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Abstract—Disturbance events, such as fire, have a major 

impact on boreal forest dynamics, succession and the global 

carbon cycle. Methods using satellite imagery are well established 

for detecting forest fires in real time and mapping the burned 

area (fire scars) within one year of the fire. This paper focuses on 

the detection of older fire disturbance-regeneration patterns in 

the boreal forests of Canada. Previous work found that 

shortwave-infrared image segmentation proved particularly good 

at creating uniform regions that were easy to associate with fire 

scars. Our findings suggest it is possible to detect fire scars up to 

10 years old using SPOT VEGETATION data from a single year 

and that the use of a vegetation index based on near- and 

shortwave-infrared reflectance is critical to this success. We 

demonstrate how the use of short term multi-temporal imagery 

can enhance segmentation results and present a threshold-based 

procedure for a-posteriori identification of fire scar segments. The 

resulting fire scar probability map showed a good correspondence 

with records of fire scars mapped by the Canadian Forest Service 

for 1980 - 1992 and ‘hot spots’ from the FireM3 Information 

System for 1994-1998. 

 
Index Terms— forest fire scars, image segmentation, multi-

temporal remote sensing, shortwave-infrared. 

 

I. THE ROLE OF DISTURBANCE  

Boreal forests play an important role in the global carbon 

budget. The boreal forest contains approximately 49% of the 

total carbon pool in forested ecosystems [1]; it extends 

throughout the Northern circumpolar region and covers 

approximately 10% of the Earth’s land surface. The effects of 

fire disturbance on this ecosystem are potentially catastrophic, 

because it is very slow growing, with a short active period, 
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typically 120-150 days [2] and subject to nutrient limitation. 

Further, while the biome contains a high carbon mass, most of 

this is stored in soil and replacement is limited by temperature 

and nutrient controls on decomposition [1]. Because forest 

fires typically release high levels of energy, soil is likely to be 

combusted.Goulden et al. [3] showed that the carbon losses 

are not recovered by regrowth, at least in northern boreal 

forests, where net sequestration into woody biomass is 

balanced by the release of ancient soil carbon as a direct result 

of the lowering of the permafrost layer. 

 There are large annual fluctuations in the area affected by 

fire; in typical years 5-10 million ha may be burnt [4]; [5]. 

Examination of decadal averages has shown that 95% of the 

area burned is caused by 3% of fires [6]. Fires also occur in 

temporal clumps rather than having a consistent average. 

These clumps are distributed randomly in time, within the fire 

season, and are associated with weather patterns such as low 

precipitation and high temperature. Once burned, the 

disturbance return interval ranges typically from 50 to 240 

years, with an average of approximately 100 years [7]. Inter-

annual disturbance rates throughout the boreal system vary 

widely. 

Fire disturbance can have a strong influence on succession 

in the boreal ecosystem, by creating opportunities for change. 

For example, crown fires in close succession or extending over 

large areas may mean the forest in a given area is not able to 

regenerate due to lack of seed trees and sites for germination. 

This is evident in Siberia, where areas dominated by lichens 

can be observed. Pines cannot regenerate without a new 

ground fire but the fuel load of lichens is too sparse for ground 

fire to occur so the lichen patches remain [2]. This 

impoverishment of forests by fire has been suggested as the 

cause of the belt of treeless areas in the taiga-tundra ecotone in 

northern Eurasia [8]. 

Global Circulation Models predict major winter and spring 

warming in west-central and NW Canada and all of Siberia, 

with temperature increases of 2-3 degrees. Climate change 

may alter the frequency and size of disturbance events. 

Increased fire activity is expected to be an early and significant 

result of warmer and drier conditions in the boreal zone. It is 

estimated that fire danger may increase by nearly 50% and fire 

Cite as: Gerard, F., Plummer, S., Wadsworth., R., Ferreruela, A., Iliffe, L., 

Balzter, H. and Wyatt, B. (2003): Forest fire scar detection in the boreal 

forest with multi-temporal SPOT-VEGETATION. IEEE Transactions on Geoscience 

and Remote Sensing 41, 2575-2585. 

 

Forest Fire Scar Detection in the Boreal forest 

with multi-temporal SPOT-VEGETATION data 

F. Gerard, S. Plummer, R. Wadsworth, A. Ferreruela, L. Iliffe, H. Balzter, and B. Wyatt
 
 

mailto:ffg@ceh.ac.uk
mailto:rawad@ceh.ac..uk
mailto:hbal@ceh.ac.uk


 2 

season length by approximately 30 days if CO2 concentrations 

in the atmosphere were to double. This means monitoring 

changes in the spatial distribution, area and temporal 

occurrence of fires is vital for predicting the impacts of global 

environmental change [9]. 

II. DATA REQUIREMENTS 

Reliable estimates of the return periods, size and recovery 

rate of fire disturbance ideally require time-series of spatially-

referenced data for boreal forest over a period of at least a 

hundred years. Such data are not available from any source, so 

reliance must be placed on short timescale but spatially 

comprehensive information (e.g. GLOBSCAR, a global fire 

scar product derived from Earth observation [10]), long 

timescale but site-specific data (e.g. dendrochronology) or 

modeling. 

A. Databases 

Currently, there is no comprehensive spatial database of 

disturbance across the entire boreal ecosystem. Where efforts 

to collate information have been attempted, these are usually 

either spatially restricted or a snapshot in time. The standard 

methods of fire observation are individual wildfire reports 

prepared by forest fire management agencies [11]; [12]. In 

Canada, wildfire reports typically comprise data on fire 

number, location (point of ignition), size and start and end 

dates. The area burned is derived either from aerial sketch 

maps or a posteriori aerial photographic interpretation. This 

can be supplemented by information on fire type and severity, 

derived indirectly from height of burn-marks on stems, fire 

spread rate, flame height, level of combusted litter or mortality 

of trees. These indicators are used to define a particular fire 

type (ground, crown) and three intensity levels – low, medium 

and high. However, such reporting is rarely comprehensive; 

for example, approximately 40% of the Russian forest does not 

receive fire protection or monitoring [8].  

In Canada, a major initiative was started to co-ordinate, 

compile and rationalise wildfire reports from different 

provinces into a comprehensive annual database focusing on 

those fires greater than 200 ha. These fires represent 98% of 

the total area burned. The Canadian Large Fire Database 

(LFDB), co-ordinated by the Canadian Forest Service, is a 

systematic compilation that records  all fires larger then 200 

ha. 

(http://www.nofc.forestry.ca/fire/frn/English/ClimateChange/L

FDB8095.htm). The dataset includes digitised and geo-

referenced maps of final fire perimeters. The original goal was 

to build a database for the country from 1980 to present, as 

from this date, record keeping and large fire perimeter 

mapping were quite complete throughout Canada. The LFDB 

is now being backdated to include the full archive from each of 

the provinces and territories.  

B. Earth Observation 

Earth observation offers the most appropriate spatial and 

within-year temporal resolution. However, the longest global 

record extends from only 1981 to the present, in the form of 

AVHRR imagery from the NOAA satellite series. Data from 

this source are widely available at spatial resolutions of 1km, 

4km and 8km and temporal resolutions varying typically from 

daily coverage to 10- or 18-day composites. The thermal data 

of the AVHRR sensors have been used for locating fires in real 

time, i.e. fire hot spots [13]; [14]; the optical data for (i) 

estimating burned area one month to one year after the fire has 

occurred, i.e. recent fire scars [15-18] and a combination of 

both for monitoring wildfire evolution [19]. Similarly, thermal 

and optical data from more recent coarse-scale sensors are 

being used for hot spot detection (ATSR series: [20] and 

MODIS: [21] and for recent fire scar mapping (ATSR series: 

[22], [23] and SPOT-VEGETATION: [24] respectively. At 

higher spatial resolution, the optical sensor, Landsat TM, has 

been used to map burned areas and fire severity [25], [26]; 

[27] and the active microwave sensor, ERS-1 SAR, to separate 

burned areas into damage classes [28]. 

Hotspot detection relies on the difference between the heat 

of the observed fires and the relatively cold surroundings. The 

main algorithms that have been developed are either threshold-

based methods or contextual methods. A thorough review of 

hot spot detection algorithms is presented in [29]. A number of 

tests are normally required to remove false alarms caused, in 

particular, by sun glint, warm backgrounds, industry, cloud 

reflection and bright-scene objects. To date, a number of 

national and global active fire products derived from EO are 

available online (e.g. ATSR world fire atlas website: 

shark1.esrin.esa.it/ionia/FIRE/, World Fire Web website: 

www.gvm.sai.jrc.it/fire/default.htm, MODIS Land Rapid 

Response system website: firemaps.geog.umd.edu/). Hotspot 

products are obtainable from 1992, 1993 and 1995 to the 

present on a daily, 8-10 daily or monthly basis. The accuracy 

of fire detection from these products is low for fires of low 

intensity (e.g. ground fires, fires in the taiga) and can be 

hampered by false alarms and cloud cover. 

Fire scar mapping using optical imagery exploits the 

differences observed in the spectral signatures between healthy 

forest canopy and forests destroyed or damaged by fire. 

Healthy green vegetation, including forests, typically absorbs 

light in the red (0.6 m – 0.7 m) wavelengths (chlorophyll 

absorption), scatters light in the near infrared (NIR: 0.7 m – 

1.3 m) (intra cellular scattering) and absorbs in the 

shortwave-infrared (SWIR: 1.4 m – 1.8 m) (plant moisture 

absorption). After burning, more soil is exposed and the whole 

or proportions of the forest will have been destroyed. This 

generally results in a spectral signature showing higher red, 

lower NIR and higher SWIR reflectance values, although 

charcoal on the surface can temporarily lower the red signal. 

Methods developed for optical imagery [15, 17, 22, 30-32], 

[13] include: 

 Normalised Difference Vegetation Index (NDVI) 

differencing (e.g. [13]). 

 Thresholding of single bands (e.g. [25] [31]). 

http://www.gvm.sai.jrc.it/fire/default.htm
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 Thresholding of multiple bands and vegetation 

indices (e.g. [17, 23, 33]) 

 Unsupervised image classification (e.g. [15], [34], 

[31] 

 Image segmentation (e.g. [31]) 

Most of the methods listed produce reasonable results for 

estimating the extent of burned areas in the year that the fire 

occurred. The majority of the most successful methods used 

thresholding of a combination of bands and usually included 

brightness temperature. Those of [33] and [23] showed 

greatest promise when tested against other approaches [35]. 

An algorithm that exploits features of the two approaches has 

been adopted for the production of GLOBSCAR, a global 

burned area product derived from ATSR-2 imagery [10].  

GLOBSCAR is available from the European Space Agency. 

It shows monthly burned areas at 1 km resolution for the year 

2000 (web site = www.geosuccess.net). The Joint Research 

Centre at Ispra (Italy) has also produced a 1 km global map of 

burnt areas for the year 2000 (GBA2000) from daily SPOT-

VEGETATION imagery (www.gvm.sai.jrc.it/fire/gba2000 

_website/gba2000_data.htm). Unlike GLOBSCAR, which 

applies two fire scar detection algorithms in tandem, 

GBA2000 implements algorithms developed independently for 

the different biomes and continents.  

With respect to the large area monitoring of older fire scars 

(i.e. areas burned more than one year prior to image 

acquisition) and their regeneration patterns, Earth observation 

tools are not well developed [34]. Nevertheless, [31] and [24] 

have shown that the shortwave-infrared band is critical to the 

detection of older forest fire scars. Canopy moisture content, 

to which SWIR is sensitive, may be linked to vegetation type 

and canopy structure. This may explain why, in the SWIR, 

older regenerating fire scars are distinguishable from the 

surrounding mature forests. [31] tested thresholding, 

unsupervised classification and image segmentation on 

Landsat TM and simulated SPOT-VEGETATION data for 

mapping older fire scars in the Canadian boreal forest. 

Although the segmentation approach is more computer-

intensive than unsupervised classification, it proved 

particularly good at selecting uniform regions in the SWIR, 

which were easy to associate with data from the Canadian 

Large Fire Database (LFDB). The main problem with the 

segmentation approach is that it relies on an a-posteriori 

identification of the fire scar segments.  

In the following sections, we present results that concern the 

detection of older fire scars in the boreal forest of Canada and 

extend the segmentation work of [31]. We propose a solution 

to the a-posteriori identification of fire scar segments and 

demonstrate how the use of short-term multi-temporal imagery 

can enhance segmentation results. 

III. DATA ACQUISITION AND METHODS 

A. Fire Information 

Records of fire scars between 1980-1992 for a 6° x 4° area 

in Canada, centred on latitude 56.5°N, Longitude 99°W, were 

provided by the Canadian Forest Service and the active fire 

detections generated by the FireM3 system were made 

available by the Canadian Centre for Remote Sensing (CCRS). 

FireM3 identifies active fires from four daily afternoon passes 

across Canada by NOAA/AVHRR. The AVHRR fire detection 

algorithm used in FireM3 [14, 36] was developed and tested 

specifically for boreal forest fires.  Both datasets were 

imported into Arc/Info and re-projected into the same 

reference system as the SPOT-VEGETATION data. Each fire 

year was recorded as a distinct layer in Arc/Info. 

B. SPOT-VEGETATION data 

The overall study area stretches from Hudson Bay in the east 

to Saskatchewan in the west (Latitude range: 57 to 51° N, 

Longitude range: 116 to 76° W). A total of 25 SPOT-

VEGETATION-P1 images were acquired (Table I). The P1 

image product includes geo-referencing and conversion to top 

of atmosphere reflectance. Of the 25 images, the 17 least 

cloudy  (shaded) were used in subsequent analysis. The 17 

images do not cover the same geographical extent so that the 

number of image layers available varies spatially across the 

overall study area. The method was first developed on a subset 

of 700*700 km (Lat. Range: 56.5 to 53.5° N, Long. Range: 

103 to 97° W) and was then implemented for the complete 

area. The subset has 17 images.   

 

TABLE I 

SPOT-VEGETATION images acquired for study; the images 

used for analysis are shaded in grey.  

May June July August September 

98-05-21 98-06-06 98-07-02 98-08-21 98-10-01 

98-05-22 98-06-07 98-07-30 98-08-21 98-10-02 

98-05-23 98-06-21 98-07-31 98-08-29 98-10-02 

98-05-25 98-06-23 98-08-03 98-08-30 98-10-03 

 98-06-29  98-09-05 98-10-03 

    98-10-04 

    98-10-07 

 

C. Pre-processing 

The SMAC-v2.0 [37] atmospheric correction scheme was 

applied to the data to derive surface reflectance values, using 

atmospheric and geometric reference data supplied with the 

imagery. - Correction to surface reflectance was a 

prerequisite, to allow assessment of the reflectance 

characteristics of fire scars in terms of phenology and age. 

The effect of varying view angles was limited by restricting 

the image analysis to the image subset approximately centered 

in the middle of the full image. Cloud and water masks were 

created for each image, using image specific band- and NDVI-

thresholding.  

D. Image segmentation 

As the SWIR was known to be critical for the detection of 

older fire scars, segmentations were carried out on the 

individual SWIR waveband and NDSWIR, an index, that 

1 

2 

http://www.gvm.sai.jrc.it/fire/gba2000%20_website/gba2000_
http://www.gvm.sai.jrc.it/fire/gba2000%20_website/gba2000_
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exploits NIR and SWIR. These were compared with 

segmentations derived from comparable NDVI images:  

NDVI: 
REDNIR

REDNIR   (1) 

NDSWIR:
SWIRNIR

SWIRNIR   (2) 

 

The segmentation procedure applied was a ‘region-merging' 

segmentation algorithm [38] provided by the CAESAR 

software (webpage: http://www.nasoftware.co.uk/sar/). The 

MUM segmentation procedure "grows" segments by merging 

neighbouring patches starting from random seedpoints. The 

decision to merge depends on the statistical criterion adopted. 

For each pair of adjacent regions, MUM calculates the 

likelihood that they arise from the same underlying population. 

It then chooses the most similar regions and merges them. This 

process is repeated until the likelihood of similarity falls below 

a probability ‘threshold’ set by the user. CAESAR was 

originally developed for SAR data and requires a ‘number-of-

looks’ parameter to be set, this specifies how much of the local 

spatial variability is to be considered as noise rather than 

information. The optimisation of these input values is not 

trivial, as a similar number of segments can be achieved with 

different combinations of ‘threshold’ and ‘number-of-looks’ 

(Fig. 1). In each case, the segments obey the same statistical 

criteria and are therefore equally valid realisations. 

Segmentation results also depend on: 

 the spatial and spectral characteristics of the input 

image, and  

 the algorithms used by the segmentation procedure.  

The optimisation of the input parameters was achieved by 

assessing the size distribution of the LFDB fire scars against 

the resulting segment size distributions. We found that 

segmentations that produced a segment size distribution 

matching closely the shape of the LFDB size distribution, gave 

the highest degree of correspondence between individual 

segments and LFDB polygons. The optimal ‘threshold’ and 

‘number-of-looks’ used subsequently for the segmentation of 

both the subset area and the full area are 0.000001 and 25 

respectively. 

E. Fire scar probability map 

Segmentation results from individual images vary with 

image quality and season. However, it is assumed that 

segmentation is consistent across images for constant and 

spectrally distinct features such as fire scars and lakes. The fire 

scar probability map is based on the cumulative co-location of 

such individual image segments. In general, it is reasonable to 

expect that this output is likely to be an improvement on the 

results of individual image segmentation. The key steps 

involved in the creation of the fire probability map are (Fig. 2): 

 segmentation applied to one year multi-temporal 

image set (spring  to autumn); 

 a posteriori identification of fire scar segments; 

 calculation of per-pixel fire scar probability Pfirescar 

based on the frequency of a pixel belonging to an 

image segment being identified as a fire scar. 

This method depends critically on the a posteriori 

identification of segments as fire scars. With the initial test 

area (700 km x 700 km), the LFDB fire map and the FireM3 

hotspots could be used to identify the fire scar segments and 

produce a temporary probability map as follows [39]:  

rejectedimage

firescar
firescar

NN

N
P  (3) 

Where  

Nfirescar : number of times the image pixel belongs to a segment 

that shows a 15% overlap with a LFDB fire map polygon or 

includes at least one FireM3 hotspot.  

Nimage : total number of images in cumulative image set 

Nrejected : number of times the image pixel is tagged as cloud, 

water, or no-data. 

This temporary probability map was used to extract candidate 

‘fire scar’ pixels from individual images and thus provided a 

means of investigating a posteriori assignment mechanisms 

based on reflectance. 

IV. RESULTS 

A. Image segmentation  

Segmentations of SWIR, NDVI, and NDSWIR were 

compared with the LFDB fire scar polygons and the FireM3 

fire hotspot points. Fig. 3 shows the original SWIR, NDVI and 

NDSWIR vegetation indices and resulting segmentations 

produced from the SPOT-VEGETATION image of 29 June 

1998. Fire scar vectors for 1989 from the LFDB are shown for 

comparison. The known fire scars exhibited consistently low 

values in NDSWIR and high values in SWIR but exhibited no 

unique or consistent separation in NDVI. The match with the 

reference fire data was consistently better for segmentations of 

NDSWIR than for segmentations of the SWIR image or 

NDVI. In addition, the NDSWIR segmentations seemed to be 

less influenced by water, haze or thin cloud. Qualitative 

comparison against LFDB data for 1989 reveals fire scars to 

be consistently dark in all images. However, not all scars are 

selected in all images. Also evident were multiple segments 

within what LFDB treats as single-event fire scars. In 

combination, these segments fit within the fire scar but these 

could be indicative of possible differences in fire severity or 

re-growth and could affect attempts at applying uniform 

thresholds. The next section investigates whether the 

reflectance characteristics of the fire scars could be used to 

assign segments a posteriori.  

B. Spectral Behaviour of fire Scars: individual fire years. 

Average values of reflectances, NDVI and NDSWIR for 

segments  that returned a fire scar probability of more than 

80% (Fig. 4). were compared with average values from forest 

regions where no fire had been recorded, i.e. pixels with a fire 

scar probability of less than 10%. 
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A first step was to see how the average reflectance, NDVI and 

NDSWIR values of all areas burned in the same year compare 

with ‘recovery’ or fire scar age. Fig. 4 shows the average 

NDVI and NDSWIR values calculated for scars of the same 

fire year, from three separate images (May, June and October). 

For NDVI, the average scar values are considerably closer to 

the value for surrounding forest and there are overlaps at the 

first standard deviation, particularly during the peak growth 

period (June/July). By contrast, the average NDSWIR scar 

values are clearly separated from the surrounding non-burned 

in all images beyond the level of the first standard deviation. 

The separation is clearer in early and late season (May and 

October).  

 Note, that these mean and standard deviation values are 

affected by the population of scar pixels per fire year, hence 

there are no data for fire years 1982-1986 and 1992-93, when 

fire scars were either not present in the study area or could not 

be detected by the preliminary probability map. The apparent 

anomaly in 1988 may be due to the small area burnt (only 89 

km
2
) compared to 1989 when 33,430 km

2
 burnt. In addition, 

while every effort was taken to avoid cloud pixels in the 

calculation, using the cloud mask, some values may have been 

included and, for NDSWIR, these may have an adverse effect 

since cloud is very bright while scars are dark. Both the scar 

averages of NDVI and NDSWIR exhibit a consistent near-

linear trend in signal from low values for fire year 1996 

increasing towards the surrounding unburned values for 1980. 

In 1997 there were few fires in the region, hence the large 

standard deviation around the mean.  

 Fig. 5 shows the average signal variation over the active 

growth cycle, from May to September 1998, as extracted from 

the multi-temporal imagery, for the NDSWIR for areas burned 

in 1981 and 1989. The NDSWIR is generally lower compared 

to the ‘unburned’ forest and shows better separation in spring 

and autumn. Separation is clearer for 1989 than 1981, although 

the scatter about the average still causes considerable overlap 

between fire scars in one image (e.g. Aug.) and the non-scar in 

the next image (e.g. Sept.). This suggests that the use of a 

NDSWIR threshold for a posteriori scar identification on a 

multi-temporal set of segmented images would be possible 

only if image-specific threshold values are used.  

C. Spectral Behaviour of Fire Scars: individual scars. 

The previous section considered the combined average 

spectral behaviour of all forest areas burned in a given year. 

This presumes that the conditions for each fire and the severity 

of the fire were the same. Given observations that the controls 

over fire spread and intensity are climate, fuel amount and 

condition and topography this represents an oversimplification. 

It has already been observed that LFDB fire polygons are 

sometimes correspond to multiple segments. Future work must 

examine the NDSWIR signals of fire scar and their sub-scar 

segments to determine if these can be used to indicate faster or 

slower than average recovery or some indication of severity. 

D. A posteriori segment labeling procedure and resulting 

fire scar probability maps 

Examination of reflectance, NDVI and NDSWIR showed a 

closer association of the NDSWIR with fire scars of varying 

age. Generally the pixels within fire scar segments have lower 

NDSWIR values compared with the non-burned segments. 

Their separation therefore might be possible by means of an 

image specific (i.e. adaptive) NDSWIR threshold. Histograms 

of the mean NDSWIR values of segments from the 700 km x 

700 km subset area of single SPOT-VEGETATION images 

revealed distinct bimodal distributions, reflecting the burnt and 

unburnt areas (Fig. 6). In this case, optimal thresholds could be 

established to separate the two populations by maximising the 

standard student-T statistic used to compare the two 

populations (Fig. 6). We subsequently used this threshold 

value in an a posteriori labeling procedure to subdivide the 

original unsegmented NDSWIR imagery into fire scar pixels 

and non-fire scar pixels. The method then combined the 

resulting binary image with the respective segmented images 

to calculate, for each segment, the percentage of pixels that 

tested positive for fire scar. This percentage value was 

assigned to all pixels of a given segment. The fire scar 

probability Pfirescar is then calculated as follows: 

rejimg

NN

i
i

firescar
NN

X

P

rejimg

1  (4) 

where: 

Xi : 
segburnt

NN  for the segment of image i to which pixel 

belongs.  

Nimg : total number of images in cumulative image set. 

Nrej : number of times the image pixel is tagged as cloud, 

water, or no-data. 

For this approach to work, it is important to exclude all 

image pixels outside the forested area (e.g. arable land, 

wetland, grassland, water) from the histogram  and to apply 

cloud masks prior to image segmentation. The IGBP global 

land cover map produced from AVHRR imagery 

(http://edcdaac.usgs.gov/glcc/glcc.html) was used to separate 

the main forested areas from other cover types.  

1) Fire probability map for the subset area 

Fig. 7a shows the resulting fire probability map for the subset 

area, created from 17 SPOT VEGETATION images. The grey 

and black areas have a probability of 50% to 75% and 75% to 

90% respectively. When comparing the areas with a 50% fire 

scar probability or more with the combined LFDB-FireM3 

reference data (Fig. 7b) the correspondence is high: 89.76% 

with Kappa of 0.64 (Table II). The probability map identifies a 

total of 85,512 km
2 

of burnt area whilst the combined LFDB-

FireM3 reference data gives a total of 70,194 km
2
. Fig 7c. 

supports this: the scars on the probability map show a good 

correspondence with the polygons or have FireM3 hotspots 

within their boundary or nearby. In a very few cases (4% 

omission), however, it is not possible to associate LFDB 

polygons or FireM3 hotspot clusters with a scar on the 

probability map, i.e. the scar is not detected. Without 

additional auxiliary information it is difficult to know the 

cause of this, but a likely explanation may be that the size or 

the intensity of these fires was too small for the resulting scars 

to become visible at 1km spatial resolution. More often (8% 

http://edcdaac.usgs.gov/glcc/glcc.html
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commission) areas are identified as fire scars which according 

to the combined LFDB-FireM3 reference data were not burnt. 

These commission errors are often associated with areas near 

hotspot clusters which would suggest that the probability map 

identified an actual burn.  

 

 

TABLE II 

Correspondence matrix (%) between the fire probability map 

and the combined LFDB-FireM3 reference data for an area of 

454,960 km
2
. 

 
 Areas with > 50% fire scar probability  

LFDB 

and 

FireM3  

 fire non-

fire 

row 

total 

Omission 

error 

fire 353817 15631 369448 4% 

non-fire 30949 54563 85512 36% 

column total 384766 70194 454960  

 commission 

error 

8% 22%   

             

               Overall accuracy = 89.76% 

                Kappa  = 0.639 

 

There is a tendency for the older scars of 1981 to show lower 

probability values (the 1981 and 1989 scars have an average 

probability of 0.44 and 0.68 respectively). This is not 

surprising, since the NDSWIR values for 1981 fire scars 

showed a high degree of overlap with the NDSWIR values of 

non-burned forested areas. The fire scars created in 1989 and 

later are clearly visible on the probability map. Comparison 

with the LFDB fire map gives a correspondence of 89%, 69% 

and 69% for fire scars of 1989, 1991 and 1992 (Table III).  

This confirms that the method can detect fire scars that were 

created 10 years prior to the acquisition date of the imagery 

used.  

TABLE III 

Correspondence between the fire probability map and LFDB 

fires scars created in single years.  

 

 LFDB  Areas with > 50% fire 

scar probability 

Year Area  Area corresponding 

with LFDB  

 (km2) (km2) % 

1980 

1981 

1983 

1984 

1987 

1988 

1989 

1991 

1992 

3408 

6965 

6 

113 

1152 

366 

39052 

281 

1874 

1873 

5020 

0 

30 

867 

181 

34721 

193 

1290 

55 

72 

0 

27 

75 

49 

89 

69 

69 

 

Just as fires mapped in LFDB as a single-event are often 

associated with multiple segments, the probability map shows 

different degrees of probability within fire scars. In addition, 

probabilities may vary between fire scars of the same age (for 

two individual fire scars of 1989 the average probability was 

0.86 and 0.68). NDSWIR values in fire scars converge 

towards those found in ‘undisturbed’ forest as the vegetation 

regenerates and this results in lower estimates of fire scar 

probability. These differences in probability within single-

event fire scars and between fire scars of the same age could 

point to differences in fire severity or re-growth and need 

further investigation. 

2) Fire probability map for the full study area 

The full study area is more likely to include fire scars of all 

ages and various degrees of recovery and, when examining the 

NDSWIR histogram for the full study area we found no 

bimodal distribution (Fig. 8 top). Nevertheless, we 

implemented the a posteriori labeling procedure and produced 

a fire scar probability map (Fig. 8 bottom) from the six 

segmented SPOT VEGETATION images which exhibited the 

lowest overall cloud cover and haze. Although the histograms 

extracted for all six images were uni-modal the resulting 

probability map compares well with the probability map 

produced by means of threshold values based on the subset 

area (e.g. when thresholding a single SPOT VEGETATION 

image 33.6% of the pixels in the subset area were identified as 

fire scar by a full area threshold compared to 28.3% by a 

subset area threshold).  

Outside the subset area, the probability map shows two areas 

of high probability where the occurrence of fire is doubtful. 

The first is an area in the north east, bordering the Hudson Bay 

and the second is in the north west of the image. These areas 

are relatively large and, according to the IGBP global land 

cover map, the main vegetation is ‘closed shrubland’ or 

‘woody savannas’. Young regenerating fire scars will consist 

of small trees and other low growing vegetation such as ferns 

and shrubs and may result in NDSWIR values typical of 

shrubland communities.  

V. DISCUSSION 

The results showed how the NDSWIR and shortwave-

infrared waveband can clearly differentiate between fire scars 

of up to 10 years old and the other patches in the boreal 

landscape. Both approaches were superior to the use of either 

other SPOT-VEGETATION wavebands or NDVI. The results 

also demonstrated how the segmentation of multi-temporal 

NDSWIR images can be used to produce a fire scar 

probability map. So, in principle, it should be possible to map 

older regenerating fire scars in the boreal forest at continental 

scale in an operational manner using NDSWIR based on 

shortwave-infrared reflectance data. Nevertheless, there are 

limitations and problems related to our method. 

The optimisation of the input parameters of the segmentation 

procedure relies on some prior knowledge of the fire scar size 

distribution for the area. If this is not available it may be 

difficult to objectively identify optimal input parameters.  
The application of an optimization using Student ‘t’ values to 

identify an adequate NDSWIR threshold performs well when 

the NDSWIR image histogram shows a clear bimodal 

distribution. Applying the method when the image histogram is 

uni-modal (as was the case for the full study site), is not 

strictly valid.  There may be several factors that cause the 
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NDSWIR histogram to be uni-modal. Because the area is so 

large, the relative proportion of pixels representing fire scars 

may be to small to have a significant effect on the histogram. 

The presence of different vegetation types and the variation in 

viewing angle may increase the variability of the NDSWIR 

beyond acceptable levels. One solution may be to compute 

firescar probability maps by applying thresholds specific to 

individual images and geographical areas. Sub-area histograms 

could be extracted on the basis of vegetation type, view angle 

range and a pre-defined maximum extent. 
We were only able to validate the results on a relatively 

small area of the Canadian boreal forest. Although the 

probability map produced for the full extent of the Canadian 

boreal forests appeared to be consistent with expectations, the 

product needs further validation with independent information 

on fire scars outside the subset area.  

NDSWIR is sensitive to canopy structure and moisture 

content. As a result, we anticipate confusion between 

vegetation types which have a similar structure to regenerating 

fire scars (e.g. shrubland). One solution may be to isolate the 

forested areas prior to implementing the procedure. However, 

this imposes superficial boundaries on the landscape which are 

not necessarily respected by fires. 

Cloud cover is a major problem in the boreal zone and, 

although the proposed method can cope with some degree of 

cloud, it still relies on a minimum number of cloud-free 

overpasses within one season. Selecting a series of ‘best’ 

images showing a minimum amount of overall cloud cover is 

not automatically the right solution when dealing with a large 

continental area as cloud cover often tends to persist or recur 

over specific parts of the landscape. A much better approach 

would be to use a complete time-series of imagery (from 

spring to autumn) as a large number of layers will increase the 

reliability of the probability values and for cloudy areas 

increase the chance of cloud free coverage. Note that the 

reliability of the fire scar probability map is a per-pixel 

measure. 

 Finally, the spectral behaviour of fire scars in the Canadian 

boreal forest does not allow the reliable detection of fire scars 

created more than 10 years before image acquisition. In order 

to extend the temporal range of fire scar mapping the method 

depends upon past and future satellite data acquisitions in the 

NIR and SWIR spectrum. Current and past sensors which 

record in the NIR and SWIR are Landsat TM/ETM, ATSR-2, 

SPOT VEGETATION and AATSR. The TM sensor provides 

imagery going back to 1982 but the spatial resolution of 30 m 

means that extremely high data volumes would need to be 

processed to provide comprehensive cover of the boreal zone. 

The low repeat frequency (16 days) also reduces the chance of 

acquiring multiple cloud-free images for any one area in a 

single growth season. ATSR-2, SPOT VEGETATION and 

AATSR, on the other hand, have a coarse spatial resolution of 

1km and a high repeat frequency (1, 3 days) but came into 

operation in 1995, 1998 and 2002 respectively, limiting 

potential backdating to the early 80’s. Moreover, their coarse 

spatial resolution restricts the mapping to fire scars of several 

km
2 

in size. In Siberia, these sensors would fail to spot about 

50% of the fire scars (Shvidenko – personal communication). 

A solution might be to combine fine scale but local fire scar 

information from TM with the coarse scale but global 

information from SPOT VEGETATION, ATSR-2 or AATSR.  

Medium scale (500 m) mapping of older fire scars using the 

SWIR would also be possible by means of MODIS imagery 

(from 2001) 

VI.  CONCLUSION 

Monitoring the spatial and temporal dynamics of forest fires 

is vital for assessing the impacts of global environmental 

change. Data from AVHRR, ATSR-2 and SPOT-

VEGETATION have been used for fire hotspot mapping and 

assessment of area burned in the same year as the imagery. To 

date, a number of national and global fire hotspot and recent 

fire scar products derived from Earth observation are available 

online, but tools for large area monitoring of older fire scars 

and their regeneration patterns are not well developed. 

 Examination of SPOT VEGETATION NDVI and NDSWIR 

(indices based on the Red - NIR and NIR - SWIR wavebands 

respectively) revealed a closer association of the NDSWIR 

with fire scars of varying age. A segmentation system using a 

time series of NDSWIR consisting of good quality images was 

developed which reliably differentiates older fire scars from 

unburnt forests. The method uses an objective optimisation of 

the segmentation parameters and an a posteriori assignment of 

fire scar segments through adaptive NDSWIR thresholding. 

The final product is a fire scar probability map. The method 

has been tested on a large area of the Canadian boreal forest. 

Further research will focus on ways of validating the fire scar 

probability maps and assess whether the NDSWIR of fire scars 

is related to fire scar age, intensity of the fire and rate of 

recovery of fire scars. 

ACKNOWLEDGMENT 

This work was funded by the Natural Environment Research 

Council (NERC). We wish to thank Brian Stocks, of the 

Canadian Fire Services (CFS) for the supply of Large Fire 

Data Base  Bryan Lee and Robert Fraser (CFS) for access to 

FireM3 data, the Centre National d’Etudes Spatiales (CNES) 

for providing the SPOT-VEGETATION images through the 

Preparatory Programme Investigation and Tristan Quaife 

(University of Wales, Swansea) for access to the SMAC v2.0 

software interface. 

REFERENCES 

 

[1] Y. Malhi, D. D. Baldocchi, and P. G. Jarvis, "The 

carbon balance of tropical, temperate and boreal 

forests," Plant Cell and Environment, vol. 22, pp. 715-

740, 1999. 

[2] E. D. Schulze, J. Lloyd, F. M. Kelliher, C. Wirth, C. 

Rebmann, B. Luhker, M. Mund, A. Knohl, I. M. 

Milyukova, W. Schulze, W. Ziegler, A. B. Varlagin, 

A. F. Sogachev, R. Valentini, S. Dore, S. Grigoriev, O. 

Kolle, M. I. Panfyorov, N. Tchebakova, and N. N. 

Vygodskaya, "Productivity of forests in the 

Eurosiberian boreal region and their potential to act as 



 8 

a carbon sink - a synthesis," Global Change Biology, 

vol. 5, pp. 703-722, 1999. 

[3] M. L. Goulden, S. C. Wofsy, J. W. Harden, S. E. 

Trumbore, P. M. Crill, S. T. Gower, T. Fries, B. C. 

Daube, S. M. Fan, D. J. Sutton, A. Bazzaz, and J. W. 

Munger, "Sensitivity of boreal forest carbon balance to 

soil thaw," Science, vol. 279, pp. 214-217, 1998. 

[4] W. R. Cofer, J. S. Levine, E. L. Winstead, D. R. 

Cahoon, D. I. Sebacher, J. P. Pinto, and B. J. Stocks, 

"Source compositions of trace gases released during 

African savanna fires," Journal of Geophysical 

Research-Atmospheres, vol. 101, pp. 23597-23602, 

1996. 

[5] E. S. Kasischke, K. Bergen, R. Fennimore, F. Sotelo, 

G. Stephens, A. Janetos, and H. H. Shigart, "Satellite 

imagery gives clear picture of Russia's boreal forest 

fire," EOS Trans American Geophys Union, vol. 80, 

pp. 141-147, 1999. 

[6] E. A. Johnson and S. L. Gutsell, "Heat-Budget and 

Fire Behavior Associated With the Opening of 

Serotinous Cones in 2 Pinus Species," Journal of 

Vegetation Science, vol. 4, pp. 745-750, 1993. 

[7] S. Payette, "The Range Limit of Boreal Tree Species 

in Quebec-Labrador - an Ecological and 

Paleoecological Interpretation," Review of 

Palaeobotany and Palynology, vol. 79, pp. 7-30, 

1993. 

[8] A. Z. Shvidenko, S. Nilsson, V. S. Stolbovoi, M. 

Gluck, D. G. Shchepashchenko, and V. A. Rozhkov, 

"Aggregated estimation of the basic parameters of 

biological production and the carbon budget of 

Russian terrestrial ecosystems: 1. Stocks of plant 

organic mass," Russian Journal of Ecology, vol. 31, 

pp. 371-378, 2000. 

[9] B. J. Stocks, M. A. Fosberg, T. J. Lynham, L. Mearns, 

B. M. Wotton, Q. Yang, J. Z. Jin, K. Lawrence, G. R. 

Hartley, J. A. Mason, and D. W. McKenney, "Climate 

change and forest fire potential in Russian and 

Canadian boreal forests," Climatic Change, vol. 38, 

pp. 1-13, 1998. 

[10] I. Piccolini, "Adaptive algorithm for global automatic 

burnt surfaces estimation with ATSR-2 data, 

Algorithm Technical Background Document," 

European Space Agency 2000. 

[11] J. Liu, J. M. Chen, J. Cihlar, and W. M. Park, "A 

process-based boreal ecosystem productivity simulator 

using remote sensing inputs," Remote Sensing 

Environment, vol. 62, pp. 158-175, 1997. 

[12] A. Shvidenko and S. Nilsson, "Extent, distribution, 

and ecological role of fire in Russian forests," in Fire, 

Climate Change and Carbon Cycling in the Boreal 

Forest, E. Kasischke and B. Stocks, Eds. Berlin, 

Germany: Springer-Verlag, 2000. 

[13] Z. Li, J. Cihlar, L. Moreau, F. Huang, and B. Lee, 

"Monitoring fire activities in the boreal ecosystem," 

Journal of Geophysical Research, vol. 102, pp. 29611-

29624, 1997. 

[14] Z. Li, S. Nadon, J. Cihlar, and B. Stocks, "Satellite-

based mapping of Canadian boreal forest fires: 

evaluation and comparison of algorithms," 

International Journal of Remote Sensing, vol. 21, pp. 

3071-3082, 2000. 

[15] D. R. Cahoon, B. J. Stocks, J. S. Levine, W. R. Cofer, 

and C. C. Chung, "Evaluation of a Technique For 

Satellite-Derived Area Estimation of Forest-Fires," 

Journal of Geophysical Research-Atmospheres, vol. 

97, pp. 3805-3814, 1992. 

[16] E. S. Kasischke, N. H. F. French, P. Harrell, N. L. 

Christensen, S. L. Ustin, and D. Barry, "Monitoring of 

Wildfires in Boreal Forests Using Large-Area Avhrr 

Ndvi Composite Image Data," Remote Sensing of 

Environment, vol. 45, pp. 61-71, 1993. 

[17] P. M. Barbosa, J. M. Gregoire, and J. M. C. Pereira, 

"An algorithm for extracting burned areas from time 

series of AVHRR GAC data applied at a continental 

scale," Remote Sensing of Environment, vol. 69, pp. 

253-263, 1999. 

[18] R. H. Fraser, Z. Li, and J. Cihlar, "Hotspot and NDVI 

differencing synergy (HANDS): A new technique for 

burned area mapping over boreal forest," Remote 

Sensing of Environment, vol. 74, pp. 362-376, 2000. 

[19] K. R. Al-Rawi, J. L. Casanova, and A. Romo, 

"IFEMS: a new approach for monitoring wildfire 

evolution with NOAA-AVHRR imagery," 

International Journal of Remote Sensing, vol. 22, pp. 

2033-2042, 2001. 

[20] O. Arino, I. Piccolini, E. Kasischke, F. Siegert, E. 

Chuvieco, P. Martin, Z. Li, R. Fraser, H. Eva, D. 

Stroppiana, J. Pereira, J. M. N. Silva, D. Roy, and P. 

Barbosa, "Burn scar mapping methods.," Submitted to 

GOFC Special Issue of Remote Sensing of 

Environment, December 1999, 1999. 

[21] Y. J. Kaufman, C. O. Justice, L. P. Flynn, J. D. 

Kendall, E. M. Prins, L. Giglio, D. E. Ward, W. P. 

Menzel, and A. W. Setzer, "Potential global fire 

monitoring from EOS-MODIS," Journal of 

Geophysical Research-Atmospheres, vol. 103, pp. 

32215-32238, 1998. 

[22] H. Eva and E. F. Lambin, "Burnt area mapping in 

Central Africa using ATSR data," International 

Journal of Remote Sensing, vol. 19, pp. 3473-3497, 

1998. 

[23] I. Piccolini and O. Arino, "An adaptive algorithm for 

automatic burned surfaces estimation with ERS-2 

ATSR-2 data.," Submitted to International journal of 

Remote Sensing, August 1999, Submitted. 

[24] R. H. Fraser, Z. Li, and R. Landry, "SPOT 

VEGETATION for characterizing boreal forest fires," 

International Journal of Remote Sensing, vol. 21, pp. 

3525-3532, 2000. 

[25] M. C. Pereira and A. W. Setzer, "Spectral 

Characteristics of Fire Scars in Landsat-5 Tm Images 

of Amazonia," International Journal of Remote 

Sensing, vol. 14, pp. 2061-2078, 1993. 



 9 

[26] H. Epp and R. A. Lanoville, "Satellite data and 

geographic information systems for fire and responce 

management in the Cannadian Arctic," Geocarto 

International, vol. 11, pp. 97-104, 1996. 

[27] J. Rogan and S. R. Yool, "Mapping fire-induced 

vegetation depletion in the Peloncillo Mountains, 

Arizona and New Mexico," International Journal of 

Remote Sensing, vol. 22, pp. 3101-3121, 2001. 

[28] F. Siegert and A. A. Hoffman, "The 1998 forest fires 

in East Kalimantan (Indonesia): a quantitative 

evaluation using high resolution, multitemporal ERS-2 

SAR images and NOAA-AVHRR hotspot data," 

Remote Sensing of Environment, vol. 72, pp. 64-77, 

2000. 

[29] V. Cuomo, R. Lasaponara, and V. Tramutoli, 

"Evaluation of a new satellite-based method for forest 

fire detection," International Journal of Remote 

Sensing, vol. 22, pp. 1799-1826, 2001. 

[30] E. S. Kasischke and N. H. F. French, "Locating and 

Estimating the Areal Extent of Wildfires in Alaskan 

Boreal Forests Using Multiple-Season AVHRR NDVI 

Composite Data," Remote Sensing of Environment, 

vol. 51, pp. 263-275, 1995. 

[31] J. A. Eastwood, S. E. Plummer, B. K. Wyatt, and B. J. 

Stocks, "The potential of SPOT-Vegetation data for 

fire scar detection in boreal forests," International 

Journal of Remote Sensing, vol. 19, pp. 3681-3687, 

1998. 

[32] J. M. C. Pereira, "A comparative evaluation of 

NOAA/AVHRR vegetation indexes for burned surface 

detection and mapping," Ieee Transactions On 

Geoscience and Remote Sensing, vol. 37, pp. 217-226, 

1999. 

[33] H. Eva and E. F. Lambin, "Burnt Area Mapping in 

Central Africa using ATSR data," International 

Journal of Remote Sensing, vol. 19, pp. pp. 3473-

3497, 1998. 

[34] L. T. Steyaert, F. G. Hall, and T. R. Loveland, "Land 

cover mapping, fire regeneration, and scaling studies 

in the Canadian boreal forest with 1km AVHRR and 

Landsat TM data," Journal of Geophysical Research, 

vol. 102, pp. 29581-29598, 1997. 

[35] O. Arino and I. Piccolini, "Development and testing of 

algorithms for a global burnt area product from ERS 

ATSR-2," presented at IGARSS-2000, 2000. 

[36] Z. Li, R. Fraser, and A. Khananian, "Remote sensing 

of forest fires in boreal ecosystem from space," in 

Remote Sensing For Earth Science, Ocean, and Sea 

Ice Applications, vol. 3868, Proceedings of the Society 

of Photo-Optical Instrumentation Engineers (Spie), 

1999, pp. 228-231. 

[37] H. Rahman and G. Dedieu, "SMAC: a simplified 

method for the atmospheric correction of satellite 

measurements in the solar spectrum," Int. J. REmote 

Sensing, vol. 15, pp. 123-143, 1994. 

[38] R. Cook, I. McConnell, and C. Oliver, "Mum (Merge 

Using Moments) Segmentation for Sar Images," in Sar 

Data Processing for Remote Sensing, vol. 2316, 

Proceedings of the Society of Photo-Optical 

Instrumentation Engineers (Spie), 1994, pp. 92-103. 

[39] S. Plummer, F. Gerard, L. Lliffe, and B. Wyatt, "Fire 

Scar Detection in the Canadian Boreal Forest," in 

Proceedings of VEGETATION 2000 conference, 

Belgirate, Italy, 2000, CDROM. 
http://vegetation.cnes.fr/vgtprep/vgt2000/plummer.html  

 

 

 



 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

Threshold=0.1

0.01

0.001

0.0001

0.00001

 0.000001

0

5000

10000

15000

20000

25000

30000

25 50 75 100 125 150 175 200

'Number-of-looks'

N
o

 S
e
g

m
e

n
ts

21 May 1998

Fire scar probability 

map

A posteriory

identification of 

fire scar segments

22 May 1998

3 October 1998

7 October 1998

Image segmentation

NDSWIR threshold

•defined by T-test

•applied to pixels
+

+

rejectedimage

firescar

NN

N

segment is fire scar 

if % positive pixels > 50 +

Fig.2. Schematic outline of the method used to produce fire scar 

probability maps by combining NDSWIR SPOT VEGETATION 

image segmentations from multiple dates of a single year (1998). 

Fig. 1. Variation in number of segments produced from a 700km x 

700km NDSWIR SPOT VEGETATION image by the ERDAS 

CAESAR MUM image segmentation procedure as a function of the 

input parameters ‘threshold’ and ‘number-of looks’.  

98_06_29, SWIR         98_06_29, SWIR - 1989 fire scars 

98_06_29, NDSWIR          98_06_29, NDSWIR - 1989 fire scars 

Fig. 3. NDVI, NDSWIR, SWIR and respective segmentations for June 

29th 1998 compared with the LFDB fire scar polygons of 1989. The 

smooth dark grey areas in the bottom left hand corner of the plates on the 

left represent masks for arable land. The black areas represent water. 

 

98_06_29, NDVI         98_06_29, NDVI - 1989 fire scars  
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Fig. 4. Behaviour of NDVI and NDSWIR with fire scar age as seen from 

SPOT VEGETATION imagery of May 22nd 1998 (top), June 29th 1998 

(middle) and October 3rd 1998 (bottom). The dotted line represents the 

corresponding VI value for the surrounding ‘unburned’ forest. Both VIs 

are scaled positive for averaging. 
 

Fig.  5. Comparing the seasonal behaviour of NDSWIR of fire scars 

created in 1981 (top) and 1989 (bottom) with the surrounding unburnt 

forest. 
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Fig. 7. Fire scar probability map for subset area created from 17 multi-temporal SPOT VEGETATION images; white: probability <50%; grey: 

probability 50%-75%; black: probability > 75% (a). The LFDB (1980-1994) fire scar polygon map of the Canadian Forest Services in grey and the 

FireM3 (1995-1998) hotspot data of CCRS (Canada) in black (b). The correspondence between fire probability >=50% and the LFDB polygon map and 

FireM3 hotspot data; black and white: a match; dark grey: error of commission; light grey error of omission (c).   

 

Fig. 8. NDSWIR histogram of a single SPOT-VEGETATION image covering the full study area with optimal threshold value (top) and resulting fire 

scar probability map based on six ‘best’ (i.e. least cloud) SPOT VEGETATION images (bottom). 

 

Fig. 6. NDSWIR histogram from a 700km x 700km subset area of a single SPOT-VEGETATION image with optimal threshold value (a) identified by 

maximising the Student -t value (b).  
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