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[1] Forest fires in Siberia have a significant effect on the
global carbon balance. It is therefore of interest to study the
environmental factors that may be responsible for their
variability. Here we examine variability in the annual
number of forest fire scars at a spatial scale of 2.5�. This is
decomposed statistically into a spatio–temporal component
correlated with low summer rainfall, a spatial component
correlated with population density and a temporal
component correlated with the Arctic Oscillation. Data
come from ten years of satellite–derived data, incorporating
both the number of forest fire scars and monthly rainfall.
The expected number of fire scars halves for each additional
0.35 mm per day of rainfall in the period April–July. Our
findings may prove useful in parameterising both fire
models within climate simulations and fire warning systems
based on numerical weather predictions of regional dry
anomalies. Citation: Jupp, T. E., C. M. Taylor, H. Balzter, and

C. T. George (2006), A statistical model linking Siberian forest

fire scars with early summer rainfall anomalies, Geophys. Res.

Lett., 33, L14701, doi:10.1029/2006GL026679.

1. Introduction

[2] Forest fires in Siberia are subject to substantial
interannual variability [Zhang et al., 2003; Balzter et al.,
2005; Sukhinin et al., 2004]. Total direct carbon emissions
in boreal Siberia ranged from 116 Tg C in 1999 to 520 Tg C
in 2002 [Soja et al., 2004]. This is equivalent to 5% and
20%, respectively, of the total global carbon emissions from
forest and grassland burning. It has been estimated that
Russian boreal forest fires in 1998 constituted 14%–20% of
average annual global carbon emissions from forest fires
[Conard et al., 2002] and that in extreme fire years total
direct carbon emissions can be 37%–41% greater than in
normal fire years [Soja et al., 2004], due mainly to
increased soil organic matter consumption.
[3] Extreme Siberian forest fires can lead to atmospheric

pollution in North America. Satellite data and global aerosol
transport models suggest that Siberian fire emissions were
the primary source of three air pollution events off the coast
of Washington State in 2003 [Bertschi and Jaffe, 2005]. On
2 June 2003 O3 concentrations exceeded the U.S. Environ-
mental Protection Agency 8-hour standard (>84 ppbv) in
Enumclaw, Washington, and on 5 August 2003 in Seattle,

Washington, daily average fine particle concentrations
exceeded 18 mg m�3 [Bertschi and Jaffe, 2005]. These
effects have been attributed to air masses originating in a
region including Central Siberia (35�N–70�N and 70�E–
170�E) [Jaffe et al., 2004; Bertschi and Jaffe, 2005].
[4] There is a trend for numerical vegetation models to

include mechanistic models of forest fire [e.g., Lenihan et
al., 1998; Venevsky et al., 2002; Arora and Boer, 2005]. It
follows that quantitative descriptions of spatio–temporal
variability are useful in the inter–comparison, validation
and parameterisation of these models. Ultimately, improve-
ments in vegetation models can affect numerical climate
simulations when the two are run interactively.
[5] In this study we concentrate on ‘Central Siberia’, an

area of about 3 million km2 that can be defined by the
administrative regions of Irkutsk Oblast, Krasnoyarsk Kray,
Taimyr, Khakass Republic, Buryat Republic and Evenksky
Autonomous Oblast (approx. 51�N–78�N, 79�E–119�E).
[6] Previous research found that interannual variability in

burned forest area in Central Siberia for the period 1992–
2003 could largely be reproduced by a linear combination
of two factors: large-scale climate represented by the Arctic
Oscillation index and regional conditions represented by the
summer temperature [Balzter et al., 2005]. In this study we
investigate spatial patterns in the number of fire scars within
Central Siberia. The number of fire scars is modelled
statistically with parameters estimated using Bayesian tech-
niques. We examine possible influences on the parameters
in the model, and relate them to factors likely to influence
fire frequency.

2. A Statistical Model

[7] In this study, forest fire scar information was derived
from satellite data from the AVHRR, ATSR–2 and MODIS
instruments [Balzter et al., 2005] while rainfall data were
taken from the Global Precipitation Climatology Project
(GPCP) [Adler et al., 2003]. The GPCP rainfall data are
provided at a spatial resolution of 2.5� by 2.5� and a
temporal resolution of one month. We therefore work within
an 8 � 14 spatial array of gridcells covering the region
50�N–70�N, 85�E–120�E at this resolution (Figure 1). The
original fire scar data consist of the month, area, latitude and
longitude of 2575 forest fire scars in the period 1992–2003,
with the exception of 1994 and 1995 for which data are
unavailable. We therefore define masked spatial and
temporal arrays by removing the years 1994 and 1995 as
well as any gridcells in which no fire scars were recorded in
any year. This leaves a final spatial array ofM = 69 gridcells
(indexed by i = 1, . . ., M) and a final temporal array of N =
10 years (indexed by j = 1, . . ., N) in which we can calculate
the total number of fire scars nij and the total area of fire
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scars aij in gridcell i and year j. The mean area per fire scar
over the whole data set is m = 44.76 km2 with standard
deviation s = 110 km2. From sampling theory, one would
expect aij � nijm ±

ffiffiffiffiffi
nij

p s if the number of fire scars were a
reliable indicator of total burned area. This is indeed the
case, and so for simplicity we model the number of fire
scars rather than the burned area.
[8] Of the 2575 fire scars, the majority (2306) occur in

the months April–July and so we define the early summer
rainfall Rij (for gridcell i and year j) to be the mean rainfall
in mm day�1 for this period.
[9] With these conventions, the data consist of MN = 690

observations of the number of fire scars nij and the early
summer rainfall Rij across 69 gridcells and 10 years. For

later convenience it is helpful to define ‘rainfall anomalies’
rij for each gridcell by

rij ¼ Rij �
1

N

XN
j¼1

Rij ð1Þ

[10] The observed number of fire scars nij can be
regarded as a realization of a discrete random variable Nij.
Since this represents an integer number of events occurring
in fixed intervals of space and time, one might expect it to
follow a Poisson distribution. For generality, however, we
model Nij with the negative binomial distribution, of which
the Poisson and geometric distributions are special cases.
The negative binomial distribution has probability density
function P(Nij = n) = Pn where

Pn ¼

G nþ 1=kð Þ
G nþ 1ð ÞG 1=kð Þ

klij

� �n
1þ klij

� �nþ1=k
; k 6¼ 0

ln
ije

�lij

n!
; k ¼ 0

8>>><
>>>:

ð2Þ

Here G(.) denotes a gamma function, so that G(m) = (m� 1)!
when m is an integer. The mean of the distribution is lij and
the variance is lij + klij

2. The dispersion parameter k is a
measure of the relative magnitude of the variance and the
mean. The negative binomial distribution reduces to a
Poisson distribution when k = 0 and to a geometric
distribution when k = 1. The mean lij represents the expected
number of fire scars in gridcell i in year j. The model is
completed by assuming the following log–linear dependence
on early summer rainfall anomalies rij:

log lij

� �
¼ ai þ b 
 rij þ cj ð3Þ

Since the rainfall anomalies rij are known from GPCP data
(equation (1)), the analysis involves using the data to find
best–fitting values for the parameters ai, cj and k (which
are dimensionless) and b (which has units of day mm�1).
[11] It is important to stress that the statistical model

(equations (2) and (3)) is invariant under transformations of
the form

ai ! ai þ d; cj ! cj � d ð4Þ

where d is a constant. To remove this degree of freedom we
require that hcji (the average value of the cj’s over all j) be
zero. If hcji 6¼ 0, this constraint can be imposed by
performing the transformations in equation (4) with d = hcji.
The values of ai and cj reported here have all been
transformed in this way.
[12] A physical interpretation of the parameters can be

obtained by rewriting equation (3) in exponential form:

lij ¼ exp aið Þ 
 exp b 
 rij
� �


 exp cj
� �

ð5Þ

This shows that the expected number of fire scars lij is
modelled as a product of three factors: a time–independent
spatial factor exp(ai), a space–independent temporal factor
exp(cj) and a spatio–temporal rainfall factor exp(b
rij). It
should be stressed that this separable functional form was

Figure 1. (a) Posterior mean estimates for ai. (b) Posterior
standard deviation of ai. (c) Population density for the same
region. Data from http://sedac.ciesin.columbia.edu/gpw,
here aggregated to 2.5�. Note logarithmic colour scale.
Lake Baikal is the feature around 54�N, 108�E.
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chosen for simplicity, and allows the three factors to be
treated separately. Similarly, the spatio–temporal factor is
restricted to rainfall for simplicity, but could be extended to
include factors like soil moisture and relative humidity.
[13] The 69 parameters ai represent the component of

spatial variability in the number of fire scars that remains
constant from year to year. For example, factors such as
forested area, forest type, latitude and proximity to human
settlement (amongst other things) are all likely contributors
to the value of ai derived for a particular gridcell i. On the
other hand, the 10 parameters cj quantify any year-to-year
variability that applies across all locations in Central Siberia
independently of the regional rainfall Rij. (It is possible that
the temporal factors cj apply in a region larger than Central
Siberia itself, but the finite spatial range of the data means
that we cannot say for sure.) The dispersion parameter k
quantifies how closely, on average, the observed number of
fire scars nij matches the expected number lij. For smaller
values of k the observed number tends to be closer to the
expected number and the statistical model makes relatively
precise predictions. As k increases, however, the predictions
become less precise, although they are still correct ‘on
average’. Finally, the parameter b quantifies the extent to
which spatial variability in the number of fire scars corre-
lates with regional early summer rainfall. Mathematically
this can take any value, but on physical grounds, one might
expect b to be negative, indicating that a decrease in
regional rainfall was associated with an increase in the
number of fire scars. (A lack of correlation between the
number of fire scars and regional rainfall anomalies would
be indicated by b = 0.)
[14] We used the computer code WinBUGS to estimate

the parameters ai, b, cj and k in the model of equations (2)
and (3). WinBUGS uses a Monte Carlo Markov Chain
method to estimate Bayesian posterior distributions for the
parameters [Spiegelhalter et al., 2003]. This has the advan-
tage of yielding a confidence interval (the posterior standard
deviation) as well as a point estimate (the posterior mean)
for each parameter.
[15] Prior distributions for Bayesian analysis are designed

to be maximally uninformative given the prior information
available. For the parameters ai and b we choose Gaussian
priors with zero mean and large variance. (In practice the

prior variance is limited by numerical constraints to 10. This
is because large parameters in an exponential model can
lead to numerical overflow). The parameter k is non-
negative and so we use a Jeffreys prior of the form p(k)
� 1/k [Jaynes and Bretthorst, 2003].

3. Results

[16] The posterior estimate for the dispersion parameter is
k̂ = 1.05 ± 0.26 (mean ±2� standard deviation). This range
of values is incompatible with a Poisson distribution (k = 0)
but consistent with a geometric distribution (k = 1). This
allows a simple interpretation to be placed on the model.
When k = 1 the probability density function of equation (2)
reduces to:

P Nij ¼ n
� �

¼
ln
ij

1þ lij

� �nþ1
ð6Þ

In a series of independent Bernoulli trials – each of which is
either a success or a failure – the geometric distribution
describes the number of failures before the first success.
This can be seen by rewriting equation (6) in the alternative
form

P Nij ¼ n
� �

¼ pij 1� pij
� �n ð7Þ

where pij = 1/(1 + lij) is the probability of success on each
trial. The geometric distribution is therefore consistent with
a toy model in which each fire scar has probability pij of
being the final fire scar to be recorded in gridcell i and year j.
Thus, fire scars are treated as events which are statistically
independent but whose associated probabilities vary over
space and time.
[17] Posterior estimates for the spatial factors ai are

shown in Figure 1a with associated uncertainties in
Figure 1b. Fire scars are most prevalent between 52�N
and 60�N in the region west of Lake Baikal. Since most
of the fire scar data come from this area the uncertainties
in ai (Figure 1b) are correspondingly smaller here. The
accompanying populationmap shows that this coincides with
an area of relatively high population density (Figure 1c).

Figure 2. (a) Estimates of the space-independent temporal factors cj (posterior mean ±2� standard deviation).
(b) Comparison of the annual factors cj with the annual mean value of the arctic oscillation index. A least–squares linear
regression line (cj = 3.26 
 AO + 0.04, R2 = 0.36, p = 0.07) is shown for comparison. (AO data from http://
www.cpc.ncep.noaa.gov/).
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Population density is only one of many spatial factors that
influence forest fires, but this demonstrates consistency with
the idea that many fires are caused by human activity (e.g.,
accidental spread from camp fires and controlled burning to
combat insect outbreaks) [Korovin, 1996; Valendik, 1996;
Mollicone et al., 2006].
[18] Posterior estimates for the annual factors cj

(Figure 2a) illustrate the component of interannual variabil-
ity that cannot be explained by regional rainfall anomalies
rij. For example, the total expected number of fires in 2003
(when cj � 2) is roughly exp(2) � 7.4 times greater than in a
‘typical’ year when cj � 0, irrespective of the spatial
variations that correlate with regional rainfall anomalies.
Balzter et al. [2005] suggest that interannual variability in
forest fires correlates with the annual mean Arctic Oscilla-
tion index (AO). This index quantifies the difference in
atmospheric pressure between the northern middle and high
latitudes, and serves as a measure of large scale climatic
conditions. The correlation between the annual factors cj
and AO is shown in Figure 2b for comparison with this
result. There is an imperfect but significant correlation
between the two, suggesting that some of the interannual
variability in the number of fire scars can be attributed to
changes in AO. This is presumably because the large–scale
climatic conditions which are conducive to increased bio-
mass availability and reduced water availability are associ-
ated with positive values of AO [Balzter et al., 2005].
[19] The posterior estimate for the effect of rain is b̂ =

�1.99 ± 0.56 day mm�1 (mean ±2 � standard deviation).
This range of uncertainty does not include zero, providing
strong evidence for a relationship between the number of
fire scars and rainfall anomalies. Quantitatively, for each
additional 0.1 mm day�1 of anomalous rainfall, the
expected number of fire scars per gridcell per year falls
by approximately 18%. Equivalently, the expected number
of fire scars doubles (halves) for an anomalous negative
(positive) rainfall of rij = log(2)/1.99 = 0.35 mm day�1.
[20] The posterior mean estimates for ai, b, cj and k

together yield a statistical model for the number of fire
scars. The goodness-of-fit of this model is illustrated in
Figure 3a. There is an acceptable fit to the data with almost
all of the data points falling between the 5th and 95th
percentiles. This model cannot be used predictively, how-
ever, since the annual factors cj are derived from each year’s

observations. If forecasts of seasonal rainfall Rij are avail-
able a predictive version of the model could be constructed
by setting all of the temporal factors cj equal to zero
(consistent with the general requirement that hcji = 0). This
leads, naturally, to a decline in goodness-of-fit (Figure 3b)
but does yield predictive ability.

4. Conclusions

[21] In this paper, we consider the relationship between
April–July rainfall and the number of forest fire scars in
Central Siberia. A negative binomial model for the number
of forest fire scars (equations (2) and (3)) provides a
statistically acceptable fit to the data (Figure 3a). The
estimated value for the dispersion parameter (k = 1.05 ±
0.26) is consistent with a geometric distribution but not with
a Poisson distribution. The estimated rainfall factor b =
�1.99 ± 0.56 day mm�1 reveals a convincing, quantitative
link between the number of fire scars and regional variabil-
ity in early summer rainfall. The expected number of fire
scars halves for each additional 0.35 mm day�1 of rainfall in
the period April–July. The full model relies on empirical
estimates of the interannual variability cj but can be used in
predictive mode by setting cj = 0. This work establishes a
quantitative link between regional–scale drought patches
and forest fires which could be used to incorporate seasonal
rainfall forecasts into predictions of the likely number of
forest fires. In addition, it could be used to improve the
representation of fire disturbances in global climate models.
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