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Abstract 1 

Siberia’s boreal forests represent an economically and ecologically precious resource, a 2 

significant part of which is not monitored on a regular basis. Synthetic Aperture Radars 3 

(SARs), with their sensitivity to forest biomass, offer mapping capabilities that could provide 4 

valuable up-to-date information, for example about fire damage or logging activity. The 5 

European Commission SIBERIA project had the aim of mapping an area of approximately 1 6 

million km2 in Siberia using SAR data from two satellite sources: the tandem mission of the 7 

European Remote Sensing Satellites ERS-1/2 and the Japanese Earth Resource Satellite 8 

JERS-1. Mosaics of ERS tandem interferometric coherence and JERS backscattering 9 

coefficient show the wealth of information contained in these data but they also show large 10 

differences in radar response between neighbouring images. To create one homogeneous 11 

forest map, adaptive methods which are able to account for brightness changes due to 12 

environmental effects were required. In this paper an adaptive empirical model to determine 13 

growing stock volume classes using the ERS tandem coherence and the JERS backscatter data 14 

is described. For growing stock volume classes up to 80 m3/ha, accuracies of over 80% are 15 

achieved for over a hundred ERS frames at a spatial resolution of 50 m. 16 

Keywords: SAR, Interferometry, Tandem Coherence, Forestry, Siberia 17 

18 
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1. Introduction 18 

Siberian forests contain roughly half the world's growing stock volume of coniferous species, 19 

making them an economically and ecologically precious resource (Nilsson and Shvidenko, 20 

1998). Given the vastness and remoteness of the area, high-resolution satellite imagery is 21 

indispensable for mapping and monitoring these forests. To collect Synthetic Aperture Radar 22 

(SAR) images the German Remote Sensing Data Center (DLR-DFD) deployed a mobile 23 

receiving station in Ulaanbaatar, Mongolia, in 1997 (Schmullius and Rosenqvist, 1997). SAR 24 

data from the European Remote Sensing Satellites ERS-1 and ERS-2 (C-band) and the 25 

Japanese Earth Resource Satellite JERS-1 (L-band) were acquired during two campaigns in 26 

fall 1997 and summer 1998. For the first time, this effort provided a near complete coverage 27 

of central Siberia with ERS tandem pairs and JERS images providing an excellent opportunity 28 

to map forest attributes in this region. 29 

The potential of SAR for forestry applications has been highlighted in many studies (Leckie 30 

and Ranson, 1998). Traditionally, most of these studies have been confined to relatively small 31 

areas where on-ground data are available to study the behavior of the SAR data in detail. In 32 

this way, rich insights into the local relationships between SAR data and forest parameters 33 

can be gained, often also as a function of time and environmental conditions. Naturally, 34 

scientists strive to obtain the best possible results by optimizing their classification 35 

methodology. Consequently, algorithms developed over small study areas tend to be site-36 

specific and can in many cases not be transferred successfully to other areas. On the other side 37 

of the spectrum are large-scale mapping projects which have been initiated in recent years 38 

driven by the need to better understand the functioning and dynamics of whole forest 39 

ecosystems, from individual tree species to forest communities. International efforts like the 40 

Global Rain Forest Mapping (GRFM) project brought forth an entirely new way of 41 

performing remote sensing of the Earth by combining large-area coverage with high spatial 42 
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resolution (Rosenqvist et al., 2000). GRFM achieved the collection of JERS-1 SAR data over 43 

the entire tropical belt and produced mosaics at a spatial resolution of 100 m. These mosaics 44 

have subsequently been used to derive thematic information over very large areas (De Grandi 45 

et al., 2002). 46 

An “intermediate” approach was pursued by the European Commission-funded SIBERIA 47 

project which was set up to map the forests over an area of approximately 1 million km2 in 48 

central Siberia (51-60°N, 85-110°E) based on the data collected at Ulaanbaatar. The project 49 

combined detailed analysis over selected study areas with efforts to produce a large-area, 50 

high-resolution forest map. This required a different view on the analysis of the ground data: 51 

the emphasis was now on the identification of common behavior over all test sites rather than 52 

model optimization over individual test sites. 53 

To represent the specific zonal regularity of forests and vegetation within the entire study 54 

region, an extensive forest data base was assembled in a joint effort of the International 55 

Institute for Applied System Analysis (IIASA) and several Russian partners. Forest inventory 56 

data from 50 test areas, covering a total area of 1,959,340 ha, was compiled and used to a 57 

varying extent in the exploratory analysis, model development and accuracy assessment. 58 

To produce the forest map, the SIBERIA project followed an alternative approach to the one 59 

adapted by the GRFM project, which used image mosaics as input into data-based classifiers. 60 

A point to consider is that radiometric information is partially lost in image mosaics after 61 

matching to suppress striping and environmental effects. Matching results in internally 62 

consistent mosaics that can be used as input into classification algorithms that rely on relative 63 

comparisons of local image amplitude statistics and texture measures (De Grandi et al., 2000). 64 

However, it impacts the physical interpretation of the data in relation to geophysical 65 

parameters and environmental effects. This problem is avoided by firstly classifying the 66 

calibrated images and only then mosaicing the classified images. Since the SIBERIA team 67 
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decided to follow this approach, the challenge was to develop an adaptive classifier which 68 

yields comparable results over all image frames in the entire area. 69 

The paper is structured as follows: after a discussion of the information content of the SAR 70 

data base (Section 2), the project area and the various data sources are described (Section 3). 71 

Then the processing steps to obtain geocoded, calibrated images are discussed (Section 4). 72 

The exploratory analysis of the database focuses on the dependence of the ERS 73 

interferometric coherence and the JERS backscattering coefficient on the growing stock 74 

volume of forests and environmental conditions (Section 5). Finally, the adaptive empirical 75 

model used to produce the forest map is introduced and the main results of the validation 76 

effort are reported (Section 6). A detailed error analysis of the SIBERIA forest map can be 77 

found in a separate paper (Balzter et al., in press). 78 

2. ERS and JERS SAR in Forestry Applications 79 

The three main radar parameters which can be derived from the ERS tandem and JERS 80 

acquisitions are the backscattering coefficients at C- and L-band and the ERS tandem 81 

coherence (one-day repeat pass). Backscatter from forest canopies is a complex phenomenon 82 

as it depends on the size, shape, and dielectric properties of the scattering elements in the 83 

vegetation canopy and the surface properties (Ulaby et al., 1990). For the ERS SAR (C-band, 84 

23° incidence angle, VV polarization) backscatter from a forest canopy arises primarily by 85 

leaves, needles, twigs and small branches which are characterized by their high number 86 

density (Le Toan et al., 2002). For young forest stands with low levels of biomass, a 87 

contribution from the forest ground is also received. With increasing biomass, the number of 88 

scattering elements becomes sufficiently large to completely mask the scattering from the 89 

ground and the signal reaches a level of saturation. Depending on the canopy and ground 90 

conditions (soil moisture content, freeze/thaw, roughness etc.) the C-band backscattering 91 

coefficient may decrease or increase until saturation is reached (Pulliainen et al., 1996). For 92 
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biomass levels larger than the saturation point, backscatter is very stable over time, a 93 

characteristic which has been exploited for mapping of forest extent (Quegan at al., 2000a). 94 

As guiding value, the saturation point at C-band is often reported to be around 20-30 t/ha 95 

above-ground dry biomass, which corresponds to about 50 m3/ha growing stock volume 96 

(Imhoff, 1995, Le Toan et al., 2002). 97 

For the longer wavelength of JERS SAR (L-band, 35° incidence angle, HH polarization), 98 

canopy scattering and attenuation is mainly determined by the size and orientation of the 99 

branches. While ground conditions also affect backscatter for low biomass levels, the majority 100 

of studies have observed that JERS backscatter increases, with few exceptions, with 101 

increasing biomass over tropical (Luckman et al., 1998; Santos et al., 2002, Castel et al., 102 

2002; Kuplich et al., 2000) and boreal forests (Pulliainen et al., 1999, Fransson and Israelsson, 103 

1999). However, the backscatter level and sensitivity vary with tree species, non-forest 104 

vegetation and environmental conditions. Saturation is normally observed at around 40-50 105 

t/ha or 80 m3/ha of biomass and growing stock volume respectively (Imhoff, 1995, Le Toan et 106 

al., 2002). 107 

In addition to the backscatter intensity, the phase stability, or interferometric coherence, 108 

between image pairs, has proven to be a valuable source of information in forestry (Balzter, 109 

2001). The coherence is a measure of the correlation between two complex SAR images taken 110 

from slightly different orbital positions. The coherence will be high (near 1) if the recorded 111 

radar echoes represent nearly the same interaction with the observed target between the two 112 

images (Zebker and Villasenor, 1992). 113 

The two main effects that cause the coherence to decrease are normally referred to as 114 

temporal and volume decorrelation. Temporal decorrelation arises when the backscattering 115 

characteristics of the target change between the acquisitions as a result of changing moisture 116 

conditions or other environmental effects. Over forested terrain, temporal decorrelation due to 117 
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wind-induced movement of scatterers (needles, branches) near the tree-tops between one 118 

acquisition to the next, may be significant (Sarabandi and Wilsen, 2000). Since temporal 119 

decorrelation is normally quite strong, it is advantageous to choose a short repeat-pass 120 

interval, and thus the ERS-1/2 tandem data have become the preferred data source for forest 121 

applications. Volume decorrelation arises when the scattering elements of the Earth’s surface 122 

are not confined to a narrow surface layer but are distributed within a volume, giving rise to 123 

single and multiple scattering, such as is the case for forests (Askne et al., 1997). Gaveau 124 

(2002) shows that the distance between neighboring trees and the vertical structure of the 125 

boreal forest canopy have an impact on volume decorrelation. For the case of ERS-1/2 126 

tandem data (small baseline), temporal decorrelation is normally stronger than volume 127 

decorrelation (Askne and Smith, 1996). 128 

Early results obtained using ERS repeat-pass data by Wegmüller and Werner (1995) and 129 

Hagberg et al. (1995) showed that the interferometric coherence is significantly lower over 130 

forest than over open canopies, short vegetation, bare soils and urban areas. Subsequent 131 

studies of ERS-1/2 tandem data demonstrated in particular that the one-day repeat pass 132 

coherence is useful in land use mapping (Strozzi et al., 2000) and estimation of stem volume 133 

in forests (Smith et al., 1998; Koskinen et al., 2001; Santoro et al., 2002). Hyyppä et al. 134 

(2000) found that, compared to the JERS and ERS intensity images, the ERS tandem 135 

coherence was best suited to predicting height, basal area and stem volume over a 600 ha 136 

boreal forest site in southern Finland. This paper showed, however, that airborne 137 

measurements (profiling radar, aerial photographs, imaging spectrometer) and even optical 138 

satellite images (SPOT and Landsat) included more information than the ERS interferometric 139 

data for their test area. The transferability of the methods was not tested in this study. 140 
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3. Study Area and Forest inventory Database 141 

3.1. Geographic Area 142 

The study area is situated between the Yenisey River in the west and the Baikal Lake basin in 143 

the east and covers territories of four administrative regions of Russia (Krasnoyarsk Kray and 144 

Irkutsk Oblast; relatively small parts of Republics Buryatia and Touva). Diverse landforms - 145 

plains, plateaus, mountains - are represented in the region. A mountainous area stretches 146 

along the southern boundary of the region, represented by Kuznezky Ala-Tau, Zapadny 147 

Sayan, and Vostochny Sayan. A major part of the territory lies in a typical boreal forest zone 148 

and is comprised of middle and southern taiga sub-zones. The percentage of forest cover is 149 

high even for the taiga zone, and as a rule reaches 60-70 %. To the south from Krasnoyarsk 150 

(about 57°N), deciduous forests are common, mixed with islands of forest steppe and steppe. 151 

While landscape diversity is very high, ecosystem and species diversity is low: there are 152 

approximately 25 tree and 80 shrub indigenous species in the forests of the region. Major tree 153 

species of non-mountain forests are larch (Larix dahurica and L. sibirica) and pine (Pinus 154 

sylvestris), covering approximately 2/3 of the forested areas. Larch usually dominates in 155 

northern regions, but is present in all forest formations. Spruce (Picea sibirica) grows in river 156 

valleys and on watersheds above 400-500 m above sea level. Cedar (Pinus sibirica) is typical 157 

of "mist" forests and occupies high plateaus. Secondary deciduous forests (mostly dominated 158 

by birch) cover significant areas, but do not generate an explicitly delineated zone. 159 

Forest productivity increases from north to south. Growing stock volume of mature forests is 160 

around 150 m3/ha in the middle taiga and 230-250 m3/ha in the southern taiga. A major part of 161 

the forests is represented by mature forests (more than 60 % for large regions). The main 162 

types of disturbances include fires, insect outbreaks and harvesting. The most disturbed 163 

forests are found along the Trans-Siberian railway and around cities and industrial centres 164 

(e.g. Krasnoyarsk, Irkutsk, Bratsk). Regeneration of forests after disturbances (especially after 165 
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clear cut harvests) is usually accompanied by a change of species, which explains the large 166 

areas of birch and aspen forest. 167 

An appropriate coordinate system for presenting the SIBERIA project area is the UTM 168 

scheme with an ellipsoid defined by WGS84. The entire study area spans over five UTM 169 

East-West zones. For representing a map of the entire area the central zone 47 was chosen. 170 

UTM47 coordinates for the project area are: 171 

Top left (m):  Easting: -200,000 Northing: 6,900,000 172 

Bottom right (m): Easting: 1,300,000 Northing: 5,600,000 173 

3.2. Forest Inventory Data 174 

The forest data used in this study stem from the Russian forest inventory and are polygon-175 

based. For each polygon, detailed information is available: land cover category, area, short 176 

description of land cover, description of elevation and slopes, and detailed information for 177 

forests including species composition, age, average diameter and height, relative stocking, 178 

growing stock volume, etc.. The sheer size of the SIBERIA project area requires that a large 179 

number of test-sites be investigated to represent the full diversity of land cover and 180 

topography. The test areas are organized into 13 test territories (Fig. 1), representing major 181 

vegetation zones, landforms and levels of land transformation. As a rule, individual forest 182 

enterprises were used as test territories. Inside each test territory, up to five test areas were 183 

selected. In total, 50 test areas with a surface area between 2,100 and 362,019 ha were 184 

collected (Table 1). Each test area is divided into primary land cover units (between 99 and 185 

14,727 polygons) with an average size of about 36 ha. Based on available forest inventory 186 

data and initial forest maps (scale 1:50,000), the corresponding database was developed. For 187 

the comparison with the SAR data, the field data were converted to raster images and 188 
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manually co-registered to ERS images where there was sufficient overlap. Then the field 189 

polygons were shrunk by a two-pixel buffer to compensate for co-registration errors. 190 

<< Insert Fig. 1 about here >> 191 

<< Insert Table 1 about here >> 192 

The inventories over the test areas were carried out in the years 1995 to 1998; in the majority 193 

of the cases in 1997 when also the first Ulaanbaatar acquisition campaign took place (Table 194 

1). Therefore, given the small growth rates of boreal forests (normally 1.5 – 3 m3/ha per year; 195 

for relatively small areas of young highly productive stands up to 5 – 7 3 m3/ha) the errors 196 

introduced by the time lag between inventory and SAR acquisition is smaller than the 197 

uncertainty inherent in the forest inventory data (± 15 % according to Russian forest inventory 198 

manual). The exception are forest stands which were burnt or logged in the time period 199 

between the inventory and the SAR acquisition. 200 

3.3. SAR Data 201 

ERS-1 and ERS-2 images were acquired in September and October 1997 giving both 202 

autumnal C-band backscatter and tandem coherence. The receiving station was kept in place 203 

for a further campaign the following summer. It also acquired a few JERS (L-band) satellite 204 

tracks during autumn 1997 and a full coverage of the region during summer 1998 (May to 205 

August). 206 

One hundred and twenty-two ERS SAR tandem pairs were processed using the interferometry 207 

software of the German Remote Sensing Data Center, Wessling, Germany (Roth et al., 1998). 208 

With few exceptions, tandem pair data acquired during fall 1997 were used. Fig. 2 shows the 209 

coherence mosaic of the entire SIBERIA area and Fig. 3a the relative coverage with fall 1997 210 

and summer 1998 tandem data. 211 

<< Insert Fig. 2 around here >> 212 
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<< Insert Fig. 3 around here >> 213 

Where coherence allowed, DEMs were constructed from the tandem acquisitions and used to 214 

improve both the radiometric and geometric properties of the ERS data (Teillet et al., 1985). 215 

Such ERS data are labeled as GTC frames (geocoded terrain-corrected) and geographic 216 

referencing was achieved with the help of 1:200,000 Russian maps. Where DEMs could not 217 

be produced, the GTOPO30, 30 arc-second (resolution of approximately 1km) DEM (U.S. 218 

Geological Survey, 1997) was used to optimize geometric accuracy. These data are labeled as 219 

GEC frames (geocoded ellipsoid corrected) and geographic referencing was achieved through 220 

the use of precision orbital data supplied by ESA. Since the coherence is generally low over 221 

forested terrain, DEMs could only be generated for 48 of the 122 ERS frames (Fig. 3b).  222 

JERS SAR data from summer 1998 were processed at the National Space Agency of Japan 223 

(NASDA), Tokyo, Japan and at Gamma Remote Sensing, Bern, Switzerland (Wiesmann et 224 

al., 1999). The images were geocoded using the GTOPO30 DEM and geographically 225 

referenced from orbital data supplied by NASDA. 226 

4. Preprocessing 227 

4.1. ERS-1/2 Co-registration and Geometric Correction 228 

ERS-1 and ERS-2 tracks generally coincide to within a few hundred meters. Therefore co-229 

registration of these datasets, both from the tandem acquisitions and from the spring 230 

acquisition, is a simple procedure involving automatic control point generation through cross-231 

correlation of image patches and was achieved with sub-pixel accuracy. All ERS data was 232 

acquired, calibrated according to standard procedure (Laur et al, 1998), and co-registered on a 233 

ESA standard frame basis as single-look-complex (SLC) scenes (i.e. 100 km x 100 km images 234 

with a small amount of overlap between consecutive frames). After interferometric 235 

processing, the data were then re-projected to the UTM reference scheme using the 236 
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interferometric DEM where it was available (GTC frames) and the GTOPO30 DEM where 237 

the coherence between tandem pairs was not sufficient for high-resolution DEM production 238 

(GEC frames). Interferometric coherence was calculated from the SLC data using a 4 × 20 239 

pixel window (in range and azimuth, respectively). For comparison, a window size of 5 × 20 240 

pixels has been used in other forest studies (Hyyppä et al., 2000; Santoro et al., 2002). The 241 

pixel-size chosen for the geocoded data was 50 m (around 40 independent looks). 242 

4.2. JERS Geometric Correction and Co-registration to ERS Data 243 

ERS and JERS satellite tracks do not coincide because of differing orbits and swath-widths. 244 

Hence a method of registering these two datasets was necessary to produce the multi-245 

frequency composite. Since all other data was already co-registered to the ERS frame system, 246 

it was decided also to co-register the JERS data to the same ERS frames on a frame-by-frame 247 

basis. The JERS data was processed and calibrated according to standard procedure (Shimada, 248 

1996) on a track-by-track basis, rather than as standard frames. Since each track is narrower in 249 

width than the standard ERS frame (~75 km compared to ~100 km) most ERS frames 250 

coincided with sections of two JERS tracks and a few needed three neighbouring tracks to 251 

give full frame overlap. The JERS tracks were projected into the UTM reference scheme 252 

using the GTOPO30 DEM with a pixel size of 50 m. 253 

Co-registration of the re-projected JERS imagery to the geocoded ERS data was achieved by 254 

automatically finding ground control points through cross-correlation of image patches 255 

followed by a low-order polynomial transformation. Despite the different geometries of ERS 256 

and JERS, and the different radar wavelengths used, this automatic method worked 257 

satisfactorily in all but a small minority of cases thereby greatly reducing the amount of user 258 

input to the procedure and �odeled�te the geometric accuracy of the match. 259 
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4.3. JERS Radiometric Matching 260 

The look-angle of JERS varies by a few degrees across its swath and the effect on scattering 261 

processes, particularly in forested areas, is to make a brighter signal return in the near-range 262 

than in the far-range, even after appropriate scattering-area calibration (van Zyl, 1993; van 263 

Zyl et al., 1993). Thus, although cross-correlation between JERS and ERS data was very 264 

successful in geometrically matching the scenes, where the far-range of one track was united 265 

to the near-range of another track within one ERS reference frame, the difference in image 266 

brightness along the image edges became very apparent. 267 

While the SIBERIA philosophy was to avoid scene-to-scene radiometric enhancements prior 268 

to classification, this was not appropriate for the JERS mosaics within the ERS reference 269 

frames serving as reference units for the classification. Thus the JERS striping effect was 270 

compensated for by linearly transforming the backscatter intensity of the image with lesser 271 

coverage of the frame such that the tenth and ninetieth percentiles of the histograms (within 272 

the overlap areas only) were matched to those of the image with the greater frame coverage. A 273 

similar procedure was adopted for those ERS frames encompassing three JERS tracks and the 274 

effect was a seamless mosaicing of JERS data within the ERS reference frame system (Fig. 275 

4). The remaining frame-to-frame variability in Fig. 4 is due to local effects which the 276 

classifier is designed to adapt to. This radiometric matching technique was achieved entirely 277 

automatically and, as well as enhancing the interpretability of the images, also improved the 278 

subsequent automatic classification of the multi-frequency composite. 279 

<< Insert Fig. 4 about here >> 280 

At this stage in the processing, the complete image database consisted of 122 frames defined 281 

by the standard ERS reference system consisting of co-registered tandem coherence and fully 282 

calibrated JERS and ERS backscatter data. Only where this complete data stack was 283 

available, the pixels within the frame were passed on to the next step in the processing chain 284 



2nd revision of paper submitted to Remote Sensing of Environment, October 28, 2002 

 14

(otherwise the data was labeled as missing). These multi-band, frame-based data stacks are 285 

used as input to the forest classification procedure. 286 

4.4. Topographic Mask 287 

Over mountainous areas, topography may cause strong radiometric and geometric distortions 288 

of the radar images which are not corrected for by the procedures described above. One 289 

problem is that ERS-GEC and JERS images are not radiometrically corrected with respect to 290 

topography, another one that terrain-induced distortions can make the co-registration of JERS 291 

to ERS images significantly inaccurate. Therefore it was decided to mask areas of strong 292 

topography to avoid propagating these errors onwards. A masking procedure based on the 293 

GTOPO30 DEM was developed and works as follows: 294 

1. Resample (by nearest-neighbour) the GTOPO30 DEM to 50 x 50 m pixel spacing and 295 

generate a subset corresponding to the area of the respective ERS frame. 296 

2. Calculate a geocoded incidence angle mask (GIM) based on the resampled GTOPO30 297 

DEM and the ERS acquisition geometry for each frame. 298 

3. Calculate the standard deviation of the local incidence angles for sub-areas of the GIM 299 

of a specific size (e.g. 10 x 10 pixels of 50 x 50 m) 300 

4. Apply a threshold to this standard deviation to mask out hilly terrain. The lower the 301 

threshold, the stronger is the masking. 302 

Visual comparisons with backscatter images showed that a threshold of 1.4° and a window 303 

size of 20 x 20 pixels lead to the best qualitative results for masking relief. 304 
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5. Exploratory Analysis 305 

5.1. Growing Stock Volume 306 

An exploratory analysis of the forest and SAR databases was carried out over individual test 307 

sites to a) better understand the properties of the forest data base; b) identify the most relevant 308 

forest and radar parameters; c) investigate the dependence of radar parameters on forest 309 

properties and environmental effects; and to d) test forest classification methods. Results of 310 

this exploratory analysis were e.g. reported in Schmullius et al. (1999), Tansey et al. (1999), 311 

Wagner et al. (2000a), Gaveau et al. (2000) and Quegan et al. (2000b). An important finding 312 

was that the emphasis should be put on growing stock volume because a) it is the most 313 

valuable parameter in national forest inventories and for planning forest enterprise operations; 314 

and b) compared to other parameters collected by the Russian forest inventory, growing stock 315 

volume appears to be the one most directly related to the radar parameters. In general, 316 

growing stock volume as defined in the Russion forest inventory is the stem volume for all 317 

living species in a forest stand (unit is m3/ha). However, only in young stands all stems are 318 

considered. In all other stands, to be included in the growing stock, trees must have trunk 319 

diameters greater or equal to 6 cm at breast height (1.3 m). 320 

In agreement with conclusions of other studies (Section 2), the results of the exploratory 321 

analysis confirmed that, with respect to forest stem volume, the order of information content 322 

in the three available radar data channels was: best ERS coherence, second JERS backscatter, 323 

and last ERS backscatter. Therefore, subsequent research to make the crucial step from 324 

individual test areas to the entire SIBERIA area (i.e. to identify common behavior for all test 325 

areas), focused on the ERS coherence and the JERS intensity and their dependence on 326 

growing stock volume. The effect of tree species composition on this relationship appeared to 327 

be small and was not further investigated within the framework of this study. Nevertheless, 328 

future studies shall investigate the effect of species composition in more detail as it has been 329 
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shown that the retrieval accuracy can be improved by taking forest structural effects into 330 

account (Dobson et al., 1995). The emphasis of the following discussion is on the ERS 331 

coherence and, to a lesser extent, on the JERS backscatter data. 332 

5.2. ERS Coherence 333 

Images and mosaics of the tandem coherence such as the one in Fig. 2 show the wealth of 334 

information carried by this parameter. Landscape and land-use features like river beds, 335 

agricultural land, or forest boundaries can be clearly distinguished at the maximum spatial 336 

resolution (50 m). Over gently sloping terrain topographic effects are hardly visible. As has 337 

already been observed by Wegmüller and Werner (1995), the coherence is less impacted by 338 

topography than the backscattering coefficient. However, over mountainous areas, the 339 

coherence images are also heavily influenced by topography. 340 

As a result of temporal decorrelation, weather conditions have a strong impact on the 341 

coherence. Melting snow (Smith et al., 1998) or rainfall between acquisitions (Santoro et al., 342 

2002) may lead to very low coherence values independent of land cover. In Fig. 2, such areas 343 

of very low coherence can be observed. These areas exhibit less spatial structure as revealed 344 

by a visual comparison with neighboring ERS tracks. To analyse environmental effects in 345 

these data, 3-hourly temperature and 12-hourly rainfall measurements from 113 stations 346 

spread over the area were acquired. Unfortunately, gaps in these data did not allow weather 347 

conditions to be checked for every satellite overflight. Table 2 shows temperature values and 348 

rainfall values for 13 (out of 18) ERS tracks of the SIBERIA area. Also given are orbits and 349 

dates for the respective ERS-1/2 acquisitions and the WMO number and coordinates of the 350 

meteorological station. Stations within a distance of 50 km to the left and right of the satellite 351 

track are shown. To get a best estimate of the temperature during the overflight times (UTC 352 

time of satellite passes are between UTC 3:00 and 5:00 depending on the geographic 353 

coordinates), temperature readings at UTC 3:00 and 6:00 of the respective days were 354 
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averaged. Rainfall was estimated as the sum of the 12 hourly values reported at UTC 0:00 and 355 

12:00, representing total rainfall within the period 16 hours before and 8 hours after data take. 356 

As can be seen in Table 2, temperatures were mostly well above 0°C, even close to the end of 357 

the acquisition campaign in mid October. Therefore, it is unlikely that there was snow on the 358 

ground or that the ground was frozen. The rainfall data show that three tracks in particular 359 

were affected by rain: tracks 405, 104 and 147. These three tracks correspond to low 360 

coherence stripes in the mosaic (Fig. 2). This confirms that rainfall before and in-between 361 

ERS-1/2 tandem acquisitions can result in a significant loss of correlation. It would have been 362 

most appropriate in the case of the SIBERIA study to substitute these affected tracks with 363 

data from another time period. The temporary deployment of the DLR ground receiving 364 

station in Ulaanbaatar, however, prevented this. Therefore results from these three tracks 365 

should be treated with more caution than the remaining data. 366 

<< Insert Table 2 about here >> 367 

To study the dependence of the coherence (γ) on growing stock volume (v), scatterplots of γ 368 

versus v were produced for individual test areas (Fig. 5). The coherence values were 369 

calculated by averaging over all pixels within each of the forest polygons. On average, forest 370 

polygons have a size of 36 ha (Section 3.2). After shrinking by two 50 m pixel to reduce 371 

border effects, their average size decreases to about 16 ha. This means that, on average, 64 372 

pixel values were used to determine mean coherence values per forest inventory unit. 373 

<< Insert Fig. 5 about here >> 374 

Even though the scattering of the data is large it can generally be observed that γ is high for 375 

low stem volumes and decreases with increasing v until a saturation threshold is reached (Fig. 376 

5a to Fig. 5d). In many scatterplots, such as in Fig. 5d, extreme outliers with high γ values are 377 

observed. Many such outliers were reported to the Russian forestry experts who verified that 378 
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the database from which the v values were taken was in error (recent clear cuts or forest fires 379 

had not been recorded). There are also testsites where the behavior described above is not or 380 

only weakly present. For example Fig. 5e, which shows data from a mountainous area near 381 

the southern end of Lake Baikal, demonstrates that topography causes a large scatter of γ 382 

values. In other cases, where rainfall resulted in a loss of the coherence, no relationship 383 

between γ versus v can be discerned (Fig. 5f). 384 

Over test areas where scattering is small, an exponential function can be used to describe the 385 

saturating behavior of γ with increasing v. Depending on how the saturation point is defined, 386 

it is somewhere in the range 150 to 300 m3/ha, but due to the high degree of scatter a retrieval 387 

of classes above about 100 m3/ha appears unrealistic. It is noted that other studies showed that 388 

a retrieval is possible up to 350-400 m3/ha (Smith et al., 1998; Santoro et al., 2002). The 389 

important difference is that these studies had access to multi-temporal ERS tandem 390 

acquisitions, also from the winter period when temporal decorrelation effects are minimal due 391 

to frost. Also, a linear model as used by Smith et al. (1998) and Koskinen et al. (2001) would 392 

not properly reflect the behavior seen in the scatter plots in Fig. 5a-d. Therefore it was 393 

proposed to use following empirical expression (Wagner et al., 2000b): 394 

 ( ) γγγγγ V

v

ev
−

∞∞ ⋅−+= 0)(  (1) 395 

where γ0 is the coherence at v = 0 m3/ha, γ∞ the coherence for asymptotic values of v, and Vγ is 396 

a characteristic stem volume where the exponential function has decreased by e-1. The 397 

physical interpretation is that γ0 represents typical coherence in non-forest areas and γ∞ that in 398 

dense forest. The parameter Vγ determines how quickly saturation is reached. Due to the high 399 

scatter, the uncertainty range of the model parameters is large when Eq. (1) is fitted to training 400 

data sets based on individual test areas. By fixing the parameter Vγ, the uncertainty intervals 401 
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of γ0 and γ∞ become smaller while the residual errors remain practically unchanged. This 402 

shows that Vγ may be treated, in a first approximation, as a constant. On the other hand, γ0 and 403 

γ∞ are highly variable from site to site. This is demonstrated by Fig. 6 which shows the 404 

relationship between γ0 and γ∞ derived from 42 training data sets by fitting model (1) with Vγ 405 

set equal to 100 m3/ha (based on 33 test areas; 9 test areas were covered to a varying extent by 406 

a second ERS frame from a neighbouring track, thus giving more examples of coherence 407 

data). One can see that both parameters vary over large ranges: γ0 between about 0.2 and 0.8, 408 

and γ∞ between about 0.15 and 0.55. It is also observed that γ0 and γ∞ are correlated to some 409 

extent (R2 = 0.54). This means that the coherence of non-forest areas tends to be larger in 410 

images where also the coherence of dense forest is large. 411 

<< Insert Fig. 6 about here >> 412 

5.3. JERS Backscatter 413 

The analysis of the JERS summer 1998 data followed in principle the same scheme as for the 414 

ERS coherence. Overall, our observations are in good agreement with findings reported in the 415 

literature (Section 2). As in the case of the coherence, the JERS mosaic (radiometrically 416 

adjusted only to match multiple JERS frames within each ERS frame) shows radiometric 417 

differences between ERS image frames (Fig. 4). These effects can be attributed to variable 418 

target conditions related to soil and vegetation moisture content. The scatterplots of the JERS 419 

backscattering coefficient σ 0 versus the growing stock volume v exhibit an even larger scatter 420 

than is the case for the coherence. Nevertheless, the expected increase of σ 0 for low v values 421 

and the saturation effect can be discerned for many testsites (e.g. Fig. 7). In some test areas, 422 

σ 0 remains rather stable over the range, but it was never observed to decrease with v as can be 423 

the case for ERS SAR measurements over boreal forests (Kurvonen et al., 1999). 424 

<< Insert Fig. 7 about here >> 425 
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6. Mapping of Growing Stock Volume Classes 426 

6.1. Classification Method 427 

The high degree of scattering of γ and σ 0 for a given growing stock volume is due to many 428 

factors, including tree species composition, understory vegetation, ground conditions, 429 

topography, and environmental conditions (as well as remaining errors in the validation data). 430 

Therefore it was decided to rank growing stock volume by broad classes. The saturation effect 431 

observed in both γ and L-band σ 0 limit the number of meaningful classes to a few low 432 

biomass forest classes and a “dense” forest class that comprises all forests with growing stock 433 

volumes above a threshold. The following forest classes were finally selected: 0-20, 20-50, 434 

50-80, and >80 m3/ha based on the exploratory analyses described earlier and the 435 

requirements of the Russian forestry service partners. 436 

The analysis of image histograms lead to the definition of two further classes: “water” and 437 

“smooth surface”. The “smooth surface” class comprises areas of typically short vegetation 438 

cover like grassland, cultivated areas or bogs. A two-dimensional histogram plot of γ and σ 0 439 

can be seen in Fig. 8. This plot uses a cyclic colour scheme to visually indicate the relative 440 

frequency distribution within this particular frame. The water class is represented by the 441 

cluster around γ = 0.15 and σ 0 = -15 dB, smooth surfaces by the cluster around γ = 0.82 and 442 

σ 0 = -13 dB. The large cigar-shaped cluster represents the complete forest class. It has a 443 

frequency maximum in the lower γ and higher σ 0 range. The analysis of the 122 histograms 444 

(representing the 122 ERS frames) shows that these three clusters can repeatedly be observed. 445 

While the classes “water” and “smooth surface” are remarkably stable, the width of the forest 446 

cluster varies substantially from frame to frame. 447 

<< Insert Fig. 8 about here >> 448 
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The principal question is how to separate the large forest cluster into the four growing stock 449 

volume classes? For satellite images which cover test areas for which ground data is well 450 

known within the project, a straight forward approach would be to determine the class 451 

statistics for each of the four forest classes based on training data and use these as input into a 452 

maximum likelihood (ML) classifier. However, even though the test areas are well distributed 453 

within the SIBERIA project area the majority of the satellite frames could not be classified 454 

using in-situ data. Therefore, an alternative approach was adopted using generalized 455 

signatures derived by aggregating statistics from several test areas as input into a ML 456 

classifier. This approach was tested by Gaveau et al. (in press) who used training data from 457 

Bolshe-Murtinsky, Chunsky, Nizhne-Udinsky and Primorsky to derive the generalized 458 

coherence signatures given in Table 3. Validation of the classification results at three 459 

independent test territories (Ust-Illimsky, Ulkansky, Hrebtovsky) gave 64 % agreement and a 460 

weighted κ-coefficient of 0.69. 461 

<< Insert Table 3 about here >> 462 

These results demonstrate that an approach involving a predetermined set of forest classes and 463 

class statistics, in combination with a simple ML classifier is viable. However, the limitations 464 

of using static signatures becomes clear when they are applied to all 122 satellite frames as 465 

the resulting mosaic shows major border effects. In fact, an important criterion for a classifier 466 

is that the results for adjacent images should be identical in the overlap area. If this criterion is 467 

nearly fulfilled, border effects are minimal and one can be assured that the classes are 468 

spatially consistent. Therefore, our goal was to improve the ML classifier by using frame 469 

dependent estimates of the center values (γ, σ 0) of the forest classes. These estimates are 470 

driven by parameters of the γ and σ 0 histograms which are derived from the images 471 

themselves, i.e. the method is self-sufficient (Sections 6.2 and 6.3). Since the “water” and 472 

“smooth surface” class are comparably stable, their center values can be kept constant. 473 
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6.2. Histogram Analysis 474 

To investigate the properties of the image histograms, and in particular the structure of the 475 

forest cluster, one-dimensional image histograms of γ and σ 0 are compared to histograms of 476 

the four forest classes 0-20, 20-50, 50-80, and > 80 m3/ha. Fig. 9 shows image histograms of 477 

the five satellite frames covering parts of the test territories Bolshe-Murtinsky, Nizhne-478 

Udinsky, Chunksy, Primorsky, and Ulkansky (Fig. 1, Table 4). Open water surfaces were 479 

masked out for the purpose of this analysis. The total contributing inventory area, after 480 

shrinking of the forest polygons to account for registration errors, covered by each image 481 

ranges from 13,500 to 41,000 ha, corresponding to 1.3 to 4.1 % of the imaged area. The 482 

relatively small area percentages implies that the forest classes may not always be 483 

representative of the entire image. This is particularly true for the three low stem volume 484 

classes which, in some cases, exhibit multi-modal histograms. In all cases, the dense forest 485 

class covers more than 57 % of the testsite area (Table 4). The 0-20 m3/ha class is the second 486 

most frequent class, occupying up to 39 %. The abundance of the > 80 m3/ha class stems from 487 

the fact that it covers about three-quarters of the possible growing stock range. As a result, it 488 

is reasonably to assume a priori for each satellite frame that the dense forest class is the 489 

dominating forest class. 490 

<< Insert Table 4 about here >> 491 

<< Insert Fig. 9 about here >> 492 

For the discussion of the γ histograms let us consider Bolshe-Murtinsky as an example (Fig. 9 493 

top-left). The coherence histogram shows two peaks, one around 0.3 corresponding to the 494 

frequency maximum within the forest cluster and one around 0.8 representing 495 

agriculture/grassland. Within the forest class, the > 80 m3/ha class is the dominating class 496 

which finds its expression in the fact that the steep ascent from about 0.1 to 0.3 and the peak 497 

around 0.3 visible in the image histogram correspond well to the ascent and peak of the > 80 498 
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m3/ha class histogram. Comparing the image histograms of the other four test territories with 499 

Bolshe-Murtinsky, one can observe that there is less agriculture/grassland and that the 500 

position of the forest peak may be shifted towards lower (0.23 for Ulkansky) and higher (0.36 501 

for Primorsky) γ values. Nevertheless, the ascents and peaks of the image histograms can 502 

reasonably be explained by the > 80 m3/ha class histograms. To quantify the position of the 503 

ascent let us define a parameter γH as being that γ value where the image histogram reaches 504 

75 % of the forest peak. For our five training data sets γH is highly correlated with the median 505 

value of the dense forest class (R2 = 0.88). This finding is motivation to use γH as input into a 506 

simple empirical model to estimate the class centers of growing stock volume classes (Section 507 

6.3). 508 

Compared to the γ histograms, the succession of the classes is transposed in the case of σ 0. 509 

Agriculture/grassland influences the shape of the image histogram at low σ 0 values, followed 510 

by the forest classes 0-20, 20-50, and 50-80 m3/ha. For high σ 0 values the image histograms 511 

are dominated by the > 80 m3/ha class which determines the position of the descending flank. 512 

The histogram peaks appears to be shifted by a few tenths of a dB towards lower σ 0 values 513 

compared to the peaks of the dense forest class. Similar to γH let us define a parameter σH as 514 

being those σ 0 value where the image histogram reaches 75 % of the dense forest peak, 515 

approaching the peak from the right hand side. The correlation of σH and the median σ 0 value 516 

of the dense forest class is R2 = 0.85. 517 

The importance of the dense forest class for explaining the image histograms is a consequence 518 

of the quick saturation of both γ and σ 0 within increasing growing stock volume. In the 519 

following, the histogram parameters γH and σH are used to drive empirical models to estimate 520 

the position of the forest classes in the two-dimensional (γ, σ 0) space. 521 
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6.3. Estimation of Class Centres  522 

For the development of a model to estimate the centers of the four forest classes, we use again 523 

the training data set given by Table 4. In a first step, the class centers are estimated based on 524 

the forest inventory data. As can be observed in Fig. 9, some of the forest class histograms are 525 

slightly skewed or even exhibit multiple modes. Nevertheless, it is assumed that the class 526 

distributions for the larger samples are approximately Gaussian; their centers are estimated by 527 

calculating the median values of the histograms shown in Fig. 9. The resulting coherence 528 

values for the five test territories are displayed in Fig. 10, JERS intensity data in Fig. 12. 529 

For formulating a coherence model, let us recall the exponential model discussed in Section 530 

5.2 and that γH is well correlated to the center of the dense forest class. Let us rewrite Eq. (1) 531 

 γ
γγγ V

v

H eav
 

)(
−

⋅+=  Model I (2) 532 

where γ0 was substituted by γH, and the term (γ0 – γ∞) by the parameter aγ representing the 533 

dynamic range. In this model, γH is the only input variable which can shift the absolute level 534 

from frame to frame, while aγ and Vγ are fixed model parameters which are derived based on 535 

training data. Since the dynamic range appears to increase slightly with the overall coherence 536 

level, an alternative model is formulated: 537 

 ( ) γγγγ γγ
V

v

HH ebav
 

)(
−

⋅⋅++=  Model II (3) 538 

where the role of the model parameter bγ is to modulate the dynamic range. Fitting the models 539 

to the five training data sets individually indicates the parameter ranges. For the fit, the values 540 

v = 10, 35, 65 and 200 m3/ha are used to represent the classes 0-20, 20-50, 50-80 and >80 541 

m3/ha. Using Model I, the parameter aγ ranges between 0.34 and 0.61 and Vγ between 94.3 542 

and 145.5 m3/ha. Nevertheless, for the production of the mosaic one set of parameters is 543 

needed which is why Eq. (2) and (3) were fitted to all five training data sets concurrently: 544 
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The resulting fit of Model II for the five territories is also shown in Fig. 10. One can see that 547 

the general trend is well reflected, but for individual training data sets (e.g. Bolshe-Murtinsky) 548 

the deviations may be substantial. In general, both models perform well for the dense forest 549 

class but less so for the low biomass classes: the standard deviation of the residuals for the 550 

>80 m3/ha class is in the order of 0.02, for the 20-50 and 50-80 m3/ha classes 0.06 and for the 551 

0-20 m3/ha class 0.09. In Fig. 11, γ of the four forest classes estimated with models (4) and (5) 552 

is plotted versus the histogram parameter γH, which were extracted from the 122 coherence 553 

images. Also, the peaks of the image histograms are shown. One can see that, except for a few 554 

outliers, the histogram peaks and the simulated γ value of the > 80 m3/ha class agree well for 555 

both models, which is consistent with our observations over the five test territories. For the 556 

low biomass classes Model II varies more strongly with γH compared to Model I. Both models 557 

were used to produce classified mosaics of the entire area. Since this showed that the use of 558 

Model II improved the agreement of the classification in the overlap areas of adjacent images, 559 

it was finally chosen.  560 

<< Insert Fig. 10 about here >> 561 

<< Insert Fig. 11 about here >> 562 

Similarly, exponential models are postulated for the JERS backscattering coefficient to 563 

describe the saturation effect and fitted to the training data from the five test territories 564 

concurrently (Fig. 12): 565 

 3.107
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⋅−=σσ  Model I (6) 566 
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As was the case for γ, the standard deviation of the residuals is low for the dense forest class 568 

(0.22 dB for Model I and 0.25 dB for Model II) but higher for the low stem volume classes 569 

(0.49 – 0.79 dB). The comparison of the models with the observed histogram peaks (Fig. 13) 570 

shows that the peak is shifted by about 0.2 – 0.7 dB towards lower σ 0 values compared to the 571 

modeled σ 0 of the > 80 m3/ha class, which again is consistent with the findings of the 572 

histogram analysis. Because the relatively large dynamic range of Model II appeared 573 

unrealistic, Model I was selected. 574 

<< Insert Fig. 12 about here >> 575 

<< Insert Fig. 13 about here >> 576 

6.4. Properties of Forest Map 577 

To arrive at the forest map for the entire SIBERIA project area, the following processing and 578 

classification steps are applied: 579 

1. Interferometric processing of the ERS tandem data from fall 1997, including DEM 580 

generation and geometric correction (Sections 3.3 and 4.1); 581 

2. JERS geometric and radiometric matching to bring the JERS data into the ERS 582 

standard frame system (Sections 3.3, 4.2 and 4.3); 583 

3. Masking of areas of strong topography (Section 4.4); 584 

4. Determination of histogram parameters γH and σH for each satellite frame (after 585 

removing of water surfaces by simple thresholding); 586 

5. Application of a maximum likelihood algorithm which uses as input the class statistics 587 

given in Table 5; 588 
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6. Application of an Iterated Contextual Probability (IPC) algorithm (Balzter et al., in 589 

press) to improve the image context; 590 

7. Mosaicing of classified satellite frames. 591 

<< Insert Table 5 about here >> 592 

The resulting forest map (Fig. 14) shows that, for the major part of the study area, the 593 

classified maps merge nicely with the neighboring images. The notable exception are those 594 

satellite tracks where the coherence was affected by rain, such as track 405. A comparison of 595 

the ERS and JERS data shows that some clear-cut areas visible in the JERS backscatter data 596 

are not observed in the corresponding coherence image. Therefore, in the situation when 597 

rainfall caused a loss of coherence, most of the information in the classified map stems from 598 

the JERS image. Still, the dense forest class is still overestimated in these cases. Nevertheless, 599 

the consistency of the results for the majority of the study area is demonstration of the 600 

viability of the chosen approach. The method worked not only in regions dominated by 601 

forests but also in areas where forested land occupies only a small faction of the land. 602 

<< Insert Fig. 14 about here >> 603 

The methods and results of the accuracy assessment are described in detail in Balzter et al. (in 604 

press). This papers also discusses the inherent uncertainties in the inventory data and how 605 

these affect the accuracy assessment. To quantify the agreement of the classified map to the 606 

reference data, a weighted κw coefficient of agreement was calculated. A comparison of the 607 

classified map with the data from the Russian forest inventory shows a reasonable agreement 608 

of the 0-20 and > 80 m3/ha classes while for the two intermediate forest classes (20-50 and 609 

50-80 m3/ha) user and producer accuracies are low (generally much lower than 50 %). The 610 

resulting weighted κw coefficient of agreement is 0.72. As a second means to assess the 611 

quality of the map, Russian forestry experts carried out an a posteriori ground survey (GS) 612 
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over seven test areas with the aim of achieving a more reliable accuracy statistics map. They 613 

used new aerial photography, optical images from other satellites and data collected directly 614 

in the field. The heterogeneity of forest inventory units was taken into account by identifying 615 

homogeneous patches within the inventory units. The pooled confusion matrixes for all GS 616 

sites is shown in Table 6. The results of this assessment are surprisingly good with user and 617 

producer accuracies larger than 81 % and κw = 0.94. 618 

<< Insert Table 6 about here >> 619 

7. Conclusions 620 

The SIBERIA project has demonstrated that large-scale mapping of growing stock volume up 621 

to about 80 m3/ha is possible over boreal forest using ERS-1/2 tandem data from fall 1997 622 

(unfrozen conditions) and JERS backscatter data from summer 1998, except for areas where 623 

topography causes strong distortions of the radar images. In particular, the ERS tandem 624 

coherence (one-day repeat pass) provides valuable information if rainfall shortly before or in-625 

between the tandem acquisitions does not lead to a loss of interferometric coherence. 626 

The forest map was produced by classifying individual satellite images and by mosaicing the 627 

resulting map. One advantage of this approach is that the spatial consistency of the results can 628 

be checked by comparing the classification results in overlap zones of adjacent images. The 629 

classification rests on a standard maximum likelihood algorithm which uses class statistics 630 

based on the training data to classify two-dimensional images of the ERS tandem coherence 631 

and JERS intensity. The class centers of four growing stock volume classes (0-20, 20-50, 50-632 

80, >80 m3/ha) are estimated for each satellite frame individually. The method rests on 633 

empirical models which describe the dependence of the tandem coherence and the JERS 634 

backscattering coefficient on growing stock volume and on parameters derived from the 635 

image histograms. The models are very simple and do not explicitly model the effect of soil 636 
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moisture, tree species composition, understory vegetation or other important effects. 637 

Implicitly, some of these effects are taken into account by using histogram parameters as 638 

input into these models, which are themselves a surrogate for these effects. The limitations 639 

inherent to an empirical approach must be clearly recognized: it is generally only valid under 640 

the special conditions for which it was developed (e.g. the coherence model may only be valid 641 

for fall tandem acquisitions of boreal forest under non-frozen conditions) and is generally 642 

only suited for the targeted application (i.e. providing first-order estimates of center values of 643 

four broad stem volume classes). For our study area the approach worked surprisingly well as 644 

the rather homogeneous classification result for over 100 ERS image frames covering 645 

approximately 1 million km2 and accuracies above 80 % illustrate. 646 

Due to the low saturation level the data are at first sight of limited use for forest management 647 

applications, even for Siberia. However, it must be considered that a major part of the Russian 648 

forest inventory data are obsolete: they have been collected 10-30 years ago. (Currently 649 

Russia provides forest inventory on about 25-30 million ha annually. This means that for the 650 

total Russian forest fund area of 1.18 billion ha about 40 years are needed to cover the entire 651 

territory by the forest inventory.) Due to high reliability of the SAR identification of areas 652 

with small biomass (burnt and harvested areas) the technique offers (for Siberia) unique 653 

possibilities to update existing inventory data and characterizing 1) level of disturbances and 654 

their consequences, 2) succession regularities, 3) restoration processes in forests, and 4) 655 

current state of forests. 656 

The results reported in this paper present only a first step towards a comprehensive analysis of 657 

the rich database built up during the SIBERIA project. Further studies will analyze the 658 

influence of other forest parameters (tree species composition, age, etc) in a more 659 

comprehensive way. Also, future studies should investigate the use of emerging, more 660 

physically based methods for improving the empirical approach presented here. 661 
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Tables 

Table 1: Test territories and test areas. 

Table 2: Environmental conditions during ERS-1/2 tandem acquisitions. The first five rows 

show track and orbit/date for ERS-1 and ERS-2 respectively. The next columns list the WMO 

stations and their coordinates. Temperature values for the overflight times are given in degree 

Celsius (average of temperature at UTC 3:00 and 6:00). The last two columns show estimated 

rainfall in millimeters within 24 hours before acquisitions (sum of 12 hourly rainfall reported 

for UTC 0:00 and UTC 12:00). “noV” indicates missing values. 

Table 3: Generalised coherence signatures used by Gaveau et al. (in press) 

Table 4: Satellite data and testsites used for estimating model parameters. The first column 

shows the name of the forest enterprise. The second to forth columns give track, frame and 

acquisition dates of the ERS tandem pairs, the fifth column the JERS acquisition date. Then 

follows the total area of all testsites (after shrinking of polygons to account for co-registration 

errors) covered by the satellite data and finally, the area percentages for the four forest classes 

0-20, 20-50, 50-80, and >80 m3/ha. 

Table 5: Class statistics used as input to a maximum likelihood algorithm. The coherence 

values for the four forest classes are determined according to Eq. (5) and the JERS backscatter 

values according to Eq. (6). γH and σH are histogram parameters (Section 6.2). 

Table 6: Pooled confusion matrix for seven ground survey (GS) sites. Numbers are 1 ha (4 

pixels) sample plots determined by Russian forestry experts. From Balzter et al. (in press). 
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Territories Test Area 

Center Coordinates (deg) (Inventory Year) No. 
Longitude Latitude 

Area (ha) No. of 
Polygons 

Avg. Poly. 
Size (ha) 

Bolshe-Murtinsky 1 92.50 57.24 29543 1263 23 
(1997) 2 93.79 57.20 27552 1606 17 
 3 93.54 56.91 20918 964 22 
 4 92.16 56.91 26721 547 49 
Chunsky (1997) 1 95.55 58.00 32192 716 45 
 2 96.75 57.89 38918 1284 30 
 3 97.59 57.85 36552 1113 33 
 4 96.35 57.54 32500 915 36 
 5 95.40 57.79 23654 549 43 
Ermakovsky (1995) 1 93.20 53.18 19240 767 25 
 2 93.20 52.86 20566 382 54 
 3 92.26 52.96 18194 808 23 
 4 92.81 53.09 17682 662 27 
Hrebtovsky (1996) 1 99.74 59.99 50050 1378 36 
 2 99.71 59.49 28515 867 33 
 3 98.36 58.63 33535 1042 32 
 4 99.27 59.78 29447 944 31 
Irbeisky (1998) 1 95.98 55.57 28090 910 31 
 2 96.54 55.24 26389 850 31 
 3 96.44 54.64 28446 399 71 
 4 96.05 55.20 39541 1720 23 
 5 95.43 55.39 14094 1213 12 
Juzhno-Baikalsky 1 103.31 51.71 11005 738 15 
(1985, updated 1997) 2 104.23 51.48 6270 370 17 
 3 104.50 51.40 13000 870 15 
Mansky (1996) 1 93.36 55.47 41000 1622 25 
 2 93.40 55.30 2109 99 21 
 3 93.81 55.28 41248 1304 32 
 4 93.31 55.10 58281 1906 31 
Nizhne-Udinsky 1 100.08 55.40 51035 1988 26 
(1997) 2 99.58 54.52 25373 907 28 
 3 97.61 54.00 73667 394 187 
 4 98.80 54.70 29654 1104 27 
Primorsky (1997) 1 102.26 56.10 14859 743 20 
 2 102.54 55.77 20760 992 21 
 3 102.50 55.58 20156 785 26 
 4 102.07 55.74 17871 709 25 
Sayano-Shushensky 1 91.65 52.92 59682 2369 25 
(1996) 2 92.21 52.77 38309 586 65 
 3 90.99 52.13 166341 1208 138 
 4 91.62 52.64 30000 424 71 
Shestakovsky (1997) 1 103.47 56.67 20049 806 25 
 2 104.51 56.44 32414 1127 29 
 3 104.26 56.10 41997 1236 34 
 4 102.83 56.26 28000 1288 22 
Ulkansky (1996) 1 107.99 55.81 22369 933 24 
 2 108.49 55.74 34641 1027 34 
 3 108.25 55.52 40033 827 48 
 4 108.39 55.07 34859 898 39 
Ust-Ilimsky (1991, 
updated 1997) 

1 102.90 59.00 362019 14727 25 

Table 1: Test territories and test areas. 
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Track Orbit 

ERS-1 
Orbit 

ERS-2 
Date 

ERS-1 
Date 

ERS-2 
WMO 

No. 
Latitude 

(deg) 
Longitude 

(deg) 
Temp 
ERS-1 

Temp 
ERS-2 

Rain 
ERS-1 

Rain 
ERS-2 

305 32357 12684 19970922 19970923 29570 56.0 92.8 15.4 18.2 0.0 0.0 
     29675 55.1 93.4 11.6 12.8 noV 0.0 

319 32371 12698 19970923 19970924 30117 58.2 102.8 10.4 16.7 0.4 0.0 
     30405 55.4 101.0 13.9 15.4 0.0 noV 
     30504 54.6 100.6 14.1 16.3 0.0 0.0 
     30603 53.9 102.1 13.5 16.1 0.0 0.0 

348 32400 12727 19970925 19970926 29274 58.1 93.0 noV 7.2 0.0 0.0 
     29570 56.0 92.8 noV 13.1 0.0 0.0 
     29862 53.8 91.3 noV 17.7 0.0 0.0 

362 32414 12741 19970926 19970927 24908 60.3 102.3 8.5 7.3 0.0 0.0 
     29698 54.9 99.0 15.9 13.3 noV 2.0 
     30504 54.6 100.6 15.5 14.6 0.0 noV 

391 32443 12770 19970928 19970929 29263 58.5 92.2 4.2 3.6 0.0 0.0 
     29274 58.1 93.0 4.8 4.0 0.1 0.0 
     29363 57.6 92.3 4.5 3.0 0.0 0.0 
     29562 56.1 91.7 5.4 noV 0.0 0.0 
     29756 54.5 89.9 10.1 3.8 noV 0.0 
     29759 54.3 89.3 8.9 2.9 0.0 0.0 
     29862 53.8 91.3 12.1 6.9 0.0 0.0 

405 32457 12784 19970929 19970930 24908 60.3 102.3 2.4 1.6 2.0 0.4 
     29594 56.0 98.0 2.1 2.2 1.0 0.5 
     29698 54.9 99.0 3.2 noV 0.1 2.1 
     29789 54.2 97.0 0.9 1.5 2.0 0.1 
     29894 53.6 98.2 0.6 0.8 4.1 0.2 

434 32486 12813 19971001 19971002 29068 59.5 91.0 2.7 3.3 0.0 0.1 
448 32500 12827 19971002 19971003 29789 54.2 97.0 4.1 8.9 0.0 noV 
19 32572 12899 19971007 19971008 23884 61.6 90.0 9.8 3.5 0.4 0.0 

      61.0 89.6 9.2 5.5 0.0 0.0 
47 32600 12927 19971009 19971010 30117 58.2 102.8 noV 8.2 0.0 0.4 

     30405 55.4 101.0 noV 9.0 0.0 0.0 
     30504 54.6 100.6 noV 9.1 0.0 0.0 
     30603 53.9 102.1 noV 7.9 0.0 0.0 

61 32614 12941 19971010 19971011 30433 55.8 109.6 3.3 5.2 0.0 noV 
     30439 55.1 109.8 6.7 6.8 0.0 0.0 
     30635 53.4 109.0 5.4 8.1 0.0 0.0 
     30741 52.8 110.0 3.6 9.5 0.0 0.0 
     30823 51.8 107.6 7.1 5.8 0.0 0.0 

104 32657 12984 19971013 19971014 30337 56.3 107.6 noV 1.8 9.0 5.1 
     30537 54.0 108.3 7.3 3.7 0.0 0.4 
     30635 53.4 109.0 6.5 3.3 0.0 13.0 
     30823 51.8 107.6 4.2 2.8 0.0 0.1 

147 32700 13027 19971016 19971017 30337 56.3 107.6 2.0 1.5 3.0 3.3 
     30622 54.0 105.9 2.3 5.1 noV 0.6 
     30627 53.1 105.5 2.3 5.3 3.0 0.5 
     30824 51.6 105.1 8.3 10.5 3.3 0.6 

Table 2: Environmental conditions during ERS-1/2 tandem acquisitions. The first five rows 

show track and orbit/date for ERS-1 and ERS-2 respectively. The next columns list the WMO 

stations and their coordinates. Temperature values for the overflight times are given in degree 

Celsius (average of temperature at UTC 3:00 and 6:00). The last two columns show estimated 

rainfall in millimeters within 24 hours before acquisitions (sum of 12 hourly rainfall reported 

for UTC 0:00 and UTC 12:00). “noV” indicates missing values. 
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Class ( )γγ StDev±  

Bare soil 0.85±0.04 
Sparse shrub 0.79±0.05 
1 – 20 m3/ha 0.68±0.13 
21 – 50 m3/ha 0.53±0.13 
51 – 80 m3/ha 0.45±0.13 
81 – 130 m3/ha 0.40±0.13 
131 – 200 m3/ha 0.33±0.13 

> 200 m3/ha 0.29±0.12 

Table 3: Generalised coherence signatures used by Gaveau et al. (in press). 

 

Enterprise Track Frame Dates ERS Date JERS Area (ha) 0-20 20-50 50-80 >80 

Bolshe-Murtinsky 348 2457 25/26 Sep. 
1997 

2 Aug. 
1998 

34 351 19.17 13.65 6.14 61.04 

Nizhne-Udinsky 362 2493 26/27 Sep. 
1997 

6 June 
1998 

25 908 38.86 1.55 2.04 57.55 

Chunsky 491 2439 5/6 Oct. 
1997 

16 June 
1998 

41 020 35.59 5.35 1.11 57.95 

Primorsky 47 2475 9/10 Oct. 
1997 

2 June 
1998 

34 271 10.98 11.22 10.75 67.05 

Ulkansky 104 2493 13/14 Oct. 
1997 

23 May 
1998 

13 534 0.37 5.44 12.58 81.61 

Table 4: Satellite data and testsites used for estimating model parameters. The first column 

shows the name of the forest enterprise. The second to forth columns give track, frame and 

acquisition dates of the ERS tandem pairs, the fifth column the JERS acquisition date. Then 

follows the total area of all testsites (after shrinking of polygons to account for co-registration 

errors) covered by the satellite data and finally, the area percentages for the four forest classes 

0-20, 20-50, 50-80, and >80 m3/ha. 
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Class ERS Coherence γ  JERS Intensity σ 0 [dB] 

 Mean StDev Mean StDev 

0-20 m3/ha 0.304 + 1.535⋅γH 0.08 σH − 2.24 1.0 

20-50 m3/ha 0.248 + 1.436⋅γH 0.08 σH − 1.78 1.0 

50-80 m3/ha 0.194 + 1.341⋅γH 0.08 σH − 1.34 1.0 

>80 m3/ha 0.064 + 1.113⋅γH 0.08 σH − 0.38 1.0 

Water 0.16 0.04 -17 1.8 

Smooth surfaces 0.82 0.08 -15 1.3 

Table 5: Class statistics used as input to a maximum likelihood algorithm. The coherence 

values for the four forest classes are determined according to Eq. (5) and the JERS backscatter 

values according to Eq. (6). γH and σH are histogram parameters (Section 6.2). 

 
 ground survey       

remotely 
sensed data 

water smooth 
surfaces 

<=20 
[m3/ha] 

20-50 
[m3/ha] 

50-80 
[m3/ha] 

>80 
[m3/ha] 

total user 
accuracy 

water 95      95 100% 
smooth  137 20 1   158 87% 
<=20  19 908 36 5 9 977 93% 
20-50  1 76 576 39 15 707 81% 
50-80   12 33 881 58 984 90% 
>80    9 120 2182 2311 94% 

total 95 157 1016 655 1045 2264 5232  

producer 
accuracy 

100% 87% 89% 88% 84% 96%   

Table 6: Pooled confusion matrix for seven ground survey (GS) sites. Numbers are 1 ha (4 

pixels) sample plots determined by Russian forestry experts. From Balzter et al. (in press). 
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Figures 

Fig. 1: Location of test territories and test areas. Also shown are the five ERS frames used for 

model development (Table 4). 

Fig. 2: Mosaic of 122 coherence images derived from ERS-1/2 tandem acquisitions in fall 

1997 and, for a few images, summer 1998. Indicated are three satellite tracks (104, 147, and 

405) where Table 2 shows that significant rainfall was recorded at stations along the track. 

Generally, areas of low coherence are most likely associated with rainfall. 

Fig. 3: Characteristics of the SIBERIA mosaic. a) Relative coverage of fall 1997 (grey) and 

summer 1998 (black) ERS tandem data; b) Relative coverage of GEC frames (grey: 74 of 

122) and GTC frames (black: 48 of 122) in the mosaic. 

Fig. 4: Mosaic of JERS backscatter images after remapping the original JERS tracks onto the 

ERS reference frame system. 

Fig. 5: Scatterplots of the ERS coherence γ versus growing stock volume v in m3/ha for six 

selected test areas located in the territories Primorsky, Nizhne-Udinsky, Chunsky, Bolshe-

Murtinsky, Juzhno-Baikalsky and Shestakovsky. The figures show the track and frame 

numbers of the ERS tandem data, the acquisition dates, and the baselines. 

Fig. 6: Scatterplot of dense-forest coherence versus non-forest coherence from 42 training 

data sets. The dotted lines indicate the uncertainty range of the parameters (+/- one standard 

deviation). 

Fig. 7: Scatterplot of JERS backscattering coefficient σ 0 versus growing stock volume for a 

testsite located in the Irbeisky forest enterprise centered around 55.25°N, 96.08°E. The JERS 

image was acquired on June 16, 1998. Modified after Balzter et al. (in press). 

Fig. 8: Two-dimensional histogram of ERS coherence γ and JERS backscattering coefficient 

σ 0 for a region around Bratsk (ERS track 47, frame 2475). The coherence image was derived 
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from the ERS tandem pair data from October 9/10, 1997. The JERS data were acquired on 

June 2 and 4, 1998. Grey-scale is cyclic to better illustrate the relative density of samples in 

each cluster. 

Fig. 9: Image histograms of γ and σ 0 (thick solid lines) of the five satellite frames given in 

Table 4. Also shown are the histograms of the four forest classes (normalized to 60 %) 

derived using the forest inventory data base. The four class histograms were smoothed to 

improve the appearance. The numbers 1 to 4 indicate the classes in order of increasing stem 

volume, i.e. 0-20, 20-50, 50-80, and >80 m3/ha. 

Fig. 10: Median values of ERS coherence γ for the four forest classes 0-20, 20-50, 50-80, and 

>80 m3/ha for the five test territories given in Table 4 (large symbols). The model results 

according to Eq. (5) for the respective image frames are indicated by the small symbols. 

Fig. 11: Modeled coherence versus histogram parameter γH of the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha according to Eqs. (4) and (5). Also shown are histogram peaks 

extracted from the 122 satellite frames. 

Fig. 12: Median values of JERS backscatter coefficient σ 0 for the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha for the five test territories given in Table 4 (large symbols). The 

model results according to Eq. (6) for the respective image frames are indicated by the small 

symbols. 

Fig. 13: Modeled JERS σ 0 versus histogram parameter σH of the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha according to Eqs. (6) and (7). Also shown are histogram peaks 

extracted from the 122 satellite frames. 

Fig. 14: Mosaic of classified radar images. The UTM (Zone 47) grid is overlaid (meters) to 

give scale. © European Commission ENV4-CT97-0743-SIBERIA, ESA 97/98, NASA 

GBFM, DLR.
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Fig. 1: Location of test territories and test areas. Also shown are the five ERS frames used for 

model development (Table 4). 
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Fig. 2: Mosaic of 122 coherence images derived from ERS-1/2 tandem acquisitions in fall 

1997 and, for a few images, summer 1998. Indicated are three satellite tracks (104, 147, and 

405) where Table 2 shows that significant rainfall was recorded at stations along the track. 

Generally, areas of low coherence are most likely associated with rainfall.  
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a) 

 

b) 

 
Fig. 3: Characteristics of the SIBERIA mosaic. a) Relative coverage of fall 1997 (grey) and 

summer 1998 (black) ERS tandem data; b) Relative coverage of GEC frames (grey: 74 of 

122) and GTC frames (black: 48 of 122) in the mosaic. 
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Fig. 4: Mosaic of JERS backscatter images after remapping the original JERS tracks onto the 

ERS reference frame system. 
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Fig. 5: Scatterplots of the ERS coherence γ versus growing stock volume v in m3/ha for six 

selected test areas located in the territories Primorsky, Nizhne-Udinsky, Chunsky, Bolshe-

Murtinsky, Juzhno-Baikalsky and Shestakovsky. The figures show the track and frame 

numbers of the ERS tandem data, the acquisition dates, and the baselines. 
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Fig. 6: Scatterplot of dense-forest coherence versus non-forest coherence from 42 training 

data sets. The dotted lines indicate the uncertainty range of the parameters (+/- one standard 

deviation). 

 

Fig. 7: Scatterplot of JERS backscattering coefficient σ 0 versus growing stock volume for a 

testsite located in the Irbeisky forest enterprise centered around 55.25°N, 96.08°E. The JERS 

image was acquired on June 16, 1998. Modified after Balzter et al. (in press). 
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Fig. 8: Two-dimensional histogram of ERS coherence γ and JERS backscattering coefficient 

σ 0 for a region around Bratsk (ERS track 47, frame 2475). The coherence image was derived 

from the ERS tandem pair data from October 9/10, 1997. The JERS data were acquired on 

June 2 and 4, 1998. Grey-scale is cyclic to better illustrate the relative density of samples in 

each cluster. 
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Fig. 9: Image histograms of γ and σ 0 (thick solid lines) of the five satellite frames given in 

Table 4. Also shown are the histograms of the four forest classes (normalized to 60 %) 

derived using the forest inventory data base. The four class histograms were smoothed to 

improve the appearance. The numbers 1 to 4 indicate the classes in order of increasing stem 

volume, i.e. 0-20, 20-50, 50-80, and >80 m3/ha. 
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Fig. 10: Median values of ERS coherence γ for the four forest classes 0-20, 20-50, 50-80, and 

>80 m3/ha for the five test territories given in Table 4 (large symbols). The model results 

according to Eq. (5) for the respective image frames are indicated by the small symbols. 

 

Fig. 11: Modeled coherence versus histogram parameter γH of the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha according to Eqs. (4) and (5). Also shown are histogram peaks 

extracted from the 122 satellite frames. 
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Fig. 12: Median values of JERS backscatter coefficient σ 0 for the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha for the five test territories given in Table 4 (large symbols). The 

model results according to Eq. (6) for the respective image frames are indicated by the small 

symbols. 

 

Fig. 13: Modeled JERS σ 0 versus histogram parameter σH of the four forest classes 0-20, 20-

50, 50-80, and >80 m3/ha according to Eqs. (6) and (7). Also shown are histogram peaks 

extracted from the 122 satellite frames. 



2nd revision of paper submitted to Remote Sensing of Environment, October 28, 2002 

 55

 

Fig. 14: Mosaic of classified radar images. The UTM (Zone 47) grid is overlaid (meters) to 

give scale. © European Commission ENV4-CT97-0743-SIBERIA, ESA 97/98, NASA 

GBFM, DLR. 


