation temperature redistribution is, however, different to

the regular pattern observed downstream of the inviscid turbine cascade and in the

circular cylinder predictions. Two typical hot spots are labelled (i) and (ii) in Fig-

ures 6.28(a-d) and 6.29(a-d). These two hot spots correspond respectively to the

clockwise and anti-clockwise rotating vortices labelled (iii) and (iv) in Figures 6.22(a-

d) and 6.23(a-d). Between these two hot spots, (i) and (ii), lies a cold region of fluid

with stagnation temperature lower than the free stream condition. This cold region

is labelled (iii) in Figures 6.28(a-d) and 6.29(a-d). Closer inspection of this cold

region (iii) reveals its origin as two separate cold spots induced by the clockwise and

anti-clockwise rotating vortices. The close proximity of these two vortices and the

introduction of turbulence diffusion in the current prediction merges these two cold

spots into a larger cold region which extends between the two vortices. This cold

region (iii) falls to a local minimum stagnation temperature of Ts = 0.920Ts∞ close

to the hot spot (ii) in Figure 6.28(a). An increase in stagnation temperature occurs

with downstream distance from this local minimum approaching the hot spot (i)

on the opposite side of the wake. The uneven stagnation temperature distribution

within this cold region indicates a relative increase in the energy separation mech-

anism at the anti-clockwise rotating vortex. This proposition is confirmed by the

higher stagnation temperature at the hot spot (ii) on this side of the wake. Specifi-

cally, the stagnation temperature rises to a local maximum of Ts = 1.040Ts∞ at (ii)

in Figure 6.28(a), compared with Ts = 1.024Ts∞ at the adjacent hot spot (i) on the

opposite side of the wake. The increase in the energy separation mechanism on the
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pressure surface side of the wake indicates a direct correlation with vortex strength.

This relationship is reconcilable with the energy separation mechanism proposed

by Kurosaka et al. (1987) and extends this hypothesis to asymmetric vortex shed-

ding. The introduction of turbulence diffusion in the current prediction reduces the

stagnation temperature rise at each hot spot, relative to the inviscid prediction in

Figures 6.10(a-d) and 6.11(a-d). Further downstream, a similar pattern is observed

with two hot spots, (iv) and (v), located either side of a cold region (vi). A greater

redistribution of stagnation temperature is again observed at the anti-clockwise ro-

tating vortex on the pressure surface side. The hot spots on the pressure surface

side of the wake remain above the free stream condition for a significant distance

downstream of the turbine blade, as indicated by the precession of hot spots at

(vii)-(ix).

A similar asymmetric stagnation temperature field is reported for the current tur-

bine blade at Me = 0.95 in the time resolved measurements of Hogg et al. (1997)

and Carscallen et al. (1998, 1999). These measurements indicate a similar bias in

the stagnation temperature redistribution towards the pressure surface side of the

wake. Specifically, a 25% increase in the stagnation temperature rise above the free

stream condition is measured at the hot spots on the pressure surface side of the

wake. The measurements of Hogg et al. (1997) and Carscallen et al. (1998, 1999) in-

dicate a similar coalescence of cold spots induced by each successive contra-rotating

vortex pair. These measurements also indicate an uneven stream-wise spacing be-

tween successive vortices, as reported for the current prediction in Section 6.3.5.

Furthermore, the stagnation temperature distributions in Hogg et al. (1997) and

Carscallen et al. (1998, 1999) display a bias of the cold spots towards the suction

surface side of the wake. A similar bias of the cold regions, (iii) and (vi), is predicted

in Figures 6.28(a-d) and 6.29(a-d). This bias results from the location of the anti-

clockwise rotating vortex cores, which move downstream along the wake centreline.

The greater transverse distance of hot spots on the suction surface side from the

wake centreline, documented in Figures 6.28(a-d) and 6.29(a-d), is similarly indi-

cated in the cited measurements. The close correlation of the current prediction at
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0.935 0.945 0.955 0.965 0.975 0.985 0.995 1.005

1.005

Figure 6.30: Time averaged stagnation temperature contours. Ts max = 1.005Ts∞,
Ts min = 0.930Ts∞, ∆Ts = 0.005Ts∞. (· · · ) Reference alignment of the turbine blade
outlet metal angle.

Me = 0.6 with the measurements of Hogg et al. (1997) and Carscallen et al. (1998,

1999) at Me = 0.95 indicate that a similar vortex shedding pattern may be main-

tained over a significant Mach number range below Me = 1 for this turbine blade

profile. It is however recognised that an increase in the energy separation mechanism

occurs between Me = 0.6 and Me = 0.95. This is associated with an increase in the

vortex shedding strength over this range, as reported on a time averaged basis for

this blade by Hogg et al. (1997) and Carscallen et al. (1998, 1999).

The time averaged result of the asymmetric stagnation temperature distribution

represents a modification to the Eckert-Weise effect, established for circular cylin-

ders. The time averaged stagnation temperature field for the turbulent prediction

is given in Figure 6.30. The wake centreline is highlighted in this figure by a dotted

black line, as determined by the turbine blade outlet metal angle. The stagnation
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temperature deficit, resulting from the time averaged passage of cold spots at each

vortex, is significantly biased towards the suction surface side of the wake. This

bias is also evident close to the trailing edge, within the formation region, where the

stagnation temperature reaches a minimum value of Ts = 0.93Ts∞. This bias, which

increases with downstream distance, is also indicated in the time averaged stagnation

temperature wake profile at 6Dt from the trailing edge in Carscallen et al. (1998).

An increase above the free stream temperature occurs further downstream on the

pressure surface side of the wake in the current prediction. The absence of a similar

stagnation temperature rise on the suction surface side of the wake results from

a combined effect. Firstly, the stagnation temperature rise above the free stream

condition is lower at the clockwise rotating vortices due to the lower circulation in

these vortices. Secondly, the cold spots from the anti-clockwise rotating vortices are

located on this side of the wake and reduce the influence of these hot spots on a

time averaged basis.

The asymmetric wake vorticity causes a similar asymmetry in the stagnation pres-

sure field, downstream of the turbine cascade. A sequence of eight time accurate

stagnation pressure contour plots describe a typical vortex shedding cycle in Fig-

ures 6.31(a-d) and 6.32(a-d). This contour sequence is defined over the same vortex

shedding cycle as the static density, k, ω and stagnation temperature contour se-

quence in Figures 6.22-6.29. Localised regions of ps > ps∞ are labelled (i)-(iii) in

Figures 6.31(a-d) and 6.32(a-d). These mark the outer shear layers of the down-

stream moving vortices. The stagnation pressure increase above the free stream

condition at (i)-(iii) differs between the suction and pressure surface sides of the

wake. The greater relative increase in stagnation pressure at (i) and (iii) correlates

with the greater increase in stagnation temperature predicted in the hot spots on

this side of the wake in Figures 6.28(a-d) and 6.29(a-d). The stagnation pressure

deficit, below the free stream condition, on the opposite side of each vortex is also

greater at these anti-clockwise rotating vortices. These regions of localised expansion

are labelled (iv)-(viii) in Figures 6.31(a-d) and 6.32(a-d). The greater stagnation

pressure redistribution around the anti-clockwise rotating vortices on the pressure
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0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

1.000

1.000

Figure 6.33: Time averaged stagnation pressure contours. ps max = ps∞, ps min =
0.68ps∞, ∆ps = 0.02ps∞. (· · · ) Reference alignment of the turbine blade outlet
metal angle.

surface side of the wake confirm a similar correlation with the vortex strength, as

documented for the stagnation temperature field. The asymmetric stagnation pres-

sure distribution is similarly measured downstream of the same turbine cascade at

Me = 0.95 by Carscallen et al. (1998, 1999). The pressure surface vortices are

indicated in these measurements as inducing the greatest stagnation pressure redis-

tribution. As in the current prediction, these measurements also indicate a bias in

the stagnation pressure deficit towards the suction surface side of the wake.

The bias in stagnation pressure is also observed on a time averaged basis in Fig-

ure 6.33. For reference, the centre of the wake is defined by a black dotted line,

which lies along the turbine blade metal angle. The stagnation pressure contours,

which are normalised by the free stream stagnation pressure ps∞, clearly show a time

averaged deficit on the suction surface side of the wake. The minimum stagnation
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pressure occurs immediately downstream of the turbine blade, close to the location

of the base pressure tapping. The downstream bias in stagnation pressure increases

with downstream distance from the trailing edge as the stagnation pressure extrema

spread in the transverse direction. At approximately five trailing edge diameters

downstream of the turbine blade, a slight increase above the free stream stagnation

pressure occurs on the pressure surface side of the wake. The stagnation pressure

in this region rises to approximately ps = 1.008ps∞ at six diameters downstream of

the trailing edge. The onset of this time averaged region of raised stagnation pres-

sure, downstream of the trailing edge, results from the increasing transverse spacing

between the time resolved regions of ps > ps∞ and ps < ps∞ across the pressure

surface vortices with downstream distance. The time averaged region of ps/ps∞ > 1

remains significantly lower than the stagnation pressure maxima observed in the

time accurate field along this side of the wake. The time averaged stagnation pres-

sure distribution further downstream is evident at the right hand side of this figure,

resulting from the wake downstream of the adjacent turbine blade.

The time accurate entropy field highlights the structure and development of the

asymmetric turbine blade wake. The wake development is described over one typical

vortex shedding cycle in Figures 6.34(a-d) and 6.35(a-d). These entropy contours

are time matched over the interval 886.68 ≤ tue/Dt ≤ 890.80 with the time resolved

wake development in Figures 6.22-6.29 and Figures 6.31-6.32. The local entropy

increase above the free stream condition is computed from the stagnation tempera-

ture and pressure fields using Equation 5.4. The resulting field highlights three main

sources of entropy production in the turbulent turbine blade prediction. An entropy

increase occurs along both sides of the turbine blade, as the stagnation temperature

and pressure adjust through the boundary layer to the surface condition. This source

of entropy production is, of course, absent in the inviscid turbine blade prediction.

A similar increase in entropy is however defined close to the surface of the circular

cylinder in Section 5.3.4. The thin boundary layers in the high Reynolds number

circular cylinder prediction ensure that this region of entropy increase is limited to

a thin strip along each side of the cylinder. In the current prediction, the entropy
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increase along the turbine blade highlights the relative thickness of the boundary

layers at separation on the suction (i) and pressure (ii) surfaces. One source of

entropy production absent from the turbulent cascade prediction is the increase in

entropy caused by the rapid fluid recompression across the radial shock waves, as

documented in the inviscid turbine blade and circular cylinder predictions. This

recompression constitutes an additional source of entropy, which changes in magni-

tude and radial extent as the radial shock waves precess circumferentially around

the downstream surface over the vortex shedding cycle. A further source of en-

tropy production occurs at the centre of each vortex, describing the asymmetric

pattern of convecting vortex cores along the pressure and suction sides of the wake.

These entropy contours highlight the differences in form and strength between the

vortices either side of the wake. The anti-clockwise rotating vortices, for example

(iii), appear tightly rolled and well defined. The vortices on this side of the wake

appear similar in form to the vortices which characterise the von Kármán vortex

street in the circular cylinder prediction and the inviscid turbine blade prediction.

The vortices on the suction side (iv) appear less well defined, weaker, and appear

to be stretched along the direction of the shear layers that extend between adjacent

vortices. These shear layers are highlighted as further regions of entropy production

as fluid undergoes intense shearing between the vortices at, for example (v). The

different vorticity distributions in the pressure and suction surface vortices create

the previously documented uneven stream-wise distribution of vortex cores. The

formation of these vortices at the trailing edge indicate that the clockwise rotating

vortices are stretched along the shear layer early into the formation of the pressure

surface vortex. This stretching of the suction surface vortex is evident by track-

ing (vi) and (vii) over the course of Figure 6.34(a-d). The downstream transport

of the anti-clockwise rotating vortices along the wake centreline, and the displace-

ment of the clockwise rotating vortices further into the suction surface side of the

wake, are clearly highlighted in the entropy contours. The result of this vortex shed-

ding pattern is the documented bias in the time averaged stagnation temperature

and pressure fields, which modify the established Eckert-Weise effect in the turbine
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cascade wake.

6.3.7 Summary

The turbulent flow past a highly loaded turbine nozzle cascade is predicted at exit

conditions of Me = 0.6 and ReDt = 7.48×104. To the authors knowledge, no previous

time accurate numerical predictions of this turbine cascade are published at the

conditions modelled in this study, in particular with regard to the energy separation

characteristics. This work therefore represents an original extension to the published

measurements of Carscallen & Gostelow (1994), Carscallen et al. (1996, 1998, 1999),

Hogg et al. (1997) and Ackerman (2005) for this turbine cascade. This work also

extends the turbulent prediction of Currie & Carscallen (1998) at Me = 1.16 to a

time accurate analysis in the low transonic regime.

The turbulent prediction is developed from an inviscid prediction by imposing

uniform values for the specific turbulence kinetic energy k and specific turbulence

kinetic energy dissipation rate ω throughout the computational domain. A condition

of no-slip is imposed at the turbine blade surface. An initial transient period of flow

develops downstream of the cascade after the start of the turbulent prediction as

the k and ω fields develop, and boundary layers are defined along the suction and

pressure surfaces. After this short transient period, a self-sustained vortex shedding

pattern resumes downstream of the turbine cascade. This pattern of alternating

vortex cores is, however, asymmetric about the wake centreline.

Well defined, anti-clockwise rotating vortices are evident along the pressure surface

side of the wake. Between these anti-clockwise vortices, weaker clockwise rotating

vortices are defined on the opposite side of the wake. These clockwise rotating

vortices appear stretched by the circulation of the anti-clockwise rotating vortices

in the direction of the shear layers, which connect the adjacent vortices. The anti-

clockwise rotating vortices travel along the centre of the wake, whereas, the weaker

clockwise rotating vortices are displaced further onto the suction surface side of the

wake. The base pressure time history confirms the greater circulation in the anti-

clockwise rotating vortices on the pressure surface side of the wake. A boundary layer
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analysis just upstream of the trailing edge indicates the main cause of the asymmetric

wake as resulting from a difference in the ‘diffusion length’ of the separated shear

layers. This analysis, however, indicates the presence of turbulent boundary layers

on both sides of the trailing edge at separation. The boundary layer thickness on

the suction surface is computed to be 3.82 times greater than the boundary layer

thickness on the pressure surface at this location.

The asymmetric vortex shedding is responsible for a similar asymmetry in the time

resolved redistribution of stagnation temperature and pressure across the wake. A

greater redistribution of stagnation temperature is predicted at the anti-clockwise

rotating vortices on the pressure surface side of the wake. The result is a greater

stagnation temperature increase at the hot spots and a greater stagnation temper-

ature deficit at the cold spots at these vortices. These results support the energy

separation mechanism proposed by Kurosaka et al. (1987) and extend this theory

to asymmetric, compressible turbine blade wakes. The transverse location of the

pressure surface vortices at the centre of the wake, and the relative displacement of

the suction surface vortices further onto the suction surface side, results in a bias of

the cold spots towards this side of the wake. The time averaged result of this bias is

a stagnation temperature deficit on the suction surface side of the wake and a time

averaged increase above the free stream condition along the pressure surface side.

The hot and cold spots predicted in the time accurate stagnation temperature field

at each vortex are analogously predicted in the stagnation pressure field. A similar

transverse bias in the stagnation pressure field is observed, with a greater redistri-

bution of stagnation pressure at the stronger anti-clockwise rotating vortices. These

results further substantiate the analogy between the redistribution of stagnation

temperature and pressure proposed by Kurosaka et al. (1987) and indicate a direct

relationship between energy separation and vortex strength. The time averaged re-

sult is a stagnation pressure deficit close to the centre of the wake. This stream-wise

band of reduced stagnation pressure is, however, displaced to the suction surface

side of the wake as in the time averaged stagnation temperature field.

Similarities are highlighted between the time accurate stagnation temperature and
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pressure redistribution in the turbulent prediction and the measurements of Hogg

et al. (1997) and Carscallen et al. (1998, 1999). These measurements, taken at a

higher exit Mach number of Me = 0.95, indicate a similar transverse asymmetry in

the magnitude of the hot spots, cold spots and analogous regions in the stagnation

pressure distribution. These measurements indicate a similar uneven stream-wise

spacing of the vortices on each side of the wake and indicate a similar displacement

of the stagnation temperature and pressure extrema towards the suction surface

side. The similarities documented in this section, between the turbulent prediction

and these measurements, imply a similar asymmetric vortex shedding distribution

remains over a significant Mach number range below unity. The current prediction

provides supporting evidence for the vortex shedding mechanism proposed in the

work of Hogg et al. (1997) and Carscallen et al. (1998, 1999), extending this research

to lower transonic exit conditions.
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Chapter 7

Conclusions & Further Research

7.1 Overview

This study documents the development and implementation of a time accurate nu-

merical method to investigate the compressible flow past a circular cylinder and

highly loaded turbine cascade at high Reynolds numbers. To the authors knowledge,

no published time accurate computational fluid dynamic studies have attempted to

analyse energy separation downstream of a circular cylinder at low transonic Mach

numbers, within the intermittent shock wave regime. An original time accurate

study of the vortex induced stagnation temperature and pressure redistribution,

downstream of a circular cylinder, in compressible cross-flow is therefore presented.

This is extended to a novel time accurate study of the compressible stagnation

temperature and pressure redistribution in an asymmetric wake, downstream of a

highly loaded turbine nozzle guide vane cascade. This is the first time accurate

computational fluid dynamic study of energy separation, within the modelled tur-

bine cascade, at low transonic Mach numbers below Me = 0.8. Past research on

the redistribution of stagnation temperature and pressure in a vortex street indicate

that this phenomenon results from an effective exchange of work across large scale,

coherent vortices. The hypothesis that energy separation is primarily a convective

phenomenon is investigated through a structured sequence of numerical models to

include both inviscid and turbulent predictions.

To increase the computational grid resolution close to the surface of the cylinder

in the turbulent prediction, a time accurate Adaptive Mesh Refinement (AMR) al-
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gorithm is implemented, based on the method of Quirk (1991). An analysis of the

AMR algorithm, through a series of fundamental test cases, highlights an inherent

source of numerical error. This numerical error arises from a flux limiting stage

in the interpolation algorithm, which is used to prime fine levels with an initial

state variable distribution from the underlying flow field. Including the flux limiting

stage reduces the order of accuracy of the interpolated solution. The grid depen-

dent wavenumber characteristics of the AMR method are examined. It is established

that dispersion and dissipation in the AMR algorithm increases with the number of

AMR levels used, with respect to a single level non-AMR prediction of equivalent

resolution. The dispersion and dissipation error can also cover a broad wavenum-

ber spectrum, complicating possible remedies through selective high-order filtering.

This numerical error is further shown to possess both stationary and convective

wavenumber characteristics. This suggests the numerical error is capable of spread-

ing over a significant proportion of the flow domain. The numerical error highlighted

in this work may therefore limit the choice of such an AMR method to predictions

where the accurate modelling of small amplitude disturbance phase speeds is not

required. A novel two-dimensional interpolation algorithm is also presented for use

with the AMR method. This interpolation algorithm, which is based on the MUSCL

(Monotone Upstream-centred Schemes for Conservation Laws) approach, preserves

monotonicity and conservation for two-dimensional structured meshes of the current

type. Even with the documented error, it is concluded that the implemented AMR

algorithm retains sufficient accuracy to be applied to the turbulent circular cylinder

prediction.

7.2 Circular Cylinder Flow

A time accurate and time mean analysis of the compressible flow past a circular

cylinder at M∞ = 0.6 and ReD = 6.87× 105 is presented. An inviscid model is ini-

tially developed from uniformly imposed free stream conditions to a self-sustained

vortex shedding solution. This model is then developed using the short-time aver-

aged Navier Stokes equations and a k − ω turbulence model.
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The inviscid prediction suggests that the circular cylinder at M∞ = 0.6 is slow to

develop phase-locked vortex shedding characteristics. A significant computational

time is therefore necessary before an acceptable cycle-to-cycle variation in the time

accurate flow is achieved.

The free stream Mach number chosen for this case places the circular cylinder

in the intermittent shock wave regime. The inviscid prediction is able to capture

and characterise the unsteady oscillation of these radial shock waves over the vortex

shedding cycle. A circumferential oscillation of the radial shock waves is shown to

occur in-phase with the vortex formation and shedding events at the near side of

the wake. A good overall correlation of the drag and lift coefficient time mean and

time accurate peak-to-peak values with Botta (1995) and Pandolfi & Larocca (1989)

suggest the same essential flow physics are predicted in the current study.

A time accurate stagnation temperature and pressure wake analysis proves that

an inviscid computation is able to predict the stagnation temperature and pres-

sure redistribution, or ‘energy separation’ mechanism. The location of hot and cold

spots on diametrically opposing sides of each vortex in this prediction suggest a

direct association with the vortex motion, as proposed by Kurosaka et al. (1987).

The redistribution of stagnation temperature is shown to occur over both the vortex

formation and vortex shedding cycles. Additional compressible effects are identified

in the near wake flow. These are responsible for a higher stagnation temperature

maximum in the near side shear layer at each vortex formation and shedding event,

with respect to the subsonic prediction of Kurosaka et al. (1987). The time av-

eraged inviscid stagnation temperature field confirms the ‘Eckert-Weise effect’. A

time averaged rise in stagnation temperature, above the free stream condition, is

predicted along the outer edges of the wake close to the cylinder and further down-

stream. This may suggest a similar compressible modification in the time averaged

field, with respect to the subsonic results of Kurosaka et al. (1987). The time av-

eraged stagnation temperature rise, however, remains significantly lower than the

time accurate stagnation temperature rise at the hot spots.

The inviscid prediction substantiates the hypothesis of Kurosaka et al. (1987),
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that a similar redistribution of stagnation pressure occurs across each vortex. The

time accurate stagnation pressure field assumes an analogous pattern to the localised

hot and cold spots observed in the time accurate stagnation temperature field. The

time averaged result is a similar stagnation pressure deficit along the centreline of

the wake, in analogy to the time averaged stagnation temperature field. These time

averaged results demonstrate an increase in the stagnation pressure loss downstream

of the circular cylinder through the energy separation mechanism.

Introducing the short-time averaged Navier Stokes equations, along with the two-

equation k − ω model of Wilcox (2002), improves the correlation against published

experimental work at comparable free stream conditions. The presence of a stagna-

tion temperature and pressure redistribution in the inviscid and turbulent predic-

tions highlight the dominance of convection over small-scale turbulent and viscous

effects in the fundamental energy separation mechanism. The increase in heat trans-

fer through turbulence diffusion reduces the stagnation temperature redistribution

with respect to the inviscid wake.

A time accurate comparison of the wake distribution with measurements by Acker-

man (2005) indicates an improved representation of the physical wake development

in the turbulent prediction. These results suggest that, although an inviscid predic-

tion is capable of capturing the essential mechanism underlying the vortex induced

stagnation temperature and pressure redistribution, the magnitude of this redistri-

bution is over-predicted. The introduction of a turbulence model remains essential

to accurately approximate the development and diffusion of this flow phenomenon.

Differences are identified in the relative stream-wise location of the hot and cold

spots, between the turbulent prediction and the measurements of Ackerman (2005).

A number of possible sources for this discrepancy are suggested. These include

the possibility of an additional small-scale or three-dimensional turbulent effect not

predicted by the two-dimensional, short-time averaged numerical method. This

discrepancy may highlight a limitation to modelling energy separation through a

two-dimensional numerical method.
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7.3 Turbine Cascade Flow

The circular cylinder analysis is extended to the asymmetric wake downstream of

a highly loaded turbine nozzle guide vane cascade. A cross-section of the thick

trailing edge turbine cascade in Carscallen (1998) is modelled at exit conditions

of Me = 0.6 and ReDt = 7.48 × 104. An inviscid model of the turbine cascade

is initially developed from uniformly imposed free stream conditions. The inviscid

vortex shedding solution is then used to initialise the flow field for the subsequent

turbulent prediction.

A symmetric vortex shedding pattern is identified in the inviscid turbine blade

prediction, suggesting that the asymmetric wake documented in other work for this

cascade results primarily from the separated shear layers rather than the differ-

ence in velocity at the trailing edge. A corresponding symmetry in the stagnation

temperature and pressure extrema are also predicted across the wake centreline. Dif-

ferences in the transient shock wave characteristics are documented with respect to

the circular cylinder prediction. The upstream precession of pressure waves through

the nozzle passage is shown to effect the flow development along the adjacent blade

suction surface.

The turbulent cascade prediction shows a marked difference in the wake develop-

ment and energy separation characteristics with respect to the inviscid prediction.

Firstly, no radial shock waves are identified around the trailing edge, resulting in

an absence of shock induced separation. Turbulent boundary layers are identified

on the suction and pressure surfaces at separation. The suction surface boundary

layer thickness is, however, 3.84 times greater on the suction surface at separation.

This difference in boundary layer thickness implies a corresponding difference in

separated shear layer thickness, suggesting a direct association with the asymmetric

form and circulation of vortices shed from each side. This dependency of the asym-

metric cascade wake on the difference in trailing edge shear layer thickness correlates

well with the measurements of Sieverding et al. (2003) for a similar highly loaded

turbine blade.

A greater stagnation temperature redistribution is predicted on the pressure sur-
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face side of the wake, resulting in an increase in stagnation temperature at the

associated hot spots and a greater cooling of the cold spots on this side of the wake.

These results suggest a direct relationship between the energy separation mechanism

and vortex strength. This relationship is further evident in the stagnation pressure

field, yielding an increased redistribution along the pressure surface side of the wake.

This relationship provides supporting evidence for the energy separation mechanism

proposed by Kurosaka et al. (1987) and extends this mechanism to asymmetric vor-

tex shedding. The current results also extend the measurements of Sieverding et

al. (2003), demonstrating that the asymmetric vortex shedding pattern is responsi-

ble for a pitch-wise asymmetry in the stagnation temperature and pressure fields,

downstream of the turbine blade.

The asymmetric stagnation pressure and temperature wake distribution correlates

well with the time accurate measurements of Hogg et al. (1997) and Carscallen et

al. (1998, 1999) for this cascade. The current prediction provides a detailed analysis

of the near wake flow development upstream of the measuring plane in the cited work,

for a similar asymmetric vortex shedding flow. The good qualitative agreement of the

current prediction with Hogg et al. (1997) and Carscallen et al. (1998, 1999) suggest

a similar asymmetric vortex shedding pattern characterises the wake downstream of

the current turbine cascade over a significant Mach number range, below Me = 1.

The turbine cascade results highlight the dependence of the stagnation tempera-

ture and pressure redistribution on the vortex strength, and hence on the boundary

layer development and separation characteristics. Therefore, even though the in-

viscid model is capable of predicting the energy separation mechanism, a turbulent

prediction is still necessary to accurately model the essential physics of this phe-

nomenon.

7.4 Further Research Recommendations

One of the major numerical issues limiting the scope and accuracy of this compu-

tational study is the use of an explicit time integration method for a high Reynolds

number circular cylinder flow. The restriction on time step imposed by the CFL
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condition severely limits the practical grid resolution possible close to the cylinder

surface. One method for relaxing this restriction is through the implementation

of an implicit time integration method. Although associated increases in memory

and processing overheads are reported for implicit methods, with respect to explicit

methods, the beneficial effects of relaxing the CFL constraint remains an attractive

alternative. Changing the current numerical source code from an explicit to an im-

plicit method would require a significant hierarchical restructuring, rewriting and

validation exercise. This was not considered feasible within the time constraints set

out for this study and remains an area of crucial development for the existing numer-

ical solution procedure. An implicit time integration method is, for example, used

by Currie & Carscallen (1998) to model the flow past the current turbine cascade at

Me = 1.16. This implicit method has also been implemented by Brooksbank (2001)

to model energy separation downstream of a simulated turbine blade. The implicit

method documented in these publications may provide a sound basis for the devel-

opment of an implicit time integration method into the existing numerical solution

procedure.

The current AMR algorithm remains close to the original method of Quirk (1991),

particularly in the cell flagging and grouping algorithms. The final implementation is

capable of improvement in a number of ways. These include improving the cell ‘flag-

ging’ parameter for boundary layer flows, developing more sophisticated methods

for choosing the extent of refined regions and improving the interpolation method.

The AMR ‘flagging’ parameter, used to indicate regions for dynamic refinement,

is chosen as the density gradient between contiguous cells. This should provide

a satisfactory flagging criterion for the refinement of shock waves and compressible

shear flows. This flagging criterion could not, however, adequately resolve the initial

boundary layer development close to the stagnation point on the circular cylinder.

An improved flagging criterion may result from combining the density gradient with

a second parameter, such as wall shear stress, to improve the resolution in developing

boundary layers.

The AMR validation test cases highlight an inherent source of error in the AMR
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method at the interface between levels, i.e. the fine-coarse interface. The mag-

nitude of this error is dictated by a user-defined AMR scaling parameter b. This

parameter is multiplied by the maximum density gradient between two contiguous

cells to determine a criterion, above which, cells are flagged for refinement. This

error increases for fine-coarse interfaces defined within regions of large flow gradient.

While using a predefined AMR scaling parameter is computationally efficient for this

task, the choice of the scaling parameter remains somewhat arbitrary. A more so-

phisticated AMR scaling parameter might be developed from an initial user-defined

value, combined with a subsequent error analysis to increase the spatial extent of

the refined patch in regions of significant error.

The AMR validation exercise also highlights an inherent error arising from the

interpolation method used to initialise the fine AMR levels. The two-dimensional

interpolation used in the current study maintains the monotonicity and conserva-

tion properties of the underlying state variable distribution. However, the necessary

variable gradient limiting procedure restricts the accuracy of the flow field interpo-

lation. The development of more sophisticated interpolation algorithms are crucial

for better approximating the refined field, while maintaining the conservation and

monotonicity properties of the underlying state variable distribution.

A further source of development for the numerical solution procedure is the imple-

mentation of a Large Eddy Simulation (LES) or Detached Eddy Simulation (DES)

turbulence modelling procedure. A comparison of the turbulent circular cylinder

prediction with measurements by Ackerman (2005) highlights differences in the

stream-wise location of the time accurate hot and cold spots relative to the convect-

ing vortices. Suggestions for this discrepancy include the possibility of a small-scale

or three-dimensional effect not modelled in the current two-dimensional short-time

averaged method. Extending this study to a three-dimensional study using, for ex-

ample, an LES turbulence model may provide an improved estimation of the energy

separation flow physics measured by Ackerman (2005).

The reported differences in stagnation temperature redistribution downstream of

the circular cylinder in the current prediction, against the measurements of Acker-
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man (2005), also suggest an extension to the experimental research program. An

improved understanding of the interaction of turbulence with the energy separation

mechanism would result from a development of the experimental program to include

small-scale turbulence measurements. Fazle Hussain & Hayakawa (1987), for exam-

ple, use an eduction method and a rake of cross-wire probes to study the developing

turbulence downstream of a circular cylinder at a lower free stream Reynolds num-

ber. Carscallen et al. (1999) also provide promising indications that improvements

to the stagnation temperature probe and associated electronics used in this work

may provide an alternative method for studying the evolution of fine scale turbulent

structures.

The current study also highlights a lack of validation data for the turbulent study

at the modelled conditions. The experimental research program could be extended,

in collaboration with the proposed extensions to the numerical model, to include

further boundary layer measurements around the circular cylinder and turbine blade.

Finally, this study could be extended to place into context the predicted redistri-

bution of stagnation temperature and pressure downstream of the cascade within a

high pressure turbine stage. The turbine blade modelled in this study is the mean

cross-section of a nozzle guide vane with non-uniform span-wise chord length and at-

tack angle. The current study could be developed to better approximate the physical

turbine blade through a time accurate three-dimensional extension of the complete

blade. This remains a computationally intensive proposition, which may eventually

be feasible through the current rapid increase in widely available high performance

computing facilities. The turbine cascade model could also be extended to include a

downstream row of rotor blades, to analyse the effects of the vortex induced energy

separation on the downstream rotor row.
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Appendices

A.1 Short-Time Averaging

Any instantaneous scalar flow variable, ζ, can be divided into a time mean compo-

nent, ζ̃, a fluctuating component ζ ′, due to large scales of motion in the flow and a

stochastic component, ζ ′′, due to small-scale turbulence, so that

ζ = ζ̃ + ζ ′ + ζ ′′. (A.1)

A short-time averaged variable is defined over a time period short enough to resolve

the time mean and the large scale fluctuating variables, yet not short enough to

resolve the small scale stochastic turbulence component. The short-time averaged

variable is therefore defined as

ζ̄ = ζ̃ + ζ ′. (A.2)

Each short-time averaged scalar variable, ζ̄, is iteratively computed on a suitable

grid. The remaining small scale turbulence component, ζ ′′, is modelled using tur-

bulence closure methods. The instantaneous variable is redefined as

ζ = ζ̃ + ζ ′ + ζ ′′ = ζ̄ + ζ ′′. (A.3)

Short-time averaging is a linear operator, therefore

ζ̄ ′′ + ζ̄ ′′ = 2ζ̄ ′′,

ζ̄ ′′ζ ′′ = ζ̄ ′′ · ζ̄ ′′,
ζ ′′ζ ′′ 6= ζ̄ ′′ · ζ̄ ′′. (A.4)
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Short-time averaging Equation A.3 therefore yields

ζ̄ ′′ = 0. (A.5)

The instantaneous form of the Navier-Stokes equations is defined as

∂ρ

∂t
+∇ · (ρu) = 0, (A.6)

∂

∂t
(ρu) +∇ · (ρu⊗ u + pI − τ ) = 0, (A.7)

∂

∂t
(ρes) +∇ · (ρuhs + q − τ · u) = 0, (A.8)

where es, hs, τ and q are estimated by

es =
p

ρ (γ − 1)
+

u · u
2

, (A.9)

hs = es +
p

ρ
, (A.10)

τ = µl

(
∇u + u∇− 2

3
I∇ · u

)
, (A.11)

q = −µlcp

Pr

∇T. (A.12)

The instantaneous variables of the Navier-Stokes equations, Eqns. A.6-A.8, are split

into a short-time averaged component and a small-scale turbulence component ac-

cording to Eqn. A.3. For the mass conservation equation, this leads to

∂ (ρ̄ + ρ̄′′)
∂t

+∇ · (ρ̄ū + ρ̄ū′′ + ρ̄′′ū + ρ′′u′′
)

= 0, (A.13)

In the short-time averaging procedure, the contribution of the turbulent density

fluctuations, ρ′′, and the short-time averaged contribution of the turbulent mass

fluctuations, ρ′′u′′, are omitted on the basis that these are negligibly small in com-

parison with their short time averaged contributions. Neglecting these terms and

applying Eqn. A.5, the form of the short-time average mass conservation equation

in Eqn. 3.29 is defined:

∂ρ̄

∂t
+∇ · (ρ̄ū) = 0. (A.14)
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After applying short-time averaging to the momentum conservation equation,

Eqn. A.7, and omitting terms involving ρ′′ and ρ′′u′′, the following form of the

momentum equation is defined

∂

∂t
(ρ̄ū) +∇ · (ρ̄ū⊗ ū + ρ̄u′′ ⊗ u′′ + p̄I − τ

)
= 0, (A.15)

The additional Reynolds stress tensor in Equation A.15 results from short-time av-

eraging of the instantaneous momentum tensor. After moving the viscous stress

tensor and the Reynolds stress tensor to the right-hand side of Eqn. A.15 to leave

only inviscid terms on the left-hand side expression, the form of Eqn. 3.30 is recov-

ered:

∂

∂t
(ρ̄ū) +∇ · (ρ̄ū⊗ ū + p̄I) = ∇ · (τ − ρ̄u′′ ⊗ u′′

)
, (A.16)

To allow short-time averaging of the energy conservation equation, the stagnation

energy es and stagnation enthalpy hs terms in Eqn. A.8 are replaced by their respec-

tive definitions in Eqns. A.9 and A.10. The heat flux q is replaced by its definition,

Eqn. A.12. The resulting energy conservation equation takes the form

∂

∂t
(ρe + ρu · u/2) +∇ ·

(
ρuh + ρu⊗ u · u/2− µlcp

Pr

∇T − τ · u
)

= 0,

(A.17)

where, e is the specific internal energy of the flow, defined as e = p/ [ρ (γ − 1)].

The specific enthalpy h is defined as h = e + p/ρ. The short-time averaged energy

conservation equation is obtained by replacing each instantaneous flow variable in

Eqn. A.17 by the summation of a short-time averaged component and a small-scale

turbulence component. Each component is then short-time averaged. After omit-

ting contributions from the turbulent density fluctuations ρ′′, turbulent temperature

fluctuations T ′′ and terms involving the turbulent mass fluctuations ρ′′u′′, the short-
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time averaged energy conservation equation becomes

∂

∂t

(
ρ̄ē + ρ̄ū · ū/2 + ρ̄u′′ · u′′/2) +∇ · (ρ̄ūh̄ + ρ̄u′′h′′ + ρ̄ū⊗ ū · ū/2+

ρ̄ū⊗ u′′ · u′′/2 + ρ̄u′′ ⊗ u′′ · ū + ρ̄u′′ ⊗ u′′ · u′′/2−
µlcp

Pr

∇T̄ − τ̄ · ū− τ ′′ · u′′
)

= 0. (A.18)

By re-introducing the stagnation energy, es = e + ū · ū/2, the stagnation enthalpy,

hs = h + ū · ū/2, and the heat flux vector, q, in Eqn. A.18 and introducing the

specific turbulence kinetic energy, k = u′′ · u′′/2, the following form of the short-time

averaged energy conservation equation is obtained:

∂

∂t
ρ̄

(
ēs + k̄

)
+∇ · ρ̄ū

(
h̄s + k̄

)
+∇ · (ρ̄u′′h′′ + ρ̄u′′ ⊗ u′′ · ū+

ρ̄u′′ ⊗ u′′ · u′′/2 + q̄ − τ̄ · ū− τ ′′ · u′′) = 0. (A.19)

The short-time averaged energy conservation equation of Eqn. 3.31 is recovered by

grouping inviscid terms on the left-hand side of Eqn. A.19 and grouping viscous and

turbulence terms on the right-hand side, leading to

∂

∂t
ρ̄

(
ēs + k̄

)
+∇ · ρ̄ū

(
h̄s + k̄

)
= ∇ · (−q̄ − ρ̄u′′h′′ + τ̄ · ū+

τ ′′ · u′′ − ρ̄u′′ ⊗ u′′ · ū−
ρ̄u′′ ⊗ u′′ · u′′/2

)
. (A.20)

A.2 Circular Cylinder Laminar Sublayer Height Estimation

An estimate for the approximate height of the laminar sublayer region of a turbu-

lent boundary layer is computed from the incompressible turbulent boundary layer

measurements of Patel (1969). A circular cylinder of span-wise length L = 1.2192m

and diameter D = 0.1524m is placed in a uniform cross-flow at ReD = 5.01 × 105.

Trip wires of diameter Dw = 1.016× 10−3m are placed at ∆θ = ±45◦ from the up-

stream stagnation point to fix the location of boundary layer transition. Patel (1969)

documents boundary layer integral parameters, surface normal velocity profiles and

the surface pressure distribution at a number of circumferential locations along the
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upstream facing (windward) side of the cylinder. An estimation for the laminar

sublayer height is obtained from these results, along with the momentum integral

equation, defined as

Cf

2
=

dδ2

dx
+ (2 + H)

δ2

ue

due

dx
. (A.21)

In this analysis x is taken circumferentially along the circular cylinder surface. The

local boundary layer edge velocity ue is computed using the incompressible surface

pressure coefficient Cp, defined as Cp = 2(p−p∞)/ρ∞u2
∞, and the free stream velocity

u∞ as

ue =
√

u2∞ (1− Cp). (A.22)

This equation uses the Bernoulli equation for an incompressible flow and assumes a

constant stagnation pressure between the free stream flow and the boundary layer

edge. The boundary layer edge velocity gradient due/dx is then estimated from the

computed ue at each stream-wise station.

The momentum thickness δ2 is documented by Patel (1969) at each stream-wise

station. The gradient dδ2/dx is estimated from the documented values of δ2 at

each stream-wise station. The shape factor H12 = δ1/δ2 is computed from the

documented values of δ1 and δ2. An estimate for the incompressible skin friction

coefficient is then obtained from Eqn. A.21.

The second half of this analysis is concerned with applying the skin friction to the

current circular cylinder model flow to obtain an estimation for the laminar sublayer

height at y+ = 10. In the remainder of this analysis, the turbulent boundary layer

edge properties, for example ρe, ue and Te, are obtained from the surface distribution

around the current inviscid circular cylinder prediction.

A coarse approximation to the compressible skin friction coefficient is then ob-

tained from the generic form of the van Driest II relation, according to Spalding &

Chi (1964). This relation is documented in a number of standard texts including

White (1991). An adiabatic wall condition is assumed in this estimation. The use
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of the van Driest II relation represents one of the major assumptions in this analysis

as this relation is strictly used for zero pressure gradient flows. The difference in

estimated laminar sublayer height with, and without, this stage is approximately

5%.

Using the compressible skin friction coefficient estimate Cf , the wall shear stress

τw is estimated as

τw =
Cfρeu

2
e

2
. (A.23)

The friction velocity uτ =
√

τw/ρw is then computed from the wall shear stress τw

and an estimation for the wall density ρw using the Crocco-Busemann relation for

adiabatic walls:

ρw = ρe

(
1 + r

(γ − 1)

2
M2

e

)−1

, (A.24)

where r ≈ 0.88 is the recovery factor and Me is the boundary layer edge Mach

number. This relation assumes a constant static pressure variation through the

turbulent boundary layer. Once the friction velocity uτ is estimated, the laminar

sublayer height hls is estimated as

hls =
y+µw

ρwuτ

, (A.25)

where the laminar sublayer height is assumed to be at y+ = 10. The wall viscosity

µw is computed from Sutherlands relation with the adiabatic wall temperature Tw =

ρeTe/ρw. This relation again assumes a constant static pressure variation through

the turbulent boundary layer.

It is recognised that the accuracy of this boundary layer analysis is limited by the

assumptions made therein. However, this analysis is simply used in the context of

this study to quantify the order of increase in grid resolution necessary to adequately

resolve the laminar sublayer of a turbulent boundary layer at the modelled free

stream conditions.
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A.3 Energy Separation In The Relative Reference Frame

A fixed frame of reference is used in this thesis to study energy separation down-

stream of a circular cylinder and turbine cascade. In Chapter 5, a uniform free

stream flow approaches a stationary circular cylinder. Vortices are shed alternately

from each side of the circular cylinder and move downstream. A mean vortex ve-

locity can be defined, which is lower in magnitude than the imposed free stream

velocity. The fixed reference frame is used in Chapter 5 to describe the downstream

movement of individual fluid particles around each vortex moving downstream. An

alternative reference frame can be defined, in which the vortices appear steady over

time. This is achieved by introducing a frame of reference which moves downstream

at the mean vortex transport velocity. In this reference frame, the cylinder moves

upstream with a velocity of (ucyl)r = (−u1v)f , where u1v is the mean vortex velocity

in the fixed frame of reference. Subscript f denotes the fixed reference frame and

subscript r denotes the relative reference frame. The free stream velocity is therefore

defined as (u1∞)r = (u1∞ − u1v)f .

Kurosaka et al. (1987) use a fixed Lagrangian frame of reference to provide an

explanation for the redistribution of stagnation temperature and pressure around a

downstream moving vortex street. This explanation is described in detail in Sec-

tion 2.6 and considers the changing forces exerted on a fluid particle travelling a

cycloidal pathline around a downstream moving vortex. Briefly, as the fluid particle

moves from the top of the vortex to the bottom, downstream of the vortex core,

the centripetal force acting on the particle in the direction of the vortex centre acts

to retard the fluid particle. The result is a decrease in the stagnation temperature

over the course of this movement. Conversely, as the fluid particle travels from the

bottom of the vortex to the top, upstream of the vortex core, the centripetal force

acts to accelerate the fluid particle along the cycloidal pathline. The result is an in-

crease in the stagnation temperature over the course of this movement. An effective

‘exchange of work’ therefore occurs, from fluid particles travelling a cycloidal path-

line downstream of the vortex core, to fluid particles travelling a cycloidal pathline

upstream of the vortex core. This exchange of work is facilitated by the presence
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of the downstream moving vortex. The overall result is a local increase in the stag-

nation temperature and pressure, above the free stream condition, along the outer

edges of the wake. A stagnation temperature and pressure deficit, relative to the

free stream condition, is generated along the wake centre.

To emphasise the role of the downstream moving vortex on the energy separation

mechanism, the stagnation temperature and pressure distribution in Figures 5.34

and 5.38 are re-plotted in this appendix using a reference frame that moves down-

stream at the mean vortex velocity. These are compared with the dimensionless Ts

and ps fields in the fixed reference frame from Figures 5.34 and 5.38 respectively. To

obtain Ts and ps in the relative frame, the mean stream-wise vortex velocity is sub-

tracted from the stream-wise component of velocity throughout the computational

domain. The mean vortex velocity is estimated from a series of density iso-contour

snapshots. The displacement of the vortex centre in the stream-wise direction in

successive snapshots provides a vortex velocity u1v estimate of u1v = 0.7u1∞ at

x1 = 6.5D.

Figure A.1(a,b) highlights the difference in flow distribution around each vortex

in the fixed (a) and relative (b) reference frames. In the relative fixed reference

frame of Figure A.1(a), each vortex is shown as a deviation in the velocity vector

distribution. A slowing of the fluid is observed at each vortex, towards the centre

of the wake. This results from an opposition of velocity components, between the

downstream directed vortex velocity and an upstream directed tangential velocity

component. Figure A.1(b) highlights the tangential velocity component at each

vortex. The velocity vectors in Figure A.1(b) highlight the centre of each vortex,

alongside the location of the irrotational saddle points between vortices.

Figure A.2(a,b) compares the dimensionless stagnation temperature distribution

in the fixed reference frame (a) with the dimensionless stagnation temperature dis-

tribution in the relative frame (b). A localised redistribution of stagnation temper-

ature is observed in Figure A.2(a). Localised hot spots with stagnation temperature

greater than the free stream condition are shown in the outer shear layer of each

vortex. These are defined at (i) in Figure A.2(a). Localised cooler regions, with
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lower than free stream stagnation temperature, occur on the opposite side of each

vortex at the wake centre. These regions are marked (ii) in Figure A.2(a). In con-

trast, Figure A.2(b) shows a local stagnation temperature maximum close to the

centre of each vortex and along its downstream outer shear layer. These differences

in the Ts field are explained through the contribution of the local velocity to the

stagnation temperature, which can be expressed as

Ts = T +
(u2

1 + u2
2)

2cp

+
k

cp

. (A.26)

The velocity of a fluid particle travelling around the vortex in the fixed frame of

reference, Figure A.2(a), is directed along a cycloidal pathline. In the relative frame

of reference, Figure A.2(b), the velocity of a particle travelling around a vortex is

directed tangential to the vortex. This is evident in Figure A.1(a,b). This results in

a constant tangential velocity distribution, for an isolated vortex.

The difference in stagnation temperature, between the fixed frame of the refer-

ence and the relative reference frame, is most noticeable at the outer shear layer of

each vortex, as well as along the wake centre. These regions are labelled (i) and

(ii) respectively in Figure A.2(a,b). The instantaneous stream-wise velocity at (i)

in Figure A.2(a) is a combination of the vortex velocity u1v and the stream-wise

component of the vortex tangential velocity. In Figure A.2(b), the instantaneous

stream-wise velocity at (i) is simply the stream-wise component of the vortex tan-

gential velocity. From Eqn. A.26, therefore, (Ts)f > (Ts)r at (i).

On the diametrically opposite side of each vortex, labelled (ii), the difference in the

instantaneous stream-wise velocity between the relative and fixed reference frames is

reversed, leading to (Ts)f < (Ts)r. In fact, in Figure A.2(a) the stream-wise velocity

comprises of the downstream vortex velocity in addition to the upstream oriented

stream-wise component of the vortex tangential velocity. The velocity magnitude

at (ii) in Figure A.2(a) is therefore significantly lower than the velocity at (i).

In Figure A.2(b), the stream-wise component of velocity at (ii) comprises of the

upstream directed component of the vortex tangential velocity. The magnitude of

the stream-wise velocity at (ii) in Figure A.2(b) would be equal to that at (i), for
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an isolated vortex. As the square of the stream-wise velocity adds to the stagnation

temperature in Eqn. A.26, the stagnation temperature does not vary significantly

between (i) and (ii) in Figure A.2(b).

The stagnation temperature field in the relative frame of reference augments the

static temperature distribution across the vortex. A localised region of high static

temperature occurs at the centre of each vortex through a local dissipation of turbu-

lence kinetic energy to heat. The transport of heat away from this region of raised

static temperature is reduced by the absence of convection radially away from the

vortex centre to the surrounding fluid. The centre of the vortex remains, therefore, a

region of high static and stagnation temperature in the relative frame of reference. A

further region of high stagnation temperature is evident downstream of each vortex

in Figure A.2(b) and is caused by additional dissipation of the turbulence kinetic

energy to heat in the shear layers that extend between successive vortices. This

region would be expected to be absent in the case of a single convecting vortex. It is

generated by the counter-rotation of vortex pairs in the von Kármán vortex street.

A similar difference between the fixed reference frame and the relative reference

frame is evident in the stagnation pressure distribution. Figure 5.38 is reproduced

in Figure A.3(a) for convenience. This is compared with the stagnation pressure

distribution in the same relative frame of reference as for (Ts)r in Figure A.3(b). In

Figure A.3(a), localised regions of stagnation pressure above the free stream condi-

tion (ps > ps∞), are shown at the outer shear layer of each vortex. Cooler regions

of fluid, lower than the free stream stagnation pressure (ps < ps∞), are shown close

to the wake centre. This pattern is similar to that of the stagnation temperature

field. An additional contribution from each low pressure vortex centre is shown in

Figure A.3(a).

Figure A.3(b), in contrast, is similar in form to the static pressure distribution

with a stagnation pressure minimum sited at the centre of each vortex. The stag-

nation pressure in the relative frame of reference increases radially from the cen-

tre of the vortex, as shown by the almost concentrically circular contour levels in

Figure A.3(b). The similarity of the relative reference frame stagnation pressure
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distribution with a static pressure distribution is caused by the uniform tangential

velocity distribution defined around each vortex. The low static pressure at the cen-

tre of each vortex can therefore be cited as being responsible for the low stagnation

pressure in Figure A.3(b) at this location.

In summary, the analysis put forward in this appendix further serves to highlight

the role of the relative downstream movement of the fluid particles and the vortices

in the energy separation mechanism. This analysis also highlights the importance

of a proper choice of reference frame to capture the time accurate redistribution of

stagnation temperature and pressure across a vortex street.
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oberfläche schnell angeströmter unbeheizter körper,” Forsch. Geb. Ing. Wesen.,

Vol. 13, pp. 246–254.

Fazle Hussain, A. K. M., and Hayakawa, M. (1987), “Eduction of large-scale orga-

nized structures in a turbulent plane wake,” J. Fluid Mech., Vol. 180, pp. 193–229.

Fey, U., König, M., and Eckelmann, H. (1998), “A new Strouhal-Reynolds number

relationship for the circular cylinder in the range 47 < Re < 2 × 105,” J. Phys.

Fluids , Vol. 10, No. 7, pp. 1547–1549.

A Time Accurate Computational Analysis of Two-Dimensional Wakes



Bibliography 344

Flaschbart, O. (1929), “Messungen ebenen und gewalben platten ergenbisse der

aerodynamischen.,” Vers. Göttingen IV Leiferung , Vol. 96, pp. 317.

Freund, J. B. (1997), “Proposed inflow/outflow boundary condition for direct com-

putation of aerodynamic sound,” AIAA J., Vol. 35, No. 4, pp. 740–742.

Gerrard, J. H. (1966), “The mechanics of the formation region of vortices behind

bluff bodies,” J. Fluid Mech., Vol. 25, Part 2, pp. 401–413.

Giles, M. B. (1990), “Nonreflecting boundary conditions for Euler equations calcu-

lations,” AIAA J., Vol. 18, No. 12, pp. 2050–2058.

Godunov, S. K. (1959), “A finite difference method for the numerical computation

of discontinuous solutions of the equations of fluid dynamics,” Matematicheskii

Sbornik., Vol. 47, pp. 357–393.

Godunov, S. K. (1976), “Numerical solution of multi-dimensional problems in gas

dynamics,” Nauka Press, Moscow.

Gostelow, J. P. (1984), “Cascade aerodynamics”, Pergamon Press.

Gostelow, J. P., and Blunden, A. R. (1989), “Investigations of boundary layer

transition in an adverse pressure gradient,” Trans. ASME, J. Turbomachinery ,

Vol. 111, pp. 366–375.

Gostelow, J. P., Walker, G. J., Solomon, W. J., Hong, G., and Melwani, N. (1997),

“Investigation of the calmed region behind a turbulent spot,” Trans. ASME, J.

Turbomachinery , Vol. 119, pp. 802–809.

Gostelow, J. P. (2002) enquoteUnsteady and transitional effects in turbomachinery

flows, Proc. Ninth Asian Congress of Fluid Mechanics , Isfahan, Iran, May 27-31.

Gostelow, J. P. (2003), “On the role of intermittency in the closure of laminar

separation bubbles,” Symposium on Advances in Fluid Mechanics , Bangalor, India.

Gruschwitz, E. (1950), “Calcul approché de la couche limite laminaire en
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